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ABSTRACT: We theoretically predict the local density of
nucleosomes on DNA brushes in a solution of molecules,
which are necessary for transcription and the assembly of
nucleosomes. Our theory predicts that in a confined space,
DNA brushes show phase separation, where a region of
relatively large nucleosomal occupancy coexists with a region
of smaller nucleosomal occupancy. This phase separation is
driven by an instability arising from the fact that the rate of
transcription increases as the nucleosomal occupancy
decreases due to the excluded volume interactions between
nucleosomes and RNA polymerase during thermal diffusion
and, in turn, nucleosomes are (in some cases) desorbed from DNA when RNA polymerase collides with nucleosomes during
transcription. The miscibility phase diagram shows critical points, which are sensitive to the rate constants involved in
transcription, the changes of interactions of DNA chain segments by assembling nucleosomes, and pressures that are applied to
the brushes.

1. INTRODUCTION
The DNA of eukaryotic cells is folded into compact chromatin
structures to fit the size of their nuclei.1 The repeating unit of
chromatin is the nucleosome, where DNA is wrapped around
an octamer of histone proteins, in some cases guided by
chaperons. The first step to express genetic information that is
encoded in the sequence of nucleotides along DNA is
transcription, by which the complementary sequence of RNA
is synthesized by enzymes called RNA polymerase (RNAP).
The rate of transcription of each gene decreases as the local
packing density of nucleosomes at the corresponding sequence
of DNA increases.
Recent experiments have shown that chromatin of

embryonic stem (ES) cells displays fluctuations of the local
nucleosome concentration over relatively long time (∼ min)
and length scales (∼ μm), analogous to critical fluctuations.2 In
contrast, differentiated cells show more static structures, where
regions of relatively large local concentrations of nucleosomes
(heterochromatin) coexist with regions of relatively low local
concentrations of nucleosomes (euchromatin), analogous to
two-phase coexistent states. Because the transcription rate of
each gene depends on the local concentrations of nucleosomes
along the corresponding DNA stretch, the critical fluctuations
of chromatin structures may play an important role in
maintaining the pluripotency of ES cells. Moreover, the
processes of phase separation during differentiation may be
relevant to the lineage determination.
In the usual case of phase separation, critical fluctuations are

driven by attractive interactions between molecules and
random forces.3 Nucleosomes (which have net negative
charges) show attractive interactions via histone tails (which

have net positive charges), depending on the salt concen-
tration.4−7 At first glance, one may think that thermal
fluctuations may play a role in random forces that destabilize
the condensation of nucleosomes. However, nucleosomes are
very stable structures that are rarely dissociated (in the sense
that all their histone proteins are desorbed from DNA) by
thermal fluctuations.8 Moreover, the thermal diffusion of
nucleosomes along DNA is very slow, typically on the time
scale of minutes to hours, even when the diffusion is not
impeded by attractive interactions between nucleosomes.8−10 It
is thus of interest to theoretically predict random forces that
destabilize the condensed state of nucleosomes in stem cells.
Experiments have shown that, in some cases, histone proteins

are desorbed from DNA when RNAP collides with
nucleosomes during transcription.11,12 The collision between
RNAP and nucleosomes may thus play a role in random forces
that destabilize the condensed state of nucleosomes; the rate of
transcription depends on the local concentrations of
nuclesomes and transcription, in turn, remodels the structure
of chromatin. The instability arising from this positive feedback
may drive the critical fluctuations and the phase separation,
which may be relevant to the dynamics of the chromatin
structures of stem cells during development. The objective of
this paper is to present a proof of this concept by using a simple
system.
DNA brushes, in which DNA is end-grafted to a solid

surface, are simple synthetic systems that enable us to measure
the transcription rate while quantitatively changing the local
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packing density of DNA.13−17 When a DNA brush is set in a
(dilute) solution of molecules that are necessary for tran-
scription (such as RNAP) and the assembly of nucleosomes
(such as histone proteins), one can also quantitatively control
the local concentration of nucleosomes via the grafting density
of DNA, the concentration of histone proteins in the solution,
etc.
In this paper, we theoretically predict that DNA brushes

show phase separation, where regions of relatively large local
concentrations of nucleosomes coexist with regions of smaller
concentrations of nucleosomes, when these brushes are
confined (and thus the number of RNAP and histone proteins
is fixed). This phase separation is driven by the instability
arising from the fact that the transcription rate increases as the
local concentrations of nucleosomes decreases (due to the
excluded volume interactions between nucleosomes and RNAP
during passive diffusion), and, in turn, the local concentrations
of nucleosomes decreases as transcription rate increases (due to
the collision between elongating RNAP and nucleosomes
during transcription). Our theory also predicts that the critical
point is sensitive to the rate constants involved in transcription,
to the changes of interactions (from repulsive to attractive)
between DNA chain segments by assembling nucleosomes, and
to pressure that is applied to the brushes.

