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Chapter 3

Prediction Accuracy of
Regression with Optimal
Scaling Transformations: The
.632 Bootstrap with
CATREG

Methods for nonlinear multiple regression are studied in terms of prediction
accuracy. The focus is on CATREG, a method that is based on optimal scal-
ing. Although CATREG can deal with numeric variables, it has its roots in
the area of categorical variables. CATREG maximizes the multiple correla-
tion over optimal quantifications, and this measure is inversely related to the
apparent prediction error. The latter is contrasted to expected prediction er-
ror. In this chapter it is shown that CATREG compares favorably to other
methods well-known in statistics, but can do even better when the number of
observations in numeric variables is reduced to a much smaller of categories.

3.1. Introduction

When numeric data are available, linear multiple regression is the most often
used method to predict a response or output variable from a set of predictor

This chapter has been submitted for publication as Van der Kooij, A.J. & Meulman,
J.J. (2006). Prediction Accuracy of Regression with Optimal Scaling Transformations: The
.632 Bootstrap with CATREG.
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38 CHAPTER 3. PREDICTION ACCURACY: THE .632 BOOTSTRAP

or input variables. Over the years, a number of nonlinear generalizations of
multiple regression have appeared in the psychometric as well as the more
mainstream statistical literature. These nonlinear generalizations had two
purposes: to accomodate categorical variables in multivariate analysis, and
to linearize nonlinear relationships in numeric data. The psychometric con-
tribution to the area has been innovative, which has been acknowledged in
the statistical literature as well (for example, see Buja (1990)). In more re-
cent years, new nonlinear regression methods have been developed actively
in computer science, in the area of data mining. These techniques are usu-
ally subsumed under the name machine learning. A shift in emphasis from
computer science to a more statistical approach, can be deduced from the
use of the term statistical learning (Hastie et al. 2001). A major difference
between the psychometric literature and the statistical learning literature is
the study of the prediction accuracy of a nonlinear regression technique, fo-
cusing on either the apparent or the expected error rate. In the psychometric
literature, the emphasis has been on the prediction of the observed response
variable, minimizing the apparent error rate to obtain robust, stable estimates
of the regression coefficients. In statistical learning, one is mainly interested
in predicting future outcome variables. In the latter, the observed values on
the predictor and outcome variables are only used to obtain estimates for the
parameters, to be applied to new observations to predict future, unknown,
outcomes. Here the emphasis is on the expected prediction error rate.

In this chapter, we will focus on a particular nonlinear method to perform
multiple regression when the data consist of ordered or unordered categorical
variables. The method, called CATREG, uses the optimal scaling methodol-
ogy as developed in the Gifi system (Gifi 1990) to quantify categorical vari-
ables according to a particular scaling level, thus “transforming” categorical
variables into numeric variables. However, optimal scaling can be applied
to numeric data as well, and thus the optimal scaling methodology is also
very suitable when nonlinear relationships exist between numeric predictor
and response variables. In the optimal scaling process the multiple regression
coefficient is maximized by optimally quantifying categorical variables, under
the restriction that specific information in the observed variables has to be
preserved in the quantified variables. The kind of information that should be
retained, and thereby the form of the transformation, determines the optimal
scaling level that is chosen for each variable. The term “scaling level” is dif-
ferent from “measurement level”, which describes the scale properties of the
observed variable. Scaling level is used to refer to the level at which a partic-
ular variable is analyzed, and describes the assumed relation (transformation)
between the values of the observed variable and the quantified variable. Scal-
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ing levels can be ordered in a hierarchy, going from the most restrictive level
(numeric, linear) at the top, via somewhat less restrictive levels (monotonic
splines, ordinal step functions), to the least restrictive levels (nonmonotonic
splines, nominal step functions). While the nominal and ordinal scaling levels
produce stepwise transformations, the spline options produce smooth piece-
wise polynomial transformations. The results with the nominal and ordinal
scaling levels will be strictly invariant under one-to-one nominal respectively
ordinal transformations of the observed variables; for spline transformations,
this is generally not the case.

As mentioned above, a variety of nonlinear prediction models and pro-
grams that include transformations of the variables in the optimization process,
have been developed over the last decades, starting with the Box-Tidwell
(Box and Tidwell 1962) and the Box-Cox models (Box and Cox 1964), us-
ing parametric families of transformations. The optimal scaling methodology
originated in psychometrics with Kruskal’s nonmetric version of multidimen-
sional scaling (Kruskal 1964a,b), next applied to analysis of variance Kruskal
(1965), which approach was adopted by ADDALS (De Leeuw et al. 1976) and
MORALS (Young et al. 1976). The collective work by the Leiden group at
the department of Data Theory resulted in Gifi (1990). Winsberg and Ram-
say (1980) introduced monotonic splines in multiple regression (for a review,
see Ramsay (1988)). Optimal scaling appeared in the mainstream statistical
literature with ACE (Alternating Conditional Expectations) in Breiman and
Friedman (1985) and Buja (1990). CATREG also has a relationship with pro-
jection pursuit regression Friedman and Stuetzle (1981), generalized additive
models (GAM), extensively described in Hastie and Tibshirani (1990), and
the methods described in Buja et al. (1989) and Hastie, Tibshirani, and Buja
(1994).

This chapter will concentrate on the CATREG approach to nonlinear mul-
tiple regression, because of its unique emphasis on categorical variables; the
model and algorithm will be described in Section 3.2. The major part of
the chapter focuses on the optimality of the quantifications that are obtained
from the observed data to predict future responses, i.e., the expected predic-
tion error, studied by the .632 bootstrap procedure Efron (1983), described in
Section 3.3. The prediction accuracy for CATREG will be compared with the
results for various other methods for nonlinear multipe regression in Section
3.4. Prediction accuracy will also used to compare different scaling levels and
number of categories (Section 3.5). Section 3.6, finally, reports the effect of
sample size on the prediction accuracy.



