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Chapter 2

Local Minima in Regression
with Optimal Scaling
Transformations

CATREG is a program for categorical multiple regression, applying optimal
scaling methodology to quantify categorical variables, including the response
variable, simultaneously optimizing the multiple regression coefficient. The
scaling levels that can be applied are nominal, nonmonotonic spline, ordinal,
monotonic spline or numerical. When ordinal or monotonic spline scaling
levels are applied, local minima can occur. With ordinal or monotonic spline
scaling levels, the transformations are required to be monotonically increasing,
but this can also be achieved by reflecting a monotonic decreasing transforma-
tion. A monotonic transformation is obtained by restricting a nonmonotonic
transformation, but the direction of the monotonic restriction (increasing or
decreasing) is undefined, and it will be shown that this is the cause of local
minima. Several strategies to obtain the global minimum for the ordinal scal-
ing level will be presented. Also, results of a simulation study to asses the
performance of these strategies are given. The simulation study is also used
to identify data conditions under which local minima are more likely to occur
and are more likely to be severe. It was found that local minima more often
occur with low to moderately low R2 values, with higher number of categories
and with higher multicollinearity.

Reprinted from Computational Statistics and Data Analysis, 50, Van der Kooij, A.J.,
Meulman, J.J., & Heiser, W.J., Local Minima in Categorical Multiple Regression, 446–462,
Copyright (2006), with permission from Elsevier.
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16 CHAPTER 2. LOCAL MINIMA

2.1. Introduction

With numerical data multiple regression is the most often used method to
predict a dependent or response variable from a set of predictor variables.
CATREG is a nonparametric method to perform multiple regression when
data are categorical or a mix of numerical and categorical variables. CATREG
allows for nonlinear transformations of the variables, including the response
variable. CATREG can also be used with numerical data to explore the
existence of nonlinear relationships. The program is available in SPSS (SPSS
Inc. 1998; Van der Kooij and Meulman 1999).

Transformation of variables has become an important tool in data analy-
sis over the last decades. Various models and programs have been developed,
for example the Box-Cox model (Box and Cox 1964), using parametric fami-
lies of transformations. More general methods include monotone transforma-
tions (Kruskal 1965), MORALS (Young et al. 1976) (implemented in TRAN-
SREG (SAS/STAT 1989)), spline transformations (Winsberg and Ramsay
1980; Ramsay 1988), Projection Pursuit Regression (Friedman and Stuetzle
1981), ACE (Breiman and Friedman 1985), and GAM (Hastie and Tibshirani
1990) for fitting generalized additive models using smoothers; see also Gau-
dart, Giusiano, and Huiart (2004) for a comparison of Neural Networks and
linear regression.

CATREG applies the optimal scaling methodology as developed in the Gifi
system (Gifi 1990) to quantify categorical variables, simultaneously optimizing
the multiple regression coefficient. In the quantification process, information
in the observed variable is retained in the quantified variable. The kind of
information that is retained, and thereby the form of the transformation, de-
pends upon the scaling level. The numerical scaling level results in a linear
transformation, that is, the data are treated as numerical, and are only trans-
formed into standardized variables. The non-numerical scaling levels allow for
nonlinear transformations: the nominal and nonmonotonic spline scaling lev-
els allow for nonmonotonic transformations; the ordinal and monotonic spline
scaling levels allow for monotonic transformations. The scaling level can be
chosen for each variable separately.

When all or some of the scaling levels are of the ordinal or monotonic
spline type, local, nonglobal minima (suboptimal solutions) can occur. Ordi-
nal or monotonic spline quantifications are obtained by applying a restriction
to unrestricted (nominal, nonmonotonic) quantifications. In this chapter, we
argue that the occurrence of local minima in CATREG is due to the fact
that the direction of the restriction is undefined. CATREG is closely related
to MORALS (Young et al. 1976), TRANSREG (SAS/STAT 1989) and ACE
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(Breiman and Friedman 1985). With both these methods we have observed
local minima as well. MORALS, TRANSREG, and ACE also use monotonic
restriction of nonmonotonic transformations to obtain monotonic transforma-
tions, so it is very likely that the cause of local minima in MORALS and ACE
is the same as in CATREG.

