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Chapter 1

Introduction

Linear multiple regression has since long been a major data analytic tool in
many scientific fields (for instance, behavioral sciences, social sciences, biologi-
cal sciences, medical sciences, psychometrics, and econometrics) for predicting
a response variable from a linear combination of predictor variables. The lin-
ear regression model arises from assuming a linear relation between a response
variable and a set of predictor variables. In a graphical representation, the
plot of the response variable against the linear combination of the predictors
is assumed to show a linear trend. Often, however, the response-predictors
relation is not linear, for example, the plot of the relation between the number
of car accidents a driver has caused and the age of the driver shows a u-shaped
trend: younger and older drivers cause more car accidents than middle-aged
drivers. When a linear regression model is applied to such data, the con-
clusion would wrongly be that there is no relation between the response and
the predictor, because linear regression is restricted to reveal only relations
showing a linear trend. Because of this restriction, regression methods that
can deal with nonlinear relations have become more and more popular in the
last few decades. Estimation of regression models for nonlinear relations is
(sometimes much) more computationally complex and intensive than for the
linear regression model. So, the rising popularity of modern regression tech-
niques is also due to the fast increase in availability of efficient computational
equipment.

1



2 CHAPTER 1. INTRODUCTION

1.1. Regression methods for nonlinearly related
data

Three major approaches to regression incorporating nonlinear relations can be
distinguished: Nonlinear Regression, Generalized Linear Models, and Regres-
sion with Transformation. In Nonlinear Regression, nonlinear relations are
described with a nonlinear model, i.e., a model that is not a linear function of
the parameters (the derivatives of the model with respect to the model para-
meters depends on one or more parameters). The other two approaches use
linear models and describe nonlinear relations by transformations that aim
at linearizing the relation between the response and the predictors. Another
distinction between Nonlinear Regression and the other two approaches con-
cerns the measurement level of the variables and the distribution of the error.
Nonlinear regression assumes continuous variables and normally distributed
error, while in the other approaches the assumptions are weaker.

Nonlinear Regression (Draper and Smith 1966; Seber and Wild 1989) mod-
els the response as a nonlinear parametric function of the predictors. Non-
linear Regression models are truly nonlinear because no linearization of the
relation between the response and the predictors is involved. In using Nonlin-
ear Regression, a model has to be choosen, based on theoretical considerations,
that has to be expressed as a mathematical function. Nonlinear Regression
is particulary suited for data describing a state or process, as frequently en-
countered in physics, chemistry or biological science. The parameters of a
nonlinear model can usually directly be interpreted in terms of the process
described by the model. For example, the exponential growth model has one
parameter that is a rate constant. Nonlinear regression models are also used
when the parameters do not have an interpretable meaning, but just serve to
define a flexible function (in neural networks, for example).

Generalized Linear Models (GLM, McCullagh and Nelder 1989; Nelder
and Wedderburn 1972) model the response as a nonlinear function of a linear
combination of the predictors. Thus, these models are linear in the parame-
ters, and the nonlinear relation between the response and the predictors is
linearized through a nonlinear function, that is, the relation between the re-
sponse and the nonlinearly transformed linear combination of the predictors
is linear. The nonlinear function, that links the response to the predictors, is
called the link function, and is one extension of the linear model. The second
extension is that the response variable need not be continuous and normally
distributed, but can have a distribution function belonging to an exponential
family other than the normal. For example, linear multiple regression can be
regarded as a generalized linear model with a continuous and normally dis-
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tributed response and the identity function as the link. Another example is
logistic regression, which is a generalized linear model for a binary response
with the logit function as the link. Also, feed foreward Neural Networks (Rip-
ley 1996) and Projection Pursuit Regression (Friedman and Stuetzle 1981),
which is equivalent to a particular form of feed foreward Neural Networks, are
closely related to GLM.