40 CHAPTER 3. PREDICTION ACCURACY: THE .632 BOOTSTRAP

3.2. CATREG: Regression with optimal scaling
transformations

3.2.1 CATREG model

The CATREG model fits the classical linear regression model with nonlinear
transformations of the variables, written as

ϕr(y) =
J∑

j=1

βjϕj(xj) + e, (3.1)

by minimizing the least squares loss function

L(ϕr; ϕ1, . . . , ϕJ ; β1, . . . , βJ) = N−1‖ϕr(y)−
J∑

j=1

βjϕj(xj)‖2, (3.2)

with N the number of observations, J the number of predictor variables,
{βj}, j = 1, . . . , J , the regression coefficients, ϕr(y) the transformation for
the response variable y, ϕj(xj) the transformations for predictor variables
{xj}, j = 1, . . . , J , and e the error vector, and where ‖·‖2 denotes the squared
Euclidean norm. Loss function ( 4.13) is minimized over {βj}, {ϕj(xj)},
and ϕr(y) to maximize the least squares fit between ϕr(y) and the linear
combination

∑J
j=1 βjϕj(xj). Because the transformed variables ϕr(y) and

{ϕj(xj)} are centered and normalized to have sum of squares equal to N , loss
function (4.13) maximizes the (squared) multiple correlation. (An alternative
formulation of multiple regression with optimal scaling was given in Van der
Kooij and Meulman (1997).)

The form of the transformations ϕ(y) and ϕj(xj) depends upon the opti-
mal scaling level that is chosen for each variable, and the scaling level defines
which part of the information that is present in the observed predictor and/or
response variables should be retained in the transformed variable. With the
numerical scaling level, a variable is treated as quantitative, and a linear
transformation is applied, so that all information is preserved. With the
nonnumerical scaling levels, the variables are treated as qualitative, and the
optimal scaling process turns them into quantitative variables, retaining as
much information in the observed variables as is determined by the scaling
level. The ordinal scaling level and monotonic splines retain only the group-
ing and ordering information, and result in a monotonic transformation, in
the form of a step function or a spline function, respectively. The nominal
scaling level and nonmonotonic splines retain only the grouping information
(objects with equal values in the observed data will obtain equal optimal scale
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values), resulting in a nonmonotonic transformation, again either in the form
of a step function or a nonmonotonic spline function. Nonnumerical scaling
levels allow for nonlinear transformations, and possible nonlinear relationships
between the response variable and the predictor variables will be linearized.

3.2.2 CATREG algorithm

In the CATREG approach to nonlinear multiple regression, the data are as-
sumed to be categorical, thus consisting of discrete, integer values. Having
discrete data, a variable can be coded into an N × Cm indicator matrix Gm,
where N is the number of observations and Cm denotes the number of cate-
gories of variable m, m = 1, . . . , M , where M is the total number of variables,
thus, M = J + 1. An entry gic(m) of Gm, where c = 1, . . . , Cm, is 1 if
observation i is in category c of variable m, and zero otherwise. Then the
transformed variables can be written as the product of the indicator matrix
Gm and a Cm-vector of category quantifications vm

ϕr(y) = Grvr, and ϕj(xj) = Gjvj, j = 1, . . . , J. (3.3)

So, the CATREG model with the transformed variables written in terms of
indicator matrices and category quantifications is

Grvr =
J∑

j=1

βjGjvj + e, (3.4)

with the associated least squares loss function

L(vr;v1, . . . ,vJ ; β1, . . . , βJ) = N−1‖Grvr −
J∑

j=1

βjGjvj‖2. (3.5)

Note that in the CATREG approach a continuous variable with N different
values is regarded as a categorical variable with N different categories. In that
case, the indicator matrix will be a permutation of the identity matrix. So,
basically, a category in CATREG is defined as a distinct value of a variable.

The loss function (3.5) is minimized by an alternating least squares al-
gorithm, alternating between estimation of the quantification of the response
variable on the one hand, and estimation of the quantifications and regression
coefficients of the predictor variables on the other hand. First, the quantifi-
cations and the regression coefficients have to be initialized. In the CATREG
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algorithm, two ways of initialization have been implemented: random and
numerical. Random initialization uses standardized random values from a
univariate distribution for the initial quantifications, and the initial regression
coefficients are the zero order correlations of the randomly quantified response
variable with the randomly quantified predictor variables. The initial values
with numerical initialization are obtained from an analysis with numerical
scaling level for all variables (thus, from a linear multiple regression analysis).

The CATREG algorithm consists of two steps. In the first step, the quan-
tification of the response variable is estimated, keeping the quantifications of
the predictor variables and the regression coefficients fixed,

ṽr = D−1
r G′

r

J∑

j=1

βjGjvj , (3.6)

where Dr = G′
rGr, a diagonal matrix with the marginal frequencies of the

categories of the response variable. The category quantifications ṽr are the
unstandardized quantifications for the nominal scaling level. For nonnomi-
nal scaling levels, ṽr is restricted according to the scaling level, yielding v∗

r .
Thus, v∗

r = ṽr for the nominal scaling level, and v∗
r = restricted(ṽr) for the

nonnominal scaling levels. Then v∗
r is standardized, resulting in the updated

category quantifications:

v+
r = N1/2v∗

r(v
∗′
r Drv∗

r)
−1/2. (3.7)

