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Chapter 4

Regularization with Ridge
penalties, the Lasso, and the
Elastic Net for Regression
with Optimal Scaling
Transformations

Regularized regression methods for linear regression have been developed
the last few decades to overcome the flaws of ordinary least squares re-
gression with regard to prediction accuracy. In this chapter, three of
these methods (Ridge regression, the Lasso, and the Elastic Net) are
incorporated into CATREG, an optimal scaling method for both lin-
ear and nonlinear transformation of variables in regression analysis. We
show that the original CATREG algorithm provides a very simple and
efficient way to compute the regression coefficients in the constrained
models for Ridge gression, the Lasso, and the Elastic Net. The resulting
procedures, subsumed under the term “regularized nonlinear regression”
will be illustrated using the prostate cancer data, which have previously
been analyzed in the regularization literature for linear regression. For
model selection and the estimation of the prediction accuracy, we used
the .632 bootstrap with the one-standard-error rule. We also show that
the “CATREG-Lasso” with nominal transformations is equivalent to the

This chapter has been submitted for publication as Van der Kooij, A.J. & Meulman, J.J.
(2006). Regularization with Ridge penalties, the Lasso, and the Elastic Net for Regression
with Optimal Scaling Transformations.
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66 CHAPTER 4. RIDGE PENALTIES, LASSO, AND ELASTIC NET

recently developed methods “Group Lasso” and “Blockwise Sparse Re-
gression” for nominal data using dummy variables. These methods as
well as the “CATREG-Lasso” shrink nominal variables as a whole. A
real data set is used to compare the results of shrinking nominal vari-
ables as a whole to the results of shrinking dummy variables, which boils
down to shrinking the optimal quantifications of the categories. Finally,
for a real data set three analytic model selection methods (AIC, BIC,
and GCV) are compared to the nonparametric .632 bootstrap for model
selection.

4.1. Introduction

Multiple regression is often used to estimate a model for predicting future
responses, or to investigate the relationship between the response variable
and the predictor variables. For the first goal the prediction accuracy of
the model is important, for the second goal the complexity of the model
is of more interest. Ordinary least squares (OLS) regression is known for
often not performing well with respect to both prediction accuracy and model
complexity. Several regularized regression methods were developed the last
few decades to overcome these flaws of OLS regression, starting with Ridge
regression (Hoerl and Kennard 1970a,b), followed by Bridge regression (Frank
and Friedman 1993), the Garotte (Breiman 1995), and the Lasso (Tibshirani
1996), and more recently LARS (Efron, Hastie, Johnstone, and Tibshirani
2004), Pathseeker (Friedman and Popescu 2004), and the Elastic Net (Zou
and Hastie 2005). In this chapter, we focus on Ridge regression, the Lasso,
and the Elastic Net.

OLS regression may result in highly variable estimates of the regression
coefficients in the presence of collinearity or when the number of predictors
(P) is large relative to the number of observations (V). Ridge regression re-
duces this variability by shrinking the coefficients, resulting in more prediction
accuracy at the cost of usually only a small increase of bias. In Ridge regres-
sion, the coefficients are shrunken towards zero, but will never become exactly
zero. So, when the number of predictors is large, Ridge regression will not
provide a sparse model that is easy to interpret. Subset selection, on the other
hand, does provide interpretable models, but does not reduce the variability
of the estimates of the coefficients. While not reducing the variability of the
coefficient estimates of the selected variables, subset selection can reduce the
variability of the prediction estimates, but not as much as Ridge regression
or the Lasso. The Lasso was developed by Tibshirani (1996) to improve both
predition accuracy and model interpretability by combining the nice features
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of Ridge regression and subset selection. The Lasso reduces the variability
of the estimates by shrinking the coefficients and at the same time produces
interpretable models by shrinking some coefficients to exacly zero. In Tib-
shirani (1996), it was demonstrated that in terms of prediction accuracy and
interpretability, the Lasso outperforms Ridge regression and subset selection
for data with a small to moderate number of moderate-sized effects; subset
selection performs the best with a small number of large effects, and Ridge
regression performs the best with a large number of small effects.

Recently, Zou and Hastie (2005) proposed the Elastic Net to overcome
the limitations of the Lasso in some situations. The Elastic Net also com-
bines shrinkage and variable selection, and in addition encourages grouping of
variables: groups of highly correlated variables tend to be selected together,
where the Lasso would only select one variable of the group. Also, in the case
P > N, Lasso algorithms are limited because at most N variables can be
selected. Zou and Hastie (2005) conjecture that, whenever Ridge regression
improves on OLS, the Elastic Net will improve the Lasso.

Ridge regression, the Lasso, and the Elastic Net are regularization meth-
ods for linear models. In this chapter, we implement these three methods in
CATREG, an algorithm that incorporates linear and nonlinear transforma-
tion of the variables. With respect to nonlinear transformations, CATREG
transforms variables monotonically or non-monotonically, using either step
functions or spline functions. Recently, a method was developed to simulta-
neously regularize and transform variables non-monotonically (Yuan and Lin
(2006) and Kim et al. (2006)). This method expands the variables to blocks
(dummy variables for categorical variables; basis functions for continuous vari-
ables) and applies the regularization to groups (blocks) of variables. We will
show that with CATREG the same is achieved without the need to expand a
variable to a group of dummy variables or basis functions.