In the Regression with Transformations approach the predictors and/or
the response variable themselves are nonlinearly transformed and no distribu-
tional assumptions are made. So, here the relation between the response and
the predictors is linearized through separate nonlinear transformations of the
variables, allowing for flexible modeling of nonlinar relations. The transfor-
mation function can be any parametric or non-parametric function. The best
known transformation model using parametric transformations is the Box-Cox
model (Box and Cox 1964). Examples of methods using non-parametric trans-
formations are MONANOVA (Kruskal 1965), ADDALS (De Leeuw, Young,
and Takane 1976), MORALS (Young, De Leeuw, and Takane 1976) (imple-
mented in TRANSREG (SAS/STAT 1989)), and Monotone transformations
to additivity using splines (Winsberg and Ramsay 1980; Ramsay 1988). Hastie
and Tibshirani (1990) have developed Generalized Additive Models (GAM),
generalizing additive models (Stone 1985) in the same way as GLM generelizes
linear models. In an additive model the response is modeled as a linear com-
bination of separately transformed predictors using smoothers. Thus, GAM
generalizes the additive model by incorporation of a link function, linking the
response to the sum of the smoothly transformed predictors, and by allowing
the response to have any distribution in the exponential family. A different
generalization of the additive model is the inclusion of a smooth transforma-
tion of the response (ACE, Breiman and Friedman (1985)). In the Statisti-
cal Learning literature Support Vector Machines (SVMs, Vapnik (1996) and
Hastie, Tibshirani, and Friedman (2001)) are developed for predictor trans-
formations. A SVM extends the set of predictor variables with an extremely
large number of transformations of the predictors and then “picks out”, using
a very clever “trick”, the transformations most suited for the prediction.

1.2. The CATREG method

The method that is the subject of study in this monograph, CATREG, takes
the Regression with Transformation approach, applying the optimal scaling
methodology as developed in the Gifi system (Gifi 1990) to transform both
the response and the predictor variables. The CATREG model is a special
case of the CANALS model (Van der Burg and De Leeuw 1983) for non-
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linear canonical correlation analysis. CATREG was developed as a method
for linear regression for categorical variables. Categorical variables can be
unordered (nominal, for example religion or marital status) or ordered (or-
dinal, for example preferences, judgements, or Likert scales). The categories
of nominal variables have labels and ordinal categories have rank numbers
or ordered labels, such as low, medium, high, or never, sometimes, often, al-
ways, neither of which can be regarded as numeric values. In the following
both labels and rank numbers will be referred to as category values. Opti-
mal scaling is a method to find optimal numeric values to replace category
values, thus transforming categorical data to numeric data. In the optimal
scaling terminology this transformation process is called “quantification” (the
process is called “quantifying qualitative data” in Young 1981). The transfor-
mations (quantifications) of categorical variables are estimated simultaneously
with the estimation of the regression coefficients, using an alternating least
squares procedure that maximizes the squared multiple regression coefficient,
R2, for linear regression on the transformed variables. As a result of this
optimization criterion, the optimal scaling transformations linearize the re-
lation between the response and the predictors (as will be illustrated in the
next section). Thus, the CATREG method results in transformed categorical
variables that have values with numeric properties and that are optimal for
describing the relation between the response and the predictors. Quantifica-
tion of categorical variables usually results in nonlinear transformations, that
can be nonmonotonic or, by applying restrictions, monotonic or linear. Such
restrictions are specified by choosing an optimal scaling level (described in the
next section).

In the optimal scaling methodology, numeric variables are treated as cate-
gorical variables, with the number of categories equal to the number of distinct
values of the variable (thus, values of numeric variables will also be referred
to as category values). Choosing the numeric scaling level for a numeric vari-
able results a linear transformation to standard scores. By including linear
transformations, CATREG can also be applied to data containing numeric
variables. A numeric variable can also be nonlinearly transformed, in which
case the relative spacing of the category values will not be respected. Thus,
optimal scaling is applicable to both categorical variables (for quantification)
and to numeric variables (for nonlinear transformation). Optimal scaling can
be applied more generally with analysis techniques other than regression, for
example with principal components analysis and canonical correlation analy-
sis; for an extensive overview see Gifi (1990).
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1.2.1 Optimal scaling levels