In this chapter we present a strategy to obtain the global minimum, using
systematic multiple starts. That is, each start uses the same initial values for
the quantifications, but with different signs. Applying a negative sign results
in a monotonic increasing transformation that is equal to a reflected decreasing
transformation. Using all possible sign patterns will yield the global minimum.
However, the number of possible sign patterns is a power of two, where the
power is the number of predictor variables with ordinal or monotonic spline
scaling level. So, for each additional predictor the number of systematic mul-
tiple starts is doubled. To reduce the number of starts, we have adapted the
strategy to use not all but only some sign patterns. To determine which sign
patterns to use, a loss of variance criterion is used. We also developed a sec-
ond strategy to find the optimal sign pattern by using a hierarchical method.
A third strategy is a combination of these two strategies. The performance
of the reduced strategies is assessed by a simulation study. In addition, the
simulation study is used to asses the possible effect of data conditions on the
incidence and severeness of local minima. For this purpose, we simulated data
with different sizes of R2, different amounts of multicollinearity, and different
number of categories.

2.2. Model

Multiple regression is a linear technique to study the relationship between a
response variable and a set of predictor variables. Categorical multiple regres-
sion is a nonlinear technique, where the nonlinearity is in the transformation
of the variables. CATREG requires the data to be categorical, thus consisting
of integer values. For non-integer data CATREG offers various discretization
options for recoding (binning) or linearly transforming the data into integer
values.

The CATREG model is the classical linear regression model, applied to
transformed variables:

ϕr(y) =
J∑

j=1

βjϕj(xj) + e, (2.1)
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with loss function:

L(ϕr; ϕ1, . . . , ϕj; β1, . . . , βj) = ‖ϕr(y)−
J∑

j=1

βjϕj(xj)‖2, (2.2)

with J the number of predictor variables, y the observed or discretized re-
sponse variable, xj the observed or discretized predictor variables, βj the
regression coefficients, ϕr the transformation for the response variable, ϕj the
transformations for predictor variables, and e the error vector. All trans-
formed variables are centered and normalized to have sum of squares equal
to N , and ‖ · ‖2 denotes the squared Euclidean norm. (An alternative formu-
lation of multiple regression with optimal scaling was given in Van der Kooij
and Meulman (1997).)

The form of the transformations depends upon the optimal scaling level,
which can be chosen for each variable separately, and is independent of the
measurement level. The scaling level defines which part of the information
that is in an observed or discretized variable (depending upon the measure-
ment level), is retained in the transformed variable. With the numerical scal-
ing level, the category values of a variable are treated as quantitative. Then
all information is retained and the only transformation applied is standard-
ization, thus resulting in a linear transformation. So, when for all variables
numerical scaling level is applied, the result of CATREG is equal to the re-
sult of linear multiple regression with standardized variables. With the non-
numerical scaling levels, the category values are treated as qualitative, and are
transformed into quantitative values. In this case, some part of the informa-
tion in the observed or discretized variable is dropped, allowing for nonlinear
transformations. With the ordinal or monotonic spline scaling level, the inter-
val information is dropped, and only grouping and ordering information has
to be retained, allowing for a monotonic transformation. With the nominal
and nonmonotonic spline scaling level only grouping information has to be
retained, resulting in nonmonotonic transformations. By applying nonlinear
scaling levels, nonlinear relationships between the response variable and the
predictor variables are linearized, hence the term linear regression model is
still applicable.

2.3. Algorithm

In CATREG the observed or discretized variables are coded into an N ×
Cm indicator matrix Gm, where N is the number of observations and Cm

denotes the number of categories of variable m, m = 1, . . . , M , where M is
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the total number of variables, thus, M = J +1. An entry gic(m) of Gm, where
c = 1, . . . , Cm, is 1 if observation i is in category c of variable m, and zero
otherwise. Then the transformed variables can be written as the product of
the indicator matrix Gm and a Cm-vector of category quantifications vm:

ϕr(y) = Grvr, and ϕj(xj) = Gjvj , (2.3)

where vr is the vector of category quantifications for the response variable,
and vj the vector of category quantifications for a predictor variable. So, the
CATREG model with the transformed variables written in terms of indicator
matrices and category quantifications is:

Grvr =
J∑

j=1

βjGjvj + e, (2.4)

with the associated least squares loss function:

L(vr;v1, . . . ,vj; β1, . . . , βj) = ‖Grvr −
J∑

j=1

βjGjvj‖2. (2.5)

The loss function (2.5) is minimized by an alternating least squares algo-
rithm, alternating between the quantification of the response variable on the
one hand, and the quantification of the predictor variables and estimation of
the regression coefficients on the other hand. First, the quantifications and
the regression coefficients have to be initialized. CATREG has two ways of ini-
tialization: random and numerical. Random initialization uses standardized
random values for the initial quantifications, and the initial regression coef-
ficients are the zero order correlations of the randomly quantified response
variable with the randomly quantified predictor variables. The initial values
with numerical initialization are obtained from an analysis with numerical
scaling level for all variables.