2. MODEL
2.1. Chromatin Brush. We take into account the dynamics

of the assembly of nucleosomes and the desorption of their
histone proteins from DNA chains in an extension of the model
that has been used in ref 17. More formal treatment is shown in
section S1 in the Supporting Information (SI). We treat a DNA
brush, where DNA chains are end-grafted to a solid surface with
grafting density σ (see Figure 1). Each DNA chain is composed

of N0 Kuhn segments of length leff. The DNA brush is in a
solution containing RNAPs and histones (and other small
molecules that are necessary for transcription and the assembly
of nucleosomes). Without changing the physics, we assume that
each Kuhn segment has one binding site, which can be
occupied by either a nucleosome or an RNAP, although, in

reality, a Kuhn length of unoccupied DNA is 100 nm (∼294
bp) at physiological salt concentration and is long enough to
accommodate two nucleosomes, where DNA of length 147 bp
(∼50 nm) is the wrapping length per nucleosome. A
nucleosome is a disk-shaped complex of diameter 10 nm and
height 6 nm, and DNA wraps around it by 1.65 turns.18,19 The
length leff of a Kuhn segment thus depends on whether this
segment is occupied by a nucleosome or not (see also the
treatment below eq 13).
We here treat a brush of DNA chains that are much longer

than the Kuhn length of DNA, and the negative charges of
these DNA chains are almost fully neutralized by salt in the
solution.6,7,16,20 Although the distribution of DNA chain
segments in DNA brushes has not been fully resolved,16,17

we here use the Alexander approximation, which assumes that
the local concentration of Kuhn segments is uniform in the
brush region.21 This treatment highlights the roles played by
transcription for chromatin structures, rather than the details of
brush models. With this approximation, the free ends of the
DNA chains in the brush are located at the top of the brush and
the grafted ends of the DNA chains are located at the bottom of
the brush. For simplicity, we treat a DNA brush, where each of
constituent DNA chains has a promoter at its free end and a
terminator at its grafted end. The promoter and terminator
regions are not occupied by nucleosomes due to their specific
sequences (there is indeed nucleosome depletion at the
transcription start and end sites22). We use the Cartesian
coordinate system, where z is the distance from the solid
surface (see Figure 1). An estimate of the orders of magnitude
of parameters used in our theory are shown in Table 1.

2.2. Unidirectional Motion of RNAP during Tran-
scription. Transcription is initiated when an RNAP binds to a
noncoding DNA sequence, called the promoter, by specific
interactions and changes its conformation. The enzyme then
moves unidirectionally toward another noncoding sequence,
called the terminator, base-by-base, while synthesizing a chain
of RNA. When the RNAP reaches the terminator, it is released

Figure 1. A model of a DNA brush, to which a pressure Πapp is applied
by pushing it against another brush. The space between the DNA
chains of the two brushes is filled with a solution that includes RNAP
(shown by spheres), histone proteins (shown by cylinders), and other
molecules that are necessary for transcription and the assembly of
nucleosomes.

Table 1. Orders of Magnitude of Parameters That Are Used
in Our Theory Estimated for Physiologically Relevant Salt
Concentrationa

symbol physical meaning
orders of
magnitude

won second virial coefficient for interactions between
nucleosomes

−1 × 106 nm3

woff second virial coefficient for interactions between
vacant DNA

3 × 104 nm3

la Kuhn length of vacant DNA 100 nm
γ Kuhn length change by nucleosomal assembly 0.9
kon
his rate constant of nucleosomal assembly 6.0 × 103

M−1 s−1

aThe value of won that is predicted by using molecular dynamics
simulations for a physiological salt concentration is shown here.4 An
experiment has determined a much smaller value −1.5 × 103 nm3, but
for a relatively small salt concentration 75 mM.6 The dimension of a
DNA chain segment (the Kuhn lengh la is 100 nm and the diameter d
is 2 nm) is used to estimate the value of woff. It is in agreement with an
experimentally determined value 1 × 104 nm3 for the salt
concentration 100 mM.23 For a more precise estimate, one should
take into account the fact that a Kuhn segment can accommodate a
maximum of two nucleosomes. The rate constant kon

his for cases in
which the assembly of nucleosomes is guided by NAP1 chaperon is
shown.24
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from the DNA. We here treat the unidirectional motion of
RNAP along the DNA of the brush in a steady state.
For cases in which the occupancy of RNAP on DNA chain

segments is relatively small (and thus the RNAPs do not
produce a traffic jam on the DNA chains), the binding rate Rp
of RNAP to the promoter of a DNA chain (due to specific
interactions) has the form