In the second step of the algorithm, the quantification of the response variable
is held fixed, and the quantifications of the predictor variables and the regres-
sion coefficients are estimated for one variable at a time. This is sometimes
called backfitting (Friedman and Stuetzle 1981; Buja et al. 1989), and was ap-
plied, a.o., in Kruskal (1965), De Leeuw et al. (1976), Gifi (1990), Breiman and
Friedman (1985), Buja et al. (1989), and Hastie and Tibshirani (1990). Some
recent developments in the backfitting methodology are described in Härdle
and Hall (1993), Opsomer and Ruppert (1997), Mammen, Linton, and Nielsen
(1999), Hastie and Tibshirani (2000), and Nielsen and Sperlich (2005). The
approach works at follows. First the N -vector of predicted values is computed
as

z =
J∑

j=1

βjGjvj . (3.8)

For updating the quantification of variable j, the contribution of variable j to
the prediction (3.8) is subtracted from z,

zj = z − βjGjvj, (3.9)
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and the category quantifications are computed as

ṽj = sign(βj)D−1
j G′

j(Grv+
r − zj), (3.10)

yielding the unrestricted quantifications for the nominal scaling level. So, the
transformation for a predictor variable j is fitted to the partial residual vector
(Grv+

r − zj), that is, the category quantifications for a predictor variable are
updated from the quantified response variable corrected for the contribution
of the other predictor variables. Because of this, the predictor variables are
transformed towards independence (an illustration of this property is given in
Section 3.6). Next, for variables with nonnominal scaling level, ṽj is restricted
according to the scaling level, and normalized as in (3.7), yielding the updated
category quantifications v+

j . Next the regression coefficient βj is updated:

β+
j = N−1ṽ′

jDj v+
j . (3.11)

Then, the updated contribution of variable j to the prediction is added to zj :

z = zj + β+
j Gjv+

j , (3.12)

and the algorithm continues with updating the category quantifications and
regression coefficient for the next predictor variable, until all predictor vari-
ables are updated. Finally, the loss is computed as N−1‖Grv+

r −z‖2. The two
steps of the algorithm are repeated until a user-specified convergence criterion
is met.

For the restriction according to the ordinal scaling level, weighted monotonic
regression (Kruskal 1965; Barlow et al. 1972) of the nominal quantifications on
the observed values is applied. To satisfy the restrictions involved in splines,
weighted regression of nominal quantifications on an I-spline basis (Ramsay
1988) is applied, with additional nonnegativity restrictions on the spline co-
efficients when the transformation should be monotonic.

When all or some of the scaling levels are ordinal or involve monotonic
splines, local minima may occur. The severeness of this local minimum prob-
lem depends on a number of factors (Van der Kooij, Meulman, and Heiser
2006). In general, obtaining a local minimum is not very likely when the fit of
the model is reasonable, when the number of categories is not very high, and
when there is not much multicollinearity. In Van der Kooij et al. (2006) it
was also shown that the global minimum can be obtained by a strategy that
involves multiple systematic starts.
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3.3. Estimation of expected prediction error

To determine how well a fitted regression model can be generalized to future
observations, the expected prediction error needs to be estimated. The appar-
ent prediction error usually does not provide a good estimate for the expected
prediction error. For linear regression, the apparent prediction error is the
average loss for the observed data,

err = N−1‖y−
J∑

j=1

βj xj‖2, (3.13)

that is minimized over the regression weights {βj}. Using the apparent error
as an estimate of the expected prediction error is usually too optimistic be-
cause then the expected prediction error is estimated from the same data that
were used for fitting the model. To obtain a better estimate, resampling meth-
ods such as cross validation or a bootstrap procedure could be used. With
cross validation, a part of the data (the training set) is used for fitting the
model (giving a set of regression coefficients {βj}) and next the fitted model
is applied to the other part of the data (the test set) to estimate the expected
prediction error. With the bootstrap, N observations are drawn randomly
from the data with replacement, repeating this process a number of times to
obtain B bootstrap samples. Each bootstrap sample serves as a training set
to fit a model to, and this fitted model is then applied to the observed data
(in this case the test set). The prediction error resulting from applying the
fitted model to the test set is averaged over the number of bootstrap samples,
resulting in the simple bootstrap estimate of expected prediction error. A
more refined approach is to estimate the optimism in the apparent prediction
error and then add the optimism to the apparent error. The optimism is es-
timated as the difference between the simple bootstrap prediction error and
the prediction error resulting from applying the fitted model to the bootstrap
data itself. According to Efron and Tibshirani (1993), simulation experiments
show that cross validation is roughly unbiased but can show large variability,
whereas the simple and the refined bootstrap estimates have lower variability
but can be severely biased downward, because the training set and the test
set have observations in common. However, a modified bootstrap estimation
method, called the .632 bootstrap (Efron 1983), corrects for the downward
bias and has been shown to perform better than cross validation and the
simple and refined bootstrap estimation methods.



3.3. ESTIMATION OF EXPECTED PREDICTION ERROR 45

3.3.1 The .632 bootstrap with linear regression

The .632 bootstrap (Efron 1983) provides an improved estimate of expected
prediction error by improving the estimation of the optimism. Applying the
fitted model from each bootstrap sample to the test set (observed data) and
computing the prediction error is not done for all observations in the test set
(as in the simple bootstrap estimate), but only for those observations that
were not in the bootstrap sample. So, for a particular bootstrap sample, the
observations that were not drawn for that sample serve as the test set, hence
the test set is different for each bootstrap sample. This procedure yields an
estimate of expected prediction error that is called the “leave-one-out” boot-
strap in Efron and Tibshirani (1997): each observation being predicted using
regression coefficients from a particular bootstrap sample, was not in (was
“left out” from) that bootstrap sample. The improved estimate of the opti-
mism is a fraction of the difference between the apparent prediction error and
the leave-one-out bootstrap estimate of prediction error. The idea underlying
the .632 bootstrap estimate is that it is harder to predict the response for an
observation using regression coefficients from a model that was fitted to data
that do not contain that particular observation (as is also the case in cross-
validation). The factor .632 arises because it is approximately the probability
for an observation to appear in a bootstrap sample of size N .