In the first step of the algorithm, the quantifications of the predictor vari-
ables and the regresssion coefficients are held fixed. With numerical scaling
level the quantifications vr of the response variable are the category values
of the centered and normalized observed or discretized variable. With a non-
numerical scaling level the quantifications are updated in the following way:

ṽr = D−1
r G′

r

J∑

j=1

βjGjvj , (2.6)
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where Dr = G′
rGr. The quantifications ṽr are the unstandardized quan-

tifications for the nominal scaling level. For ordinal, and nonmonotonic or
monotonic spline scaling level, a restriction is applied to ṽr, according to
the scaling level, yielding v∗

r . Thus, v∗
r = ṽr for the nominal scaling level,

and v∗
r = restricted(ṽr) for the ordinal and spline scaling levels. Then v∗

r is
standardized:

v+
r = N1/2v∗

r(v
∗′
r Drv∗

r)
−1/2. (2.7)

In the second step of the algoritm, the quantification of the response variable is
held fixed, and the quantifications vj of predictor variables with non-numerical
scaling level, and the regression coefficients are updated for one variable at a
time, this is sometimes called backfitting, and was applied, a.o., in Kruskal
(1965), De Leeuw et al. (1976), Friedman and Stuetzle (1981), Hastie and
Tibshirani (1990), and Gifi (1990)). The approach works at follows. First the
N -vector of predicted values is computed:

z =
J∑

j=1

βjGjvj . (2.8)

For updating the quantifications of variable j, the contribution of variable j

to the prediction (the weighted linear combination of transformed predictors)
is subtracted from z:

zj = z − βjGjvj. (2.9)

The unrestricted quantifications are updated as:

ṽj = sign(βj)D−1
j G′

j(Grv+
r − zj). (2.10)

For variables with non-numerical scaling level ṽj is restricted according to
the scaling level, and normalized as in (2.7), yielding v+

j . For variables with
numerical scaling level v+

j contains the category values of the centered and
standardized observed or discretized data. Next the regression coefficient βj

is updated:

β+
j = N−1ṽ′

jDjv+
j . (2.11)

Then, the updated contribution of variable j to the prediction is added to zj :

z = zj + β+
j Gjv+

j , (2.12)

and the algorithm continues with updating the quantification for the next
predictor variable, until all predictor variables are updated. Then the loss is
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computed as ‖Grv+
r −z‖2. These two steps are repeated until a user-specified

convergence criterion is met.
For the ordinal scaling level, weighted monotonic regression (Kruskal 1965;

Barlow et al. 1972) of the nominal quantifications on the observed or dis-
cretized variable is used. For the restriction according to the spline scaling
levels we use weighted regression of nominal quantifications on an I-spline basis
(Ramsay 1988), with additional nonnegativity restrictions for the monotonic
spline scaling level. At this point, a complication may occur. A monoton-
ically increasing restriction can sometimes result in a transformed variable
with constant values. For example, when the values of ṽ are monotonically
decreasing, except for the first or the last value, the restricted quantifica-
tions are the mean of ṽ for all categories. In this case, transformation to a
constant can be avoided by allowing for a monotonically decreasing function,
and reflecting the result to make the quantifications increasing. In CATREG
we accomplish this by applying monotonic (spline)regression to the reflected
unrestricted quantifications (see also section 2.4.1).

2.4. Local minima

When using multiple random starts (that is, a number of different starts, each
with random initial values), ordinal or monotonic spline scaling levels for the
predictor variables, and numerical scaling level for the response variable, we
may obtain different values of R2. Also, the use of the same random start
while changing the order in which the predictor variables enter the backfit-
ting algorithm, can result in a different R2 value. The maximum number of
different R2 values obtained with multiple random starts is 2q, with q the
number of predictor variables with ordinal or monotonic spline scaling level.
All the 2q solutions have different sign patterns for the quantifications and
associated β’s: there is one solution with all β’s positive, q solutions with
one negative β,

(
q
r

)
solutions with r negative β’s, and one solution with all

β’s negative. The values of the initial quantifications are not important: us-
ing different initial values but with the same sign pattern for the regression
coefficients results in the same R2.