4.2. Ridge penalties, the Lasso, and the Elastic
Net for linear regression

The loss functions for Ridge regression, the Lasso, and the Elastic Net can be
viewed as constrained versions of the ordinary least squares (OLS) regression
loss function. In Ridge regression, the sum of squares of the coefficients is
constrained as follows:

p P
Lrldge(ﬁh N '7513) _ Hy B ﬁijH27 Subject to Zﬁ? < 1o, (4.1)
P j=1
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with N the number of observations, P the number of predictor variables,
Bj,j =1,..., P, the regression coefficients, and ¢, the Ridge tuning parameter,
and where [|-]|2 denotes the squared Euclidean norm. The Lasso constrains
the sum of the absolute values of the coefficients:

P P
LASS0(5, o Bp) = Ily = Y B, subject to |G <ty (4:2)
j=1 J=1

with ¢; the Lasso tuning parameter. Finally, the Elastic Net combines the
Ridge regression and the Lasso constraints:

P
LEMY(By, . Bp) = |y — D Bx|%, subject to
j=1

P P
> B <tyand > |8l <t (4.3)
j=1 j=1

These constrained loss functions can also be written as penalized loss func-
tions:

Lridge(ﬁlv ceey /BP)

P P
ly = > Bixsl1>+ XY 67, (4.4)
j=1 j=1

P P
LlaSSO(ﬁb ceey ﬁp) = Hy — Zﬁij”2 + A1 ZSign(ﬁj)ﬁjv (45)

j=1 j=1

P
LGy, Bp) =y = Byl +
j=1

P P
Ao Y B2+ MDY sign(B5)8;, (4.6)
=1 =1

with Ao the Ridge penalty parameter, penalizing the sum of the squared regres-
sion coefficients and A the Lasso penalty, penalizing the sum of the absolute
values of the regression coefficients. In matrix notation, the penalized loss
functions are written as

488, . Bp) = |y — Xb|2 + Aob'b, (4.7)

Llassow17 ...Bp) = |ly —Xb|>+ A\wb,
Lenet(3 gy ly — Xb]|% + Asb’b + A;w'b, (4.9)
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where the elements w; of w are either +1 or —1, depending on the sign of the
corresponding regression coefficient [3;.

Minimization of (4.7) with respect to b has an analytic solution; the con-
strained coefficients in Ridge regression are obtained as

bridge — (X/X + A1) 'Xy. (4.10)

For the Lasso, however, minimization of the constrained loss function is more
complicated. The regression coefficients are estimated as
lasso Inc\=1 (! Al

b = (X'X)"" Xy — Ew), (4.11)
and this is a least squares problem with 2° inequality constraints (there are 2F
possible sign patterns for the coefficients). In Tibshirani (1996), a quadratic
programming algorithm is used to estimate the Lasso coefficients. This is a
complex and computationally demanding procedure, and is hence not feasible
for large values of P. Less complex and/or more efficients algorithms were
developed by a.o. Fu (1998), Osborne, Presnell, and Turlach (2000), Perkins,
Lacker, and Theiler (2003), Friedman and Popescu (2004), and Zhao and Yu
(2004). The efficient LARS algorithm of Efron et al. (2004) finds the entire
Lasso regularization paths with the computational effort of a single OLS fit,
but the algorithm can not be applied when P > N, neither can the orig-
inal Lasso algorithm of Tibshirani (1996) nor the “shooting” algorithm of
Fu (1998). The algorithm of Osborne et al. (2000) is an improved quadratic
programming algorithm that can handle P > N predictors, but is still compu-
tationally demanding when P is large. The “Grafting” algorithm of Perkins
et al. (2003), the “Pathseeker” algorithm of Friedman and Popescu (2004),
and the “boosting” algorithm of Zhao and Yu (2004) are gradient descent
algorithms, that can deal with P > N predictors in a computationally less
demanding way.

Zou and Hastie (2005) have proposed the Elastic Net and developed an
algorithm, called LARS-EN, based on the efficient LARS algorithm, to over-
come the Lasso limitations of selecting at most N predictors and of selecting
only one predictor from a group of highly correlated predictors. For the Elastic
Net the regression coefficients are estimated as

e-net / —1~gt Al
b = (X'X+ XI) " (Xy — Ew), (4.12)
Minimization of this loss function is much like minimizing the Lasso loss func-
tion and the entire Elastic Net regularization paths can be estimated almost
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as efficiently as the Lasso paths with the LARS-EN algorithm (Zou and Hastie
2005).

All existing Ridge and Lasso algorithms and the LARS-EN algorithm are
developed for linear regression. In the next section, we will show that Ridge
regression, the Lasso, and the Elastic Net can easily be incorporated into the
CATREG algorithm, resulting in a simple and efficient algorithm for linear
regression as well as for nonlinear regression (to the extent one would regard
the original CATREG algorithm to be simple and efficient). Also, with the
CATREG regularization algorithm the Lasso can select more than N predic-
tors in the P > N case. In contrast to the existing Lasso algorithms, that
find the Lasso coefficient paths in an iterative way (except for LARS-Lasso),
CATREG-Lasso estimates the Lasso coefficient paths straightforwardly, but
does so in the context of the CATREG backfitting algorithm, which is itera-
tive.

4.3. Ridge penalties, the Lasso, and the Elastic
Net with CATREG

The major motivation for the CATREG algorithm has been to include non-
linear transformations of both the predictors and the response variable in the
regression model. Since the nonlinear transformations are not fixed, but have
to be optimized, we have to update the coefficient and the transformation for
one variable at a time. This is done by an algorithm that was first proposed
in Kruskal (1965), subsequently applied in psychometrics in De Leeuw et al.
(1976) and Gifi (1990) and in statistics in Breiman and Friedman (1985),
Buja et al. (1989), and Hastie and Tibshirani (1990), labeled backfitting in
Friedman and Stuetzle (1981). The CATREG loss function is written as

P
L(p(-); b1, -, 8P) = N Hown(y) = D Bieos (%)) |17, (4.13)
j=1

where ¢, (y) denotes the transformation of the response variable y and ¢;(x;)
the transformation for a predictor variable x;, with j = 1,..., P. The loss
function is minimized by iteratively estimating 3; and ¢;(x;) for one variable
at a time, keeping the estimates for the other variables | # j fixed.