So, the .632 bootstrap estimate of expected prediction error is

Êrr
(.632)

= err + ÔP, (3.14)

where the optimism is estimated as

ÔP = .632(Err(1) − err), (3.15)

and Err(1), the leave-one-out bootstrap estimate of prediction error is

Err(1) =
1
N

N∑

i=1

1
|C−i|

∑

b∈C−i

(yi −
J∑

j=1

βb
jxij)2, (3.16)

with C−i being the set of indices of the bootstrap samples b that do not
contain observation i, and |C−i| is the number of such samples. (Slightly
different definitions are given in Hastie and Tibshirani (1990, p. 298): Err(1) =
1
B

∑B
b=1

1
|C−b|

∑
i∈C−b(yi −

∑J
j=1 βb

jxij)2, with C−b being the set of indices of

the observations not in bootstrap sample b; and in Efron (1983): Err(1) =
1∑N

i=1 |C−i|

∑N
i=1

∑
b∈C−i(yi −

∑J
j=1 βb

jxij)2). In Efron and Tibshirani (1997) it
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is noted that this last definition agrees with the definition of Efron and Tib-
shirani (1993) given in (3.16) as B → ∞ and that they produced nearly the
same results in simulations.)

3.3.2 The .632 bootstrap with CATREG

With CATREG estimates of both the regression weights {βj} and of the cat-
egory quantifications vr and {vj} are obtained. Thus, applying the model
fitted to a bootstrap sample to the observations in the test set involves ap-
plying both regression weights and substituting categories values with the
applicable category quantifications. The CATREG apparent prediction error
is written as

err = N−1‖Grvr −
J∑

j=1

βjGjvj‖2. (3.17)

In computing the CATREG leave-one-out bootstrap estimate of prediction
error, a complication arises for variables with nominal or ordinal scaling level
when a category does not occur in a bootstrap sample: then an estimate of
the quantification for that category is not obtained. When numerical or spline
transformations have been used, this is not a problem, because the quantifica-
tions for the non-occurring category can easily be obtained from the transfor-
mation function by interpolation (which for splines is determined by the spline
coefficients). For variables with nominal or ordinal scaling level, however, this
is not possible, since their transformation functions are not parametric. In
that case, estimating the quantification of a non-occurring category might in-
troduce substantive error, especially since categories that do not appear in a
particular bootstrap sample are likely to be categories with a low marginal
frequency in the observed data. So, if an observation i has a category on a
variable with nominal or ordinal scaling level that does not occur in a partic-
ular bootstrap sample, that bootstrap sample is excluded from the estimation
of the expected prediction error for observation i. There also is a complication
for variables with spline transformations because the latter sometimes require
extrapolation to estimate the quantification of a non-occurring category. Since
spline transformations using extrapolation are likely to be unstable, bootstrap
samples that require extrapolation for an observation i are also not included
in the estimation of the expected prediction error for observation i. The in-
dex numbers of the remaining bootstrap samples are collected in the index
set C−i. Taking all this into account, the CATREG leave-one-out bootstrap
estimate of prediction error is written as
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Err(1) =
1

N (1)

N∑

i=1

1
|C−i|

∑

b∈C−i

(Grvb
r −

J∑

j=1

βb
jGjvb

j)
2 for|C−i| 6= 0, (3.18)

where C−i is the set of indices of the bootstrap samples b that
(a) do not contain observation i,
(b) do contain the categories that apply to observation i for variables with
nominal or ordinal transformations,
(c) do not require extrapolation for observation i for variables with spline
transformations.
N (1) is the number of observations for which |C−i| is not zero. |C−i| may
become zero if, for example, observation i has one of the extreme categories
on a variable with a spline transformation, and this category has a frequency of
one. Then each bootstrap sample that does not contain this observation, also
does not contain the extreme category; thus, for observation i all bootstrap
samples are excluded.

In this chapter we used the definition of Err(1) of Efron and Tibshirani
(1993) given in (3.16), computed the Monte Carlo standard error (MCSE) as
[ 1
N2

∑
i(Err(1)

i − Err(1))2]1/2, and used 200 bootstrap samples. But, for the
comparison of the CATREG results to the results of the methods reported in
Hastie and Tibshirani (1990, p. 299), we used the definition of Err(1) of Hastie
and Tibshirani (1990, p. 298), given in Section 3.3.1, and hence computed
MCSE as [ 1

B2

∑
b(Err(1)

b −Err(1))2]1/2, and used 50 bootstrap samples (with the

other definitions of Err(1) and/or a different number of bootstrap samples, the
results given in Hastie and Tibshirani (1990, p. 299) could not be reproduced).

3.4. Performance of CATREG and six other
nonlinear regression methods: Prediction

accuracy in the analysis of the Ozone data

The ozone data have been frequently analyzed in literature to illustrate non-
linear transformations (a.o. Breiman and Friedman (1985), Hastie and Tib-
shirani (1990), and Lin and Zhang (2003)). The data set is available by
ftp from the Department of Statistics, University of California at Berke-
ley (ftp.stat.berkeley.edu/pub/users/breiman). The data consist of 330 daily
measurements of atmospheric ozone concentration in the Los Angeles basin
in 1976 and eight daily meteorological measurements. The response variable
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is the log of the daily maximum of the hourly-average ozone concentrations
(linearly transformed to integer values when using CATREG). The predictors
are the eight meteorological measurements and day of the year (Table 3.1).