2.4.1 A probable cause of local minima

Our conjecture is that local minima with ordinal or monotonic spline scaling
level occur because the direction of the monotonic restrictions is undefined.
Ordinal or monotonic spline quantifications are required to be monotonically
increasing, which is accomplished in CATREG by applying a monotonically
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increasing restriction to nominal quantifications. But this can also be ac-
complished by applying a monotonically decreasing restriction to nominal
quantifications and reflecting the result. Applying a monotonically decreasing
restriction and reflecting the result is equivalent to applying a monotonically
increasing restriction to reflected nominal quantifications. The order of nom-
inal quantifications is meaningful, but they need not to be ordered according
to the data, so reflection is allowed. For a predictor variable, reflection of the
nominal quantifications, without applying a restriction, results in an updated
β that only differs in sign from the updated β using unreflected quantifica-
tions. For the response variable the only difference is a change of sign for
all β’s. But ordinal or monotonic spline restriction on the reflected nominal
quantification results in different restricted quantifications, and thus β’s that
differ both in sign and value.

Table 2.1 and Figure 2.1 give an example of ordinal restriction for a pre-
dictor variable on nominal quantifications and on reflected nominal quantifi-
cations. The first column displays the categories of a predictor variable, with
all categories having equal frequency. The nominal quantifications are in the
second column. The quantification for category 2 is lower than the one for
category 1, resulting in the restricted quantification for both categories equal
to their mean (note that here and in the following we have to use weighted
means when the frequencies are not equal). This mean is 0.40, which is higher
than the nominal quantification for category 3, and this results in a restricted
quantification for categories 1, 2 and 3 equal to their mean, and this mean
(−0.15) is lower than the nominal quantification for category 4; hence this
quantification remains unchanged. The fourth column displays the reflected
nominal quantifications. Here the nominal quantifications for categories 1, 2,
and 3 are correct, that is they increase; but for category 4 the quantification
decreases. Therefore the quantifications of category 3 and 4 are averaged. So,
in the example, ordinal restriction of the nominal quantifications results in

Table 2.1. Ordinal restrictions on unreflected and reflected nominal quantifi-
cations.
Category Nominal Ordinal Reflected nominal Ordinal
(Equal freq.) quantification Restriction quantification Restriction

1 1.05 -0.15 -1.05 -1.05
2 -0.25 -0.15 0.25 0.25
3 -1.25 -0.15 1.25 0.40
4 0.45 0.45 -0.45 0.40
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Figure 2.1. Transformation plots. Top left: nominal transformation. Top
right: reflected nominal transformation. Bottom left: ordinal transformation,
(restricted nominal transformation). Bottom right: ordinal transformation
(increasing monotonic restriction on reflected nominal transformation, or re-
flected decreasing monotonic restriction on unreflected nominal transforma-
tion).

equal quantifications for categories 1, 2, and 3, and a positive β, while ordinal
restriction of the reflected nominal quantifications results in equal quantifica-
tions for categories 3 and 4, and a negative β. These two sets of quantifications
have different variance, which eventually results in different local minima.

2.4.2 Strategies to obtain the global minimum

Since there are 2q possible different solutions, with 2q sign patterns for the
regression coefficients, we can obtain the global minimum using 2q starts, all
with the same initial values, but with different sign patterns. The signs are
applied to the unrestricted quantifications (replacing sign(βj) in (2.10)) and
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remain fixed during iteration. As explained above, applying a sign to the
unrestricted quantifications, results in a β with the same sign. This strategy
of multiple systematic starts works fine if the number of ordinal or monotonic
spline predictors is relatively small. Since the number of required starts is a
power of two, this number doubles with each additional ordinal or monotonic
spline predictor, and therefore complete enumeration is often infeasible. So
we searched for a more direct method to find the optimal sign pattern, and
developed several strategies for this purpose. Although none is completely
successful, their performance is much better than with the numerical or ran-
dom start. That is, using a sign pattern determined in some reasonable way
results in less local minima than using the numerical or random start.

Iterative strategies

Iterative strategies attempt to find the optimal signs during iteration. Then
for each variable with the scaling level ‘ordinal’or ‘monotonic spline’, in each
iteration the sign is selected. With these strategies we used numerical initial-
ization. Strategy 1 is to select the sign according to the loss due to restriction
for the unreflected and the reflected nominal quantifications (thus, the loss for
the monotonic increasing and the monotonic decreasing transformation; this
strategy is also applied in ACE (although this is not reported in the Breiman
and Friedman, 1985 paper, this approach is implemented in Friedman’s ACE
function in S-PLUS)). The loss due to restriction is ‖Gṽ − Gv∗‖2. Strat-
egy 2 is to select the sign for a variable according to the R2 resulting from
the unreflected and reflected updates for the variable to be transformed, with
temporarily updates for the other variables. Thus, this strategy takes into
account the effect of the sign for the variable to be updated on the other
variables. In the simulation study, the iterative strategies reduce the number
of local minima with about 50% (strategy 1), and 75% (strategy 2). Strat-
egy 1 is not always successful in finding the global mininum, because it can
happen that by applying the sign that results in a higher loss (due to the
monotonic restriction), this higher loss is ‘later’compensated by a lower loss
due to monotonic restrictions for other variables. Strategy 2 was developed
to take this into account. The reason strategy 2 is not always successful in
finding the global mininum either, is that it can happen that in the earlier
iterations applying particular signs results in the highest R2, while these signs
eventually result in a local minimum. So, then the global minimum can only
be found with suboptimal updates in the earlier iterations.
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Non-iterative strategies

