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Chapter 6

General Discussion

6.1. A short retrospect

In this monograph, the CATREG method for multiple regression with optimal
scaling transformations and three major enhancements to the method were
described. First, a remedy for the problem of local minima with monotonic
transformations has been offered. This problem also occurs with other meth-
ods that are closely related to CATREG and has not been recognized in
literature thus far. Second, a procedure for assessing the prediction accu-
racy of CATREG was incorporated into the method, estimating the expected
prediction error using the .632 bootstrap, which was adapted to deal with
transformed variables. And, finally, three regularization methods were imple-
mented for improving prediction accuracy by stabilizing the parameter esti-
mates and for predictor selection.

In the Introductory chapter (Chapter 1), the CATREG method was de-
scribed in some detail and a dataset with nonlinear regression effects was
used to graphically illustrate the basic elements of the method. The effect
of the choice of the scaling level on the transformations was described and
illustrated, as well as the optimal scaling and backfitting procedures.

With monotonic transformations, CATREG, and other methods for re-
gression with transformations, sometimes ends up in a local minimum of the
error function, resulting in a suboptimal solution. This problem was addressed
in Chapter 2. The cause of ending up in a local minimum and a strategy to
obtain the global minimum was described. This strategy, however, uses multi-
ple systematic starts and involves complete enumeration, which is not feasible
when the number of predictors is large. Several computationally less intensive
strategies were discussed and results of evaluating the performance of these
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strategies in a simulation study were given. Two strategies that work with
a reduced number of multiple starts proved to give good results in reducing
both the incidence and the severeness of local minima. One of these strategies
uses a percentage of loss criterion, which has the advantage of flexibility. The
other strategy, using a hierarchical approach, has the advantage of a smaller
maximum number of starts, but is less flexible. Combining these two strate-
gies, results in a flexible strategy that considerably reduces the incidence and
severeness of local minima and considerably reduces the number of starts.
Furthermore, the combined strategy has the additional advantage that the
number of starts does not grow very fast with increasing number of predictor
variables. In the simulation study also the effect of several data conditions on
the incidence and severeness of local minima was investigated. It was found
that local minima occur more frequently and are more severe with low to
moderately low R2 values, with higher number of categories and with higher
multicollinearity.

In chapter 3, the prediction accuracy of CATREG was assessed by esti-
mation of the expected prediction error with the .632 bootstrap. The compli-
cations that arised with the implementation of this form of the bootstrap for
optimally transformed variables were described in detail. Part of the compli-
cation was due to the fact that in the .632 bootstrap literature at different
places, different definitions are used for the leave-one-out bootstrap estimate
of prediction error: three different definitions were found in Efron (1983);
Efron and Tibshirani (1993), and Hastie and Tibshirani (1990). The predic-
tion accuracy for all scaling levels was assessed and compared to five other
regression methods that use transformations to fit nonlinear relations, and for
which results of estimating expected prediction error with the .632 bootstrap
have been reported in the literature (Hastie and Tibshirani 1990, sec. 10.3).
In addition, a comparison with ACE (Breiman and Friedman 1985), a method
closely related to CATREG, was made. For the assessment of prediction ac-
curacy and the comparisons with other methods, a data set frequently used
in the literature on nonlinear regression effects was used (the ozone data). It
was concluded that, with the particular data set used, the CATREG method
works as well or slightly better than the methods it was compared to. The
effect on the prediction accuracy of reducing numeric predictors to categorical
variables with less categories than the number of distinct values of the variable
(binning) was also investigated, and found to be positive.

The study of the prediction accuracy of CATREG for the ordinal and
monotonic scaling levels also provided a different view on local minima. With
the Ozone data, the expected prediction error for local minimum solutions
was found to be lower than for the global optimal solution. So, although the
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global minimum solution minimizes the apparent prediction error, by defini-
tion, it may not do so with regard to the expected prediction error. The study
of prediction accuracy confirmed the general conjecture that more restricted
models lead to higher apparent error (again, by definition), but to lower ex-
pected error. However, when the relationship between the response and the
predictors is severely nonlinear, more restrictive transformations may lead to
reduced prediction accuracy. If and how much a too restrictive transforma-
tion will reduce the prediction accuracy, depends on the importance of the
predictor and its relationship with the other predictors.

In linear regression, often regularization is applied to improve prediction
accuracy by stabilizing the regression coefficients. At the same time, some
regularization methods also accomplish predictor selection. Numerous regu-
larization methods and algorithms exist, and three of them (Ridge Regression,
the Lasso, and the Elastic Net) have been embedded in the CATREG method,
enabling regularization for nonlinear regression problems (Chapter 4). Sev-
eral rather complex and/or time consuming algorithms have been proposed in
literature for the estimation of linear Lasso models, although a recent devel-
opment provides an elegant and efficient procedure (LARS, Efron et al. 2004).
All these algorithms are limited to select at most N predictors if P > N .