In the quantification process certain properties of the data are preserved in the
transformations. The properties that are chosen to be preserved are specified
by choosing an optimal scaling level for the variables. It is important to realize
that the optimal scaling level is the level on which a variable is analyzed,
which does not need to be the same as the measurement level of the variable.
The properties of data that are distinguished in the CATREG approach are
grouping, ordering and equal relative spacing. Depending on the measurement
level (nominal, ordinal, or interval), variables have one, two, or all of these
properies. Variables with nominal measurement level only have the grouping
property, that is, the category values only serve to code the observations
into classes. Ordinal variables have the properties of grouping and ordering.
Interval (numeric) variables have all three properties. If the researcher wants
to preserve all of the (possibly assumed) properties of the measured variables
in the quantified variables, the scaling level should be chosen in accordance
with the measurement level of the variable. With nominal scaling level, only
the grouping property is preserved, ordinal scaling level preserves grouping
and ordering, and the numeric scaling level preserves grouping, ordering, and
equal relative spacing. Note that choosing the numeric scaling level for a
categorically measured variable implies that in the analysis category values
are treated as numeric values (and when all variables are treated numerically,
CATREG is equivalent to standard linear regression). The shape of the curve
when plotting the quantified values against the category values is related to
the scaling level: with the nominal scaling level the transformation curve can
go up an down since the ordering of the quantified values need not be the same
as the ordering of the original category values. For the ordinal scaling level,
the ordering of the quantified values and of the original category values is
the same, resulting in a monotone transformation curve. The numeric scaling
level results in a straight line, because the intervals between quantifications for
consecutive categories are proportional to the intervals between the category
values.

The scaling level, and thus the shape of the transformation curve, is also
related to the number of degrees of freedom (DF) of the transformation, and
thereby to the fit (R2) of the model. Transformations with more freedom result
in less smooth transformations and better fit, while more restrictive transfor-
mations are smoother but result in less fit. So, there is a trade-off between
preserving the properties of the data and preserving the relational information
in the data: restricting the transformations, preserving more properties of the
data, goes at the cost of fit and loosing relational information. The trans-
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formation with the maximum freedom is the one resulting from the nominal
scaling level, where the number of DF is equal to the number of categories
minus one. The ordinal scaling level requires an order restriction on the cat-
egory quantifications, resulting in the number of DF equal to the number of
categories with different quantified values minus 1. Numeric scaling imposes
an interval restriction in addition to the order restriction and has 1 DF.

Nominal and ordinal scaling level result in transformations that are step
functions, which are suited for variables with a rather small number of cate-
gories. For variables with a large number of categories, spline functions are
more appropiate, among these we distinguish nonmonotonic splines for un-
ordered transformations and monotonic splines for ordered transformations.
Spline functions are piecewise polynomial functions, which are more restric-
tive than step functions, resulting in smoother transformation curves, but in
a lower fit. To obtain a spline transformation, the range of a variable is di-
vided into a number of intervals, equal to a specified number of knots minus 1.
Knots are the points at the interval boundaries. Then polynomial functions
of a specified degree are fitted in each interval and joined at the knots. The
smoothness and the number of DF of a spline transformation curve depends
on the number of knots and the degree of the polynomial functions.