We have also tried a number of non-iterative strategies. These strategies fix
the signs that are selected in the first iteration using one of four criteria. With
these strategies we also used numerical initialization. The criteria we used to
select the signs were as follows. The sign for a variable is set to negative
if: the loss due to restriction on −v is equal to or less than the loss due to
restriction on v (strategy 3); the number of different category quantifications
is half or less than half of the number of categories (strategy 4); Spearman’s
rank-order correlation (that is, the correlation between the ranked values of
ṽ and the ranked observed or discretized data) is zero or negative (strategy
5); the weighted sum of differences between consecutive values in ṽ is zero
or negative (strategy 6). It turned out that none of these strategies worked
by themselves (they gave more local minima than with the numerical start,
except for strategy 3), but as it turned out, they can be used to reduce the
number of multiple systematic starts.

Reduced multiple systematic starts strategy using non-iterative
strategies to select signs patterns

This approach uses non-iterative strategies to reduce the number of multiple
systematic starts by selecting sign patterns. We select sign patterns by allow-
ing a negative sign only for those variables that have a negative sign in the
pattern found with one of the non-iterative strategies (strategies 3 through
6). Or, stated differently, sign patterns that contain a negative sign for vari-
ables with a positive sign in the pattern found with one of the non-iterative
strategies, are exluded. In this way the number of multiple systematic starts
is reduced (if p is smaller than q) to 2p, with p the number of negative signs
obtained with a non-iterative strategy. This strategy works reasonably well,
but using other methods to select sign patterns worked better.

Reduced multiple systematic starts strategies using other methods
to select sign patterns

An alternative approach to select sign patterns to reduce the number of multi-
ple systematic starts, is a hierarchical one (strategy 7): first the solution with
no negative signs and the q solutions with one negative sign are computed.
If R2 with the zero negative signs pattern is the highest, this sign pattern is
selected, and the procedure stops. On the other hand, if the highest R2 is ob-
tained with one of the one-negative-sign patterns, we continue by computing
the q − 1 solutions for this one-negative-sign pattern with one more nega-
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tive sign added. If none of the two-negative-sign patterns results in a higher
R2 than the one for the one-negative-sign pattern, the one-negative-sign pat-
tern is selected, and the procedure stops. Otherwise we continue by adding
one more negative sign to the best two-negative-sign pattern, etc. With this
method the maximum number of solutions to be computed is reduced from 2q

to 1+
∑q

i=1 i. Another, more flexible, method is the use of a percentage of loss
criterion to select sign patterns (strategy 8). With this strategy only variables
with a loss of variance due to monotonic increasing restriction higher than a
certain percentage, are allowed to have a negative sign. The loss of variance
is determined in the first iteration after a nominal initial solution, that is, a
solution with nominal scaling level for all variables, since the nominal scaling
level is the least restrictive. Thus, sign patterns in which variables that do
not meet the percentage of loss criterion have a negative sign, are excluded.
By varying the percentage value, we can manipulate the number of solutions
to be computed, and thereby the chance of obtaining a local minimum. With
a percentage of zero, all sign patterns are selected, so the global minimum will
certainly be obtained. With a higher percentage value, less sign patterns are
selected, thus the chance of obtaining a local minimum is increased. Combin-
ing strategies 7 and 8 results in strategy 9: in the hierarchical strategy only
variables selected with the percentage of loss strategy are allowed to have a
negative sign.

2.5. Simulation study

We have performed a simulation study to test our strategies to reduce the
number of starts, and to investigate if and how data conditions effect the
incidence and the severeness of local minima.