By rewriting (4.13), with fixed ¢, (y), 51, and ¢;(x;) for all predictors [ # j
as

L(Bji ;) = N erly) = > Bigi(xi) — Bip; (7)1, (4.14)
1%
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and setting partial derivatives in (4.14) with respect to ; to zero, the updated
estimate ﬁj for the coefficient for variable j becomes

B = N7 () (er(y) = Y Braa(x2))- (4.15)
%5

At this point, we would estimate the optimal transformation ¢;(x;), and
move on to the next variable. After a loop over all variables, we obtain
the transformation of the response variable ¢,(y), and compute the squared
multiple regression coefficient (R?). The algorithm converges to a stationary
point, and we continue the updating process until the difference in R? from
one iteration to the next is below a preset convergence criterion.

To show how the three different regularization procedures are easily in-
corporated into the CATREG (backfitting) algorithm, we will only consider
linear transformations in the next two subsections, so that ¢,(y) and the
©;(x;) contain standardized scores, and only the regularized regression coef-
ficients need to be estimated.

4.3.1 Updating the regularization regression coefficients in
CATREG

Because we can remove the linear transformation from the loss function by
applying the transformation before the minimization process, we here assume
that y and x; are standardized variables and use the loss functions given in
(4.4), (4.5), and (4.6). These loss functions can be partitioned, analoguously
to (4.13) and (4.14), fixing and separating all terms that apply to variables
[ # j from the terms that involves only variable j. The CATREG versions of
Ridge regression, Lasso, and Elastic Net are then written as

ey = Yy =3 Boa - Bixp) 12+ hB2 + A Y R (4.16)

1#7 I#j
LlaSSO(ﬁj) _ Hy _ Zﬁlxl _ ﬁjxj)H2 + )\leﬂj + M Z’wlﬁlv (4.17)

1] i
Le—net(ﬁj) _ Hy . Zﬁlxl _ ﬁjxj)H2 + )\2ﬁ2 + \w;G; +

7 I3
I#j
)\22@2 +)\1Zwlﬁl7 (4.18)
1#j I#]

where w; and w; are either +1 or —1 depending on the sign of the corre-
sponding 3 and (3;. Because the effect of the [ # j other predictors has been
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removed from the response, the contribution of the jth predictor is corrected
for the contribution of the [ # j predictors, and thus the estimate of the
constrained regression coefficient for the jth predictor can simply be updated
as

grdee gt /(14 ), (4.19)
+lasso  _ + A
B; = (07 — 5w+
A .
= (B = )il 5] >0
- 6+ %)+ if 57 <0, (4.20)
+e-net + A )
B =%, .
— 1j-|—)\2 )4 if B >0
B +3

with ﬁf, equivalent to (4.15), defined as ﬁj = N_lxg»(y — Zl# Gix;) and
(+)+ denotes truncation at zero: when ﬁj > 0 and ﬁ;}lasso < 0, or when ﬁj <
0 and ﬁ;}lasso > 0, ﬁ;}lasso is set to zero. The double amount of shrinkage
in the estimation of the Elastic Net regression coefficients is corrected by
rescaling the coefficients after convergence:

ﬁ;}e-net _ ﬁje—net(l ). (4.22)

4.3.2 Paths for the coefficients

The varying size of the penalty parameter A from co to zero, determines a
path for each of the regression coefficients. The Ridge and Lasso paths can
be found by repeatedly applying the algorithm, starting with an initial value
for A high enough to exclude all predictors, and then gradually decrease A to
zero, at wich value the OLS estimates for the coefficients are obtained. For the
Elastic Net, multiple paths for a predictor are created by gradually decreasing
A1 for a (relatively small) number of fixed values of Ay. The location on the
Lasso paths where the models that contains k predictors (with k in between
1 and P, and indicating the number of predictors in the model) changes to a
model that contains k + 1 or k£ — 1 predictors is called a transition point. To
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step number: 1 2 3 4 56 7 89 1011 12
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Figure 4.1. Lasso for diabetes data. The constrained coefficients on the wver-
tical azis versus s = Zle\ﬁjl»asso\/Zf:ﬂﬁfls\. The vertical lines indicate
the transition points; at the top the number of active predictors is given. The
values of A1 at the transition points are 1.17, 1.10, 0.560, 0.400, 0.164, 0.111,
0.085, 0.028, 0.0087, 0.0072, 0.0032, 0.0020, and 0.

ensure that all transition points are included in the path, a small enough step
size should be used when A is decreased. It may happen that there are more
than P transition points because regression coefficients can cross the zero line.

The Lasso paths are illustrated in Figure 4.1 for the diabetes data (Efron
et al. 2004 (downloaded from http://www-stat.stanford.edu/~hastie/Papers/
LARS/diabetes.data). The data concern observations for 442 patients on
ten baseline variables, and the outcome variable is a quantitative measure of
disease progression one year after the baseline variables were measured. (For
the Elastic Net, we would obtain multiple plots, one for each fixed value of
A2.) The number of transition points for these data is 10 + 2 = 12, because
variable S3 (the dotted path) starts being active at step 3 with a negative
coefficient, obtains a zero coefficient at step 11, and becomes active again
after step 11 with a positive regression coefficient.

The paths for the Lasso and the Elastic Net are linear in between two
transition points (Efron et al. 2004). Therefore, these paths can be found much
more efficiently, because it suffices to find the transition points only. This is
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what the Lasso option of the LARS algorithm (Efron et al. 2004) achieves,
by using correlations and equi-angular vectors. We have incorporated the
LARS-Lasso approach into CATREG, but it turned out not to work when
nonlinear transformations of the variables are called for. Here, the paths need
to be found by repeatedly applying the algorithm with different values of ;.
Although less efficient than the LARS-Lasso method, the CATREG-Lasso
limits the number of repeats by using a new method for finding the transition
points.

