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Abstract

Background: Less than 25% of patients with a pelvic mass who are presented to a gynecologist will eventually be
diagnosed with epithelial ovarian cancer. Since there is no reliable test to differentiate between different ovarian
tumors, accurate classification could facilitate adequate referral to a gynecological oncologist, improving survival.
The goal of our study was to assess the potential value of a SELDI-TOF-MS based classifier for discriminating
between patients with a pelvic mass.

Methods: Our study design included a well-defined patient population, stringent protocols and an independent
validation cohort. We compared serum samples of 53 ovarian cancer patients, 18 patients with tumors of low
malignant potential, and 57 patients with a benign ovarian tumor on different ProteinChip arrays. In addition, from
a subset of 84 patients, tumor tissues were collected and microdissection was used to isolate a pure and
homogenous cell population.

Results: Diagonal Linear Discriminant Analysis (DLDA) and Support Vector Machine (SVM) classification on serum
samples comparing cancer versus benign tumors, yielded models with a classification accuracy of 71-81%
(cross-validation), and 73-81% on the independent validation set. Cancer and benign tissues could be classified with
95-99% accuracy using cross-validation. Tumors of low malignant potential showed protein expression patterns
different from both benign and cancer tissues. Remarkably, none of the peaks differentially expressed in serum
samples were found to be differentially expressed in the tissue lysates of those same groups.

Conclusion: Although SELDI-TOF-MS can produce reliable classification results in serum samples of ovarian cancer
patients, it will not be applicable in routine patient care. On the other hand, protein profiling of microdissected
tumor tissue may lead to a better understanding of oncogenesis and could still be a source of new serum
biomarkers leading to novel methods for differentiating between different histological subtypes.
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Background
Ovarian cancer is the leading cause of gynecologic
deaths in Western countries [1]. The majority of patients
are diagnosed at an advanced stage, when the 5-year sur-
vival is only 28%, compared to 95% for early-stage
tumors. On the other hand, only 13-21% of patients with
a pelvic mass who are presented to a gynecologist will
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eventually be diagnosed with epithelial ovarian cancer
[2]. Furthermore, 5-10% will be diagnosed with a tumor
of low malignant potential, which has a different bio-
logical behavior to that of an ovarian carcinoma. Tumors
of low malignant potential also have a very low recur-
rence rate and a far more favorable outcome with a
5-year survival rate close to 100% in FIGO stage 1. The
specific properties of these tumors allow less extensive
and fertility-sparing surgery [3]. Since there is no reliable
clinical test to differentiate between different ovarian
tumors, the definitive diagnosis is often only obtained
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after surgery. Accurate initial classification of patients
with an ovarian tumor could therefore prevent patients
from undergoing extensive surgery in case of a benign
tumor or a tumor of low malignant potential. In case of
an ovarian carcinoma, accurate classification could facili-
tate adequate referral to a specialized hospital or
gynecological oncologist improving cancer survival [4,5].
For this reason, the use of CA125 as a serum marker in
combination with vaginal ultrasonography for detection
of ovarian cancer has been extensively evaluated in the
last decade [6]. Combining menopausal status, ultra-
sonographic morphology, and serum CA 125 levels in
the Risk of Malignancy Index (RMI) with a cutoff level
of 200 gave a sensitivity of 70.6% and a specificity of
89.3% in the ability to distinguish malignant from benign
pelvic masses [7]. However, only 50% of early stage ovar-
ian cancers are associated with an elevated level of
CA125. Furthermore, CA125 is also elevated in other
cancers (pancreatic, breast, bladder, liver, lung), benign
disease (diverticulitis, uterine fibroids, endometriosis,
ovarian cysts), and physiological conditions such as
menstruation [8]. These characteristics make CA125 un-
reliable as a marker for detection of ovarian cancer and
as a differentiating marker between different ovarian
tumors [9]. When combining multiple serum tumor
markers (CA125, CA72.4, and M-CSF), a higher sensitiv-
ity (70%) could be achieved compared to CA125 alone
(45%), when fixing the specificity at 98%, [10]. In
addition, other combinations of tumor markers like
CA125, CEA, CA15-3, YKL-40 and HE4 have been stud-
ied to improve diagnosis. Studies utilizing these and
other markers have shown an improved sensitivity in
detecting early-stage disease and discriminating between
different pelvic masses [11,12]. However, the only single
biomarker for ovarian cancer which was recently
approved by the Food and Drug Administration is HE4.
It was approved for monitoring recurrence but not for
discriminating between different ovarian tumors. The
OVA1 test, FDA approved in 2009, is a multimarker
diagnostic test combining the expression of five proteins
(CA125, transthyretin, apolipoprotein A1, beta 2 micro-
globulin, and transferrin) complementing the physician’s
preoperative assessment [13]. However, these and other
proteins did not improve sensitivity for preclinical diag-
nosis beyond CA125 alone and should therefore not be
used for screening purposes [14].
With the introduction of high-throughput mass