3.4.1 Comparison between CATREG and Box-Tidwell
Method, Full Additive Model, Stepwise Full Additive
Model, TURBO, and BRUTO

In Hastie and Tibshirani (1990, sec. 10.3) the ozone data are used for a com-
parative assessment of five prediction methods in terms of their prediction
accuracy. The five methods that were compared are:
(i) Linear regression after transformations using the Box and Tidwell method
as applied by Hawkins (1989). Power transformations were used for all predic-
tor variables except dpg (quadratic transformation) and doy (sine and cosine
bases at three frequencies);
(ii) Full additive model using smoothing splines with four degrees of freedom.
(iii) A backward stepwise strategy applied to a full additive model. The back-
ward stepwise strategy selects the number of degrees of freedom for each vari-
able from the regimen of df = 0, 1, 4 (with df = 0 the predictor is excluded;
with df = 1 the predictor is included linearly; with df = 4 the predictor is
transformed using smoothing splines with four df ).
(iv) Additive regression splines (TURBO (Friedman and Silverman 1989); this
is an adaptive knot selection (number and location) strategy, using piecewise-
linear basis functions for locating the knots. Once the knot positions are
determined, the piecewise-linear functions are converted into piecewise-cubic
functions).
(v) Automatic backfitting using smoothing splines (BRUTO Hastie (1989) and
Hastie and Tibshirani (1990); this method combines backfitting and adaptive
smoothing).

With CATREG we performed 50 bootstraps, using the numerical scaling
level for the response variable and nonmonotonic splines (based on second
degree polynomials, with two interior knots) for the predictor variables. So,
like Hastie and Tibshirani (1990, sec. 10.3), we have four degrees of freedom
for each predictor. In the Hastie and Tibshirani (1990, sec. 10.3) study, the
estimated prediction error for the raw data is reported. Using the CATREG
algorithm, standardized quantifications and regression coefficients (β’s) are
obtained. Thus, the apparent error and the estimated prediction error ob-
tained with CATREG are for standardized transformed data. Because the
response variable has been treated as a numeric variable (standardized), the
CATREG standardized error can be converted to the error for the raw data
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Figure 3.1. .632 Bootstrap estimates of prediction error. The bars around the
estimates represent the estimated Monte Carlo standard error.

by multiplying the CATREG standardized error with the variance of the raw
response variable: the apparent error err (3.17) is multiplied with the variance
of y, and in the leave-one-out bootstrap estimate of prediction error (3.18)
the squared error term is multiplied with the variance of yb.

The .632 bootstrap prediction error for linear regression, for the five non-
linear methods reported in Hastie and Tibshirani (1990, p. 299), and for
CATREG are displayed in Figure 3.1. The CATREG .632 bootstrap esti-
mate of prediction error is .108, which is about the same as the estimate
resulting from the full additive model (.109), but the MCSE with CATREG
(.002) is lower than with the full additive model (.008).

Figure 3.2 displays the CATREG nonmonotonic spline transformations
for the predictor variables. CATREG usually plots category quantifications
(on the vertical axis) versus categories (on the horizontal axis), but here the
quantifications were multiplied with the standardized regression coefficients,
so that the vertical range gives an indication of the importance of a predictor,
and the direction of the transformation reflects the direction of the relation
between the predictor and the response. Comparing the CATREG trans-
formation plots to the transformation plots for the five methods applied in
Hastie and Tibshirani (1990, sec. 10.3), we notice that also with respect to
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Figure 3.2. CATREG nonmonotonic spline transformations for the ozone
data. The y-axis represent the quantifications multiplied with the regression
coefficient for the predictor.

the form of the transformations, CATREG is very close to the full additive
model (op.cit. p. 297).

3.4.2 Comparison between CATREG and ACE

As mentioned before, CATREG is very closely related to ACE (Breiman and
Friedman 1985). The main difference is in the method to obtain smooth
transformations. For smooth nonlinear transformations (nonmonotonic and
monotonic) ACE uses the supersmoother (a variable span local linear smoother,
(Friedman 1984)), while CATREG uses spline transformations. Like CATREG,
ACE also provides numerical and nominal transformations; unlike CATREG,
ACE does not provide ordinal transformations (step functions) and provides
transformations for circular (periodic) variables. We used the ACE function of
S-plus (MathSoft, Inc. 1999), which gives the transformed variables as output,
but unfortunately not the transformation parameters, so we were not able to
apply interpolation if this was necessary in computing Err(1). Therefore, we
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Table 3.1. Original and recoded number of categories predictor variables ozone
data (ibh was recoded by rounding the original values divided by 100, dpg by
rounding the original values divided by 5, ibt by rounding the original values
divided by 10, and doy was recoded to months).

No. of categories
Predictor aaaaaa Originalaaaaa Recoded
500 millibar pressure height (vh) 53 53
Wind speed (wind) 12 12
Humidity (humi) 65 65
Temperature (temp) 63 63
Inversion base height (ibh) 196 42
Pressure gradient (dpg) 128 33
Inversion base temperature (ibt) 193 37
Visibility (vis) 24 24
Day of the year (doy) 330 12

computed Err(1) for ACE as in (3.18) but without βb
j , because in the ACE

program βb
j is absorbed in ϕb

j(xij) (thus, the bootstrap model is applied to
the test set by substituting the categories in the test set with the applicable
transformed variable values, and a bootstrap sample is excluded in predicting
observation i in the test set if observation i has a category that did not appear
in the bootstrap sample). With the original ozone data, |C−i| = 0 is obtained
for all i, because for all observations inter- and/or extrapolation was needed
for at least one predictor. This is due to the fact that some of the variables
have a lot of unique or very low frequency categories. For such categories the
probability to be left out from a bootstrap sample is very high. For this reason
some of the predictor variables were recoded so that the resulting variables
had a smaller number of categories. The number of categories of the original
data and of the recoded data are given in Table 3.1.

