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We study the mechanical buckling of a freestanding superfluid layer. A topological defect in the phase
of the quantum order parameter distorts the underlying metric into a surface of negative Gaussian curvature,
irrespective of the sign of the defect charge. The resulting instability is in striking contrast with classical buckling,
where the in-plane strain induced by positive (negative) disclinations is screened by positive (negative) curvature.
We derive the conditions under which the quantum buckling instability occurs in terms of the dimensionless ratio
between superfluid stiffness and bending modulus. An ansatz for the resulting shape of the buckled surface is
analytically and numerically confirmed.
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The rapid trend toward the miniaturization of electrome-
chanical systems has spurred a flurry of theoretical activity
aimed at investigating quantum mechanical effects in the
context of more classical subjects such as heat transfer and
mechanical stability [1,2]. Common building blocks for these
devices are carbon-based materials such as nanotubes and
graphene, essentially two-dimensional elastic sheets which are
often bent or wrinkled [3–7]. Much effort has been directed
toward understanding how quantum surface states are affected
by the underlying curvature of these spaces [8–12]. However,
less attention has been devoted to the converse problem: Can
quantum mechanical effects modify the shape and mechanical
stability of nanostructures?

These questions have so far been relegated to the fringe of
mainstream engineering applications, since it is challenging
to probe experimentally the regime where the characteristic
energy of quantum effects is comparable to the bending energy.
Furthermore, the interplay between a quantum order parameter
and geometry is a more subtle theoretical problem than its
classical counterpart. Quantum mechanical degrees of freedom
live in an internal space distinct from the local tangent plane
of the underlying substrates. As a result, coupling mechanisms
between the in-plane quantum order parameter and curvature
are typically less intuitive. By contrast, classical buckling is
the paradigmatic example of how elastic stresses in a crystal or
liquid-crystal monolayer are screened by curvature [13–22].

In this Rapid Communication, we demonstrate a quantum
analog of buckling and trace its distinctive physical and mathe-
matical origins. Specifically, we consider the two-dimensional
(2D) order parameter ψ(ρ) = |ψ |eiθ(ρ) that describes super-
fluid or superconducting phases of a quantum condensate and
show that the presence of isolated vortices or antivortices
can buckle a thin layer of freely suspended superfluid.
However, there is a crucial qualitative difference between this
phenomenon and classical buckling, as summarized pictorially
in Fig. 1. Classical buckling requires that positive (negative)
disclinations induce buckling of the monolayer into conical
singularities of positive (negative) Gaussian curvature [23–25].
Screening requires that the sign of the defect charge is matched
by the sign of the curvature; see Figs. 1(a) and 1(b). In contrast,
our stability analysis reveals that (despite the lack of an explicit
defect screening mechanism) vortices and antivortices in a
quantum order parameter can induce buckling of a superfluid

layer into a conical singularity of negative Gaussian curvature,
independently of the sign of the defect charge; see Figs. 1(c)
and 1(d). Previous studies of the energetics of topological
defects on rigid surfaces [10,15] do not allow us to deduce
if and how a soft substrate will deform in the presence of
defects. In order to assess under what conditions buckling
occurs and what the resulting shape is, we perform a detailed
variational analysis to minimize both the in-plane and bending
energies, and propose an experimental realization of this
quantum buckling effect.

Consider for simplicity a flexible freestanding layer of
superfluid. If surface tension can be ignored, the total energy
functional H is given by the sum of the bending energy Hκ ,

Hκ = κ

2

∫
d2u

√
g M2(u), (1)

and the condensate kinetic energy Hv ,

Hv = K

2

∫
d2u

√
g gαβ ∂αθ (u) ∂βθ (u). (2)

Here, u = {u1,u2} is a set of two-dimensional coordinates
specifying positions R(u) in the plane of the surface, gαβ =
∂αR · ∂βR and g = det(gαβ) denote the metric tensor and its
determinant, M(u) is the mean curvature [26], κ is the bending
rigidity, K = ρsh̄

2/2m2
s is the superfluid stiffness constant

given in terms of the atomic mass ms and density ρs of the
superfluid, and ∂αθ (u) gives the local superfluid velocity.

