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1 Introduction

Gauge/gravity duality has given us a number of qualitatively new insights into the physics

of quantum critical systems. Notably these include a controlled theoretical framework for

non-Fermi liquids [1–4] as well as an onset towards superconductivity that is distinct from

BCS and goes beyond Landau-Ginzburg [5–7]. (See e.g. [8] for a review.) The obvious

candidates where both phenomena are seen experimentally are the unconventional high

Tc superconductors, and one has reason to hope that gauge-string duality may be able to

explain some its open mysteries.

The clearest puzzle that must be solved to do so, is that one needs a single holographic

model that describes both the non-Fermi-liquid metals and high Tc superconductors si-

multaneously. Intuitively this sounds obvious, as the sole charge carriers are the fermionic

electrons; it is their behavior which becomes non-Fermi liquid-like, while they are simul-

taneously responsible for the onset of superconductivity through d-wave pairing. This

intuition should not be taken as holy, however. At strong coupling by definition the un-

derlying electron picture fails, and one should consider a different weakly coupled set of

elementary excitations. In essence this is what gauge-gravity duality can do very well. For

example, in the specific top-down holographic example of N = 2 SYM with flavor, where

one knows the explicit Lagrangian of the dual CFT, one can construct a holographic su-

perconductor where the order parameter is identified with a strongly coupled Cooper pair

of fermionic “mesino” fields [9].
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In a bottom-up phenomenological direction, early studies that combine pairing with

ordering are [10] and [11] which studied the formation of a gap in fermion spectral functions

in a holographic superconductor groundstate and the tendency for holographic non-Fermi

liquids to pair and condense. In this paper we make a simple further step in the direction.

The aim is to phenomenologically describe a holographic model where fermion pairing

is fully responsible for the superconducting groundstate. We start from a bulk system

with only fermionic matter fields coupled to gravity and Maxwell field. We include an

attractive four point interaction for the bulk fermions and, approximating the many-body

fermions in the fluid limit, we solve this self-gravitating charged interacting fermi fluid in

an asymptotically AdS background at zero temperature. Thus in fact the bulk is a fluid

of local BCS vacuum states. More complicated versions of this system are known in the

astrophysics community that studies neutron stars with superconducting cores. We show

evidence that the holographic dual state to the core-superconducting electron star is also

the pairing induced superconducting state.

In this construction, the advantages are that the fluid limit makes it practical to extract

the macroscopic information of the dual state. Moreover all the charge is carried by fermions

so that the origin of the boundary charged degrees of freedom is manifest. However, this

construction has the well-known drawback of the fluid limit that the fermionic fields are

not visible at the boundary. We can nevertheless still discern boundary effects using the

charge distribution within the star as we will show later. In a companion article [12] one

of us will discuss the same system treating the fermions quantum mechanically [13–15]. To

place our work in the context of the previous approaches [10, 11], we also discuss a more

generalized model which includes an independent charged scalar field with dynamics. In

the star limit, parameters and fields in this system will get rescaled and not all the terms

in the Lagrangian can be kept at the same time. In particular the kinetic term always

vanishes except in the neutral case. In addition to the limit where one goes back to the

bulk BCS system, there exists a more subtle limit, which we also discuss.

Let us conclude by emphasizing that we will be studying the zero-temperature quantum

phase transition between the holographic dual of the (Russian doll multi-band) Fermi liquid

(the electron star) and the pair-ordered BCS groundstate (a star with a BCS core) as a

function of the BCS coupling.1 In section 2 we will first construct our BCS star and show

that it is more stable than the electron star solution at zero temperature. In section 3 we

show evidence that the bulk BCS star system will correspond to a superconducting state

at the boundary. Then we introduce a more generalized model in section 4 and discuss one

scaling limit that is different from the BCS star one. We conclude in section 5.

2 A BCS star

BCS theory [16] was proposed by Bardeen, Cooper and Schrieffer in 1957 as the explana-

tion of low temperature superconductivity through the pairing of fermions into a bosonic

state which subsequently condenses at low temperatures. Starting with a Fermi liquid,

BCS theory introduces an attractive interaction between fermions at the Fermi surface.

1We leave the finite temperature investigation as an interesting open question.
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This interaction induces an instability to the formation of Cooper pairs of fermions. Mi-

croscopically this effective attractive interaction results from exchange of phonons and is

constrained in a region (−ωD, ωD) near the Fermi surface EF or equivalently the chemical

potential µ. Here ωD is the Debye frequency, a characteristic scale of phonon excitations.

The simplest effective (non-relativistic) Hamiltonian describing the physics of a thin shell

of states of width 2ωD centered around the Fermi surface can be written as

H =
∑
kσ

εkc
†
kσckσ −

λ

V

∑
k,k′,q

c†k+q↑c
†
−k↓c−k′+q↓ck′↑, (2.1)

where λ is a positive constant, k,k′,q denote the momentum, σ = {↑, ↓} denotes the spin

and εk is the kinetic energy of free fermions.

Here we couple the relativistic version of the BCS system to gravity. The bulk gravity

system we consider is the Einstein-Maxwell-BCS system:

L =
1

2κ2

(
R+

6

L2

)
− 1

4e2
FµνF

µν + LBCS, (2.2)

where κ is the gravitational coupling constant, e is the Maxwell coupling constant. LBCS

is the relativistic Lagrangian of the BCS system [11, 17], which is a direct generalization

of (2.1)

LBCS = −iΨ̄(ΓµDµ −mf )Ψ +
λ

2
(Ψ̄cΓ

5Ψ)†(Ψ̄cΓ
5Ψ) (2.3)

where

Ψ̄ = Ψ†Γt, Dµ = ∂µ +
1

4
ωabµΓab − iqAµ. (2.4)

Here λ is a positive coupling constant of mass dimension [λ] = −2 and Ψc = CΨ̄T and

the covariant derivative includes the gauge- and spin-connection. We perform a Hubbard-

Stratanovich transformation as in the non-relativistic case

∆ = λΨ̄cΓ
5Ψ, (2.5)

to obtain

LBCS = −iΨ̄(ΓµDµ −mf )Ψ +
1

2
∆†Ψ̄cΓ

5Ψ− 1

2
∆Ψ̄Γ5Ψc −

1

2λ
|∆|2. (2.6)

The auxiliary field ∆, also known as the BCS “gap”, can be seen as the order parameter for

the BCS condensation. The connection of this system with a kinetic term for a dynamical

scalar ∆ will be discussed in section 4.

The equations of motion for this system are

Rµν −
1

2
gµνR−

3

L2
gµν = κ2

[
T gauge
µν + T BCS

µν

]
;

∇µFµν = −e2J BCS
ν , (2.7)

i(ΓµDµ −m)Ψ + ∆Γ5Ψc = 0,

– 3 –



J
H
E
P
0
5
(
2
0
1
4
)
1
2
2

Figure 1. An illustration of the BCS vacuum state. In region I the fermions are still free Fermi

gas. In region II, the BCS interaction allows Cooper pairs start to form and one has a BCS state.

where

T gauge
µν =

1

e2

(
FµρF

ρ
ν −

1

4
F 2gµν

)
,

T BCS
µν =

1

2
〈iΨ̄Γ(µDν)Ψ− iΨ̄

←−
D (µΓν)Ψ〉+ gµν〈LBCS〉, (2.8)

J BCS
µ = −q〈Ψ̄ΓµΨ〉.

As in [18], we rescale qAµ → Aµ to fix q = 1.