The ACE transformations are displayed in Figure 3.3. The transforma-
tions from ACE are somewhat less smooth than the nonmonotonic spline
transformations resulting from CATREG (Figure 3.2; the nonmonotonic spline
transformations for the recoded data are not displayed because they are almost
the same as the transformations for the original data in Figure 3.2). Compar-
ing the predictive accuracy (Table 3.2), we see that with ACE the apparent
prediction error is somewhat lower than with CATREG and the expected
prediction error is somewhat higher. On the other hand, the supersmoother
transformations are much smoother than the CATREG nominal transforma-
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Figure 3.3. ACE supersmoother transformations for the recoded ozone data.

tions (Figure 3.4) and they have considerably less estimated prediction error.
So, we conclude that the supersmoother gives transformations somewhere in
between nominal and nonmonotonic spline transformations both in terms of
smoothness and expected error rate.

Table 3.2. Prediction error for the recoded ozone data (N = 330, 200 boot-
straps).

Method N (1) err Êrr
(.632)

Increase MCSE
ACE supersmoother 284 .084 .129 53.7 .013
CATREG Nonmonotonic spline 325 .090 .114 27.2 .009
CATREG Nominal 284 .004 .358 8842.5 .033
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Figure 3.4. CATREG nominal transformations for the recoded ozone data.
The y-axis represent the quantifications multiplied with the regression coeffi-
cient for the predictor.

3.5. Prediction accuracy for different scaling

levels in CATREG

As explained in Section 3.2.1, the scaling levels differ with respect to the de-
gree of restrictiveness in the quantification process, which is related to the
number of degrees of freedom of the transformations. More restricted trans-
formations result in higher apparent error rate by definition, but they can
give better results in terms of expected error rate. To compare the prediction
accuracy of the scaling levels, the recoded ozone data as described in Section
3.4.2 were used. Although the variable “Day of the year” shows a transforma-
tion that clearly reflects a seasonal trend and should therefore in practice not
be restricted to a monotonic transformation, a monotonic transformation was
included here for reason of comparison. In Figures 3.4, 3.5, and 3.6, nomi-
nal, ordinal, and monotonic spline transformations are displayed. (Again, the
nonmonotonic spline transformations for the recoded data are not displayed
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Figure 3.5. CATREG ordinal transformations for the recoded ozone data. The
y-axis represent the quantifications multiplied with the regression coefficient
for the predictor.

Table 3.3. CATREG prediction error for the recoded ozone data (splines,
based on second degree polynomials, with two interior knots, N = 330, 200
bootstraps, numeric initialization, no multiple systematic starts).

Scaling level i N (1) i err i Êrr
(.632)

Increase MCSE
Nominal 284 .004 .358 8842.5 .033
Nonmonotonic spline 325 .090 .114 27.2 .009
Ordinal 284 .106 .162 53.1 .017
Monotonic spline 325 .137 .155 13.2 .013
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Figure 3.6. CATREG monotonic spline transformations for the recoded ozone
data. The y-axis represent the quantifications multiplied with the regression
coefficient for the predictor.

because they are very close to the transformations for the original data dis-
played in Figure 3.2.)

In Table 3.3, the prediction accuracy results for the different scaling levels
are given, again obtained from 200 bootstrap samples, using numerical ini-
tialization for all scaling levels (thus, without applying multiple systematic
starts for the ordinal and monotonic spline transformations; the results when
applying multiple systematic starts will be discussed below).

The nominal scaling resulted in the lowest apparent error, but in the high-
est prediction error. This is as expected, because the nominal scaling level is
the least restrictive level and there are many categories; the number of de-
grees of freedom for a variable with the nominal scaling level is the number
of categories minus one. So, with nominal scaling level, the freedom in quan-
tifying the categories resulted in an almost perfect fit for the training set, but
this is obtained at the cost of much less accuracy for future predictions; this
situation clearly indicates overfitting.
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Comparing the spline transformations to the nominal and ordinal step
functions, we see that for the spline transformations the apparent prediction
error is higher, but the expected error rate is lower. The same pattern is ob-
served when the more restrictive ordinal transformations are compared to the
nominal transformations. However, comparing the monotonic spline trans-
formations to the nonmonotonic spline transformations, we see that both the
apparent error and the expected error rate are higher for the more restrictive
monotonic spline transformations.

Summarizing, the apparent error rate for the ordinal and spline transfor-
mations is higher than for the nominal transformations, but their expected er-
ror rate is considerably lower. Also, the apparent error rate for the monotonic
spline transformation is higher than for the ordinal transformation, but the
expected error rate is lower. This phenomenon is well-known in the machine
learning literature, where suboptimal results for the observed data are ac-
cepted to obtain superior results for predicting future observations.

A more restrictive scaling level does not necessarily result in more pre-
diction accuracy, however. When there are important nonmonotonic rela-
tionships between the predictors and the response, monotonic transforma-
tion is too restrictive, as the ozone data illustrate: the less restrictive non-
monotonic spline transformations perform better than the monotonic spline
transformations. However, when there are only slight nonmonotonicities in
the data, monotonic transformation might result in lower expected prediction
error than nonmonotonic transformation. Similarly, in the case of only slight
nonmonotonicities nominal transformation may perform better than ordinal
transformation when the number of categories is low.