In order to grasp intuitively the origin of the quantum
buckling instability, consider Eq. (2) for the case of an isolated
vortex of topological charge q = ±1 at the tip of a conical
singularity: an azimuthally symmetric surface denoted by
a height function (out of plane shift) h(ρ,φ) = mρ, where
we have used 2D polar coordinates u = {ρ,φ}. Note that
the Gaussian curvature for this surface is a delta function
that vanishes everywhere except at the tip of the cone. Due
to the azimuthal symmetry, we expect the elastic variable
θ = qφ to retain its flat space form, so that ∇θ = q

ρ
êφ ,

where êφ is the angular unit vector in polar coordinates. With
the metric expressed in terms of the slant length of the cone
l = √

1 + m2ρ, we can evaluate Eq. (2) to obtain

Ev = πKq2
√

1 + m2 ln

(
R

a0

)
, (3)
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FIG. 1. (Color online) Illustrative plots for surface buckling
corresponding to (a) positive disclination, (b) negative disclination,
(c) vortex, and (d) antivortex. Positive (negative) topological defects
are shown with red (yellow) dots, where a positive (negative)
disclination is screened by a surface with positive (negative) Gaussian
curvature in the top row, while a vortex (antivortex) buckles the
underlying metric into a negative Gaussian curvature surface in the
bottom row.

where, a0 is a microscopic cutoff length (of the order of the
vortex core radius) and R � a0 is the size of the membrane.
We see that the energy required for the vortex (antivortex) to
occupy the tip of a conical singularity is always greater than
its flat-space counterpart by a positive definite factor

√
1 + m2

in Eq. (3). The comparison is meaningful in our assumed limit
R → ∞ where one does not need to worry about measuring
the size of the cone along itself or on its base. This simple
calculation demonstrates that it is not energetically favorable
for the vortex to buckle the substrate into a surface with a
positive delta Gaussian curvature [the positive definite bending
energy in Eq. (1) only adds an extra penalty].

Contrast the result obtained in Eq. (3) with the correspond-
ing one for a liquid-crystal membrane. In the liquid-crystal
case, the order parameter θ describes the orientation of a vector,
not the (scalar) phase of a wave function. This distinction
implies that the elastic variable θ must explicitly couple with
the underlying curvature and thus each instance of ∂αθ in
Eq. (2) appears in the form ∂αθ − Aα , where the connection
Aα is a geometric gauge field whose curl equals the Gaussian
curvature [26]. As a result of this difference, the leading order
correction in m appears with a minus sign in Eq. (3) and
it can be sufficiently large to overcome the bending energy
cost [23,24]. This is the mathematical mechanism responsible
for the classical buckling of liquid-crystal as well as crystalline
membranes: The geometric gauge field couples elastic defects
to Gaussian curvature via cross terms in (∂αθ − Aα)2, thereby
providing a direct mechanism for screening the defect charge.

Can there be buckling in the absence of a geometric
gauge field? In order to answer this question, we take a
more systematic and versatile approach to track the curvature
correction estimated in Eq. (3). For general surfaces, the vortex
self-energy is the sum two contributions, Ev = Ef + Es ,
where Ef is the flat-space energy of the vortex and Es =
−Kq2V (u) is expressed in terms of the geometric potential

V (u) that satisfies a covariant form of Poisson’s equation:

DαDαV (u) = G(u). (4)

Here, the negative of the Gaussian curvature G(u) plays a
role analogous to the electrostatic charge density [10,11]. The
geometric potential in Eq. (4) arises from evaluating with
conformal mappings the Green’s function of two-dimensional
electrostatics on a curved surface. Note, however, that the
domain of integration in Eq. (2) must be punctured around
the defect cores which introduces a small length of order a0

that breaks the conformal invariance of the Hamiltonian and
generates the additional coupling V (u) between vortices and
curvature. This contribution is an example of a conformal
anomaly because it is independent of the length a0 responsible
for breaking the conformal symmetry [31].