2.1 BCS fluid in the bulk

As in [19–22], we solve this system in the classical limit κ → 0, where we approximate

the many-body-fermi system by an effective fluid. This is consistent in the adiabatic limit,

where the variation of the electrostatic potential (or local chemical potential) and the gap

are small: ∂rµl � µ2
l and ∂r∆ � ∆2. This adiabatic limit allows a construction of the

expectation values in (2.8) as if the system is in flat spacetime. We compute the expectation

values at a fixed local chemical potential µl and gap ∆ and then promote these to slowly

varying quantities governed by At(r) and ∆(r) respectively. Here r is the radial direction

of AdS, encoding the effective energy scale of the dual field theory.

To do so remark that the BCS interaction term only exists in an interval (−ωD, ωD)

near the Fermi surface, so we can divide the fermion excitations into two parts, the first

part with energy from mf to µl − ωD and the second part from µl − ωD to µl + ωD. This

is illustrated in figure 1.

In the first region, the bulk fermion system is still that of free fermions (adiabatically

coupled to gravity and electromagnetism) which obey the Pauli exclusion principle, so it

is straightforward to write out the contribution of fermions in this region to the energy

momentum tensor and the current. They are the regular values for many-body fermions
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in the Thomas-Fermi approximation:

TFLI
µν = (ρFL

I + pFL
I )uµuν + pFL

I gµν , (2.9)

and

JµFLI
= nFL

I uµ, (2.10)

where

ρFL
I =

∫
k2<µl−ωD

d3k〈k|T00|k〉 =
1

π2

∫ µl−ωD

mf

dωω2
√
ω2 −m2

f , (2.11)

pFL
I =

∫
k2<µl−ωD

d3k〈k|T11|k〉 =
1

3π2

∫ µl−ωD

mf

dω
√
ω2 −m2

f

3

, (2.12)

nFL
I =

∫
k2<µl−ωD

d3k =
1

π2

∫ µl−ωD

mf

dωω
√
ω2 −m2

f , (2.13)

with nFL
I denotes the number density of free fermions in region I.

In the second region (region II in figure 1), due to the interactions with ∆, fermions

do not obey the zero temperature Fermi-Dirac distribution anymore. We can first perform

a Bogoliubov transformation to make the interacting system tractable. In this interacting

region, quasi particles of fermion excitations with opposite momentum and spin near the

Fermi surface are coupled together, which introduces off-diagonal elements in the Hamil-

tonian [17] as

H − µlN =
∑
k

Ψ†k

(
ξk −∆

−∆̄ −ξk

)
Ψk +

∑
k

ξk + V
∆2

2λ
(2.14)

where Ψk is the Nambu spinor Ψk =

(
ck↑
c†−k↓

)
, ξk equals ξk = εk − µl, the second term

arises from anticommuniting c†c and V is the volume of the system under consideration.

A Bogoliubov transformation can then diagonalize the hamiltonian by redefining(
αk↑
α†−k↓

)
=

(
cos θk sin θk
sin θk − cos θk

)(
ck↑
c†−k↓

)
, (2.15)

where

cos(2θk) = ξk/Ek, (2.16)

sin(2θk) = −∆/Ek, (2.17)

and Ek =
√

∆2 + ξ2
k is the energy of the excitations created by α†kσ. Note that θk is such

that in the limit ∆ → 0 (λ → 0), it equals θk = π/2 for k < kF and θk = 0 for k > kF .

After this Bogoliubov transformation, the Hamiltonian becomes

H − µlN =
∑
kσ

Ekα
†
kσαkσ +

∑
k

(ξk − Ek) + V
∆2

2λ
. (2.18)
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The first term in the diagonalized Hamiltonian is related to the energy of excitations and

the rest corresponds to the BCS vacuum energy, which is the lowest energy state under the

BCS interactions. The BCS groundstate is

|ΩBCS〉 =
∏
k

αk↑α−k↓|Ω〉 ∼
∏
k

(cos θk − sin θkc
†
k↑c
†
−k↓)|Ω〉, (2.19)

where |Ω〉 is the vacuum state annihilated by ckσ. Here the range of k is within region II

in figure 1. Note that in the limit λ → 0 (i.e. ∆ → 0) the BCS vacuum reduces to the

Fermi liquid, as θk = π/2 for k < kF .

We see that in the limit ∆ → 0, the ground state goes back to the Fermi sea with

chemical potential µl. For ∆ nonzero, Cooper pairs form and effectively the population

number below µl decreases while the population number above µl becomes nonzero. For

small ∆, this BCS vacuum state can be seen as the resulting state of the free Fermi sea

deformed by the BCS interaction.

For our purpose, we need to compute the expectation values of the macroscopic prop-

erties ρ, p and n of the fermion system in the BCS vacuum state in region II. We can

choose the phase of the complex scalar to be zero. The energy in the BCS vacuum can

be directly read from the diagonalized Hamiltonian. Note that the expression in (2.14)

includes a chemical potential term. We also treat the potential term for ∆ and separately.

The energy density of the BCS sector therefore constitutes of three parts

ρII = 〈ΩBCS|T00|ΩBCS〉 (2.20)

= 〈ΩBCS|
1

V

(
Ĥ − µlN̂ − V

∆2

2λ

)
|ΩBCS〉+ µlnII + ρ∆ (2.21)

where nII is the number (=charge) density from region II, which we will compute momen-

tarily and ρ∆ = ∆2/2λ. Explicitly the term to be evaluated is

ρII =
1

V

∑
k

(ξk − Ek) + µlnII + ρ∆. (2.22)

The sum here ranges over all momentum states in region II. To evaluate it, we note that in

the fluid limit, the sum can be substituted for an integral and change integration variables

ρII =

∫
region II

d3k

(2π)3
(ξk − Ek) + µlnII + ρ∆

=

∫
region II

dξν(ξ)

(
ξ −

√
ξ2 + ∆2

)
+ µlnII + ρ∆ (2.23)

where

ν(ξ) =
1

2π2
(µl + ξ)

√
(µl + ξ)2 −m2

f (2.24)

is the number density as a function of the effective energy ξ = ω(k)−µl. It follows directly

from the relativistic dispersion relation ξ =
√

k2 +m2
f − µl. Noting that ξ vanishes at µl

– 6 –
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the boundaries of the integral are immediately seen to be,2

ρII =

∫ ωD

−ωD

dξν(ξ)

(
ξ −

√
ξ2 + ∆2

)
+ µlnII + ρ∆. (2.26)

We similarly compute the total charge density in the BCS state. This is still measured

by the number operator n̂ =
∑

kσ c
†
kσckσ. One finds (the factor 2 is the spin degeneracy)

nII = 〈ΩBCS|n̂|ΩBCS〉 =

∫
region II

d3k

(2π)3
2(sin2 θk)

=

∫ ωD

−ωD

dξν(ξ)

(
1− ξ√

ξ2 + ∆2

)
. (2.27)

We can see from this expression of the number density that the occupation number for

each spin at a momentum below the chemical potential is in a range 1/2 to 1 while the

occupation number above the chemical potential is smaller than 1/2. At the chemical

potential the occupation number is exactly 1/2. When ∆ → 0, the occupations numbers

will return to that of the free Fermi gas.

The pressure is computed from the expectation value of the spatial components of the

stress tensor in the BCS vacuum state. The expression for the stress tensor is in eq. (2.8).

Using isotropy, 〈Tij〉 = pδij , (i = 1, 2, 3), the computation simplifies and we obtain

pII = 〈ΩBCS|T11|ΩBCS〉

=
1

3

∫ ωD

−ωD

dξν(ξ)
(µl + ξ)2 −m2

f

µl + ξ

(
1− ξ√

ξ2 + |∆|2

)
+ p∆. (2.28)

The last term p∆ = −∆2/2λ arises from the classical term in the Lagrangian (the pure

potential contribution).