Applying multiple systematic starts to obtain the global optimal solution
with ordinal and monotonic spline transformations (see Table 3.4) resulted
in both lower apparent error, and lower expected prediction error for the
monotonic spline transformations, but in higher expected error rate for the
ordinal step function. This result suggests that when ordinal transformations
are appropriate (for example, when variables have only a limited number of
ordered categories), using multiple systematic starts is needed only if the pri-
mary objective of the analysis is to explain the data at hand. On the other
hand, we would not need to perform multiple systematic starts for ordinal
transformations if the aim of the analysis is to predict future responses. How-
ever, the differences are rather small in this example because the response
variable can be rather well predicted (with the linear model for the unrecoded
data R2 is .717), and as was shown in Van der Kooij et al. (2006), local minima
become less frequent and less severe with increasing R2.
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Table 3.4. CATREG prediction error for the recoded ozone data (splines based
on second degree polynomials with two interior knots, N = 330, 200 bootstraps,
multiple systematic starts).

Scaling level aa N (1) a err a Êrr
(.632)

Increase MCSE
Ordinal 284 .096 .171 78.7 .016
Monotonic spline 325 .128 .148 15.9 .012

Table 3.5. CATREG prediction error for the recoded ozone data (splines based
on second degree polynomials with two interior knots, N = 330, 200 bootstraps,
random initialization, no multiple systematic starts).

Scaling level i N (1) a err a Êrr
(.632)

Increase MCSE
Nominal 284 .004 .460 11126.8 .040
Nonmonotonic spline 325 .090 .114 27.2 .009
Ordinal 284 .190 .205 8.0 .018
Monotonic spline 325 .148 .159 7.9 .013

When CATREG is used to maximize R2 for the data at hand, it is usu-
ally recommended to use random initialization for nominal and nonmonotonic
spline transformations, and numerical initialization for ordinal and monotonic
spline transformations. The comparison of the results obtained with numeri-
cal initialization to those obtained with random initialization (see Table 3.5),
shows that there is hardly a difference in the apparent error rate for the nomi-
nal scaling level, but that the expected prediction error is considerably higher
when random initialization was used. For the nonmonotonic spline transfor-
mations, there is no difference, neither in the apparent prediction error nor in
the expected prediction error. For the ordinal and monotonic spline transfor-
mations, numerical initialization gives the best results, both for apparent and
for expected error rates.

The high expected prediction error compared to the apparent error for the
nominal scaling level is likely due to the relatively high number of categories
(thus, a high number of degrees of freedom) for most of the predictors. To
confirm this, the predictor variables were recoded to decrease the number of
categories in three steps and the effect on the error rates for the nominal
scaling level was examined. The results are given in Table 3.6. For the 25-
categories-analysis, only the predictor variables with more than 25 categories,
were recoded, for the 12-categories-analysis only the predictor variables with
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Table 3.6. CATREG prediction error for the ozone data with nominal scaling
level (predictors recoded to 25, 12, and 7 categories, N = 330, 200 bootstraps).

N (1) a err a Êrr
(.632)

Increase MCSE
numerical initialization
25 categories 320 .050 .285 465.6 .021
12 categories 328 .083 .161 95.3 .013
7 categories 330 .102 .145 42.1 .012
random initialization
25 categories 320 .050 .286 467.6 .022
12 categories 328 .083 .162 96.4 .013
7 categories 330 .102 .145 42.1 .012

more than 12 categories, and finally, for the 7-categories-analysis all predictors
were recoded. As could be expected, reducing the number of categories in-
creases the apparent prediction error. However, the expected prediction error
and the Monte Carlo standard error were substantially reduced going from 25
via 12 to 7 categories. The fact that the original continuous response variable
is best predicted from categorical predictor variables with a (severely) reduced
number of categories is encouraging for the data analytical approach taken in
CATREG. With a limited number of categories, the difference in expected
prediction error between the results obtained with numerical initialization
and random initialization almost disappeared.

3.6. The effect of the number of observations on
the expected prediction error

The high expected prediction error for the nominal scaling level relative to the
apparent error might well be due to the rather small number of observations in
the ozone data compared to the number of categories. To investigate the effect
of the number of observations on the expected prediction error, data were used
that come from 9409 questionnaires containing 502 questions filled out by
shopping mall customers in the San Francisco Bay area (Impact Resources,
Inc., Columbus, OH, 1987). An extract from this survey consisting of 14
demographic attributes was used, listed in Table 3.7; the extract of the data
can be obtained from http://www-stat.stanford.edu/~tibs/ElemStatLearn/.
To avoid the introduction of additional error by imputing missing data, only
the 6876 observations without missing values were used. The response variable
is the annual household income.
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Table 3.7. Number of categories demographic data and standardized regression
coefficients when using nominal scaling level for all predictors.

a No. of categories a β

Annual household income (response) 9
Sex 2 -.063
Marital status 5 -.176
Occupation 9 -.244
Dual incomes 3 .011
Householder status 3 -.127
Type of home 5 -.080
Ethnic classification 8 .030
Language in home 3 -.038
Age 7 .278
Education 6 .119
Years lived in Bay Area 5 .029
Number of persons in household 9 .038
Number of persons <18 in household 9 -.027