spectrometry techniques such as SELDI-TOF, the search
for biomarkers which could enhance the discriminatory
accuracy of existing tumor markers was fueled [15,16].
The above mentioned OVA1 test originated from such
discovery work using SELDI-TOF profiling [17]. Despite
the initial promises of this approach, no new biomarkers
detected by mass spectrometry are in clinical use today.
This can be largely attributed to shortcomings in experi-
mental protocols concerning sample collection, sample
storage, and bioinformatic analysis of the data generated
in SELDI studies [18]. Moreover, many of the earlier
SELDI studies lack external validation [15,19]. Recent
studies using SELDI-TOF-MS have taken into account
these limitations and have taken precautionary steps to-
wards robust identification and validation of the profiles
identified [20-22]. Concerns about reproducibility of
SELDI-TOF generated data have also been addressed in
recent papers with experimental methods being applic-
able to other forms of mass-spectrometry [23]. Together
these results have shown that SELDI-TOF can be used to
search for differentially expressed proteins within a large
group of samples in a relatively short time.
In this study, we aimed to incorporate the essential

aspects of a classification study to evaluate the suitability
of SELDI-TOF in generating a reliable and reproducible
biomarker profile in serum and tissue to differentiate be-
tween different ovarian tumors. Instead of healthy
women, patients with a benign ovarian tumor were
chosen as control group. Patients with a tumor of low
malignant potential were also included as a separate
group because of their different biological and clinical
behavior. Comparison of these patient groups enables
the identification of protein profiles that differentiate be-
tween various tumors of the ovary. Prospectively col-
lected samples, strict protocols, and extensive use of
technical replicates for quality control, combined with an
independent validation cohort in the serum experiments
were used to obtain a robust and reliable outcome.
In addition to the serum profiling we used SELDI-TOF

for protein profiling directly in laser-microdissected
tumor-tissue lysates from a subset of the same patients.
The use of dissected homogeneous tumor cell populations
leads to more reproducible protein patterns without the
problems associated with serum, such as its huge dynamic
range. As a result we expect that using tissue samples
more accurate classification models can be generated for
differentiating between tumor types. By profiling and
comparing tumor tissue with serum we aim to identify
peaks found in both serum and tissue resulting in the
identification of reliable tumor produced serum biomar-
kers. A clinical serum-based assay using a tumor-specific
biomarker panel could assist the clinician in differentiating
between different tumor types, without the need for a tis-
sue biopsy, subsequently facilitating adequate treatment
selection or referral to a gynecological oncologist.

Results
Differential expression in serum samples
Pairwise comparison of serum spectra from patients
with ovarian cancer and benign tumors identified 145
differentially expressed peaks for the CM10, out of a
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total of 265 peaks. 71 peaks out of 156 peaks were differ-
entially expressed for the Q10 data (adjusted p-value
< 0.05). Analysis of serum from cancer patients versus
serum of patients with a tumor of low malignant poten-
tial yielded 38 differentially expressed peaks for CM10
and 13 peaks for Q10. No differentially expressed peaks
were found when comparing the serum of patients with
a benign tumor and the serum of patients with a tumor
of low malignant potential. The ten most differentially
expressed peaks between patients with ovarian cancer
and a benign tumor, their adjusted p-values, and their
fold changes are shown in Table 1. Figures with exam-
ples of the spectra obtained for the different conditions
and chip types can be found in the supplementary infor-
mation (see Additional file 1) We also added an example
of a peak differentially expressed in serum on the CM10
array between a patient with a benign and malignant
ovarian mass (see Additional file 2).