For calculational convenience we evaluate these expressions in the limit ∆� ωD � µl
with mf � µl and express them in terms of the difference of BCS system compared to Fermi

liquid at the same chemical potential. The first inequality is justified as the self-consistent

solution for the gap ∆ is notoriously exponentially smaller than the other scales. This is

guaranteed if the second inequality ωD � µl holds. We will confirm this momentarily. The

approximation ∆ � ωD is (well known to be) subtle, because one cannot expand in ∆ in

the integrand. We therefore first use ωD � (µl, µl − mf ) to approximate the density of

states as

ν(ξ) =
1

2π2
(µl + ξ)

√
(µl + ξ)2 −m2

f = ν0 + ξν1 + . . . (2.29)

2Note that a change of integration variables to the physical energy E =
√
ξ2 + ∆2 exposes the well

known gap for |E| < |∆|

ρII =

∫ √ω2
D
−∆2

−
√

ω2
D
−∆2

dEνE(E)(
√
E2 −∆2 − E) + µlnII + ρ∆ (2.25)

with

νE =
θ(|E| − |∆|)

2π2

E(µl +
√
E2 −∆2)√

E2 −∆2

√
(µl +

√
E2 −∆2)2 −m2

f .

We will use the effective energy ξ instead for convenience.

– 7 –
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where

ν0 =
1

2π2
µl

√
µ2
l −m2

f , ν1 =
1

2π2

2µ2
l −m2

f

(µ2
l −m2

f )1/2
. (2.30)

We also expand the expression of ρII, nII and pII in this limit

∆� ωD � (µl, µl −mf ) (2.31)

and then subtract these free fermion contributions from the BCS results. This way we

isolate the contribution due to the gap ∆. We find (see appendix A for details)

ρII = ρFL
II + ρ∆ +

1

2π2

µ3
l√

µ2
l −m2

f

∆2 ln
2ωD
∆

+ . . . (2.32)

nII = nFL
II +

2µ2
l −m2

f

2π2
√
µ2
l −m2

f

∆2 ln
2ωD
∆

+ . . . (2.33)

pII = pFL
II + p∆ +

µl
√
µ2
l −m2

f

2π2
∆2 ln

2ωD
∆

+ . . . (2.34)

where

ρFL
II =

∫ µl

µl−ωD

dωωg(ω), nFL
II =

∫ µl

µl−ωD

dωg(ω), pFL
II =

1

3

∫ µl

µl−ωD

dω
ω2 −m2

f

ω
g(ω) (2.35)

are the standard Fermi liquid contributions from region II with g(ω) = 1
π2ω

√
ω2 −m2

f ;

ρ∆ = −p∆ = ∆2

2λ as before, and the “. . . ” are higher order terms in ∆/ωD and ωD/µl.

Finally we use the equation of motion (2.5) for ∆

∆ = λ〈Ψ̄cΓ
5Ψ〉 = λ

∫ ωD

−ωD

dξνl(ξ)
∆√

ξ2 + |∆|2
, (2.36)

which can be integrated to give

∆ =
λ

π2
µl

√
µ2
l −m2

f∆ ln
2ωD
∆

(2.37)

in the approximation of (2.31). This equation can be solved to yield

∆ = 2ωDe
−1/(2λν0). (2.38)

This well-known suppression of the gap shows the self-consistency of the assumption ∆�
ωD in perturbation theory: perturbation theory holds when λν0 � 1 ; for ωD � µl this

implies ∆� ωD.

Substituting eq. (2.38) into the expressions for ρII, nII, pII, the terms of order ∆2 with-

out a logarithm are subleading for λν0 � 1. We obtain

nII = nFL
II + δn, δn =

ν1

ν0

∆2

2λ
,

ρII = ρFL
II + δρ, δρ = µl

ν1

ν0

∆2

2λ
, (2.39)

pII = pFL
II + δp, δp = 0.

– 8 –
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Combining this with the pure Fermi liquid contribution from region I, the total bulk

fluid contribution is

ρ = ρFL + δρtotal, p = pFL + δptotal, n = nFL + δntotal (2.40)

where ρFL, pFL, nFL are the standard Fermi liquid densities at finite density µ and

δρtotal, δptotal, δntotal are the expressions in (2.39). Explicitly they are

δρtotal =
2µ2

l −m2
f

(µ2
l −m2

f )

∆2

2λ
, (2.41)

δntotal =
2µ2

l −m2
f

µl(µ
2
l −m2

f )

∆2

2λ
, (2.42)

δptotal = 0. (2.43)

Note that the standard equation of state for the whole system is still obeyed

ρ+ p = µln.

2.2 BCS star background

Having obtained the parameters of the effective BCS fluid, we now couple the fluid to

AdS-Einstein-Maxwell theory as in eq. (2.7) and search for an asymptotically AdS solution

of a self-gravitating BCS star. We define the dimensionless variables

A =
eL

κ
Â, (ρ, p) =

1

κ2L2
(ρ̂, p̂), n =

1

eκL2
n̂, λ =

e2L2

β
λ̂, (2.44)

(mf , µl) =
e

κ
(m̂f , µ̂), (∆, ωD) =

e

κ
(∆̂, ω̂D) (2.45)

where β = e4L2

π2κ2 . The fluid densities ρ̂, n̂, p̂ are linearly proportional to the combination

β [22]. The rescaling for λ is chosen such that the dimensionless combination λν0 becomes

λν0 = λ̂µ̂
√
µ̂2 − m̂2

f/2. Since we wish that δρ etc. scales the same way as ρ, the scaling for

∆, and hence ωD then follows. After this rescaling, the gap equation becomes

∆̂ = 2ω̂De
−1/λ̂µ̂

√
µ̂2−m̂2

f .

We make the standard homogeneous ansatz for the solution

ds2 = L2
(
− f(r)dt2 + g(r)dr2 + r2(dx2 + dy2)

)
, Ât = h(r), (2.46)

for which the equations of motion become

1

r

(
f ′

f
+
g′

g

)
− g(ρ̂+ p̂) = 0,

h′2

2f
+

1

r

f ′

f
+

1

r2
− g(3 + p̂) = 0, (2.47)

h′′ + h′
(

2

r
− f ′

2f
− g′

2g

)
−
√
fgn̂ = 0.

– 9 –
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Conservation of the energy-momentum tensor gives in addition:

(ρ̂+ p̂)f ′ − 2
√
fn̂h′ + 2fp̂′ = 0. (2.48)

The current is automatically conserved.

Eq. (2.48) simplifies as

n̂

f

(
µ̂f ′ − 2

√
fh′ + 2fµ̂′

)
− β ∆̂2

λ̂

µ̂′(2µ̂2 − m̂2
f )

µ̂(µ̂2 − m̂2
f )

= 0. (2.49)

This equation can be integrated to give:

µ̂(r) =
h√
f

+
1√
f

∫ r

0
dr̃
β∆̂2
√
f

2n̂λ̂

µ̂′(2µ̂2 − m̂2
f )

µ̂(µ̂2 − m̂2
f )

, (2.50)

where the first term h/
√
f is the leading order contribution and the second term is a sub-

leading order contribution. The position of the lower integration bound corresponds to

the integration constant. Since the prefactor of the integral, 1/
√
f , is usually singular at

the horizon, r = 0, we chose the integration constant to make sure that the integral itself

vanishes at r = 0.