λρ=R h( )p
rnp

(1)

The rate constant λ accounts for the binding of RNAP to the
promoter. ρ(z) is the local concentration of RNAP in the
solution of the brush region (which is derived by using eq 7
shown later), and h is the height of the brush (see Figure 1).
We neglected the desorption rate of RNAP from the promoters
because RNAP firmly grips DNA chains once it changes its
conformation.
In a steady state, the elongation rate jrnp, with which RNAP

unidirectionally moves from one binding site to the next along
a DNA chain, does not depend on the position of the binding
site. The elongation rate jrnp at a binding site has the form

ξ= −j n n(1 )e
rnp

rnp his (2)

where ξ is the rate constant that accounts for the unidirectional
motion of RNAP from a binding site to the next. The rate
constant ξ is (the ensemble average of) the inverse of the total
time, with which an RNAP moves by a Kuhn length (∼294 bp),
and we thus assume that this rate constant does not depend on
the position of the binding site along a DNA chain. nrnp is the
occupancy of RNAP at the binding site and nhis is the
occupancy of nucleosomes at the next binding site. The
occupancies, nhis and nrnp, do not depend on the position of the
binding site either (except for the promoter and terminator
sites) due to the Alexander approximation (see also eq 11). The
factor 1 − nhis in eq 2 thus represents the fact that the motion
of RNAP is suppressed when the next site is occupied by a
nucleosome. RNAP is a processive motor, and thus once RNAP
binds to the promoter, it does not desorb from the DNA chain
before it reaches the terminator.
The desorption rate Rt of RNAP from the terminator of a

DNA chain has the form

=R k n s( )t
rnp

t rnp t (3)

where kt is the rate constant that accounts for the release of
RNAP from the terminator and nrnp(st) is the occupancy of
RNAP at the terminator. The continuity of the fluxes of RNAP
along DNA chains leads to the form

= =R j Rp
rnp

e
rnp

t
rnp

(4)

2.3. Diffusion of RNA Polymerase in Solution. To the
solution in the brush region, the terminators and promoters act
as the sources and sinks of RNAP, respectively. RNAP is
released at the bottom of the brush (where the terminator
regions are located) with rate σRt

rnp (per unit area) and
adsorbed at the top of the brush (where the promoter regions
are located) with the same rate σRp

rnp (per unit area) (see
Section 2.2). The gradient of RNAP concentration is thus
generated by the unidirectional motion of RNAP during
transcription.13,14,17

The fluxes of RNAP arising from the concentration gradient
has the form

ρ ρ= − ∂
∂

+ ∂
∂

Φ
⎡
⎣⎢

⎤
⎦⎥J D

z
z v z

z
z( ) ( ) ( )rnp rnp on (5)

where the first term is the flux due to the thermal diffusion and
the second term is the flux due to the nonspecific interactions
between nucleosomes and RNAP. The derivation of eq 5 is
shown in section S2 of the SI. Drnp is the diffusion constant of
RNAP. Φon(z) is the local concentrations of nucleosomes, and
v is the second virial coefficient that accounts for the
nonspecific interactions between nucleosomes and RNAP in
the solution. Without changing the physics, we neglect the
nonspecific interactions between RNAP and vacant DNA chain
segments (that are not occupied by either RNAP or
nucleosomes) in the solution. We treat cases in which the
local concentration of RNAP in the solution of the brush region
is small and thus the (RNAP)−(RNAP) interactions and the
(RNAP)−(histone) interactions are negligible. Here and after,
we write nonspecific interactions between component A and B
as (A)−(B) interactions, for simplicity. The fluxes Jrnp are
constant in the brush (except for the top and bottom of the
brush, where the promoter and terminator regions are located).
Because RNAP does not penetrate the solid surface, the

fluxes of RNAP are zero at the bottom of the brush. This leads
to the fact that the fluxes Jrnp of RNAP in the solution are equal
to the releasing rate of RNAP at the bottom of the brush,

σ=J Rrnp t
rnp

(6)

The (net) fluxes Jrnp of RNAP are also zero at the top of the
brush because the number of RNAP in the brush region is
constant in steady states. It is consistent with the fact that the
fluxes Jrnp of RNAP in the solution are equal to the adsorbing
rate of RNAP (per unit area) at the top of the brush (see eqs 4
and 6). With the local equilibrium approximation, chemical
potentials are continuous across the interface between the bulk
solution and the solution in the brush region. This leads to the
local concentration of RNAP at the top of the brush in the form

ρ ρ= − Φh( ) e v h
0

( )on (7)