4.3.3 Finding the transition points in CATREG

We define a transition point as the point where the slope of the paths changes.
The slope of piece k of the paths for Lasso models with k active predictors is
given by

41

where Aj is the set of indices of the k predictors active in the model, and
where the columns of X 4, contain the standardized variables x;, for j € Ag.
Note that we need to compute the slopes of the path of the coefficients for
one predictor only, because the transition points are the same for all paths.
Using the slopes of the path for the coefficients of the predictor in Ay, we
only need to invert x’Alx 4, to find the slope for the first piece of the paths.
For the subsequent slopes, in stead of inverting the growing cross-product
matrices X’AkX A,» we update Ry resulting from the Cholesky factorization
of (X!, Xy, ,) in the previous step (Golub and Van Loan 1983). For the
Elastic Net, the slopes for a fixed value of Ay are

_ 1
Vo = = (X0 X, + A2) 1§wAk(1 + o). (4.24)
The intercepts for pieces of the path can be computed from the slopes as

ak = Br — Ak, (4.25)

and the value of the Lasso penalty A\; at the point where transition takes place
from a model with k£ — 1 active variables to a model with k active variables,
is the value where the the pieces k — 1 and k of the path join:

ap—1 — Oy

A, =
Ve — Vk—1

(4.26)

k

Thus, to find the transition points, P solutions (or more than P if coeffients
cross the zero line) have to be found: a solution for a model with only one



4.4. SELECTION OPTIMAL PENALTY PARAMETER 75

active predictor, next a solution for a model with two active predictors, up to
a solution with all P predictors active in the model. The solutions are found
by decreasing the initial high value of \; in rather big steps, and if this results
in a model with more than one additional predictor compared to the model in
the previous step (or more than one predictor less), the previous value of A\
is increased using a smaller stepsize, until a model is obtained with only one
additional predictor compared to the number obtained in the previous step
(or only one predictor less).

4.3.4 Including nonlinear transformations in the CATREG
algorithm

When nonlinear transformations are called for, the estimation of the transfor-
mation functions ¢(+) is not affected by the penalty terms that are added to
the OLS loss function to attain the regularization. (How these transformatons
are obtained, has been fully described in Chapter 2.) So, incorporating Ridge
regression, the Lasso, and the Elastic Net in CATREG with nonlinear trans-
formations, only requires the same slight adjustment of the OLS regression
coefficient estimates as for linear regression with CATREG: (4.19), (4.20), and
(4.21) also apply when nonlinear transformations are involved, the difference
is only that now ﬁj is defined as in (4.15). Thus, to the extent the CATREG
algorithm is simple and efficient, we have a simple and efficient algorithm to
estimate Ridge, Lasso and Elastic Net regression coefficients for both linear
and nonlinear regression. In contrast to the Lasso paths resulting from reg-
ularized linear regression, the paths for regularized regression with nonlinear
transformations are not piecewise linear. So, when including nonlinear trans-
formations, the paths have to be found by repeatedly applying the algorithm,
starting with a high penalty value and stepwise decreasing the value.

4.4. Selection of the optimal penalty parameter

Selecting the optimal value of the penalty parameter is equivalent to selecting
the optimal value of the tuning parameter ¢ in (4.1) - (4.3). We will use the
.632 bootstrap method (Efron 1983), which is essentially a smoothed version
of leave-one-out cross validation. The details of how to use the .632 bootstrap
with CATREG are described in Van der Kooij and Meulman (2006a). Using
the .632 bootstrap for model selection is time consuming, because it has to
be repeated for a lot of models on the paths. Major advantages of the .632
bootstrap over other, analytic, methods to select A, are that it does not require
the estimation of the degrees of freedom involved, and that it also works when
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P > N. (Some analytic selection methods are described in the Discussion
section.)

4.4.1 Illustration

For an illustration we applied regularized CATREG! to the prostate cancer
data from Stamey et al. (1989) (obtained from http://www-stat.stanford.edu/
~tibs/ElemStatLearn/), consisting of 97 observations on eight predictors to
predict (the log of) the prostate specific antigen measure. The predictors
are (1) log(cancer volume) (lcavol), (2) log(prostate weight) (lweight), (3)
age, (4) log(benign prostatic hyperplasia amount) (Ibph), (5) seminal vesicle
invasion (svi), (6) log(capsular penetration) (lcp), (7) Gleason score (gleason),
and (8) percentage Gleason scores 4 or 5 (pggd5). The variables svi and
gleason are categorical; all other variables are continuous. For svi and gleason,
we fitted a nonmonotonic step function, and for lcavol, lweight, age, 1bph,
lep, and pgg45b, an optimal nonmonotonic spline transformation, using second
degree polynomials with two interior knots. The response variable was linearly
transformed to standard scores. We used the .632 bootstrap with 200 samples
for model fitting and estimation of prediction accuracy for model selection.

In Table 4.1, estimates of the generalization error (the error when applying
the selected model to a test set) are given, both for linear and nonlinear
Ridge, Lasso, and Elastic Net models. For the estimation of the generalization
error, the data set was divided into a training set (N = 67) and a test test
(N = 30). The models were selected by applying the .632 bootstrap and the
one-standard-error rule: the most parsimomuous model within one standard
error of the minimum was selected?. It is clear that all regularization methods
improve the prediction accuracy compared to no shrinking (OLS). The Elastic
Net performs better than the Lasso, and the Lasso performs better than Ridge
regression. When nonlinear transformations are included, the Elastic Net
again performs best. Interestingly, here Ridge shrinking does not improve the
prediction accuracy compared to OLS, so we could conjecture that nonlinear
transformation is a form of shrinking in itself.