In terms of restrictiveness, and thus smoothness of the transformation
curve and fit, nonmonotonic spline transformation is in between a nominal
and a linear transformation: with the number of interior knots equal to the
number of categories minus two and a first degree polynomial, the spline
transformation is the same as the nominal transformation; with the num-
ber of interior knots equal to zero and a first degree polynomial, the spline
transformation is the same as the linear transformation. In the same way, a
monotonic spline transformation is in between an ordinal and a linear trans-
formation. This is illustrated in Figure 1.1, which displays transformation
plots for prediction of clarity of diamonds from their carat. The data con-
sist of a sample of 239 diamond stones (from tradeshop.com; diamonds with
an IGI certificate) with seven clarity grades (Internally Flawless to Slight In-
clusions invisible to the eye) and carat*100 ranging from 16 to 432 (binned
into the customary size ranges). Clarity has been analyzed ordinally, and a
variety of scaling levels has been applied to carat. With the nominal scaling
level for carat, the quantification curve is rather jagged, resembling an inverse
u-shape. So, the trend for this sample is that in the lower and the highest
size ranges, diamonds have lower clarity grades, while the highest clarity is
found for diamonds in the 96–99 carat category. Applying a nonmonotonic
spline transformation (2nd degree, with 6 internal knots), the irregularities
are smoothed out somewhat, and even more for 1 internal knot. Because
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Figure 1.1. Transformations of the carat of diamonds for predicting the clar-
ity. The y-axis represents the quantified values multiplied with the regression
coefficient. Top row from left to right: nominal (R2 = 0.226), nonmonotonic
spline of degree 2 with 6 (R2 = 0.161) and 1 (R2 = 0.157) internal knot,
numeric (R2 = 0.093). Bottom row: ordinal (R2 = 0.153), monotonic spline
of degree 2 with 6 (R2 = 0.131) and 1 (R2 = 0.112) internal knot, numeric.

ordinal transformations are obtained by averaging of nominal quantifications
that are in the wrong order (see also next section), applying the ordinal scal-
ing level results in a transformation that restricts all quantified values but
one to three plateau’s. When applying a monotonic transformation (2nd de-
gree, with 6 knots), the middle plateau disappears and with 1 internal knot
the transformation is almost linear. (Although the the nominal and ordinal
transformations are step functions, in the plots the points are connected with
a straight line to facilitate graphical inspection of the transformation trends.)

In Figure 1.2 the linearization of the regression is illustrated. On the left,
clarity is plotted against the original values of the carat variable, the middle
plot displays the nominal transformation of carat, and on the right clarity is
plotted against transformed carat. In the plots on the left and the right, the
linear regression line is included, as well as the line connecting the means of the
values of clarity for each category of carat; this line indicates the trend in the
scatter of data points, which is clearly nonlinear with the untransformed carat
variable. When carat is transformed, however, this line is linear, coinciding
with the regression line. Thus, the nonlinear relation between the variables,
displayed in the plot on the left, is replaced by a linear relation, displayed in
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Figure 1.2. Left: Clarity against original values of carat (R2 = 0.077).
Middle: Carat transformation. Right: Clarity against transformed carat
(R2 = 0.169). (The size of the point markers indicate density: the biggest
marker represents about 20 points, decreasing with about 5 points.) .

the plot on the right. This is achieved by a nonlinear transformation of the
carat variable, which follows the trend in the plot on the left.

1.2.2 Estimation of transformations

In the CATREG method, the regression model and the quantifications are es-
timated simultaneously in an iterative process using alternating least squares.
The algorithm alternates between estimation of the transformation of the re-
sponse variable and estimation of the transformations and regression weights
of the predictor variables. The transformation of the response in an itera-
tion is estimated from the linear combination of the transformed predictors
from the previous iteration. Backfitting (Friedman and Stuetzle 1981; Buja,
Hastie, and Tibshirani 1989) is used for estimation of the transformations of
the predictor variables. In the backfitting procedure, the transformations are
estimated from the partial residual, that is, the error when the response is
predicted from all predictors, except the predictor for which the transforma-
tion is being estimated. For the predictor first estimated in an iteration, the
partial residual is computed using the transformations for the other predictors
from the previous iteration. Then, in computing the partial residual for the
second predictor, the updated transformation for the first predictor is used.
For the partial residual for the third predictor, the updates for the first and
second predictors are used, etc.