Regularization has the effect that the regression coefficients are shrunken,
causing them to be more stable. The shrinkage is realized through adding a
penalty parameter to the model, penalizing the (absolute) size of the regres-
sion coefficients. Because in linear regression the coefficients are estimated
simultaneously, involving the predictor correlation matrix, estimation of the
Lasso and the Elastic Net coefficients, both using an L1 penalty, is not very
straightforward. The backfitting procedure, however, does allow straightfor-
ward estimation of the shrunken coefficients. In the backfitting estimation
procedure the correlation matrix is not involved, because the coefficients are
estimated one at a time, while when estimating the coefficient for a particu-
lar predictor, the effect of the other predictors is removed from the response.
When applying backfitting, the penalty term can be straightforwardly added
to the equation for the estimation of a coefficient. Moreover, with the back-
fitting algorithm, more than N predictors can be selected. Linear regression
can also be performed using backfitting; for unregularized regression this is of
course an unnecessarily inefficient procedure. For regularized regression, how-
ever, it provides a straightforward way of estimating shrunken coefficients.

Starting with a zero penalty, resulting in the full model (i.e., including all
predictors with unshrunken coefficients), and stepwise increase of the value of
the penalty, the Ridge coefficients follow paths that go towards zero at dif-
ferent rates. The Lasso and Elastic Net paths go to exactly zero at different
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rates and at the point where the coefficient for a predictor is shrunken to zero,
the number of predictors included in the model changes and hence such points
are called transition points. With linear regularized regression the Lasso and
Elastic Net shrinkage paths are linear between the transition points and thus
can be constructed by connecting the transition points. So, then only the
models at the transition points need to be estimated. Finding the transition
points in the same order of magnitude of computational effort as Ordinary
Least Squared was achieved by the LARS method (Efron et al. 2004). The
CATREG-Lasso for linear regression, using the backfitting approach, finds
the transition points in a more greedy way, using the change in slope of the
paths at a transition point, although considerably less greedy than having to
estimate models for each value of the penalty. With the nonlinear CATREG-
Lasso, however, the paths are not piecewise linear and models have to be
estimated for each value of the penalty parameter (the number of models to
estimate depends on the step size used in increasing the penalty). For selecting
the optimal model (equivalent to selecting the optimal penalty value), tradi-
tionally model selection criterion like BIC, AIC, and GCV are used. Before
the LARS algorithm was available, resampling methods like cross validation
or the bootstrap would have been too time consuming. In Chapter 4, us-
ing model selection criteria for linear CATREG-Lasso is compared to model
selection using the .632 bootstrap for a particular data set. The BIC, AIC,
and GCV statistics require estimation of the degrees of freedom, which is not
well studied yet for regression with nonlinear transformations. Comparing the
results with model selection criteria to selection with the .632 bootstrap, sug-
gests that the BIC, AIC, and GCV statistics might be applicable in nonlinear
CATREG-Lasso as well.

Recently, Yuan and Lin (2006) developed Grouped Lasso, a Lasso method
for analysis of variance and additive models, extended by Kim et al. (2006) for
more general loss functions, including generalized linear models, called Block-
wise Sparse Regression (BSR). These methods deal with categorical predictor
variables by representing them by groups or blocks of dummies variables.
The dummy variables are treated as a block by applying a norm restriction
to their regression coefficients. This norm restriction is equivalent to the
weighted standardization of nominal category quantifications in CATREG.
So, for nominal predictors the Grouped Lasso and BSR are equivalent to
the CATREG-Lasso. In the CATREG-Lasso however, nominal variables are
straightforwardly transformed, without the need to expand them to groups of
dummy variables. The Grouped Lasso and BSR also include nonmonotonic
transformation of continuous variables by expanding them to a group of ba-
sis functions, such as polynomials. With the CATREG-Lasso, continuous
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predictors can be straightforwardly transformed and shrunken as a whole by
applying a nonmonotonic or monotonic spline transformation. When using
dummies for nominal variables without applying a norm restriction to their
regression coefficients, the categories of the variable are shrunken in stead of
the variable as a whole. The effect of this form of shrinking was also illus-
trated.

Chapter 5 contains an application to a real life, new data set; it describes
results of the CATREG-Lasso and the .632 bootstrap applied to a sample of
patients suffering from bulimia nervosa in a varying degree. The data were
collected by the Department of Psychosomatic Medicine and Psychotherapy,
University of Freiburg, Germany, and include an expert severity rating of the
disorder and a standard battery of outcome questionnaires containing expert
and self report measures. The research goals were to select an optimal small
subset of the outcome variables to predict the severity rating, to empirically
determine a cut-off score between healthy/subclinical and clinical cases, and
to determine the score region of the predictor variables that contributes to
the prediction. In answering these questions, the researchers wished to take
into account the non-interval scale of the variables and possible nonlinear re-
lations between them. Their search for expertise on these matters led to a
collaboration with the author of this monograph, who conducted the statis-
tical analysis and wrote a major part of the statistical Analysis and Results
sections of the resulting paper. The CATREG-Lasso was not applied here to
select a shrunken model, but to select a subset of predictors, with unshrunken
coefficients. Models including one predictor, two predictors, up to all but one
predictors were determined from the results of a CATREG-Lasso analysis,
with ordinal and monotonic spline transformations. Then the .632 bootstrap
was applied to these models to select the optimal subset of predictors. Next,
the transformations were studied, revealing that the selected predictors are in-
formative for discriminating clinical cases from healthy/subclinical cases, and
for discriminating between healthy and subclinical cases, but less informative
for discrimination within the class of clinical cases. The lower accuracy of
the predictors in discriminating cases in the clinical class was also observed
when examining models including more or other predictors. Finally, to eval-
uate the diagnostic validity of the selected model, the cases were classified as
clininal or healthy/subclinical using the predicted values resulting from the
selected model. Using ROC curve analysis, cut-off values for the predicted
values could be found for classifications with either very high sensitivity (true
positive rate) and acceptable specificity (true negative rate), or with very high
specificity and acceptable sensitivity, or with both high sensitivity and high
specificity.
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6.2. TOPICS FOR FURTHER RESEARCH