'Ridge regression, the Lasso, and the Elastic Net have actually been incorporated by
adapting the version of CATREG that is available through SPSS (Meulman et al. 1999,
2004). In this version, the variables are assumed to be categorical (hence the name
CATREG). However, a straightforward way is provided to allow continuous variables in
the analysis by an internal procedure that digitizes continuous data by a linear transforma-
tion.

2The results for the linear models are very similar to the results reported in Zou and
Hastie (2005), except for the Elastic Net. Zou and Hastie (2005) report the value .381 as the
test mean squared error with optimal A2 = 1000. The CATREG-E-net mean squared error
(.378) for A2 = 1000 is close, but the .632 bootstrap selects a different optimal value for As.
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Table 4.1. Generalization error for prostate cancer data.

Method Model: X / s Test mean squared Selected
error (SE) predictors?

Linear

OLS 0.00 / 1.00 0.589 (0.105) all

Ridge 0.62 / 0.29 0.554 (0.066) all

Lasso 0.36 / 0.37 0.505 (0.104) 1,2,5

Elastic Net 0.43 /0.52 Ao =1 0.441 (0.065) 1,2,4,5,6,8

Nonlinear

OLS 0.00 / 1.00 0.472 (0.137) all

Ridge 1.65 / 0.11 0.477 (0.084) all

Lasso 0.40 / 0.31 0.411 (0.078) 1,2,5,8

Elastic Net 0.75 / 0.28 Ao = 10 0.348 (0.078) 1,2,5,6,7,8

Results Zou &
Hastie (2005)

OLS 0.586 (0.184) all
Ridge 1.00 / 0.566 (0.188)  all
Lasso / 0.39 0.499 (0.161) 1,2,4,5,8
Elastic Net / 0.26 Ay = 1000 0.381 (0.105) 1,2,5,6,8

!The predictors are (1) log(cancer volume) (Icavol), (2) log(prostate weight) (Iweight),
(3) age, (4) log(benign prostatic hyperplasia amount) (Ibph), (5) seminal vesicle in-
vasion (svi), (6) log(capsular penetration) (lcp), (7) Gleason score (gleason), and (8)
percentage Gleason scores 4 or 5 (pggd5).

Figure 4.2 displays the paths and the selected models for Ridge, Lasso,
and Elastic Net regularization, both linear panels at the top) and nonlinear
(panels at the bottom). We obtained the nonlinear regularization paths and
the linear Ridge paths by stepwise decreasing the penalty. The paths for the
linear Lasso and the linear Elastic Net were obtained by finding the transition
points, and connecting them. For both linear and nonlinear regression, we
determined the minimum by applying the .632 bootstrap for many different
points on the path. Therefore, it may happen that the vertical line that

Running the cv.enet function in the Elastic Net R-package (Zou and Hastie, downloaded
from http://cran.r-project.org/src/contrib/PACKAGES.html) with different values of As
being 0,1,10,100 and 1000, several times reveals that sometimes 1000 is selected as the
optimal value for A2 (applying the one-standard-error rule) but most other times the values
1 or 10 are selected.
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Figure 4.2. CATREG-Ridge (left), CATREG-Lasso (middle), and CATREG-
E-net (right) for prostate cancer data (N = 67); linear (top) and nonlinear
(bottom). The vertical line represents the model selected with the .632 bootstrap
applying the one-standard-error rule.

indicates the best model does not coincide with a transition point (as for the
linear Elastic Net). When we compare the linear with the nonlinear results,
we note that for the nonlinear analysis the best model is always found for a
larger penalty term (the vertical line is more to the left), but this does not
imply that the model includes less predictor variables, as is most easily seen
from Table 4.1.

Figures 4.3 and 4.4 display the transformations, for the full model (no
shrinking) and for the Ridge, the Lasso, and the Elastic Net models selected
with the .632 bootstrap applying the one-standard-error rule. These plots
show that the transformations of the ”stronger” predictors (lcavol, lweight,
pggd5) that need large penalties to remove them from the model are rather
unaffected by the various ways of regularization, while the transformations of
the ”weaker” predictors (age, gleason) do change considerably when regular-
ization is applied, but are remarkably similar for the different regularization
methods.
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Figure 4.3. CATREG spline nominal transformations for prostate cancer data

(N = 67): full model (1st column), Ridge (2nd column), Lasso (3rd column,
and Elastic Net(4th column) models (to be continued in Figure 4.4).
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Figure 4.4. (Figure 4.3 continued).

4.5. Shrinking a nominal variable versus
shrinking its categories

It is common practice to deal with a categorical variable in standard linear
regression by replacing it by a set of dummy variables, where each dummy
variable becomes a predictor variable, representing a category of the original
nominal variable. As a result, applying a regularization procedure within
such a treatment of a nominal variable, amounts to applying shrinking to
the categories of the variable in stead of applying shrinking to the variable
as a whole. Recently, this was remedied by a method called the ” Grouped
Lasso” in Yuan and Lin (2006) and ”Blockwise Sparse Regression” (BSR) in
Kim et al. (2006), generalizing the method proposed by Yuan and Lin (2006)
for ANOVA and additive models to other loss functions. In this method,
additional constraints are active in the regularization process, applied to the
regression coefficients for dummy variables associated with the categories of
the same variable. For nominal data this method is equivalent to CATREG.
To show this equivalence, we need to go into some detail of the the CATREG
algorithm.

The original CATREG approach was designed to deal with categorical
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data (and thus with nonlinear transformations). For a categorical variable, a
transformation is written as G;v;, the product of an N x K indicator matrix
G; and a Kj vector of category quantifications v;, where K indicates the
number of categories of variable j. In the indicator matrix G;, the elements
are coded in the following way: object 7 obtains a one in row 4 of column k; if
observation i is in category k; of variable j, and obtains a zero otherwise. So,
a column gg; of G; is a dummy variable for category k of variable j. The inner
product G; G; is a diagonal matrix D;, containing the marginal frequencies
of the categories for variable j on its main diagonal.