The derivation of eq 7 is shown in section S2 in the SI. With eq
7, we assume that although the promoters of DNA chains are
located at their free ends, the local concentration Φon(h) of
RNAP at the vicinity of the promoters is smaller than the
concentration of the bulk solution due to the excluded volume
interactions between RNAP and nucleosomes. Experimentally,
this may be effective for the cases that there is a small distance
between the free ends of DNA chains and their promoter
regions.
Because DNA chain segments are uniformly distributed in

the DNA brush, the local concentrations of nucleosomes and
vacant DNA chain segments in the solution of the brush region
have the forms

σ
Φ =z

N
h

n( )on
0

his (8)

σ
Φ = −z

N
h

n( ) (1 )off
0

his (9)

respectively. The interactions between RNAP and nucleosomes
thus do not drive the fluxes of RNAP (see eq 5), and the local
concentrations of RNAP in the brush region depend on the
local concentrations Φon of nucleosomes only via the boundary
condition (eq 7). With this boundary condition, the local
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concentration of RNAP in the solution of the brush region has
the form

ρ ρ λσ= + −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥z h

D
h z( ) ( ) 1 ( )

rnp (10)

2.4. Assembly and Disassembly of Nucleosomes. In a
steady state, the assembling rate of nucleosomes to a binding
site of a DNA chain is equal to the desorption rate of the
histone proteins of nucleosomes at the binding site. This
equality reads

ζ− − =k c n n n(1 ) 0on
his

his rnp his (11)

The first term of eq 11 is the assembling rate of nucleosomes,
and kon

his is the rate constant that accounts for this process. c is
the local concentration of histone proteins in the solution in the
brush region at the position of the binding site. The second
term of eq 11 represents the fact that histone proteins are
desorbed from DNA when RNAP collides with nucleosomes
during transcription, and ζ is the rate constant that accounts for
this process. With eq 11, we neglected the spontaneous
desorption of nucleosomes from DNA due to thermal
excitation because it is a very slow process; relatively large
free energy costs (>15 kBT) are necessary to desorb
nucleosomes even when the dissociation is not suppressed by
the attractive interactions between nucleosomes.8

In contrast to RNAP, histone proteins do not show
unidirectional motion along a DNA chain and thus histone
proteins are distributed uniformly in the solution of the brush
region (in principle, one can think of a process, where RNAP
pushes nucleosomes forward during a transcription,25 but we
do not treat this process in this paper). The size of histone
proteins is much smaller than the size of RNAP,11 and we thus
neglect the (histone)−(nucleosome) interactions and the
(histone)−(vacant DNA segment) interactions, for simplicity.
We treat the cases that the local concentration of histone
proteins in the solution of the brush region is relatively small,
where the (histone)−(histone) interactions and the (RNAP)−
(histone) interactions are negligible. With this approximation,
the concentration c of histone proteins in the solution of the
brush region is equal to the concentration c0 of these proteins
in the bulk solution.
We neglected a couple of molecular details involved in the

assembly of nucleosomes: (i) the fact that nucleosomes are
assembled from eight histone proteins (and thus the assembly
rate is ∼ c0

8 in a more precise treatment), (ii) the specific
chemistry of four types of core histone proteins (H2A, H2B,
H3, and H4), and (iii) the fact that the assembly of
nucleosomes is guided by chaperones. With the treatment
(ii), four different types of histone proteins are treated as one
type of molecule via the parameter c0 for the cases that the
solution includes H2A, H2B, H3, and H4 with equal
concentrations.
2.5. Force Balance Equation of a Chromatin Brush. For

the cases that the dynamics of the conformation of DNA chains
is faster than the other processes, the height h of a DNA brush
is derived by minimizing the free energy (per unit area) that has
the form

= + + Πf f f hpol int app (12)

with respect to the brush height h. f pol is the free energy due to
the entropic elasticity of DNA chains, f int is the free energy due

to nonspecific interactions, and the third term is the work done
by an applied pressure Πapp. In this paper, we treat two cases:
(i) a DNA brush alone in a solution, Πapp = 0, and (ii) a DNA
brush pushed against another DNA brush with applied
pressures Πapp (>0) (see Figure 1). In the case (ii), the
functional form of the free energy for the two brushes is
identical (although the values of the free energy may be
different in some cases) and thus the free energy of the system
is the sum of the free energies of the two brushes.
The free energy f pol due to the entropic elasticity of DNA

chains has the form

σ=
f

T
h

N l
3
2

pol
2

0 eff
2

(13)

where T is the absolute temperature in units of the Boltzmann
constant. We use the form leff = la(1 − γnhis) to treat the
effective length leff of chain segments, where the constant γ > 0
accounts for the fact that the length of DNA chain segments
becomes shorter when they are reeled around histone proteins.
The free energy f int due to nonspecific interactions has the

form

∫

∫

= Φ + Φ Φ

+ Φ + Φ

⎡
⎣⎢

⎤
⎦⎥

f

T
z w z w z z

w z u z z

d
1
2

( ) ( ) ( )