The local value of the gap ∆̂(r) is completely determined in terms of the local chemical

potential µ̂ and ω̂D. The evolution of the local chemical potential is completely determined

by the equations of motion, but the UV cut-off ω̂D requires additional consideration. One

option is to keep it constant. However, as µ̂ decreases, this would rapidly invalidate our

perturbative approach where ∆̂� ω̂D � (µ̂, µ̂− m̂f ). We therefore use the freedom given

to us by the adiabatic approach to also promote it to slowly varying parameter. We choose

to slave it to the chemical potential as

ω̂D = c
µ̂2 − m̂2

f

µ̂
. (2.51)

For c < 1 this ensures that our perturbative evaluation of the BCS fluid holds.

We now follow the conventional procedure to find the solution. We search for a scaling

solution in the IR near the horizon where r = 0, of the form

f = r2z , g =
g0

r2
, h = h0r

z , µ̂ = µ̂0. (2.52)

The scaling exponent is determined numerically (see figure 2). We then perturb the solution

f = r2z(1 + f1r
α) , g =

g0

r2
(1 + g1r

α) , h = h0r
z(1 + h1r

α) , µ̂ = µ̂0(1 + µ1r
α), (2.53)

and search for a perturbation where the coefficient f1 can remain a free parameter. There

are multiple such solutions and we seek the one with positive exponent α > 0. This

corresponds to a perturbation of the IR by an irrelevant operator and we can integrate this

flow up to an asymptotically AdS4 solution. The exponent α is also determined numerically.

When integrating this system numerically from the horizon to the boundary one en-

couters the star edge rs, which is determined by

µ̂(rs) = m̂f . (2.54)

– 10 –



J
H
E
P
0
5
(
2
0
1
4
)
1
2
2

At this point all fluid densities vanish. Outside the star, the geometry is described by RN

black hole with the metric

f = c2

(
r2 − M

r
+
Q2

2r2

)
, g =

c2

f
, h = c

(
µ− Q

r

)
. (2.55)

The charge Q = Qtot. is the total charge contained within the interior of the star.

The total solution is characterized by four dimensionless parameters m̂f , β, c, λ̂ν̂0. Here

we use the local density ν̂0 ≡ µ̂
√
µ̂2 − m̂2

f |r=0 at the horizon, eq. (2.52) to make the BCS

coupling dimensionless. Figure 3 shows for one such solution both the behavior of the fluid

and the condensate in the fluid region. The densities of the fluid are cleanly decreasing

along the radial coordinate. Our interest here is the transition to pairing and condensation.

This is controlled by the dimensionless BCS coupling λν0 and we study the system as this

is varied. In figure 2, we show the dependence of the near horizon scaling exponent z on

λ̂ν̂0 for various values of m̂f , c, β.

The relative value of the free energy of BCS star backgrounds w.r.t. the free energy at

λ = 0 is shown as a function of the coupling constant λν0 = λ̂µ̂
√
µ̂2 − m̂2

f/2 in figure 2.

The free energy can be determined from the parameters of the exterior solution

F/µ3 = (M − µQ)/µ3. (2.56)

The free energy at λ̂ = 0 is the free energy of the electron star [22]. As λ̂ goes larger, the

free energy decreases. This shows that in the bulk, BCS star is a more stable solution due

to the local attractive interactions between fermions. Note that when λ̂ν̂0 approaches order

1, the free energy starts to grow again. We have found that it does so in all cases for some

λ̂ν̂0∼>1. However, this is the regime where perturbation theory fails, and the computation

is not reliable for these large values.

3 Properties of the dual field theory: evidence of superconductivity

In the last section we showed that our BCS star is more stable than the electron star

solution at zero temperature and nonzero λ and it can be seen as a continuous interaction

driven quantum phase transition at T = 0. In this section we will show the evidence that

this BCS star corresponds to a superconducting state at the boundary. We cannot show

this by conventional holographic means. Due to the fact that no collective fields extend

beyond edge of the star — an artifact of the Thomas-Fermi approximation — there is no

leading coefficient to be read off near the AdS boundary. Instead we will first show that

there is a gap in the dual Fermi spectral function which resembles that of a superconduct-

ing state. Next we will study the change in the constituent charge densities, and show

explicitly that charge disappears from the Fermi liquid into the bosonic sector. This shows

that Cooper pairs have formed and have carried away the charge. Finally we compute the

conductivity at small frequency and show that it has the hallmark characteristics of a holo-

graphic superconductor: a delta-function peak at zero frequency (foremost a consequence

of momentum conservation) and a soft gap at ω < ∆.
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Figure 2. The near horizon Lifshitz scaling exponent z and the relative free energy
(
Fλ̂−F0

)
/|F0|,

with F0 the free energy of the λ = 0 electron star, as a function of the dimensionless coupling

constant λν0 for different parameters: m̂f = 0.2, c = 1/3, β = 5 (Blue), m̂f = 0.3, c = 1/3, β =

5 (Red); m̂f = 0.2, c = 1/4, β = 5 (Purple); m̂f = 0.2, c = 1/3, β = 6 (Black). For λ̂µ̂0

√
µ̂2
0 − m̂2

f∼<1

the free energy shows that the BCS star is the preferred groundstate. The rising free energy beyond

λ̂µ̂0

√
µ̂2
0 − m̂2

f = 1 should not be trusted. This is where perturbation theory breaks down.
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Figure 3. The BCS star profile as a function of the radial coordinate for m̂f = 0.2, c = 1/3, β = 5

and λ̂µ̂
√
µ̂2 − m̂2

f = 0.649. Left: from top to bottom the fluid densities n̂f ,ρ̂f ,p̂f of the BCS star

(solid line) compared to the electron star (with same m̂f , β and λ̂µ̂
√
µ̂2 − m̂2

f = 0; dashed line).

Both the charge(number) and energy density increase compared to the electron star. The star edges

rs/µ for ES and BCS are 4.320 and 4.329 respectively. Right: the order parameter ∆̂ in the BCS

star solution.

3.1 Gap in the Fermi spectral function

To calculate the dual Fermi spectral function, we need to consider Fermi perturbations in

the bulk which couple to the local gap function ∆ with a BCS interaction as follows:

Sprobe =

∫
d4x
√
−g
[
− iΨ̄(ΓµDµ −mf )Ψ +

1

2
∆∗Ψ̄cΓ

5Ψ− 1

2
∆Ψ̄Γ5Ψc

]
. (3.1)

The probe fermion has the same mass and charge as the fermion that constitute the bulk

star solution before the scaling. The scaling, however, does not act uniformly on the

probes [23]. After the scaling, an explicit dependence on the ratio L/κ remains. This is
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the reflection of the inherent quantum mechanical nature of fermions. We will not consider

this in detail because these coefficients are not important for showing the physical results

related to the gap.

The BCS interaction term couples two modes of opposite spin, which have the same

spectrum.3 The gap in the fermion spectrum is simply the level repulsion from coupling

two degenerate states. The Dirac equation with BCS interaction is

i(ΓµDµ −mf )Ψ + ∆Γ5Ψc = 0. (3.2)

After rescaling

ψ = (−ggrr)1/4Ψ, (3.3)

we have

(Γr∂r + Γµkµ −mf )ψ(r, k, ω)−∆CΓ5Γ0ψ∗(r,−k,−ω) = 0 (3.4)

in the momentum space. Using

ψ = (ψ1, ψ2)T , (3.5)

equation (3.4) can be written as(
−
√
grrσ3∂r ∓ i

√
gxxσ2k + (w +At)

√
gttσ1 −mf

)
ψ1,2(r, k, ω)± i∆σ1ψ∗2,1(r,−k,−ω) = 0

(3.6)

from which we observe ψ1(r, k, ω) is coupled to ψ∗2(r,−k,−ω) and ψ2(r, k, ω) is coupled to

ψ∗1(r,−k,−ω). From the free Dirac equation of motion we can see that the spectrum of

ψ1(r, k, ω) and ψ∗2(r,−k,−ω) are the same at w = 0. This is the degenerate point where

the BCS interaction couples causes a gap.