2.5.1 Design

The data conditions we used as design factors (see Table 2.2) are four ranges
of R2 (low, moderately low, moderately high, and high), five numbers of cate-
gories (3, 7, 15, 25, and in the range 40–50), and five levels of multicollinearity
(correlation between two predictor variables of 0.0, 0.25, 0.50, 0.75, and 0.95,
other predictor intercorrelations close to zero). Summarizing, we have 100
conditions; since we generated 50 data sets for each condition, we have 5000
samples in total. The number of objects was fixed at 200, and the number of
predictor variables was fixed at five. The predictor variables were drawn from
a normal distribution with specified population correlation (see the five levels
of multicollinearity).
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Table 2.2. Data conditions.
R2 aaa No. Categories predictors Multicollinearity

low: 0.00 – 0.30 3 0.00
mlow: 0.35 – 0.55 7 0.25
mhigh: 0.60 – 0.75 15 0.50
high: 0.80 – 1.00 25 0.75

40 – 50 0.95

Table 2.3. Difference R2 resulting from numerical start and optimal R2.
The frequencies give the number of local minima obtained in 5000 samples.

Frequency
Difference with R2 Cumulative
optimal R2 low mlow mhigh high Total % %
.000 – .005 180 123 24 20 347 38.0 38.0
.005 – .015 195 88 22 4 309 33.9 71.9
.015 – .025 76 32 15 0 112 13.5 85.4
.025 – .035 36 20 2 0 58 6.4 91.8
.035 – .045 23 8 2 0 32 3.6 95.4
.045 – .055 16 8 1 0 25 2.7 98.1
.055 – .065 2 4 0 0 6 0.7 98.8
.065 – .075 1 1 0 0 2 0.2 99.0
.075 – .085 2 0 0 0 2 0.2 99.2
.085 – .095 1 0 0 0 1 0.1 99.3
.095 – .105 2 0 0 0 2 0.2 99.6
.108 0 1 0 0 1 0.1 99.7
.115 – .125 2 0 0 0 2 0.2 99.9
.142 1 0 0 0 1 0.1 100.0
Total 537 285 66 24 912 100.0
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The response variable was computed as a weighted linear combination of
the five predictor variables and an error vector. Random sign patterns were
applied to these weights by drawing a random integer from the interval [1,32]
(32 = 25 is the total number of sign patterns with five predictor variables).
The values of the weights were chosen such that R2 was in the desired range.
Then the variables were discretized by grouping them into 3, 7, 15, or 25
categories, such that the resulting variable is approximately normal. For the
range 40–50 categories condition, and for the response variable, we applied a
linear transformation resulting in the required number of categories. We used
numerical scaling level for the response variable and ordinal scaling level for
the predictor variables.

2.5.2 Results

Using all possible systematic starts the global minimum is always found, re-
quiring 25 = 32 starts for each sample. This gives the optimal R2 for each
sample. With a numerical start (that is, initial values and signs obtained from
a solution with numerical scaling level for all variables) 912 analyses (18.2%)
resulted in a local minimum. The difference between the optimal R2 and the
R2 resulting from the numerical start indicates the severeness of the local
minima. A local minimum is less severe if the difference with the optimal
R2 is small. In Table 2.3, the frequencies for the differences are displayed for
each R2 condition. Fortunately, we see frequencies go down with increasing
severeness. Also, the more severe local minima are mainly in the low and
moderately low R2 conditions.

The results for the strategies 1 through 6 and the reduced multiple starts
strategy using strategies 3 through 6 are in Table 2.4. The number of local
minima is reduced, but not as much as one would wish. Strategies 7, 8, and
9 give better results, that are given in Tables 2.5, 2.6, and 2.7 respectively.

With the hierarchical strategy (strategy 7), 39 analyses resulted in a local
minimum (see Table 2.5), requiring 13.6 starts on average. The reduction of
the incidence and severeness of local minima is satisfactory, and the number
of starts is reduced to about half. The same is true for the results of the
strategy that uses the percentage of loss criterion (strategy 8, see Table 2.6).
These results illustrate that the average number of starts is decreased with
increasing percentage values, along with an increasing number of local minima.
Although the total number of local minima is higher with higher percentage
values, the increase is mainly in the local minima that are not severe. With
a percentage value of zero, all starts are used, thus finding the optimal R2 is
guaranteed.
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Table 2.4. Results of the strategies 1 through 6: number of local minima
obtained in 5000 samples. (With the numerical start, 912 local minima were
obtained).
Strategy # local minima Mean # starts Std. dev. # starts
Iterative strategies
Strategy 1 441 N.A.
Strategy 2 229 N.A.
Non-iterative strategies
Strategy 3 555 N.A.
Strategy 4 2093 N.A.
Strategy 5 1548 N.A.
Strategy 6 1354 N.A.
Reduced multiple systematic starts using non-iterative strategies
Using strategy 3 508 7.7 6.4
Using strategy 4 87 16.8 12.1
Using strategy 5 557 7.3 6.1
Using strategy 6 505 7.7 6.4

