Spatial Coherence and Optical Beam Shifts
Löffler, W.; Aiello, A.; Woerdman, J.P.

Citation

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/64257

Note: To cite this publication please use the final published version (if applicable).
Spatial Coherence and Optical Beam Shifts

W. Löffler,1,* Andrea Aiello,2,3 and J. P. Woerdman1

1Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
2Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1/Building 24, 91058 Erlangen, Germany
3Institute for Optics, Information and Photonics, Universität Erlangen-Nürnberg, Staudtstrasse 7/B2, 91058 Erlangen, Germany

(Received 18 July 2012; published 20 November 2012)

A beam of light, reflected at a planar interface, does not follow perfectly the ray optics prediction. Diffractive corrections lead to beam shifts; the reflected beam is displaced (spatial Goos-Hänchen type shifts) and/or travels in a different direction (angular Imbert-Fedorov type shifts), as compared to geometric optics. How does the degree of spatial coherence of light influence these shifts? We investigate this issue first experimentally and find that the degree of spatial coherence influences the angular beam shifts, while the spatial beam shifts are unaffected.

We start by briefly reviewing the theory. We consider a monochromatic partially coherent beam with a Gaussian envelope [24–26], a so-called Gaussian Schell-model beam, where both the intensity distribution \(I(\mathbf{r}) \) and the spatial degree of coherence \(g(\Delta \mathbf{r}) \) are Gaussian [27] (\(\mathbf{r} \) and \(\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1 \) are the transverse position, and the relative transverse position, respectively). We obtain for the Gaussian Schell-model beam

\[
I(\mathbf{r}) \propto \exp\left(-\frac{\mathbf{r}^2}{2\sigma_r^2}\right); \quad g(\Delta \mathbf{r}) = \exp\left(-\frac{\Delta \mathbf{r}^2}{2\sigma_\Delta^2}\right) \tag{1}
\]

In the source plane, \(\sigma_\mathbf{r} \) is the coherent (Gaussian) mode waist, and \(\sigma_\mathbf{r} \) determines the correlation length. The latter approaches infinity for a fully coherent mode, and is a measure of the speckle size in case of partial spatial coherence. After propagating over a distance \(z \), these quantities evolve into \(\sigma_\mathbf{r}(z) \) and \(\sigma_\mathbf{r}(z) \); however, it turns out that their ratio \(\sigma_\mathbf{r}/\sigma_\mathbf{r} \) is independent of propagation [29]: \(\sigma_\mathbf{r}(z)/\sigma_\mathbf{r}(z) = \sigma_\mathbf{r}/\sigma_\mathbf{r} \); therefore, we use this ratio to quantify transverse coherence. Figure 1(a) shows three examples of such beams, from fully coherent (i) to the case where the coherence length is below one tenth of the beam size (iii). By calculating the intensity autocorrelation, the two length scales which are involved become visible: The Gaussian envelope leads to a wide background, while the emerging speckles in case (ii) and (iii) add a short-range correlation as is easily visible in the cross-section curves in Fig. 1(b). The number of participating modes can be estimated from the number of speckles in Fig. 1(a), or be approximated by \([1 + (\sigma_\mathbf{r}/\sigma_\mathbf{r})^{-1}]^2 \), which is (1, ~50, ~200) for the cases (i,ii,iii) respectively. The three beams shown in Fig. 1 have been used in the experiments reported below.

To be able to discuss such a Gaussian Schell-model beam within the unifying beam shift framework developed by Aiello and Woerdman [30], we consider a paraxial, monochromatic, and homogeneously polarized...
The polarization and spatial degree of freedom are coupled by the Fresnel coefficients \(r_{\alpha,s} \) as \[U'(x, y, z) = \sum_{\lambda} a_{\lambda} r_{\lambda} U(-x + X_{\lambda}, y - Y_{\lambda}, z) \mathbf{k}_{\lambda}. \] \(X_{1,2} \) and \(Y_{1,2} \) are the polarization-dependent dimensionless beam shifts:

\[X_1 = -i\hat{\sigma}_x[\text{Im}r_1(\theta)], \quad Y_1 = i a_2 a_1 \left(1 + \frac{r_1}{r_2} \right) \cot\theta, \] \(X_2 = -i\hat{\sigma}_y[\text{Im}r_2(\theta)], \quad Y_2 = -i \frac{a_1}{a_2} \left(1 + \frac{r_1}{r_2} \right) \cot\theta. \]

The spatial shifts depend in the GH case only on one reflection phase, \(\phi_1 \) or \(\phi_2 \) with \(\phi_\lambda = \text{arg}(r_\lambda) \), while in the Imbert-Fedorov case, the spatial shift depends on the phase difference (e.g., \(\phi_1 - \phi_2 \)).