To calculate the dual Green’s function, we should first specify the near horizon bound-

ary conditions for this system. Following [10, 26], we treat the BCS coupling term as a

perturbation. This is consistent since both at the horizon and at the boundary, ∆ is finite,

so the interaction term is sub-leading compared to other terms. At the horizon we must

choose infalling boundary conditions to obtain the retarded Green’s function in the dual

boundary theory. They can be chosen independently for ψ1(r, k, ω) and ψ∗2(r,−k,−ω).

To solve the system, we can chose as a basis the linearly independent choice I where

ψ1(r, k, ω) = 0, ψ∗2(r,−k,−ω) is ingoing and choice II where ψ1(r, k, ω) is ingoing while

ψ2(r,−k,−ω) = 0. Solving the Dirac equation with these two independent horizon bound-

ary conditions, we obtain two sets of values at the AdS boundary at r = ∞. As the BCS

coupling is again subleading, the general form of the boundary behavior is

ψI,II
1 (k, ω) = AI,II

1 rm

(
0

1

)
+BI,II

1 r−m

(
1

0

)
(3.7)

3The eigenstates of the Dirac equation have either a left-pointing spin or right pointing spin w.r.t. the

momentum with independent Fermi surfaces. Due to a spin-orbit-like coupling with the background electric

fields [12, 24, 25], these Fermi surfaces are slightly split kFL 6= kFR . Despite this split, a spin-zero BCS

pairing at k = 0 is still allowed as the left-pointing spin at kFL w.r.t. the momentum points in the opposite

direction as the left-pointing spin at −kFL ; and similarly for kFR . In the fluid limit here, this detail is not

directly apparent, as it gets subsumed in the many different Fermi surfaces corresponding to each radial

mode of the Dirac field.
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and

ψ∗I,II2 (k, ω) = A∗I,II2 rm

(
0

1

)
+B∗I,II2 r−m

(
1

0

)
. (3.8)

where the superscript I,II refers to the choice of horizon boundary conditions.

We therefore obtain a matrix of responses B to the various sources A,(
BI

1 BII
1

B∗I2 B∗II2

)
=

(
G
O1O

†
1
GO1O2

G
O†2O

†
1
G
O†2O2

)(
AI

1 AII
1

−A∗I2 −A∗II2

)
. (3.9)

The Green’s function can then be calculated as G = BA−1. In the absence of a BCS

interaction G is diagonal. In the perturbative limit we use here, the off-diagonal terms are

of order ∆ and the diagonal terms receive corrections of order ∆2.

In the absence of the BCS interaction, the system has poles at ω = 0 and we can define

the (set of) Fermi momentum(momenta) kF as the value(s) where the leading fall-off of

the (diagonal) solution vanishes AI
1(kF , 0) = 0. and AII

2 (kF , 0) = 0. For a star solution

which exists in the WKB limit, there are usually multiple Fermi surfaces [23, 27, 28]. Here

we take kF to be the largest Fermi surface — the primary Fermi surface — though the

following arguments apply to any of the Fermi surfaces.

Including now the BCS interaction,

A(kF , ω) ∼

(
aI

1ω aII
1 ∆

−a∗I2 ∆ −a∗II2 ω

)
+O(∆2, ω2) (3.10)

at the leading order, where aI,II
1 and a∗I,II2 are constants of order O(1) near the Fermi

surface. From this expression we can already see that there is a gap at the Fermi surface

with size ∆. In [10], these coefficients are obtained explicitly by expanding the system near

ω = 0 and at k = kF . Denoting the (normalizable) solution to the Dirac equations for

which A(k, ω) vanishes at w = 0 and k = kF as ψI
1(kF , 0) = ξ

(0)
1 and ψ∗II2 (−kF , 0) = ξ

(0)
2 ,

they find [10]:

G−1
R (kF , ω) ∼

(
ωP1 Q1

Q2 ωP2

)
, (3.11)

where

Pα =

∫
dr
√
grr ξ̄

(0)
α

√
gttξ(0)

α (−1)α,

Q1 =

∫
dr
√
grr ξ̄1

(0)
i∆ξ

(0)
2 , (3.12)

Q2 =

∫
dr
√
grr ξ̄2

(0)
i∆ξ

(0)
1 .

Diagonalizing one finds a gap for

|ω| <
√
Q1Q2/P1P2 (3.13)

which is of order ∆ taking value at the horizon. This gap in the fermion spectral function

indicates that the field theory should be in a superconducting state. Similar to the holo-

graphic lattice gap [26], this gap is only a pseudo-gap in the sense that the G−1
R is only

zero at one special ω and away from that frequency there will be small spectral weights.
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3.2 Superconductivity induced changes in the charge density

The gap in the spectral function of the dual CFT on the boundary is the consequence of

the superconducting core in the BCS star, even though its wavefunction does not extend

to boundary. It is readily understood why: the lifting of the degeneracy need only to

happen at one point in the interior. Another effect that persists into the dual CFT is the

redistribution of the charge density of the system. The boundary charge density arises

from the boundary value of the Maxwell field and when there is no contribution of charge

density from inside the horizon, the boundary charge density is also equal to the integration

of the bulk charge density along the radial direction [27, 29]. Assuming that all fermions

in region II immediately pair up at any finite λ, we can separate the total boundary charge

density into two parts: the free charge density Qfree from the fermions in region I, and

the charge density which corresponds to paired fermions Qpair = Qtotal−Qfree in the bulk.

They can be obtained by the bulk integration of the charge density as follows

Qfree =

∫ rs

0
drr2√grrnFL

I , Qtotal =

∫ rs

0
drr2√grrn, (3.14)

with nFL
I in (2.13).

A further quantity of interest is the deviation from the exact equation of state of the

free Fermi liquid. This is qualitatively captured by the amount of charge in the deviation

density

Qdev =

∫ rs

0
drr2√grrδntotal (3.15)

with δntotal in (2.42).

In figure 4, we show both the absolute and relative values of these charge density

contributions compared to the total charge Qtotal as a function of the BCS coupling λ.

Perhaps counterintuitively, the total charge density Qtotal (in units of the chemical potential

µ) decreases as we increase the BCS coupling λ̂ν̂0. It is known in condensed matter physics

that the charge density is generically influenced by the condensate when the normal state

is not invariant under charge conjugation on the scale of the superconducting gap. In

weak coupling BCS it can be calculated that the charge density changes with a difference

proportional to the order of the gap, but because it is weakly coupled the gap is small

enough for this difference to be ignored. However, when the superconductor gets more

strongly coupled such that the density of states is asymmetric around the Fermi surface on

the scale of the gap the charge density (or either the chemical potential in the case of the

grand canonical ensemble) changes when the order parameter develops. A typical example

of the consequences of this very basic property is that vortices (where the core turns normal)

are charged in more strongly coupled superconductors as confirmed by experiments in high

Tc superconductors [30, 31]. Here in our holographic model the decrease shows that the

interaction makes charged excitations more difficult to populate rather than easier. Part

of this decrease is simply due to Bose-Fermi competition: we see this as the decreasing

contribution from the free fermions in region I. Condensing Cooper pairs do compensate

this decrease, but not sufficiently so to increase Qtotal. The fact that Cooper pairs do

form is shown by the non-vanishing deviation from the Fermi liquid equation of state Qdev.
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Figure 4. The total and free fermion charge density, Qtotal and Qfree as a function of λ̂µ̂0

√
µ̂2
0 − m̂2

f

for m̂f = 0.2, c = 1/3, β = 5. The dashed (black) line in the left figure between Qfree and Qtotal

shows the effect of the change of the equation of state compared to the standard free Fermi liquid:

it is the contribution Qdev. The decrease in the free fermion contribution is compensated by the

change in the equation of state. but only partially. Note that Qtotal decreases as a function of the

coupling λν0 indicating that it becomes progressively more difficult to excite charged carriers as the

BCS coupling is turned on. On the right hand side we show the relative contributions Qfree/Qtotal,

Qdev/Qtotal. This visibly shows the pairing taking place as the deviation from the free Fermi liquid

equation of state grows.