Table 2.5. Results of the hierarchical strategy (strategy 7).
Difference with aaaaaaaaaa Frequency
optimal R2 aaaaaaaaaa
.000 – .005 23
.005 – .015 14
.015 – .025 2
Total 39
Mean no. starts 13.6
Std. dev. no. starts 2.2
(max. no. starts is 16)
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Table 2.6. Results of the percentage of loss strategy (strategy 8).
Frequency

Difference with loss due to restriction
optimal R2 ≥ 60% ≥ 50% ≥ 40% ≥ 30% ≥ 10% ≥ 0%
.000 – .005 28 9 7 2 2 0
.005 – .015 19 9 5 3 0 0
.015 – .025 3 2 1 0 0 0
.025 – .035 4 2 1 1 0 0
Total 54 22 14 6 2 0
Mean no. starts 13.0 14.2 15.3 16.5 20.0 32.0
Std. dev. no. starts 10.2 10.8 11.2 11.6 11.9 0.0
(max. no. starts 32)

Table 2.7. Results of the hierarchical strategy combined with the percentage of
loss strategy (strategy 9).

Frequency
Difference with loss due to restriction
optimal R2 ≥ 60% ≥ 50% ≥ 40% ≥ 30% ≥ 10% ≥ 0%
.000 – .005 48 31 29 25 25 23
.005 – .015 31 21 17 16 14 14
.015 – .025 5 4 3 2 2 2
.025 – .035 4 2 1 1 0 0
Total 88 58 50 44 41 39
Mean no. starts 8.2 8.5 8.9 9.2 10.3 13.6
Std. dev. no. starts 4.2 4.3 4.4 4.4 4.5 2.2
(max. no. starts 16)
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The results of the strategy that combines the hierarchical strategy with the
percentage of loss strategy (strategy 9) are in Table 2.7. With this strategy a
percentage value of zero does not guarantee finding the optimal R2, because
here a percentage value of zero gives the results of the hierarchical strategy
(strategy 7). So, the minimum total number of local minima with the com-
bined strategy is equal to the total number of local minima obtained with the
hierarchical strategy. The number of local minima with the combined strat-
egy is approximately equal to the sum of the number of local minima with
the hierarchical strategy and the percentage of loss strategy. For example, in
Table 2.7, 25 in the column ≥ 30%, is the sum of 23 (Table 2.5) and 2 (Table
2.6), and 16 in the same column is the sum of 14 (Table 2.5) and 3 (Table 2.6)
minus 1. So, with the same percentage value, the combined strategy results in
more local minima than the percentage of loss strategy, although the increase
is mainly in the not severe local minima. But with the combined strategy
the average number of starts is reduced more than with the percentage of loss
strategy. For example, with the percentage of loss strategy using a percent-
age value of 60, the total number of local minima is 54, requiring 13 starts
on average. With the combined strategy, the same number of local minima is
obtained using a percentage value between 50 and 40, but requiring between
8.5 and 8.9 starts on average, which is substantially less.

Since the maximum number of starts is only 32 in this study, the percent-
age of loss strategy would be the best choice here. But with more variables
with ordinal or monotonic spline scaling level, the number of starts rapidly
increases for the percentage of loss strategy. To give an impression: when q
(the number of variables with ordinal or monotonic spline scaling level) is 15,
and all variables have seven categories (in CATREG CPU time depends upon
the number of categories, not the number of objects), the number of all starts
is 32768, which requires 4 minutes on a 2.2 Ghz computer. When q is 20, the
number of all starts is 1048576, requiring 4.5 hours, and when q is 21, the
number of all starts is 2097152, requiring 11.5 hours.

When the number of predictor variables is large, the combined strategy
might be preferable, since the maximum number of starts is less, and this
number does not grow as fast as the percentage of loss strategy.

Effect of data conditions on incidence of local minima

To investigate the effect of the data conditions on the incidence of local min-
ima, we counted the number of local minima and performed analysis of vari-
ance on the counts, treating the data conditions as random factors. Table 2.8
displays the results. The main effects, the two-way interaction effect between
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Table 2.8. Incidence of local minima. Analysis of variance, N = 5000.
Source aaaa F aaaa Sig.
R2 21.769 .000
No. Categories 5.414 .011
Multicollinearity 9.120 .008
R2 × No. Categories 7.742 .000
R2 × Multicollinearity 1.421 .190
No. Categories × Multicollinearity 0.785 .694
R2 × No. Categories × Multicollinearity 2.365 .000
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Figure 2.2. Incidence of local minima. Main effects for R2, number of cate-
gories, and multicollinearity (row 1), interaction between R2 and number of
categories (row 2, column 1), and three-way interaction (row 2, columns 2 and
3, and row 3).