First of all, the estimation of prediction accuracy of CATREG with the .632
bootstrap needs more extensive study, using simulated data with known error
and transformation curves, varying the signal-to-noise ratio. Also, regularized
CATREG needs to be investigated more extensively in a simulation study.

During the research described in this monograph, several interesting issues
and ideas that deserve further examination arised, which will be outlined in
the following subsections.

6.2.1 Transformations towards independence and
regularization

Meulman and Van der Kooij (2000) conjectured that due to removing the
variance in the response accounted for by the predictors not being estimated
in the backfitting procedure, the predictor variables will be transformed to-
wards independence. They conducted a modest simulation study, sampling a
response variable and three predictors for 200 observations from a multivari-
ate normal distribution and discretizing the variables by binning them into
seven categories. The values for the multiple correlation R2 were varied, as
well as forms of nonlinearity and degrees of multicollinearity. The results of
this simulation study supported this conjecture and indicated that the effect
of optimal scaling transformations on the (in)dependence among the predic-
tors depends on the size of R2 and the smoothness of the transformation (the
smoother the transformation, the smaller the effect). However, more definite
evidence for the conjecture requires a larger simulation study, including more
predictors. A new and closely related conjecture arose when examining the
results of the CATREG-Ridge applied to the prostate cancer data (Chapter
4): with nonlinear optimal scaling transformations, CATREG-Ridge did not
improve the prediction accuracy compared to regular CATREG. We could
conjecture that the reason for this is that because the predictors were trans-
formed towards indepence, regularization to deal with interdependence of the
predictors was not warranted anymore in this particular case. So, it would be
interesting to investigate if (and, if affirmed, to what extent) optimal scaling
transformation is a form of regularization itself.

6.2.2 The efffect of shrinking on low-frequency categories

Optimal scaling sometimes results in a “degenerate” transformation for a vari-
able when one of its categories has a very low frequency. Especially with



6.2. TOPICS FOR FURTHER RESEARCH 115

ordinal transformation, it can happen that the quantification results in a di-
chotomous variable, distinguishing only the low-frequency category from the
other categories that all receive the same quantified value. In such a case, the
regularization of dummy variables approach, described in Chapter 4, might
be of interest, possibly resulting in the low-frequency category shrunken to
zero.

6.2.3 Regularization in Discriminant Analysis

The CATREG regularization method can easily be extended to both linear
and nonlinear regularized Discriminant Analysis (DA) for classifying cases
into groups. CATREG with nominal scaling applied to a dependent categori-
cal variable and linear transformations to continuous predictors is equivalent
to linear DA (one-dimensional; only one discriminant function will result). By
choosing nonlinear transformations, nonlinear DA is achieved. The adapta-
tion of CATREG to CATDA does not concern the algorithm, but only the
output: regression coefficients need to be converted to discriminant coeffients,
which is straightforward because they are proportional to each other, and out-
put specific to DA needs to be provided. Incorporating the multiple nominal
scaling level in (regularized) CATREG will allow for (regularized) nonlinear
multiple discriminant function analysis. Applying the multiple nominal scal-
ing level to the dependent variable results in multiple sets of quantifications
for the dependent variable — quantifications that are different for each di-
mension (function) — and multiple sets of discrimimant coefficients for the
predictors.

6.2.4 CATREG with cluster restrictions

A method for combined regression and clustering could be incorporated in
CATREG by applying cluster restrictions. For this purpose, the approach of
the predecessor of CATREG, which was called MURALS, (Van der Kooij and
Meulman 1997) is probably more suited. In this approach, the influence of the
predictor variables is channelled through a compromise variable, which is as
close as possible to the linear combination of the predictor variables and at the
same time as close as possible to the dependent variable. This representation
of multiple regression has been inspired by the generalized canonical analy-
sis technique called OVERALS (Gifi 1990). In the OVERALS methodology,
similaritiy between sets of variables is established by simultaneously com-
paring the linear combinations of the variables in each set to an unknown,
compromise variable. When using this representation of regression, cluster
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restrictions can easily be imposed on the compromise variable. Such a clus-
ter restriction resembles much the cluster restriction applied in GROUPALS
(Van Buuren and Heiser 1989), a method that combines nonlinear Principal
Components Analysis with clustering. Also, this approach is similar in spirit
to Projection Pursuit Regression (Friedman and Stuetzle 1981).