Classification and validation of serum samples
The average classification accuracy for discriminating
ovarian cancer from benign tumors in serum samples
was 79-81% for the CM10 training cohort, with a sensi-
tivity of 75% and a specificity of 83-86% using DLDA
Table 1 Comparison of detected peaks in serum and
tissue

Serum Tissue

m/z adjusted p-value FC m/z adjusted p-value FC

CM10 10844 <0.0001 2.35 11753 <0.0001 4.11

2773 <0.0001 0.57 4309 <0.0001 0.09

3784 <0.0001 0.46 11855 <0.0001 3.48

5963 <0.0001 1.76 12294 <0.0001 4.84

2719 <0.0001 0.61 6652 <0.0001 2.39

6048 <0.0001 1.60 6987 <0.0001 2.16

6081 <0.0001 1.61 3139 <0.0001 0.21

2796 <0.0001 0.58 9983 <0.0001 2.00

5820 <0.0001 1.77 24815 <0.0001 1.99

4296 <0.0001 0.51 5768 <0.0001 0.31

Q10 6685 <0.0001 0.64 3783 <0.0001 12.23

3694 <0.0001 0.62 2774 <0.0001 0.11

4288 <0.0001 0.70 4219 <0.0001 0.31

4685 <0.0001 1.31 3958 <0.0001 2.85

4796 0.0001 1.64 2923 <0.0001 2.85

2909 0.0002 0.68 5460 <0.0001 0.19

2858 0.0002 0.70 2944 0.0001 1.99

1910 0.0005 0.69 4298 0.0007 0.36

7994 0.0005 1.54 8198 0.0007 1.99

4631 0.0012 1.24 5198 0.0009 1.80

List of ten m/z values most differentially expressed when comparing cancer
with benign tumors in the serum and tissue experiments. Peaks listed are after
pre-processing for CM10 and Q10 arrays. For each of the m/z values the
adjusted p-value and fold change (FC: cancer versus benign) is given.
and SVM classifiers (Table 2). When classification was
performed on the Q10 dataset, the percentage of accur-
ately classified samples was 71-73%, with a sensitivity of
69-71% and a specificity of 73-75%. Classification on
CM10 data outperforms classification on Q10 data
which is in agreement with the lower number of differ-
entially expressed peaks detected for Q10. On the com-
bined CM10/Q10 dataset the average classification
accuracy was 79-81% with a sensitivity of 74-75% and a
specificity of 82-87%. Results illustrate that classification
performance is quite reproducible across different classi-
fiers and types of arrays.
Classification analysis was also performed including

patients with a tumor of low malignant potential as a
third class. Classification results were inferior to the
results obtained when comparing cancer and benign
tumors. Average accuracy reached only 50-64% across
different classifiers and ionization surfaces, versus an ac-
curacy of 71–81% when comparing the two groups. The
predictive accuracy of the resulting two-class classifiers
was assessed on an independent validation set measured
on Q10 arrays. The spectra of the independent valid-
ation set showed good reproducibility. Analyses using
DLDA and SVM classifiers resulted in a classification ac-
curacy of 73-81% with a sensitivity of 81-88% and
Table 2 Classification results

A

Serum training cohort

CM10 Q10

accuracy sens spec accuracy sens spec

DLDA 81 75 86 73 71 75

SVM 79 75 83 71 69 73

Serum validation cohort

DLDA 73 88 62

SVM 81 81 81

B

Tissue predicted (%)

Benign LMP Cancer

Benign (true) 82.1 17.6 0.3

LMP (true) 10.6 64.5 24.9

Cancer (true) 3.4 10.6 86.0

A. Classification of serum samples on the training and independent validation
cohort. Training cohort: average classification accuracy, sensitivity (sens), and
specificity (spec) (in percentage) of discriminating ovarian cancer versus
benign tumor for CM10 and Q10 arrays on 500 test sets (repeated random
sampling; size training sets: 80, size test sets: 47 for CM10, 48 for Q10).
Validation cohort: classification accuracy, sensitivity, and specificity (in
percentage) of the classifiers trained on all serum training data for Q10
validation data only. Classification models: SVM (support vector machine) and
DLDA (diagonal linear discriminant analysis) with feature selection.
B. Confusion matrix giving the percentage of cases (average over 500 test
sets) from one class classified into each of the three classes. Rows correspond
to the correct class, columns to the predicted class. Results are for DLDA with
three different classes: benign tumors, tumors of low malignant potential
(LMP) and cancer tissue (Q10 data).
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specificity of 62-81% for the Q10 validation data
(Table 2). Differentially expressed peaks included in the
classification model estimated on the training cohort
were similarly up or down regulated in the validation
cohort (Figure 1).