At this point, we assume (without loss of generality) that all predictor
variables are categorical. Then, choosing a nonmonotonic step function to
transform the jth predictor variable, the optimal quantifications are found
as the averages of the scores of the objects that have scored in a particular
category of the jth predictor on the response variable, corrected for the con-
tribution of the other predictor variables on the response variable. Thus, if
y denotes the standardized response, the category quantifications (the level
values of the step function) for predictor variable j are written as

v; =D Gy — Y BGvi). (4.27)
I#j

Then weighted normalization is applied to v;:
v = NY%,(¥/G}G,;v;) 17, (4.28)

to render the transformed variable ;(x;) = G;v; to be standardized, and
the update for the regression coefficient is estimated as

BF = N (¥;GjG,v)). (4.29)
The estimate (4.29) is equivalent to
B = N (¥GiGv;) 2 (4.30)

(Some simple matrix algebra shows that Equation (4.29) is equivalent to
equation(4.15), which, writing a transformed variable as the product of the in-
dicator matrix and the vector of category quantifications, is ﬁj = NG jvj)’
(Grvif — i G, B1).)

Because the dummy variables associated with the categories of a particular
variable are uncorrelated, the unstandardized regression coefficients for linear
regression on dummy variables are obtained as

K—1

ar; = (X4, xk,) ') (y = (a0 + Y Y anx,), (4.31)

I#j k=1
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with ag; the unstandardized regression coefficient for the k’th category of
variable j and xj; the k’th dummy variable (A’th column of Gj;). Equation
(4.31) corresponds to Equation (4.27) written for a single category, because
Xk, is equal to column gy, of Gj:

T, = di gl (v = > BiGivi). (4.32)
17

So, by collecting the ag;’s in the vector a; and normalizing a; as is done in
Equation (4.28) for v;, the regression coefficients from linear regression on
dummy variables yields the category quantifications obtained for CATREG
with nominal transformations, and the regression coefficient for the variable
as a whole can be computed as in (4.29) or (4.30). (NB: one of the columns
of G; is redundant because each column of G; can be perfectly predicted
from the other columns; this gives trouble in standard regression where a
is computed as (X’X)~!X'y. Then for each predictor one dummy/category
has to be omitted. To obtain the CATREG nominal quantifications from
the ag;’s resulting from linear regression on dummies, the omitted category
is included with a regression coefficient of zero. It does not matter which
dummy/category is omitted; omitting different categories results in different
unstandardized a;’s, but standardized a;’s are always the same.)

The Grouped Lasso method of Yuan and Lin (2006) and the Blockwise
Sparse Regression (BSR) method of Kim et al. (2006) treat the dummy vari-
ables for a predictor as a group/block by applying a norm restriction to the
regression coefficients for the dummy variables in a group/block. As was
shown in the previous paragraph, this restriction is equivalent to the weighted
normalization of the CATREG nominal category quantifications v;. In the
Grouped Lasso and BSR approach a continuous predictor is represented by
a group/block of basis funtions, such as polynomials. In the CATREG ap-
proach, continuous predictors can be smoothly transformed and shrunken as
a whole by applying nonmonotonic or monotonic spline transformations.

As an illustration, we use the breast cancer recurrence data (M. Zwitter
and M. Soklic, University Medical Centre, Institute of Oncology, Ljubljana,
Yugoslavia; available at http://www.ics.uci.edu/~mlearn/MLRepository.html).
The response is a binary variable coded 0 for no-recurrence-events (201 cases)
and 1 for recurrence-events (85 cases); deleting the nine cases with missing
values, the 0/1 frequencies are 196/81. The predictor variables are described
in Table 4.2. Kim et al. 2006 use these data to illustrate their BSR proce-
dure, applying logistic regression with each categorical variable expanded to
a block of dummy variables, and a numerical variable expanded to a block of
tranformations up to third-order polynomial. In the analysis with CATREG,



4.5. SHRINKING NOMINAL VARIABLE VERSUS CATEGORIES 83

Table 4.2. breast cancer recurrence data.

Number of

Predictor categories / values Measurement level
menopause 3 categorical
node-caps 2 categorical
breast 2 categorical
breast-quad 5 categorical
irradiat 2 categorical
age 6 numerical
tumor-size 11 numerical
inv-nodes 7 numerical
deg-malig 3 numerical

we used nonmonotonic step functions for all predictor variables since the nu-
merical variables have only a limited number of values. The predictor variable
tumor-size is an exception, for which we optimized a nonmonotic spline func-
tion, of degree two with one interior knot. Figure 4.5 displays the paths for the
CATREG-Lasso and for the linear Lasso on dummy variables (for the latter,
the regression coefficients for the variables were computed from the regression
coefficients for the categories as explained above). The paths are rather simi-
lar; the main difference being that with linear Lasso on dummy variables, the
variable “node-caps” (+) becomes active earlier than with CATREG-Lasso
and the variable “age” (OJ) later.

To compare the CATREG-Lasso results to the logistic-regression-BSR mis-
classification results for this data set as reported in Kim et al. 2006, the
predicted classification variable is computed by recoding the predicted value
variable to 0 if its value is closer to the lowest value of the standardized depen-
dent variable than to the highest value and 1 otherwise. For model selection
and estimation of the prediction error, the .632 bootstrap was applied to the
total data set (following as closely as possible the procedure of Kim et al.
2006, who used 10 repetitions of 10-fold cross validation). The results (given
in Table 4.3) are very similar to the results of the BSR: the CATREG-Lasso
and logistic-regression-BSR estimates of the misclassification rates (MCR) are
very close. With CATREG and the .632 bootstrap, dummies-Lasso performs
somewhat better than CATREG-Lasso, while Kim et al. 2006 found that
logistic-regression-BSR . is somewhat better than dummies-Lasso.