With ordinal transformation of the response and nominal transformations
of the predictors, an R2 of .520 is obtained. The transformations are displayed
in Figure 3.7. The variables “Age”, “Education”, “Years lived in Bay Area”,
“Number of persons in household”, and “Number of persons <18 in house-
hold” are of ordinal measurement level; analyzing these variables at the ordinal
scaling level results in only a slightly lower R2 of .518. This small decrease in
R2 is explained by the fact that the ordinal variables “Age” and “Education”
are important predictors and their transformations using the nominal scaling
level are only slightly nonmonotonic (“Age”) or monotonic (“Education”). So,
using the ordinal scaling level for these predictors does not require much re-
striction, and consequently R2 does not decrease much. The transformations
of the variables “Number of persons in household”, and “Number of persons
<18 in household” require more restriction when applying the ordinal scal-
ing level, but these predictors are not very important, thus restricting their
transformations to be monotonic will not affect R2 much either. Although
the variables “Number of persons in household” and “number of persons <18
in household” are not very important, their transformations nicely illustrate
the backfitting property of transformation towards independence mentioned
in Section 3.2.2: The observed variables have a high correlation (.71), while
the correlation of the transformed variables is almost zero (.01).
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Figure 3.7. CATREG transformations for the demographic data (response
ordinal, predictors nominal). The y-axis represent the quantifications multi-
plied with the regression coefficient for the predictor. The figures in brackets
following the category labels are the category frequencies.
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Table 3.8. CATREG prediction error for the demographic data (splines based
on second degree polynomials with one interior knot, numerical initialization,
200 bootstraps). The reported results are for standardized variables.

Scaling level N (1) a err a Êrr
(.632)

Increase MCSE
N=6876
Nominal 6875 .480 .522 8.8 .011
Nonmonotonic spline 6876 .492 .520 5.8 .011
N=3300
Nominal 3298 .475 .535 12.7 .016
Nonmonotonic spline 3299 .490 .528 7.8 .015
N=1000
Nominal 1000 .473 .602 27.2 .034
Nonmonotonic spline 1000 .494 .578 17.1 .032
N=330
Nominal 326 .435 .740 70.0 .066
Nonmonotonic spline 328 .476 .631 32.6 .056

Three random subsamples of specified size from the data were drawn to
obtain data sets with reduced number of observations, with sample sizes of
3300, 1000, and 330. The results are given in Table 3.8. As expected, the
apparent error does not change much with different number of observations,
but the expected prediction error is affected by the number of observations,
for both the nominal scaling level and the more restrictive nonmonotonic
splines. There is not much increase in the expected prediction error going
from N = 6876 to N = 3300, but reducing N to 1000 the expected prediction
error considerably increases, and even more so when N is reduced to 330.
Also, with a higher number of observations (6876 and 3300), there is not much
difference in the expected prediction error for the nominal and nonmonotonic
spline transformations, while with a smaller number of observations (1000 and
330) the difference is considerable.

3.7. Conclusions

In this chapter the CATREG approach to nonlinear multiple regression was
described, which involves regression with optimal scaling according to a variety
of scaling levels. The procedure fits nominal, nonmonotonic spline, ordinal,
and monotonic spline transformations of the predictors and/or the response
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that maximize the multiple correlation coefficient and minimize the apparent
error rate. The CATREG procedure was studied in terms of its prediction
accuracy by estimating the expected error rate, using the .632 bootstrap pro-
posed by Efron (1983), applying the definition of the leave-one-out bootstrap
estimate of prediction error as defined in Efron and Tibshirani (1993).

First, the prediction accuracy of CATREG was compared with the results
of five other methods for nonlinear prediction methods as reported in Hastie
and Tibshirani (1990, sec. 10.3). For the particular data set that was used (the
ozone data), the results show that in terms of expected error rate, CATREG
with nonmonotonic spline transformations as (in fact, a little better than) the
full additive model with smoothing spline transformations, and the latter was
the best performing method in the comparison by Hastie and Tibshirani. In
addition, the Monte Carlo standard error for CATREG was much smaller.
Next, CATREG was compared to the very closely related ACE procedure
by Breiman and Friedman (1985). It turned out that in terms of prediction
accuracy, the results of ACE with nonmonotonic transformations using a su-
persmoother were somewhat less than the results obtained by CATREG with
nonmonotonic spline transformations, but much better than CATREG with
(non-smooth) nominal transformations (which are step functions). In general,
nominal transformations may result in a close to perfect apparent prediction
error rate, but in a far from perfect expected error rate when the number of
observations is small and the number of categories is large (so that the mar-
ginal frequencies are small). By reducing the original number of categories,
or binning continuous predictors in a small number of categories, much better
prediction accuracy may be obtained, as was shown in the analysis of the
ozone data. Both the prediction accuracy increased and the Monte Carlo
standard error decreased when the original response variable measuring ozone
concentrations was predicted from categorical data with a limited number of
categories derived from the original meteorological measurements with num-
ber of categories ranging from 12 to 65. This is a very positive result for the
categorical approach to multiple regression.

Because CATREG also includes options for ordinal and monotonic spline
transformations, their prediction accuracy was studied as well. CATREG so-
lutions that turned out to be local minima (which may occur with ordinal
and monotonic spline transformations (Van der Kooij et al. 2006)), thus with
a higher apparent error (by definition), appeared to have lower expected er-
ror rates compared to the global minimum solutions. These results put the
local minimum problem in a new perspective. The ordinal and monotonic
spline transformations were also compared to the results for nominal and
nonmonotonic spline transformations. In general, we conjecture that more
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restricted models lead to higher apparent error rates (again, by definition),
but to lower expected error rates. There is a major exception to this latter
rule, however, and this is when relationships between predictors and the re-
sponse variable are severely nonlinear and nonmonotonic. In the latter case,
using ordinal and/or monotonic spline transformations will certainly reduce
the prediction accuracy.

3.8. Computational note

For completeness, it should be remarked that the indicator matrices intro-
duced in the algorithm section (3.2.2), are only used in the equations, and
of course not in the actual implementation of the algorithm. The CATREG
algorithm has been implemented in a user-friendly computer program in the
CATEGORIES package in SPSS (Meulman et al. 1999). For non-integer data,
the CATREG program (SPSS 8.0 onwards (SPSS Inc. 1998; Van der Kooij
and Meulman 2004) offers an option for linearly transforming the data into
integer values, and various discretization options for recoding continuous data
(binning).