Equation (4) can be readily solved for a family of surfaces
whose height function is described by h(ρ,φ) = ρf (φ). The
geometric potential for a singular distribution of Gaussian
curvature reads

V (ρ) = −2πs�(ρ + a0,ρ), (5)

where the integrated Gaussian curvature s can be obtained
using the Gauss-Bonnet theorem [23],

s = 1 − 1

2π

∫ 2π

0
dφ

[1 + f
′2(φ) − f (φ)f ′′(φ)]

[1 + f
′2(φ) + f 2(φ)]1/2[1 + f

′2(φ)]
,

and the Green’s function � evaluated at the core of the defect
takes the form �(ρ + a0,ρ) = limρ→a0 −A(ln ρ

a0
− ln R

a0
) =

A ln R
a0

[32]. The coefficient A is then given by [23]

A =
[ ∫ 2π

0
dφ

1 + f
′2(φ)

[1 + f 2(φ) + f
′2(φ)]1/2

]−1

. (6)

Here, primes denote derivatives with respect to φ. Adding the
flat-space energy Ef = πKq2 ln R

a0
to the self-energy Es =

−πKq2V = 2π2Kq2As ln R
a0

, we obtain the total vortex
energy for a singular distribution of Gaussian curvature

Ev = πKq2(1 + 2πAs) ln

(
R

a0

)
. (7)

As a check, upon evaluating Eq. (7) for a simple cone
(positive delta Gaussian curvature) described by f (φ) =
m, A =

√
1+m2

2π
, and s = 1 − 1√

1+m2 , we recover the result
obtained in Eq. (3).

Next, consider a saddle: a surface with negative delta
Gaussian curvature. We take the simplest surface described
by a height function, h(ρ,φ) = mρ cos(2φ). The derivation
for the total vortex energy proceeds exactly as outlined above,
substituting for f (φ) = mcos(2φ) into the general expressions
obtained in Eqs. (6) and (7). Further, the bending energy can be
evaluated from Eq. (1) where, for our assumed height function,
the mean curvature takes the form [24]

M = [1 + f 2(φ)][f (φ) + f ′′(φ)]

2ρ[1 + f 2(φ) + f ′2(φ)]3/2
. (8)

Since this surface is not azimuthally symmetric, the
resultant expressions can only be expressed as integrals over φ.
However, restricting ourselves to small deviation from flatness,
i.e., m < 1, we can expand Hκ , A, and s in a perturbation
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FIG. 2. (Color online) Normalized energy E(m) = E/

[(πK ln( R

a0
)] as a function of parameter m2 for r = 4

3 rc (small

dots black), r = rc (solid line black), r = 3
4 rc (solid red), r = 1

2 rc

(dash-dot green), and r = 2
5 rc (dot blue), where rc ∼ 0.17 is the

critical ratio of bending rigidity κ to superfluid stiffness K , below
which the substrate can buckle. For r < rc, the normalized energy
curves show a minima below 1 (top). Bottom plot shows E(m∗) as a
function of r also for the saddle surface, where m∗ is the value of m for
which E(m) has a minimum. The plateau for r > rc = 0.17 shows that
the substrate cannot buckle for a ratio higher than the critical value.

series in m and integrate the resulting expressions to obtain
the following form, correct to order O(m2), for the combined
bending and vortex energies:

E = πKq2

[
1 +

(
9

2
r − 3

4

)
m2 + O(m4)

]
ln

(
R

a0

)
. (9)

Here, we have introduced a dimensionless parameter r = κ
K

that serves to quantify the competition between the condensate
kinetic energy and bending energy. Inspection of Eq. (9)
reveals a critical rc ∼ 1

6 , below which the total energy of
the buckled substrate (m 	= 0) is less than its flat counterpart
(m = 0). Further, due to the quadratic dependence on defect
charge q, this result is independent of the sign of the vortex
defect. Hence both vortices and antivortices will distort the
underlying metric into a saddle shape.