Figures 4.6 and 4.7 displays the transformations for the full model and the
models selected with the .632 bootstrap (using 200 samples) for the CATREG-



84 CHAPTER 4. RIDGE PENALTIES, LASSO, AND ELASTIC NET

btR bi¢/aic/ bt] id/ai
0.3 Jele 0.3 bt2 glc /aic/  bf1

deg-malig deg-malig

inv-nodes 0.2 inv-nodes

rréenopause rréenopause

0.1
Preas} uad Preagt c‘uad

irradiat irradiat

breast breast
node-caps node-caps

0.0

Figure 4.5. The CATREG-Lasso with nonmonotonic transformations (on the
left; spline function for “tumor-size”, step function for the other predictors)
and the linear Lasso on dummy variables (on the right) for breast cancer
recurrence data (N = 277). The vertical line represents the model selected
with the .632 bootstrap applying the one-standard-error rule.

Table 4.3. Expected prediction error and misclassification rate for breast can-
cer recurrence data.

Model: Expected prediction Expected mis-

A/ s error (SE) class. rate (SE)
CATREG (full model) 0.00/1.00 0.1904 (0.0094) 0.2585 (0.0039)
CATREG-Lasso 0.15/0.55 0.1807 (0.0080) 0.2547 (0.0038)
Dummies-Lasso 0.15/0.47 0.1786 (0.0078) 0.2482 (0.0050)
Results reported in Expected Logistic
Kim et al. 2006 loss (SE)
BSR 0.6917 (0.0015) 0.2578 (0.0028)

Dummies-Lasso 0.6964 (0.0016) 0.2646 (0.0028)
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Figure 4.6. Transformations breast cancer recurrence data (N = 277):
CATREG full model (left), CATREG-Lasso .632 bootstrap model (middle),
and dummies-Lasso .632 bootstrap model (right) (to be continued in Figure

4.7).



86 CHAPTER 4. RIDGE PENALTIES, LASSO, AND ELASTIC NET

4 4 4

24 24 24

T B e

-2 -2 -2

4] -4+ 4

6L -t T 6L T
left right left right left right

breast (beta .041) breast (beta 0) breast (beta 0)

4- 4 4

2 2 2

o A/ o A 4

-2 -2 -2

-4 -4 -4

Al T R T R T T

left-up ‘ right-up ‘ centre left-up ‘ right-up ‘ centre left-up ‘ right-up ‘ centre
left-low right-low left-low right-low left-low right-low

breast-quad (beta .092) breast-quad (beta .015) breast-quad (beta 0)

4 4 4

24 24 24

o \ o \ o \

-2 -2 -2

4 -4 4

61 -6 61

no yes no yes no ye:
irradiat (beta .068) irradiat (beta .028) irradiat (beta .044)

S

Figure 4.7. (Figure 4.6 continued).

Lasso and the dummies-Lasso (for the latter, the regression coefficients and
category quantifications are computed as explained above). Comparing the
transformations for the CATREG-Lasso and the dummies-Lasso, we notice
that the dummies-Lasso transforms the variables “menopause” and “inv-
nodes” to variables with two categories, contrasting the categories “ge40” and
“It40” to “premenopause”, and category “0-2” of “inv-nodes” to all higher
categories. By allowing for shrinkage of category quantifications to zero, the
dummies-Lasso results in dichotome variables. (In Van der Kooij and Meul-
man 2006a results are presented that suggest that binning a continuous vari-

able might be beneficial for prediction accuracy.)

4.6. Discussion

We have shown that regularization methods such as Ridge regression, the
Lasso, and the Elastic Net, can easily be incorporated into the CATREG
algorithm for regression with nonlinear transformations, resulting in a simple
and efficient way to estimate the constrained regression coefficients. At the
same time, because we can apply CATREG to fixed linear transformations,
we also have an algorithm for regularized linear regression that is an attractive
alternative for the algorithms that have been proposed in the literature thus
far.
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In the context of regularized analysis, there are two goals: model selec-
tion and assessment of the selected model. To achieve these goals, the best
approach is a three-way data split, dividing the data into a training set, a val-
idation set, and a test set. The training set is used for model fitting and the
prediction error for model selection is estimated using the validation test. In
the end, the prediction error for the selected model (the generalization error)
is estimated by applying the model to the test set. When there are not enough
data for a three-way split, the data set is divided into two parts, a training
and a test set, and the validation step is approximated either analytically,
with Generalized Cross Validation (GCV; Golub, Heath, and Wahba (1979)),
AIC, or BIC, or by using a resampling technique, such as cross validation or
bootstrapping, on the training set. Throughout this chapter, we have used the
.632 bootstrap as the tool for estimating prediction error for selection of the
optimal penalty parameter. Here, we will discuss the analytic model selection
methods mentioned above.