1
2

( )
1
3

d ( )

int
on on

2
int on off

off off
2

on
3

(14)

The second virial coefficients won, wint, and woff account for the
(nucleosome)−(nucleosome) interactions, the (nucleosome)−
(vacant DNA segment) interactions, and the (vacant DNA
segment)−(vacant DNA segment) interactions, respectively;
the interactions between DNA chain segments change from
repulsive to attractive when nucleosomes are assembled at the
DNA chain segments4−6 (see also Table 1). u is the third virial
coefficient that accounts for the three-body interactions
between nucleosomes. Here we treat the cases in which the
local concentrations of RNAP and histone are relatively small in
the solution of the brush region and thus neglected the
interactions between these proteins and DNA chain segments.
For simplicity, we do not explicitly treat the fact that
nucleosomes, due to their attractive interactions, assemble
into chromatin fibers.
Minimizing the free energy, eq 12, with respect to the brush

height h leads to the force balance equation that has the form

σ σ

σ

−
Π

= − − −

−

+ −T
h

N l
w N

h
n n n n

u
N

h

3
2

( )( )

2
3

app

0 eff
2

2
0
2

2 his his

3
0
3

3 (15)

w i t h w = w o n + w o f f − 2 w i n t a n d

= − ± −±n w w w w w w( )/off int int
2

on off . We derived the third
term of eq 15 by using the fact that this term is only significant
for nhis ≃ 1. The first and second terms of eq 15 are the
contributions of the entropic elasticity and the two-body
interactions between DNA chain segments to the osmotic
pressure of the brush. These terms define the scales of the
height and osmotic pressure of the Alexander brush in the
forms
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σ=
⎛
⎝⎜

⎞
⎠⎟h N l

w
l6Alx 0 a
a

1/3

(16)

σΠ = T
N l

h
3

Alx
0 a

Alx
(17)

where hAlx is the height of the Alexander brush and ΠAlx is the
applied pressure to compress the brush by ∼1/4 of the height
hAlx.
2.6. Nucleosomal Occuapncy in a Steady State. Solving

eqs 4 and 11 leads to the occupancies, nrnp and nhis, in the forms

λρ
ξ η

= + +
⎛
⎝⎜

⎞
⎠⎟n

h( )
2

1 1
4

rnp
(18)

η
η η

= + − +
⎛
⎝⎜

⎞
⎠⎟n

1
2

1
2

1
4

his
(19)

with

η λρ ζ
ξ

= h
k c

( )

on
his

0 (20)

The local concentration ρ(h) of RNAP at the positions of the
promoters depends on the occupancy nhis of nucleosomes and
the height h of the brush (see eq 7). We first derive the brush
height as a function of the occupancy nhis by using eq 15. By
using this function, eq 19 is now a self-consistent equation only
of the occupancy nhis of nucleosomes. This self-consistent
equation has maximal three solutions, and the stability of these
solutions is analyzed by the linear stability analysis (see section
S3 in the SI). We use the self-consistent equation to derive the
occupancy nhis of nucleosomes as functions of the rate constants
that are relevant to transcription, the extent of the changes of
interactions between DNA chain segments by assembling
nucleosomes, and applied pressures.

3. RESULTS
3.1. A DNA Brush in a Bulk Solution. We first treat cases

in which a DNA brush is alone in a bulk solution, Πapp = 0. This
solution plays the role of the reservoir of RNAP and histone
proteins (and other molecules that are necessary for tran-
scription and the assembly of nucleosomes).
When the concentration ρ0 of RNAP in the bulk solution is

very small, DNA chains in the brush are fully occupied by
nucleosomes and the brush is collapsed (see Figure 2). For the
cases that the parameter n− (which is the combination of the
second virial coefficients; see below eq 15) is smaller than a
critical value n−

c , the occupancy nhis of nucleosomes decreases
only slightly with increasing the rescaled rate constant η0 (≡
λρ0ζ/(kon

hisc0ξ)) that is relevant to transcription until this
rescaled rate constant becomes larger than a threshold value
η0th (see the red curve in Figure 2 a). At the threshold value η0th
of the rescaled rate constant, the occupancy nhis jumps to a
smaller value, and the brush height h jumps to a larger value.
This jump is analogous to first order phase transitions. For
larger values of the rescaled rate constant η0, the occupancy nhis
decreases continuously with increasing the constant η0.
The binding transition is driven by an instability arising from

two types of interactions between nucleosomes and RNAP: (1)
The local concentrations of nucleosomes decrease as the
transcription rate increases because histone proteins are
desorbed from DNA chains due to the collision between