In order to determine the shape of the buckled substrate, we
expand the total energy E in Eq. (9) to order O(m6) and find
m∗ corresponding to its minimum. In Fig. 2, we plot the total
energy E so obtained, normalized by πK ln ( R

a0
), against the

parameter m for different choices of r . As the ratio is decreased
below the critical value rc = 0.17, the energy (corresponding
to red, green, and blue curves) has a minimum at m∗ indicating
that buckling of the underlying substrate into a saddle shape is
energetically favorable.

We next test the validity of our ansatz for the shape of the
buckled substrate by expressing the height function h(ρ,φ) =
ρ

∑
i [ai cos(2iφ) + bi sin(2iφ)], in the form of a truncated

Fourier series. Thus, we numerically seek the coefficients

{ai,bi} that minimize the total Hamiltonians appearing in
Eqs. (1) and (2) by approximating integrals with finite
sums. Note that the height function used in the perturbation
expansion method corresponds to retaining just the first term
a1 in this series. The lower panel in Fig. 2 shows the energy so
obtained as a function of r , where we have used the notation
E(m∗) to denote the energy obtained by solving for the Fourier
coefficients that minimize the Hamiltonians even if we are
using more than one term in the Fourier series expansion.
Above rc, the total energy remains constant, indicating that for
a large ratio there is no choice of coefficients that minimizes the
total energy and, therefore, buckling is not favorable. However,
below rc, the total energy decreases as r is reduced, thus
confirming for both a vortex and an antivortex the buckling
of the underlying substrate into a saddle with the dominant
contribution to the energy coming from only the first term in
the Fourier series, in agreement with our analytical ansatz.

Although classical screening of defects by curvature of
matching sign is absent for the condensate, inspection of
Eq. (9) suggests that the reduced vortex energy E (dressed
by bending contributions) can lower the critical temperature
Tc for the Kosterlitz-Thouless transition on a flexible substrate.
This is apparent from estimating Tc by balancing the vortex
energy with its entropy S [27]. For a two-dimensional substrate
of size R, the number of possible positions of a vortex is
still proportional to ( R

a0
)2, as in flat space. Any geometric

corrections are subleading in the limit of a large system size
and one recovers the familiar result S ≈ kB ln( R

a0
)2, where kB

is the Boltzmann constant. By contrast, the deformation of
the underlying metric (m 	= 0) changes the prefactor of the
logarithmic divergence of the energy E in Eq. (9). At the
transition, the free energy F = E − TcS vanishes, leading to a
reduced critical temperature Tc = E

2kB ln(R/a0) . For instance, if the
bending rigidity is below the critical value so that r = 1

2 rc, we
can read off from the inset of Fig. 2 the corresponding shape
of the saddle m2 ∼ 0.21 yielding Tc ∼ 0.47K

πkB
, whereas for a flat

substrate with m = 0, the corresponding temperature will be
Tc ∼ 0.50K

πkB
, with K/kB of the order of 40 K for a superfluid film

of thickness around 100 Å.
As an experimental realization, consider a thin layer of

superfluid helium on a cesium-coated surface with a circular
orifice of radius R. The choice of cesium ensures that the
interaction with the substrate is such that the layer can be
freely suspended on the orifice [28]. The gravitational energy
gR3ρs is then negligible compared to the characteristic energy
K driving the quantum buckling, provided that the orifice is
engineered on submicron scales.

To conclude, we have demonstrated how in-plane quantum
order can deform a soft substrate and induce buckling
of a vortex even in the absence of screening between its
topological charge and curvature. Possibilities for future
work could include studying the effect of multiple interacting
defects and the resultant formation of ripples on freestanding
membranes [29,30].
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