Nominal quantifications are the starting point (and the end point if the
scaling level is nominal) in estimating restricted quantifications. The nomi-
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nal quantification for a category is the mean of the predicted values for the
category when the response is estimated and the mean of the partial residual
values for the category when a predictor is estimated. If the scaling level is
not nominal, these quantifications are restricted according to the scaling level.
The restriction is imposed by applying weighted (weighting with category fre-
quencies) regression of the nominal quantifications; on the category values for
ordinal and numeric scaling level, and on an I-spline basis (Ramsay 1988) for
the spline transformations, with nonnegativity restrictions for the monotonic
splines. For the ordinal scaling level, weighted monotonic regression (Kruskal
1965; Barlow, Bartholomew, Brenner, and Brunk 1972) is used, which boils
down to weighted averaging of nominal quantifications for categories that are
in the wrong order. With the numeric scaling level, the category values are
converted to standard scores, which is equivalent to weighted linear regression
of the nominal quantifications on the category values. Finally, the quantified
variable is normalized, and for a predictor variable the regression coefficient
is estimated (which, after the algorithm has converged, is equal to the nor-
malization factor). In the CATREG method a monotonic transformation is
always increasing with the category values. If the scaling level for a predic-
tor is ordinal or monotonic spline, and the relation with the response (after
removing the influence of the other predictors) is monotonically decreasing,
this is expressed in a negative regression coefficient.

To describe the quantification process graphically, we use the same di-
amonds data set as before, predicting the clarity now from two variables:
the carat (with monotonic spline transformation of 2nd degree with 6 in-
ternal knots) and the cut (with nominal transformation). The top row of
Figure 1.3 shows the predicted values plot (left) for the dependent variable
and the partial residuals plot for the predictors. The bottom row shows the
transformations. The partial residuals are er

carat = φr(y) − βr−1
cut φr−1

cut (x) and
er

cut = φr(y)−βr
caratφ

r
carat(x), where the superscript r denotes the last iteration

number.
In the plots at the top of Figure 1.3, the means of the values for each

category are connected by a line. These means are the unstandardized nominal
quantifications. So, the transformation curve for cut is equal to the curve in
the partial residuals plot (the transformation plots display the quantifications
multiplied with the regression coefficient, which equals the standardization
factor, so the transformed values here are the unnormalized quantifications).
The transformation for carat is a somewhat smoothed version of the curve in
the partial residuals plot. The transformation for clarity is obtained by first
restricting the means for categories VS1 and VS2 in the predicted values plot
to their weighted mean, because the quantifications for these categories are in
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Figure 1.3. Prediction of clarity from carat and cut (R2 = 0.331, tolerance =
0.902). Top row: Partial residuals. Bottom row: Transformations (including
regression coefficient for predictors).

the wrong order, and then standardizing the result.

1.2.3 Local minima

All three approaches to regression for nonlinearly related data mentioned
above use iterative algorithms for estimation. Iterative estimation methods
require starting values, and depending on these starting values the methods
may not arrive at the global optimal solution, but at a local optimal solution,
that is, a solution for which the error function is at a local minimum. With the
CATREG method, local minima can only occur with ordinal and monotonic
spline transformations. This results from the fact that a monotonic transfor-
mation can be either increasing or decreasing. For a variable with nominal
or nonmonotonic spline transformation, the transformation can be reflected
without consequence for the contribution to the prediction, because reflecting
the quantifications will only cause a sign change of the regression coefficient.
On the other hand, reflecting nominal quantifications during the iteration
process for ordinal and monotonic spline variables has consequences, because
a monotonic restriction on the reflected nominal quantifications results in a
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Figure 1.4. Transformations of the carat variable for predicting the clarity
of diamonds. The y-axis represents the quantified values multiplied with the
regression coefficient. Left: Reflected nominal (R2 = 0.226). Right: Ordinal,
estimated from reflected unrestricted quantifications (R2 = 0.024).

different transformation. For example, if for carat with ordinal scaling level
the unrestricted nominal quantifications would have been reflected during it-
eration, the transformation would be as shown in Figure 1.4, resulting in a
local minimum (the ordinal transformation in Figure 1.1 resulted in the global
minimum).

1.2.4 Prediction accuracy, stability, and regularization

The focus of the CATREG method is on minimizing the apparent prediction
error, that is, the prediction error for the data set at hand. To asses the
prediction accuracy for predicting future observations, the expected predic-
tion error should be studied. For this purpose, the ideal case is to have a
training data set to estimate a model and a test data set to estimate the ex-
pected prediction error, applying the model found with the training set to the
test set. Often, a test data set is not available and resampling methods like
cross validation or the bootstrap are used. A particular resampling method,
called the .632 bootstrap (Efron 1983), could be regarded as a combination of
bootstrapping and cross validation, and has been shown to give better results
than cross validation and other bootstrap methods. Using the .632 bootstrap
with CATREG requires some adjustment, because both model parameters
(regression coefficients) and transformations (quantifications) are involved.