Differential expression in tissue samples
Pairwise comparisons between the three patient groups
in microdissected tissue samples showed that not only
could cancer tissue be distinguished from ovarian epi-
thelial cells derived from benign ovarian tumors, but
that tumors of low malignant potential could be distin-
guished from cancer and benign tissue as well. There
were 68 differentially expressed peaks, out of a total of
115, when comparing cancer with benign tissue for
CM10 and 42 peaks, out of a 145 peaks, for the Q10
data. Comparing tissue from tumors of low malignant
potential with cancer yielded 32 and 14 differentially
expressed peaks respectively. Comparison of tissue from
tumors of low malignant potential and benign tissue
yielded 23 differentially expressed peaks for CM10 and
13 peaks for Q10. Pairwise comparisons between all pa-
tient groups while subclassifying the low malignant po-
tential group into mucinous and serous tumors
(Figure 2) indicated that the expression profiles of serous
and mucinous tumors of low malignant potential are dif-
ferent. When performing cluster analysis serous tumors
of low malignant potential could not be identified as a
separate group (Figure 2). These results suggest that mu-
cinous tumors of LMP and, to a lesser extent, serous
tumors of LMP can be identified as separate subtypes
based on their protein profiles in tissue.
Figure 1 Differentially expressed peaks included in the
classification model. Barplot of the average expression intensity
(log2-scale) in the training and validation cohort for the 20 peaks
included in the SVM classifier (Q10 data). Black bars represent cancer,
gray bars benign tumor.
Measurements in serum and tissue from the same
patients enabled us to compare protein spectra and to
look for similarities between serum and tissue. However,
there were no corresponding peaks between serum and
tissue lysates (Table 1).

Classification of tissue samples
Classification was performed as described for the serum
experiments using a double cross-validation scheme.
DLDA on samples of epithelial tissue from benign ovar-
ian tumors versus tissue from ovarian cancer resulted in
a model with a classification accuracy of 99% on the
CM10 dataset, with a sensitivity of 99% and a specificity
of 100%. For the Q10 dataset the classification accuracy
of DLDA was 95%, with a sensitivity and specificity of
95%. On the combined CM10/Q10 dataset the classifica-
tion accuracy of DLDA was 99% with a sensitivity of
98% and a specificity of 100%. When including tumors
of low malignant potential as a third class, the accuracy
dropped to 82% (CM10), 80% (Q10), and 84% (CM10/
Q10) respectively. The confusion matrix for DLDA on
the Q10 data (Table 2) gives the predictive accuracy for
each of the three classes (benign, low malignant poten-
tial, and cancer). Tumors of low malignant potential
were classified as benign in 10.6% and as cancer in
24.9% of the cases.

Discussion
With this study, we are one of the first to describe a
SELDI-TOF MS study on ovarian cancer patients in
which the essential aspects of a properly designed mass
spectrometry-based classification study are incorporated.
We used strict protocols and a well-defined patient
population in combination with an independent group of
patients for validation of the classification results. Never-
theless, reliable results can only be achieved when careful
patient selection is combined with stringent sampling
protocols and sound pre-processing and classification.
When working with large mass spectrometry generated
datasets, performing multiple quality control checks dur-
ing the processing of the data is of vital importance. In
our study, quality control consisted of visual inspection
of the spectra, assessment of reproducibility based on
technical replicates, and hierarchical clustering of the
pre-processed data. Several unreliable samples were
detected, which were disregarded for further analyses.
Previous studies based their classification results on

comparing patients with advanced ovarian cancer and
healthy control patients [16,24]. These and other studies
have found a number of proteins associated with ovarian
cancer [15,25]. Most of these proteins however, are acute-
phase reactants and as such epiphenomena most likely
not specific for ovarian cancer. In the current study, we
compared samples from ovarian cancer patients with