nucleosomes and RNAP during transcription. (2) In turn, as
the local concentrations of nucleosomes decrease, the excluded
volume interactions between nucleosomes and RNAP in the
solution decrease and thus RNA polymerase is recruited to the
brush region; this increases the transcription rate in the DNA
brush.
The jump of the nucleosomal occupancy at the threshold

rate constant ηth decreases with increasing the combination n−
of the second virial coefficients, and eventually, the binding
transition becomes continuous for n− = n−

c , (see the black curve
in Figure 2). The continuous binding transition is analogous to
second-order phase transitions. For larger values of the
parameter n−, the nucleosomal occupany decreases continu-
ously with increasing the rescaled rate constant η0, and the
DNA brush does not show binding transitions (see the blue
curve in Figure 2). The nature of the binding transition is thus
sensitive to the rescaled rate constant η0 and the combination
n− of the second virial coefficients.

3.2. Binding Transitions Driven by Applied Pressures.
The brush height h jumps at the binding transitions (see Figure
2b). This implies that binding transitions may also be driven by
applying pressures to a DNA brush. Here we treat the case that
a pressure is applied to a DNA brush by pushing it against
another DNA brush.
When the rescaled rate constant η0 is larger than a critical

value η0c, the height of the brush shows a jump to a smaller
value at a threshold pressure (see the magenta and cyan curves
in Figure 3b). The occupancy nhis of nucleosomes also shows a
jump at the threshold pressure (see the magenta and cyan
curves in Figure 3a). The transition of the brush height is thus
driven by the instability arising from the two types of the

Figure 2. (a) The occupancy nhis of nucleosomes and (b) the rescaled
height h/hAlx of a DNA brush in the bulk solution is shown as
functions of the rescaled rate constant η0 (≡ λρ0ζ/(kon

hisc0ξ)) for the
cases that the values of the combination n− of the second virial
coefficients (defined below eq 15) are 0.975 (red), 0.983363 (black),
and 0.995 (blue). The values of parameters that are used for the
calculations are n+ = 1.8, γ = 0.7, vσN0/hAlx = 0.8, and 4uσN0/(3whAlx)
= 2.0 × 10−3. hAlx is the length scale of the brush height, which is
defined by eq 16.
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interactions between nucleosomes and RNAP, analogous to the
cases shown in section 3.1. The jump of the brush height
decreases with decreasing the rescaled rate constant η0, and, at
the critical rescaled rate constant η0c, the transition of the brush
height becomes a continuous transition, analogous to the
second order phase transitions (see the black curve in Figure
3). For smaller values of the rescaled rate constant, the brush
height decreases continuously with increasing applied pressures
without showing binding transitions. These results are
summarized in a phase diagram (see Figure 4).
3.3. Phase Separation of Chromatin Brushes. Thus, far,

we have treated the binding transitions of chromatin brushes in
the bulk solutions, which serve as the reservoir of RNAP and
histone proteins. In a biological system, DNA chains, RNAP,
and histone proteins are confined in the interior of a nucleus
and thus the number of RNAP and histone proteins is fixed.
Because of the confinement, chromatin in a nucleus may show
phase separation, where collapsed chromatin regions of
relatively large nucleosomal occupancy coexists with expanded
chromatin regions of smaller nucleosomal occupancy. Here we
treat the cases that RNAP and histone proteins are confined in
a finite space with two interacting DNA brushes, analogous to
the situation of chromatin in a nucleus. We assume that other
small molecules that are necessary for transcription and the
assembly of nucleosomes are abundant in the system. In an
experiment on a synthetic system, ribonuclease may be
necessary to keep the concentration of NTP constant and
suppress the side-effects arising from the RNA products.

In contrast to the usual cases of the phase separation of
(chemically end-grafted) multicomponent polymer
brushes,26−30 in principle, DNA brushes can show macroscopic
(lateral) phase separation because the occupancy of nucleo-
somes is not constrained by the fact that DNA chains are end-
grafted to a surface. In this section, we thus predict the
macroscopic phase separation of DNA brushes. The possibility
of microphase separation and the patterns of domains due to
the phase separation will be discussed in section 4.
The chemical potentials, μrnp and μhis, of RNAP and histone

proteins are continuous across the top of the two brushes.
These chemical potentials are the Lagrange multipliers that
ensure that the number of RNAP and histone proteins that are
initially included in the system is constant. For simplicity, we
here use these chemical potentials to represent the initial
number of RNAP and histone proteins, although it is somewhat
indirect. The spinodal curves are derived by using the
condition, at which two branches of the solutions show
instability (see section S3 in the SI for the details of the
derivation). A uniform chromatin brush is unstable in the
region that is enclosed by the spinodal curves; see the broken
curves in Figure 5. It is not straightforward to predict the
binodal curves because the two coexisting phases are both
nonequilibrium steady states. Here we tentatively derive the
binodal curves by using the Maxwell construction to the Πapp−
h curves (see Figure S1 in the SI). We discuss the validity of
this treatment in section 4.
Our theory predicts that DNA brushes show phase