Defining rss(\) as the residual sum of squares for the constrained fit, df (\)
as the effective number of degrees of freedom, and estimating o2 as rssOls J(N—

dfOlS)7 the GCV, AIC, and BIC statistics are written as

rss(A)
GOVON) = (4.33)
AIC(A) = rj\jg) F (), (4.34)
BIC(\) = rzs\jf;) + 1°g]§[N Lar(n), (4.35)

and the optimal value of X is the value minimizing the function. For Ridge
regression, the effective number of degrees of freedom is

P
dfri98e (Ag) = (X (XX + AoD) X = 3 4 (4.36)
=1

— dj—i—)\27

with d; the jth eigenvalues of the matrix X’X. The effective number of degrees
of freedom for the Elastic Net is

card(A)
() = (X, (XX, + D) XY = Y
j=1

d;
dj—i—)\27

(4.37)
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where A denotes the active set of predictors and card(A) the number of pre-
dictors in this set. Zou, Hastie, and Tibshirani (2004) show that the number
of effective degrees of freedom for the Lasso is very well approximated by the
number of variables in the constrained model, k(A;). Furthermore, Zou et al.
(2004) show that the AIC and BIC statistics for Lasso models with k active
predictors are minimal for the model at the point where transition from k to
k41 or k — 1 active predictors takes place. Following their argument, this
would also be true for the GCV statistic. So, to select the optimal A; with
GCV, AIC, and BIC, only the transition points need to be taken into account.
We applied the GCV, AIC, and BIC to the analysis of the prostate cancer
data, and we found that for Ridge regression and the Lasso, the .632 bootstrap
with the one-standard-error rule chose more parsimonous models than GCV
and AIC, while BIC was in between. For the Elastic Net, the results for the
Boostrap and BIC were very close, and AIC and GCV were less parsimonous
again.

If we wish to apply GCV, AIC and BIC for Ridge regression, the Lasso
and the Elastic Net with CATREG, we need to adjust the degrees of freedom.
For the Lasso, in stead of the number of predictors in the restricted model,
the sum of the degrees of freedom for each predictor in the restricted model is
used. With CATREG, the degrees of freedom depends on the transformation
that is chosen. For a spline transformation, the number of degress of freedom
amounts to the number of interior knots plus the number of the degrees of
the splines, minus the number of spline coefficients that became zero. For the
nominal and ordinal step functions, the number of degrees of freedom amounts
to the number of distinct category quantifications minus one. For Ridge re-
gression and the Elastic Net the effective degrees of freedom is computed as
in Equations (4.36) and (4.37), replacing a variable x; with ¢;(x;).

Application to the prostate cancer data showed that for Ridge regression
selection results are very similar to the linear analysis, with GCV and AIC
much less parsimonous than BIC and the .632 bootstrap. For the Lasso,
compared to the linear analysis, the role of BIC and the .632 bootstrap was
reversed, and for the Elastic Net, AIC en BIC are more conservative than
the .632 bootstrap and GCV. If we can conclude anything from the analysis
of this single data set, it would be that the .632 bootstrap behaves neither
extremely conservative (like the BIC), nor extremely liberal (like GCV). It re-
mains true, of course, that the .632 bootstrap is much more time consuming,
but since in a lot of interesting applications (such as in genomics, transcrip-
tomics, proteomics, and metabolomics) the number of variables is much larger
than the number of observations, we would need to apply a nonparametric
method such as the .632 bootstrap in any case.
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As mentioned before, the Ridge paths are not piecewise linear and neither
are the Lasso paths when applying nonlinear transformations. (However, for
the particular data sets that were analyzed in this chapter and for several other
real data sets, we observed only slight non-linearities in the Lasso-paths.) So,
in these cases, the paths have to be constructed by computing solutions for
many values of the penalty parameter (as was done in our applications). This
also applies to the linear Lasso and the Elastic Net when model selection is
done with the .632 bootstrap. However, a plot of the .632 bootstrap estimates
of the expected prediction error as a function of the model complexity usually
shows a regular curve: we obtain the highest error estimates for the highest
values of the penalty parameter and the values of the error estimates decrease
with decreasing values of the penalty parameter, until we reach the minimum.
From that point, the error estimates increase again until we reach the point
for the zero penalty term. Thus, application of the .632 bootstrap can be
made much less time-consuming by performing the CATREG analysis twice.
In the first analysis, we use a rather big step size for the penalty parameter
to obtain a region that contains the minimum. In the second analysis, we use
a much smaller stepsize, but now only for a small range of penalty values in
the region obtained in the first run to determine the minimum.

Finally, we would like to emphasize that CATREG has a unique approach
to regularization in regression compared to the other approaches proposed
in the literature. The CATREG approach deals with each predictor variable
separately, isolating the estimation of the regression weights [3; from the esti-
mation of the optimal transformation of each predictor variable (it is crucial
to note that optimal scaling includes transformation of a continuous variable
to standard scores). Contrasting the CATREG approach to nominal variables
with the approach that obtains weights aj; for dummy predictors, CATREG
attaches category quantifications v; to the dummy variables in G;, applies
normalization to obtain standardized transformed variables ¢;(x;) = G;v;,
(G;jv;)'Gjv; = N, and can next separate the estimation of the ;. At this
point, it is important to realize that in the process to obtain optimal quan-
tifications, we do not need to use the indicator matrices themselves in the
computations. The indicator matrices G; (that are extremely sparse) are only
used in the equations. In a computer program, the matrix multiplications can
be replaced by simple additions.

In the statistical literature that uses backfitting to obtain optimal trans-
formations in regression, regression weights are never explicitly computed,
since they are subsumed in the transformed variables ¢;(x;). In CATREG,
the transformed variables are always standardized, ¢;(x;)'¢;(x;) = N, and in
this way the ; can be identified. Backfitting has been used by, among oth-
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ers, Friedman and Stuetzle (1981), Breiman and Friedman (1985), Buja et al.
(1989), and Hastie and Tibshirani (1990) to incorporate smooth transforma-
tions in regression. Step functions to deal with categorical data were never
considered in their context. If transformed variables absorbe the weights,
it is not obvious how to impose regularization constraints on the regression
weights. Also, backfitting is very inefficient when linear regression is con-
cerned. This might be an explanation of the fact that the backfitting algorithm
has not been proposed before to impose simple constraints on the estimates
for the weights to regularize regression. We call these constraints simple since
we do not have to pay attention to the other predictor variables (their con-
tributions have been removed from the prediction). The separation between
weights and quantifications/transformations in CATREG showed the way for
the easy implementation of the three regularization penalties in regression
proposed in this chapter.