Often, ordinary least squares (OLS) regression does not perform well with
respect to prediction accuracy, due to (highly) instable estimates of the regres-
sion coefficients, sometimes referred to as bouncing beta’s. Instability arises
when predictors are (highly) correlated, or when we have a large number of
predictors relative to the number of observations. Regularization methods
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started with Ridge regression, (Hoerl and Kennard 1970a,b), reducing the
variability in the β estimates by adding a penalty parameter to the regres-
sion model, which results in shrunken regression coefficients. Ridge regression
gradually shrinks the coefficients towards zero, but in this process they never
become exactly zero and all predictors are kept in the model, which does not
enhance interpretability. The Lasso (Least Absolute Shrinking and Selection
Operator; Tibshirani 1996) was developed to address both prediction accu-
racy and model complexity. The Lasso uses an L1 penalty, in stead of the
L2 penalty used in Ridge regression, resulting also in gradual shrinkage of
the coefficients towards zero, but following different paths. The main differ-
ence between the shrinkage paths of Ridge regression and the Lasso is that on
the Lasso paths, regression coefficients are shrunken to exactly zero, and some
earlier than others. Thus, the Lasso combines shrinkage with subset selection.
With the Pathseeker algorithm of Friedman and Popescu (2004), the paths
are not found by applying a fixed penalty function, but are found directly,
providing a flexible regularization technique. The combination of shrinkage
and subset selection is also a feature of the recently developed Elastic Net
(Zou and Hastie 2005). In contrast to the Lasso, the Elastic net can select
more predictors than there are observations, and results in shrinking groups
of predictors. Ridge regression, the Lasso, and the Elastic Net were developed
for regularization of linear regression, but can easily be incorporated into the
CATREG method. Recently, two methods were introduced for regularization
of regression with nonmonotonic transformations: the Group-Lasso (Yuan
and Lin 2006) and Blockwise Sparse Regression (Kim, Kim, and Kim 2006).
These methods use groups or blocks of dummies to represent variables and
turn out to be equivalent to CATREG with nonmonotonic transformations.

1.3. Outline

Chapters 2 to 5 of this monograph are based on either published or submitted
papers. This causes some inevitable overlap, because in all these chapters the
basic elements of the CATREG method are described. Chapter 2 focuses on
the problem of local minima, presenting several strategies to obtain the global
minimum for the ordinal scaling level and the results of a simulation study
to asses the performance of these strategies. The simulation study was also
used to identify data conditions under which local minima are more likely to
occur and are more likely to be severe. The topic of chapter 3 is the assess-
ment of the prediction accuracy of CATREG, using the .632 bootstrap. The
differences in prediction accuracy for the optimal scaling levels are studied,
as well as the effect of the number of observations and the number of cate-
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gories. The prediction accuracy of CATREG is compared with the prediction
accuracy of a variety of other Regression with Transformation methods. In
Chapter 4, the implementation of Ridge regression, the Lasso and the Elas-
tic Net in CATREG is developed and illustrated. Also, the equivalence of
the Group Lasso and Blockwise Sparse Regression with CATREG using non-
monotonic transformations is established. Chapter 5 presents an application
of the CATREG method incorporating the Lasso and the .632 bootstrap,
for data from the psychotherapeutic field. Finally, chapter 6 concludes this
monograph with a summary and a discussion.

The CATREG method is available in the Categories package of SPSS
(Meulman, Heiser, and SPSS Inc. 1999, 2004). Implementation and docu-
mentation of the CATREG progam was done for a major part by the au-
thor of this monograph. The appendices contain a detailed description of
the CATREG algorithm, as well as the CATREG chapters from the SPSS
Categories manual.