2.5. SIMULATION STUDY 33

R2 and the number of categories, and the three-way interaction effect are sig-
nificant. In Figure 2.2 the main effects and the interaction between R2 and
the number of categories have been displayed graphically. We see that local
minima occur more often when R2 is low or moderately low, more often with
higher number of categories, and also with higher levels of multicollinearity.
In the two-way interaction plot we notice that with three categories, local
minima are rare and that they almost only occur when R2 is low or moder-
ately low. When R2 is moderately high or high, local minima seldomly occur
with three and seven categories. When R2 is high, local minima only seem to
occur when the number of categories is in the range 40–50.

Effect of data conditions on severeness of local minima

To investigate the effect of the data conditions on the severeness of local
minima, analysis of variance was performed on the 912 local minima that
resulted from the numerical start, with the output variable the difference
between the optimal R2 and the suboptimal R2 resulting from the numerical
start. In this analysis the design is unbalanced and there are empty cells,
which has been accounted for in the type of sum of squares used in the analysis.
The results are in Table 2.9.

The main effects, the two-way interaction effects between R2 and the num-
ber of categories, and between the number of categories and the multicollinear-
ity, are significant. In Figure 2.3 the main effects and these two-way interac-
tions are displayed. We see that local minima are more severe with lower R2,
with higher number of categories, and with higher multicollinearity. In the
plot of the interaction between R2 and the number of categories, we see that
with 40–50 and 25 categories the severeness of local minima is about equal in
the low and moderately low R2 conditions, and we see a drop in severeness
going from the moderately low to the moderately high R2 condition that is
greater than that for the other number of categories. We saw earlier that
in the high R2 condition, local minima almost only occur with 40–50 cate-
gories (Figure 2.2); here we see that these local minima are not very severe.
The plot of the interaction between number-of-categories and multicollinearity
shows that in the highest multicollinearity condition there is a high increase in
severeness going from the 25 to the 40–50 categories condition. In the .75 and
.25 multicollinearity conditions, there is a high increase in severeness going
from the 15 to the 25 categories condition. In contrast, in the .50 and .00
multicollinearity conditions, the increase in severeness levels off when going
from the 15 to the 25 categories condition.
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Table 2.9. Severeness of local minima. Analysis of variance, N = 912.
Source aaaa F aaaa Sig.
R2 13.889 .009
No. Categories 5.016 .010
Multicollinearity 5.944 .003
R2 × No. Categories 2.626 .025
R2 × Multicollinearity 1.369 .286
No. Categories × Multicollinearity 6.872 .000
R2 × No. Categories × Multicollinearity 0.354 .991
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Figure 2.3. Severeness of local minima. Main effects for R2, number of cat-
egories, and multicollinearity (row 1), interaction between R2 and number of
categories (row 2, column 1), and interaction between number of categories
and multicollinearity (row 2, column 2).
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2.6. Conclusion

In this chapter we detailed the CATREG algorithm for multiple regression
with optimal scaling. Monotonic (spline) transformations may lead to subop-
timal solutions. We have done a simulation study to investigate the effect of
particular data conditions on the incidence and severeness of these local min-
ima. In this study we found that local minima more often occur with low to
moderately low R2 values, with higher number of categories and with higher
multicollinearity. We identified the cause of the occurrence of local minima
to be the undefined direction of the monotonic restriction, which is equiva-
lent to the sign of nominal quantifications being undefined, and we developed
a strategy using multiple systematic starts to obtain the global minimum.
Since this strategy requires a number of starts that is a power of two, and
since complete enumeration is not feasible with a large number of predictors,
we also developed a) several strategies that attempt to find the optimal signs
in a more direct way, and b) three strategies that attempt to find the optimal
signs by using a reduced number of multiple systematic starts. The simulation
study was also used to asses the performance of these strategies. The reduced
multiple systematic starts strategies proved to work well. Both the hierarchi-
cal strategy and the percentage of loss strategy considerably diminish both
the incidence and the severeness of local minima. The strategy that combines
these two strategies has both the advantage of the flexibility of the percentage
of loss strategy, and the advantage of a smaller maximum number of starts,
while at the same time this number does not grow very fast.