separation in the region that is enclosed by the binodal curves
(see the solid curves in Figure 5). This theory also predicts that
the regions of two-phase coexistent states have a critical point.
This phase separation is driven by the type of instability, which
is essentially the same as the binding transitions of a DNA
brush in a bulk solution: RNAP tends to localize in the regions
of smaller nucleosomal concentrations due to the excluded
volume interactions between nucleosomes and RNAP in the
solution. This enhances the transcription rate in these regions.
The concentrations of nucleosomes in these regions decrease

Figure 3. (a) The occupancy nhis of nucleosomes and (b) the
(rescaled) height h/hAlx of a chromatin brush as functions of (rescaled)
applied pressures Πapp/ΠAlx for the cases that the values of the rescaled
rate constant η0 (≡ λρ0ζ/(kon

hisc0ξ)) are 0.2 (green), 0.33443 (black),
0.5 (magenta), and 0.7 (cyan). hAlx and ΠAlx are the scales of the brush
height and osmotic pressure (defined by eqs 16 and 17). The broken
curves show unstable solutions (determined by the linear stability
analysis in section S3 in the SI). The values of parameters that are used
for the calculations are n+ = 1.8, n− = 0.99, γ = 0.7, vN0σ/hAlx = 0.8, and
4uσN0/(3whAlx) = 2.0 × 10−3.

Figure 4. Phase diagram of a chromatin brush is shown in the
parameter space of rescaled rate constant η0 (≡ λρ0ζ/(kon

hisc0ξ)) and
rescaled applied pressures Πapp/ΠAlx. The solid curve is the boundary
between the swollen state and the collapsed state, and the state in the
region that is enclosed by these solid curves depends on the history of
applied pressures (see Figure 3). The broken curve is determined by
using the Maxwell construction to Figure 3b. These solid curves end at
the critical point, η0c = 0.33443 and Πc/ΠAlx = 0.500539. The values of
parameters that are used for the calculations are n+ = 1.8, n− = 0.99, γ =
0.7, vN0σ/hAlx = 0.8, and 4uσN0/(3whAlx) = 2.0 × 10−3. hAlx and ΠAlx
are the scales of the height and osmotic pressures of polymer brushes
(defined by eqs 16 and 17).
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because histone proteins are desorbed from DNA chains when
RNAP collides with nucleosomes during transcription; this
recruits more RNAP in the regions. Because the number of
RNAP in the system is fixed, RNAP is depleted in the other
regions of the brush, and the transcription rate is small in those
regions.

4. DISCUSSION
Our theory predicts that DNA brushes show phase separations
when they are confined in a finite space and the region of two-
phase coexistent states have a critical point. The conditions of
the critical point are sensitive to the rescaled rate constant η0,
the combination n− of the second virial coefficients, and applied
pressures Πapp. The phase separations are driven by the

instability arising from the fact that the transcription rate
increases as the local packing density of nucleosomes decreases,
and, in turn, the local packing density of nucleosomes decreases
as the transcription rate increases. The excluded volume
interactions between RNAP and nucleosomes are involved in
both of the processes. During passive diffusion, RNAP is
excluded from the brush region due to the excluded volume
interactions between RNAP and nucleosomes. In contrast,
during transcription, nucleosomes dissociate (namely, histone
proteins are desorbed from DNA chains) when RNAP collides
with nucleosomes. The same type of interactions end up with
different results, depending on whether RNAP performs passive
diffusion or active unidirectional motion.
Our theory predicts that DNA brushes show macroscopic

phase separations in a confined space. Because two coexistent
states are stable with different brush heights, the patterns of
domains due to the phase separations may be sensitive to the
stiffness of the surfaces, to which DNA chains are end-grafted.
For the cases that the surfaces are very stiff, the distance
between the two end-grafting surfaces are fixed. With this
constraint, DNA chains may show microphase separations,
where the space above domains of the collapsed state is filled by
DNA chains in the swollen state, analogous to the dimple phase
of binary polymer brushes.28−30 By contrast, for the cases that
the surfaces of DNA brushes are flexible, the regions of two
coexisting phases can separate in the lateral direction. Our
theory is thus ideally tested by experiments that use DNA
brushes on such surfaces. Experimentally, DNA brushes on soft
surfaces may be prepared, for example, by end-grafting DNA
chains on lipid membranes.31 DNA brushes may show various
patterns when one changes the bending rigidity of the lipid
membranes by protein decoration.32 This argument implies
that the stiffness of nuclear membranes may play an important
role in driving the phase separation of chromatin and
organizing the pattern of domains.
In our theory, we have used the Maxwell construction to