The non-vanishing charge density in the Cooper-pair sector shows explicitly that the dual

ground state is charged and breaks the U(1) gauge symmetry.

Note that our definition of Qfree only counts the fermions in region I. Therefore it does

not equal Qtotal = QI +QII at λ = 0.

3.3 Conductivity at low frequency

For completeness, we also consider the behavior of conductivity at low frequency for the

dual field theory. Following [22], we consider the time dependent perturbations:

Ax =
eL

κ
δax(r)e−iωt, gtx = L2δgtx(r)e−iωt, ux = Lδux(r)e−iωt. (3.16)

The equations of motion for these fluctuations are

n̂δax + (ρ̂+ p̂)δux = 0,

δg′tx −
2

r
δgtx + 2h′δax = 0, (3.17)

δa′′x +
1

2

(
f ′

f
− g′

g

)
δa′x + ω2 g

f
δax +

h′

f

(
δg′tx −

2

r
δgtx

)
+ gn̂δux = 0.

Substituting the first and second equations in (3.17) into the third, we obtain the EOM

for δax

δa′′x +
1

2

(
f ′

f
− g′

g

)
δa′x +

(
gω2

f
− 2h′2

f
− gn̂2

ρ̂+ p̂

)
δax = 0. (3.18)
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The near horizon geometry of the BCS star is a Lifshitz geometry controlled by the dynam-

ical critical exponent z and the solution of (3.18) in the Lifshitz region with the infalling

boundary condition δa
(in)
x ∼ ei

ω
√
g0

zrz is

δax =
√
ωr−

z
2H

(1)√
4c0+z2

2z

[√
g0ωr

−z

z

]
. (3.19)

Here the freedom to set the amplitude in the fluctuation equation is used to set it propor-

tional to
√
ω — this way the leading order coefficient for the near-horizon infalling wave

does not depend on frequency, H
(1)
ν (x) is the Hankel function of first kind and the constant

c0 equals

c0 = 2h2
0z

2 +
g0β

h0

(
1

3
(h2

0 −m2)3/2 +
2h2

0 −m2

h0(h2
0 −m2)

∆2
0

λ

)
. (3.20)

Substituting in the the relations between g0, h0,∆0 and z from the near horizon EOM, it

is easy to show that c0 = 2z2 and does not depend on the BCS coupling λ. Hence index of

the Hankel function is just 3/2.

Near the AdS4 boundary, on the other hand, we have

δax = δa(0)
x +

δa
(1)
x

r
+ . . . , (3.21)

The conductivity for the dual field theory is extracted from these values as

σ = − i
ω

δa
(1)
x

δa
(0)
x

. (3.22)

For low frequencies the near AdS4 boundary coefficients can be related to the near

horizon behavior through the conserved quantity [22]

F = i

√
f

g

(
δa∗x∂rδax − δax∂rδa∗x

)
. (3.23)

Near the AdS4 boundary F equals F = −2ω|δa(0)
x |2Reσ, whereas the near horizon solu-

tion (3.19) gives F ∼ ω. Thus Reσ ∼ |δa(0)
x |−2. Using the matching method it is then easy

to see |δa(0)
x | ∝ ω−1 [22]. Thus the low frequency behavior of the conductivity is

Re σ ∝ δ(ω) + ω2. (3.24)

Notice that the delta function has to be there due to the translation invariance of the BCS

star background. In more detail, this arises from the pole in the conductivity when ω → 0,

as can be verified by evaluating (3.22) explicitly.

The small frequency behavior of the conductivity is in fact independent of the BCS

coupling λ, since the computation is in this regard tracks not different from the compu-

tation for the electron star with λ = 0. This hard gap is also missing in the holographic

superconductor [32, 33]. This is understood as a remnant effect of the near-horizon Lifshitz

geometry. Since the geometry persists all the way to r → 0, in the dual field theory there

are a “large N” amount of degrees of freedom surviving in the IR. These coexists with the

phase mode of the superconductor, causing the remnant finite conductivity in the region

where which would be fully gapped in a conventional superconductor.

– 17 –



J
H
E
P
0
5
(
2
0
1
4
)
1
2
2

4 Scaling limits with a dynamical scalar

In our BCS star model, the matter fields are not visible at the boundary, though in the

last section we showed that there are still effects on the boundary theory. Here we study a

more generalized model which includes dynamics for the scalar field ∆. Technically this will

allow ∆ to extend all the way to boundary. Physically, from the pure BCS perspective,

this may seem strange. Indeed the most natural way to interpret the dual field theory

this model describes, is as a system with charged fermions and an additional independent

charged scalar operator with charge qb = 2qf . From the gravity perspective, however, it is

a very natural description that arises in many top-down models.

4.1 Lagrangian with a dynamical scalar

In [18] we considered models with both dynamical scalars and fermions. There we found

that the holographic description of strongly coupled systems with both bosons and fermions

with incommensurate charges qb 6= 2nqf , n ∈ N, has electron star solutions which can co-

exist with scalar hair (see also [34]). This corresponds to a superconducting state with

multiple Fermi surfaces. In that case the incommensurate charge prevents a relation be-

tween the fermions and bosons in the gravitational bulk, and hence in the boundary.

A commensurate scalar charge qb = 2qf allows a Yukawa/BCS interaction between

fermions and bosons in the bulk. This is what we studied so far, but without explicit

dynamics for the scalar field. It only arose as an auxiliary field. For a dynamical scalar, on

the other hand, it is natural to surmise that the energetics of the bosons can be relevant

to the condensation of the fermions. The more generalized system we therefore consider is

L =
1

2κ2

(
R+

6

L2

)
− 1

4e2
FµνF

µν − |(∂µ − 2iqAµ)φ|2 −m2
φ|φ|2

−iΨ̄(ΓµDµ −mΨ)Ψ + η∗5φ
∗Ψ̄cΓ

5Ψ− η5φΨ̄Γ5Ψc. (4.1)

This model has been considered before in [10] from a perspective where the fermions

are probes, whereas η5 = 0 this is a special case of the bose-fermi competition models

studied in [18, 34] with qb = 2qf . Its connection to the BCS Lagrangian studied here is

made clear after the field redefinition

φ =
1

mφ

√
2λ

∆, η5 = mφ

√
λ

2
. (4.2)

Then the Lagrangian becomes:

L =
1

2κ2

(
R+

6

L2

)
− 1

4e2
FµνF

µν − 1

2λm2
φ

|(∂µ − 2iqAµ)∆|2 − 1

2λ
|∆|2

−iΨ̄(ΓµDµ −mf )Ψ +
1

2
∆∗Ψ̄cΓ

5Ψ− 1

2
∆Ψ̄Γ5Ψc. (4.3)

In the formal limit m2
φ → ∞ we recover the Einstein-Maxwell-BCS Lagrangian. We will

now make this limit more precise.
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The equations of motion for this system are

Rµν−
1

2
gµνR−

3

L2
gµν−κ2

[
T gauge
µν +TBCS

µν

]
= κ2

[
T kin.boson
µν

]
;