In the lab, beam shifts are usually measured via the centroid of the reflected beam

\[\langle \mathbf{R}(z) \rangle = \sum_{\lambda} w_{\lambda} \frac{\int \rho(U(-x + X_{\lambda}, y - Y_{\lambda}, z)^2)dx dy}{\int(|U(-x + X_{\lambda}, y - Y_{\lambda}, z)|^2)dx dy}, \]

where \(w_{\lambda} = |r_\lambda a_{\lambda}|^2 / \sum_{\lambda} |r_\lambda a_{\lambda}|^2 \) is the fraction of the reflected intensity with polarization \(\lambda \). Equation (4) can be calculated by Taylor expansion around zero shift \((X_{\lambda} = Y_{\lambda} = 0) \). With the spatial \(\Delta_{\lambda} = \text{Re}(X_{\lambda} Y_{\lambda}) \) and angular \(\Theta_{\lambda} = \text{Im}(X_{\lambda} Y_{\lambda}) \) shift vectors we obtain for the centroid \(\langle \mathbf{R}(z) \rangle = \sum_{\lambda} w_{\lambda} (\Delta_{\lambda} + M(z) \Theta_{\lambda}) \), where \(M(z) \) is a polarization-independent \(2 \times 2 \) matrix which couples longitudinal and transverse beam shifts depending on the transverse mode of the field [7].

For a spatially incoherent beam, the incoming field \(U^i \) corresponds to one realization of the ensemble of random fields with equal statistical properties. For our case of a
Gaussian Schell-model beam, $M(z)$ turns out to be diagonal [21], and we finally obtain

$$\langle R \rangle(z) = \sum_{\lambda=1}^{2} w_{\lambda}[\Delta_{\lambda} + \Theta_{\lambda} \theta_{S}^{2} z]. \quad (5)$$

The first term is independent of z, it therefore describes shifts of purely spatial nature. Since spatial coherence enters the discussion only via the parameter θ_{S} (which we discuss below), and the first term is independent thereof, we conclude that spatial shifts are expected to be independent of the degree of transverse coherence.

We test this in our first experiment [Fig. 2(a)], where we examine the spatial Goos-Hänchen shift (extension to the spatial Imbert-Fedorov case is straightforward). A single Gaussian mode from a fiber-coupled 675 nm superluminescent diode (FWHM spectral width 20 nm) is focused loosely ($f_{L1} = 20 \text{ cm}$, beam waist at focus $50 \mu \text{m}$) close to the outer edge of a holographic diffuser (Edmund Optics NT47-988 light shaping diffuser, 25 mm diameter, scattering angle 0.5°) [25]. This imprints a random phase on the beam, which in turn leads to speckle pattern formation by random interference. To average over many different realizations of this field, the diffuser is rotated at 70 Hz, which leads to a modulation in the speckle pattern at $\sim 30 \text{ kHz}$ (this is related to the microscopic structure of the diffuser). This frequency is much higher than the polarization modulation frequency, see below. We collimate the far field ($f_{L2} = 10 \text{ cm}$) from the plate and use an adjustable diaphragm [see Fig. 2(a)] to gain full control over the key parameter σ_{S}/σ_{S}. We implement polarization modulation (10 Hz) using a polarizer in combination with a liquid-crystal variable retarder to generate an s or p polarized beam. This beam is reflected under total internal reflection in a $45^\circ - 90^\circ - 45^\circ$ prism (BK7, $n = 1.514$ at 675 nm), and refraction at the side faces of the prism is taken into account for determination of the angle of incidence θ. A quadrant detector in combination with a lock-in amplifier (locked to the polarization modulation) is used to measure the relative beam displacement (the quadrant detector is binned so that it effectively acts as a binary split detector).

Figure 2(b) shows the measured spatial GH shifts for the three beams with different spatial coherence shown in Fig. 1. We present exclusively polarization-differential shifts $D_{ps} = D_{p} - D_{s}$, where $D_{p,s}$ are the displacements of p and s polarized reflected beams from the geometrical-optics position. For $\sigma_{S}/\sigma_{S} \gg 1$ we recover the well-known result that the spatial GH shift appears only for $\theta > \theta_{c}$ [31], where θ_{c} is the critical angle of 41.35°. However, the essential point of Fig. 2(b) is, that we find that the spatial beam shift is in fact independent from the degree of spatial coherence. This demonstrates that the theoretical result in Refs. [19,21,23] is correct, contrary to competing claims [20,22].