derive the binodal curves of the miscibility phase diagram (see
Figure 5). However, the two coexisting phases in the region
that is enclosed by the binodal curves are both nonequilibrium
steady states, and thus the Maxwell construction may not be
applicable. Although exactly determining the binodal curves is
not the scope of our paper, it is of interest to discuss the validity
of this treatment. Indeed, there are theories that use the
Maxwell construction to locate the first order phase transitions
between two nonequilibrium steady states.33−35 Hill and Chen
have argued that the Maxwell construction is effective for the
lattice models of interacting enzymes that take only two
states.33 Indeed, our DNA chain segments take only two states
(vacant or occupied by nucleosomes). However, their argu-
ments are not directly applicable to our theory that treats only
the mean values of the nucleosome occupancy and of the brush
height. With our approximation, we do not take into account
the contributions of the entropy production due to tran-
scription under applied pressures (see eq 15), because the local
concentration of RNAP in the solution of the brush region is
very small; the work done by the applied pressures (which is
used to predict the binodal curves) does not include this
contribution. The steady state thermodynamics states that the
minimum of the excess work (which does not include the
entropy production to keep the system nonequilibrium) is the
change of (the nonequilibrium version of) the Helmholtz free
energy, analogous to the principle of minimum work.36 Our
treatment is thus a good approximation at the vicinity of the

Figure 5. (a) The occupancy nhis of nucleosomes, (b) the height, and
(c) the rescaled transcription rate η (see eq 20) of the two coexisting
regions of a DNA brush is shown as functions of Δμ (≡ μrnp − μhis +
log(λζ/(kon

hisξ))), which is a linear function of the difference between
the chemical potentials μrnp of RNAP and the chemical potentials μhis
of histone proteins. The solid curves are binodal curves that are
predicted by using the Maxwell construction to Πapp−h curves, and the
broken curves are spinodal curves. The critical point is highlighed by
the filled circle. The values of parameters that are used for the
calculations are n+ = 1.8, n− = 0.99, γ = 0.7, vN0 σ/hAlx = 0.8, and
4uσN0/(3whAlx) = 2.0 × 10−3. hAlx (≡ N0la(wσ/(6la))

1/3) is the length
scale of the brush height.
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binding transitions, where transcription rates are relatively
small.
Equation 15 only has a unique solution for Πapp > 0, at least,

with a specific set of parameters that are used for our
calculations (see also section S4 in the SI). The binding
transitions that are predicted by our theory are thus different
from the coil−globule transitions. Nevertheless, the coopera-
tivity arising from the attractive interactions between
nucleosomes is involved in the condensation of nucleosomes.
The binding transitions of DNA brushes may be analogous to
the gas−liquid phase transitions. It is thus of interest to discuss
whether DNA brushes show phase separations, even when they
are connected with reservoirs, where the number of RNAP and
histone proteins is not fixed. However, the thermal fluctuations
are not large enough to dissociate nucleosomes. Whether DNA
brushes show phase separations in bulk solutions thus may
depend on the fluctuations involved in the transcription
dynamics. It is of interest to theoretically predict how the
latter fluctuations are involved in the critical dynamics and
phase separations of chromatin structures, and it will be the
subject of our future study.

5. CONCLUSION

Our theory predicts that chromatin brushes show phase
separations for the cases that these brushes are confined in a
finite space. These phase separations are driven by the
instability arising from the fact that the transcription rate
increases as the local concentration of nucleosomes decreases
due to the excluded volume interactions between nucleosomes
and RNAP during passive diffusion and the local concentration
of nucleosomes, in turn, decreases as the transcription rate
increases due to the collision between RNAP and nucleosomes
during transcription.
Our theory also predicts that chromatin brushes show critical

points. The critical points are sensitive to the rate constants
involved in transcription, the changes of the interactions
between DNA chain segments by assembling nucleosomes, and
applied pressures. In biological systems, the rate constants for
transcription are modulated by transcription factor, and the
attractive interactions between nucleosomes are modulated by
histone modification. Indeed, transcription factors and histone
modification are both thought to be important factors to
maintain pluripotency of stem cells and also to drive
differentiation. Moreover, recent experiments have shown that
tension that is applied to nuclei by the cytoskeleton plays an
important role in driving differentiation2 and determining the
lineage.37 It is thus tempting to relate our theory to the phase
separations of chromatin structures in the nuclei of stem cells
during differentiation. Experimental tests of our theory on
simple DNA brushes may provide insight in the relevance of
the phase separations of chromatin brushes to the observed
dynamics of chromatin structures in stem cells.
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