∇µFµν+e2JνBCS =
iqe2

λm2
φ

[
∆∗
(
∂ν−2iqAν

)
∆−∆

(
∂ν+2iqAν

)
∆∗
]
;

∆−λΨ̄cΓ
5Ψ =

1

m2
φ

(
∇µ−2iqAµ

)(
∇µ−2iqAµ

)
∆; (4.4)

i
(
ΓµDµ−mf

)
Ψ−∆†ΨcΓ

5Ψ = 0,

where T gauge
µν , TBCS

µν and JµBCS are as before in Eqns (2.8) and (2.40), and

T kin.boson
µν =

1

λm2
φ

((
∂(µ + 2iqA(µ

)
∆∗
(
∂ν) − 2iqAν)

)
∆− 1

2
gµν |

(
∂α − 2iqAα

)
∆|2
)
, (4.5)

with A(µBν) = 1
2(AµBν + AνBµ). The terms on the right hand side of (4.4) are new

compared to the pure BCS system considered before. The decoupling limit needs more in

depth inquiry, because we first need to impose a well-defined semi-classical limit for the

many body fermion system. Making the fluid approximation TBCS
µν = (ρ + p)uµuν + pgµν

as in (2.40), this is obtained in terms of the dimensionless variables found earlier

(ρ, p) =
1

κ2
(ρ̂, p̂), n =

1

eκ
n̂, (Aµ, µl,mf ,∆, ωD) =

e

κ
(Âµ, µ̂, m̂f , ∆̂, ω̂D), λ =

e2

β
λ̂ (4.6)

where the hatted quantities are of order zero in κ and e with β = e4/π2κ2 fixed, and for

simplicity we have set L = 1 and q = 1 as q only appears in the combination qe. In terms

of the rescaled variables the bosonic EOM become

Rµν−
1

2
gµνR−3gµν−

[
T̂ gauge
µν +T̂BCS

µν

]
=

β

λ̂m2
φ

[(
∂(µ+2i

qeff√
κ
Â(µ)∆̂∗(∂ν)−2i

qeff√
κ
Âν)

)
∆̂

− 1

2
gµν |

(
∂α−2i

qeff√
κ
Âα

)
∆̂|2
]
;

∇µF̂µν+ĴνBCS =
e

κ

iβ

λ̂m2
φ

[
∆̂∗
(
∂ν−2i

qeff√
κ
Âν
)

∆̂

−∆̂

(
∂ν+2i

qeff√
κ
Âν
)

∆̂∗
]
;

∆̂−λ̂〈Ψ̄cΓ
5Ψ〉 =

1

m2
φ

(
∇µ−2i

qeff√
κ
Âµ
)(
∇µ−2i

qeff√
κ
Âµ

)
∆̂, (4.7)

where qeff =
√
πβ1/4.

We see that there is no clean classical gravity limit κ → 0, where the rescaled fields

can stay fixed and the energy momentum contribution to the gravity is still of order O(1).

This is precisely due to the fact that the bosonic charge is fixed in units of the fermion

charge. For incommensurate charges, i.e. if qeff were a free parameter, one can scale this

charge to absorb the explicit dependence on the gravitational coupling κ; see [18]. The fact
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that the fluid limit is incompatible with a scaling limit in the microscopic Lagrangian was

already noted in [23].

In our case, where qb is not free, but fixed to equal qb = 2qf , there are three possible

classical limits. They depend on the scaling choice for the mass mφ. One has:

• m2
φ = κ−1−δm̂2

φ where δ > 0: this is the limit where the kinetics of the scalar

completely decouples and one recovers the system studied in the previous sections.

• m2
φ = κ−1m̂2

φ. This is the natural limit in which the hatted parameter m2
φ is a

truly dimensionless parameter. In this limit the strict kinetics of the scalar field are

unimportant, but the coupling to the gauge field and to the fermionic field remain.

This is exactly the case we will study in this section.

• m2
φ = κ−1−δm̂2

φ where δ < 0. This is not a well defined classical limit which means

the scaling (4.6) could be modified resulting in that not all fermionic terms could be

kept. Applying it nevertheless means that the kinetics of the scalar field can be kept

and dominate but its derivative decouples from the Maxwell connection. In essence

qeff must be set to zero. We leave this case for future study.

4.2 Charged non-dynamical scalar scaling limit

We now focus on the second case where m2
φ = κ−1m̂2

φ and take the limit κ → 0 with all

hatted quantities fixed. The ansatz for the background we take is the same as (2.46). We

now define a new combined fluid

TBCS
µν + T kin.boson

µν = (ρcom + pcom)uµuν + pcomgµν

and

J fermion
µ + Jboson

µ = ncomuµ

where the rescaled fluid quantities

ρ̂com = ρ̂+
sβh2

f

∆̂2

λ̂
, p̂com = p̂+

sβh2

f

∆̂2

λ̂
, n̂com = n̂+

2sβh√
f

∆̂2

λ̂
(4.8)

are the BCS fluid quantities in (2.40) and we have introduced the parameter s related to

the scalar mass for convenience

s ≡ 2π
√
β

m̂2
φ

. (4.9)

Obviously, when s→ 0, i.e. m̂2
φ →∞, our system reduces to the BCS star system discussed

in the previous section. For finite s the equations of motion for the system in terms of the

combined fluid are the same as the previous case, (2.47)–(2.48) with the exception of the

equation of motion for the scalar field. It gives

− 2sh2

fλ̂
+

1

λ̂
= π2

∫ ω̂D

−ω̂D

dξν̂(ξ)
1√

ξ2 + ∆̂2

. (4.10)
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In the same limit as before ∆̂ � ω̂D � (µ̂, µ̂ − m̂f ), this modified gap equation can be

solved as

∆̂ = 2ω̂De
−(1− 2sh2

f
)/(λ̂µ̂

√
µ̂2−m̂2

f )
. (4.11)

From (4.11) it is easy to see when s is large, 1 − 2sh2/f would be negative and the

approximation ∆̂ � ω̂D would break down. Thus the perturbative approach we follow

here only applies for small s.

Let us explain in more detail the way this system works in this limit, where especially

the role of the scalar field equation is interesting. In this limit all kinetics decouple: the

scalar field has become an auxiliary field again. However, we can see that ∆ is no longer

the Cooper pair condensate. Nevertheless, this gap is still associated with a local super-

conducting state in the bulk as can be seen from the Dirac equation. What is happening is

that the charged gap field is now also sensitive to the background gauge connection. Note

that it does do so in a way that gauge symmetry is broken. The gap field has the status

of a Stueckelberg field. The limit is therefore a Stueckelberg limit where strict decoupling

does not happen. Only at low energies, much below mφ, this is a reliable approximation

to the system.

For the solution of this BCS-Stueckelberg system, we proceed as before. The near

horizon geometry is still Lifshitz. One can add an irrelevant perturbation for the geometry

to flow to an AdS solution. The behavior of the fluid and condensate is plotted in figure 5.

The significant difference compared to the pure BCS star is the enhancement in the charge

density (figure 6). In particular we see the BCS-Stueckelberg star is more susceptible to

form a superconducting core. This can be directly understood from the reduced suppres-

sion of the gap. The stronger predilection towards pairing should also be reflected in the

thermodynamic properties. Indeed the BCS-Stueckelberg star in this limit is more stable

(figure 7).