We turn now to the angular shifts, i.e., to the second term in Eq. (5). The parameter θ_{S} is simply the effective beam divergence half-angle for a Gaussian Schell-model beam [24]:

$$\theta_{S}^{2} = \frac{2}{k^{2}} \left[\left(\frac{1}{2\sigma_{S}} \right)^{2} + \left(\frac{1}{\sigma_{S}} \right)^{2} \right]. \quad (6)$$

We see that reduced spatial coherence, i.e., reduced σ_{S}, leads to increased beam divergence, and this in turn leads to increased angular beam shifts.

We test this in our second experiment, where we investigate the case of the in-plane (Goos-Hänchen type) angular beam shift. For this we use, as shown in Fig. 3(a), an additional lens $L3$ ($f_{L3} = 10 \text{ cm}$) to focus the beam, which is now reflected externally at the hypotenuse plane of the same prism as used before. The angular shift implies that s and p polarized beams follow slightly different paths which both originate at the beam waist [6]. For our experimental parameters and for beam propagation of a few centimeters, this angular shift is expected to lead to many tens of λ displacements of the centroid. We can then use simply a CCD camera to determine the difference in centroid position for p and s polarization. From two of such measurements at different propagation distance
(5 cm apart) we determine the angular Goos-Hänchen shift; see Fig. 3(b). The angular shift shows a dispersive shape around the Brewster angle θ_B. This in itself is well known [6]; it is a consequence of the fact that the amplitude reflectivity flips sign at its zero crossing at θ_B. New is that we find a strong influence of the degree of coherence on the shift, in perfect agreement with the theoretical curves shown. We conclude that also in this case the theoretical predictions in Refs. [19,21,23] are correct.

Further, we note that if we replace the coherent-mode opening angle θ_0 in the angular GH shift formulas by the effective beam opening angle θ_5 [see Eq. (6)], partially coherent beams are well described. We therefore expect that, for a constant angle of incidence θ, the angular beam shift is proportional to θ^2. We have demonstrated this experimentally for $\theta = 70^\circ$; see Fig. 4.

In conclusion, we have found experimentally that partial spatial coherence of a beam does not affect spatial beam shifts, while angular beam shifts are enhanced. Basically, reduced spatial coherence increases the effective angular spread of the beam, and therefore, angular shifts are increased. Our data are in good agreement with the theoretical study of Simon and Tamir [19], as well as later work [21,23]. We can conclude that the dispute in literature [19–23] is now definitively resolved.

We note that partially coherent beams have several advantages: they are less vulnerable to speckle formation and also less susceptible to atmospheric turbulences [32]. Although our results have been obtained for a single dielectric interface, this can be easily extended to the case of multilayer dielectric mirrors and metal mirrors. Also, despite that our experimental results are for longitudinal Goos-Hänchen type shifts only, it is clear from theory that the spatial and angular transverse Imbert-Fedorov shifts depend in the same way on the degree of spatial coherence as the spatial and angular GH shifts do. For completeness we mention that in our work we simulate a truly stochastic beam, namely by using a rotating diffusor; this has a much wider range of applications than when one uses a stationary diffusor [33]. Our findings demonstrate that transverse-incoherent sources, such as light-emitting diodes, can be used in applications which use beam shifts as a sensitive meter, such as in biosensing [34] or position detection [35]; as well as that the use of Goos-Hänchen shifts for beam position control [36,37] is applicable to incoherent beams. Beam shifts may also be relevant in photo lithography where partial spatial coherence plays a role [38]. Finally, our findings are relevant for beam shifts of particle beams (such as electron beams [16] or other matter beams [15]). Such beams are extremely difficult to prepare in a single mode (contrary to light beams) due to the smallness of the de Broglie wavelength; however, we know now that this should not diminish their (spatial) beam shifts.

We acknowledge fruitful discussions with M. P. van Exter and financial support by NWO and the EU STREP program 255914 (PHORBITECH).

*loeffler@physics.leidenuniv.nl

[17] A simple estimation based on the van Cittert-Zernike theorem would suggest that partly coherent light was generated in Ref. [1], both σ_g and σ_5 were of similar magnitude (a few 100 μm).

[27] Note that any non-Gaussian stochastic beam would violate the central limit theorem [28].