The total charge distributions are also reflecting this extra stability. In the BCS-

Stueckelberg star we can distinguish a third component contributing to the charge density:

next to the free- and paired fermions there is also the contribution from the Stueckelberg

field. Define a new combined charge density by

Qcom =

∫ rs

0
drr2√grrncom (4.12)

in addition to the densities Qfree and Qtotal as given by (3.14). We can then define the

Stueckelberg charge density as QStueck = Qcom − Qtotal. The left plot of figure 8 demon-

strates that this extra Stueckelberg contribution gives rise to an increase of the charge

density upon increasing the BCS coupling, as expected intuitively. Whereas the pure BCS

contribution Qtotal decreases with increasing coupling as before, the extra Stueckelberg con-

tribution suffices to compensate for the depletion of the free fermionic density, as illustrated

in the right plot of figure 8.

Finally, we checked by explicit calculation along the lines of the previous section that

the gap in the dual Fermion spectral function continues to be set by ∆ also in this BCS-

Stueckelberg limit. The novelty is just that the Stueckelberg field is enhancing this gap.
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Figure 5. The profile for the fluid in the star in the BCS-Stueckelberg limit as a function of

the radial coordinate with m̂f = 0.2, c = 1/3, β = 5, λ̂µ̂
√
µ2 − m̂2

f = 0.393. Left: from top to

bottom, the solid lines are n̂com, ρ̂com, p̂com with s = 0.25 and the star edge rs/µ ' 4.338. For

comparison, we also give the profiles of the pure BCS star n̂tot, ρ̂tot, p̂tot with s = 0 and the star

edge rs/µ ' 4.328. Right: the value of the gap ∆̂ for s = 0.25 (solid) and s = 0 (dashed) for the

same numerical parameters. Both the gap and the charge density are enhanced compared to the

pure BCS star.
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Figure 6. The ratio of the pure BCS charge density n̂ to the combined BCS-Stueckelberg charge

density n̂com as a function the radial coordinate for different coupling constant λ for m̂f = 0.2, c =

1/3, β = 5 and s = 0.25. In the figure, λ̂µ̂
√
µ2 − m̂2

f = 0.245 (Orange), 0.393 (Green), 0.534 (Blue),

0.810 (Black).

5 Conclusion and discussion

In this paper we have made a step towards understanding fermion driven pairing in strongly

coupled systems with holographic duals. In particular we considered the introduction of

a BCS interaction for the fields dual to the fermionic operators in strongly coupled the-

ory, i.e. we complemented the AdS-Einstein-Maxwell-Dirac action with a standard BCS

interaction. This implicitly assumes that at low energies these fermionic operators control

the physics and that the pairing is driven by a force other than the one that controls the

strong correlations, even though this might be unnatural from more microscopic arguments

or top-down AdS/CFT constructions; see e.g. [9]. Given this set up, however, we show that

the holographic system does undergo spontaneous symmetry breaking that adheres closely

to the BCS paradigm. We do so in a fluid limit for the many-body fermion system where
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Figure 7. The near horizon Lifshitz scaling z (left plot) and free energy (right plot) for the star in

this new scaling limit as a function of λ for m̂f = 0.2, c = 1/3, β = 5 with different s = 0.25 (black),

0.4 (blue), 0.5 (red). The free energy decreases as λ̂ increases in the region that perturbation theory

applies. The larger the Stueckelberg term, the more thermodynamically favored the solution is

(and the smaller the IR dynamical critical exponent). This is in accordance with the corresponding

increase in the gap.
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Figure 8. Left: the absolute charge densities Qcom/µ
2 (blue), Qtot/µ

2 (black dashed) and

QStueck/µ
2 (red) in the BCS-Stueckelberg star as a function of the coupling λ̂µ̂0

√
µ̂2
0 − m̂2

f . Right:

the relative charge densities of Qfree/Qtot (red) and Qfree/Qcom (purple) as a function of the coupling

λ̂µ̂0

√
µ̂2
0 − m̂2

f for m̂f = 0.2, c = 1/3, β = 5 and s = 0.25.

we explicitly construct the BCS corrections to the fluid. The fluid limit has the advantage

that we can compute the fully backreacted gravitational solution and hence understand the

thermodynamic characteristics of the dual field theory.4 The symmetry breaking solution

we find, therefore builds upon the Tolman-Oppenheimer-Volkov self-gravitating Fermi fluid

solution underpinning neutron and electron stars. Indeed the BCS star is readily recogniz-

able as an AdS electron star cousin of an astrophysical neutron star with a superconducting

core. We show that at zero temperature and with a positive coupling, the corresponding

BCS star solution is indeed the more stable groundstate than the pure electron star solu-

tion. As a function of the BCS coupling λ, the transition between the electron star and

4See [12] for a more microscopic study of pairing driven superconductivity in holography.
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the BCS star can be seen as an interaction driven (continuous) quantum phase transition

between the symmetry preserving state at λ = 0 and the symmetry-broken state at λ 6= 0.

The symmetry breaking nature of the BCS star is confirmed by the appearance of

a pseudo-gap in the Fermi spectral function of the boundary theory with the size of the

gap is determined by the coupling constant. In addition the changes of the charge density

at a fixed chemical potential for a BCS star solution implies the loss of charge in a su-

perconducting state. Finally the conductivity is indeed suppressed at very low frequency,

although as is characteristic of holographic superconductors, it does not exhibit a hard gap.

A primary motivation of our work is to build a realistic holographic superconductor in

that it explicitly encodes the fermionic degrees of freedom present in real exotic supercon-

ductors. On the gravity side of the duality, we show that considerations of what is natural

there, gives a novel Stueckelberg-like coupling of the gap field. Interestingly, in the result-

ing BCS-Stueckelberg star, the susceptibility of the system towards superconductivity is

enhanced, even though the suppression of the gap remains exponential.

There are various avenues to pursue to make the system even more realistic. An

obvious one is to consider lattice-effects and to encode the d-wave symmetry. In ordinary

metals, the lattice phonons are responsible for the effective four point interaction of the

fermions. It is likely that the same will happen in a holographic set-up with explicit

fermions at finite density, as much of the fermionic physics follows the standard rules. In

that sense our BCS study here carries few surprises, but it serves as another excellent

benchmark of holographic duality. It also serves as stepping stone. Using this BCS star as

a base, an inquiry that tries to connect it closer to the physics of strongly coupled physics

that underly the AdS/CFT duality could provide genuinely new insights into the onset of

superconductivity in quantum critical metals.

A Fluid parameters in region II

To obtain the result for the fluid parameters in region II quoted in eqs. (2.32)–(2.34), one

subtracts the free fermion contribution from region II, eq. (2.35) from the formal expressions

eqs. (2.26), (2.27), and (2.28). Using the ωD � µ expansion for the density of states in

these differences, one obtains the following expressions, where the the integrations can be

performed explicitly.

nII − nFL
II ' ω2

Dν1 −
∫ ωD

−ωD

dξ
ξ2ν1√
ξ2 + ∆2

= −ν1
∆2

2
+ ν1∆2 ln

2ωD
∆

,

ρII − ρFL
II ' (ω2

D − 2µlωD)ν0 −
(

2
ω3
D

3
− µlω2

D

)
ν1 − ν0

∫ ωD

−ωD

dξ
√
ξ2 + ∆2 + µlnII + ρ∆

= −(ν0 + µlν1)
∆2

2
− (ν0 − µlν1)∆2 ln

2ωD
∆

+ ρ∆ ,

pII − pFL
II ' ω2

Dν0 −
1

3

[
ν1

µ2
l −m2

f

µ
+ ν0

(
−µ2

l +m2
f

µ2
l

+ 2

)]∫ ωD

−ωD

dξ
ξ2√

ξ2 + ∆2
+ p∆
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= −ν0
∆2

2
+ ν0∆2 ln

2ωD
∆

+ p∆ . (A.1)

Expanding the integrated result in ∆� ωD, while keeping the term ρ∆ = −p∆ = ∆2/2λ,

one finds the expressions eqs. (2.32)–(2.34).
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