Figure 2 Pairwise comparisons between tumors of low malignant potential and hierarchical clustering of tissue data. Table with
pairwise comparisons between mucinous and serous tumors of low malignant potential, cancer and benign tumor tissue. The number of
upregulated (+) and downregulated (−) peaks is given for each comparison. Hierarchical clustering of CM10 tissue data. Clustering of 84 tissue
samples using complete linkage and Pearson correlation distance on the 62 peaks that were differentially expressed (adjusted p-value < 0.05)
between cancer, low malignant potential (divided in mucinous and serous), and benign tumor. The Z-score is calculated on the columns by
subtracting the mean expression value of a column from each of the values and then dividing the resulting values by the standard deviation of
the column. Color in the heat maps, therefore, indicates the relative expression level, with red being higher and blue lower than the mean
expression value. The vertical side bar indicates the sample type: benign (red), mucinous LMP (green), serous LMP (purple), cancer (blue).
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samples from patients with a benign tumor of the ovaries
or an ovarian tumor of low malignant potential. There-
fore, the peaks included in the classification model are
more likely to correspond to proteins that are specific for
different types of ovarian tumor instead of reflecting a
more general response to disease. The fact that our con-
trol group consisted of benign tumors might also explain
why differentially expressed peaks in our study do not
match the peaks found in other studies with less well
defined or completely healthy control groups.
The careful selection of patient and control groups was

also done to see if a model could be developed best sui-
ted for classification of patients visiting a gynecologist
and diagnosed with a tumor of the ovaries rather than to
create a model for population-wide screening. When
comparing serum from patients with a benign tumor
with serum from ovarian cancer patients, we were able to
achieve a sensitivity of 69% and specificity of 73% using
SVM on the Q10 training cohort, as evaluated using
cross-validation. However, the utility of a classification
model should always be established in an independent
validation cohort [26]. In this study, we validated the
model on a new group of patients and we showed that
using a SVM a sensitivity of 81% and specificity of 81%
could be achieved for the Q10 dataset, illustrating the
robustness of our results.
However, our classification results do not outperform
already existing diagnostic methods like the Risk of Ma-
lignancy Index of ovarian tumors using the serum mar-
ker CA125 and ultrasonography. Results from the
UKCTOCKS study showed a sensitivity of 89.4% and a
specificity of 99.8% for all primary ovarian and tubal
cancers [6]. In our patient population, serum CA125,
alone has a sensitivity of 81% in the total training set
and of 75% in the validation set at a fixed specificity of
98%. The sensitivity in the validation set of our SVM
model is only 44% at a specificity of 98%.
When including tumors of low malignant potential as a

third class in the classification model, the classification
results showed a poor accuracy of 50-64%. This is prob-
ably due to serum samples of patients with a tumor of low
malignant potential having a high resemblance to serum
samples of patients with a benign tumor, as witnessed by
the absence of differentially expressed peaks. This in turn
could be explained by the fact that tumors of low malig-
nant potential not only have a histological resemblance to
benign tumors but also probably do not cause acute phase
responses to the same extent as a large infiltrative tumor
does. In summary, these results show that SELDI-TOF
generated data are not suitable for accurate classification
of patients with a tumor of low malignant potential as a
separate subgroup, based on their serum samples.
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Besides determining serum protein profiles, we also
investigated the protein profiles of the actual tumors in
84 of those patients. We obtained homogenous cell
populations using laser microdissection. Measurements
in tumor tissues circumvent the limitations associated
with serum protein profiling, such as the dominance of
highly abundant proteins and large inter-individual
differences [27]. On tumor tissue samples our classifica-
tion model achieved a classification accuracy between
95-99% with a sensitivity between 95-99% and a specifi-
city between 95-100% for the different classification
models and chip types. Even when tumor tissue of low
malignant potential was included in the model as a third
class, a classification accuracy of 80-82% was obtained.
Using cluster analysis we showed that the different histo-
logical subtypes of tumors of low malignant potential
can be detected using SELDI-TOF generated data from
tissue lysates (see Figure 2.).
Remarkably, none of the peaks differentially expressed

between the serum samples of the three patient groups
(benign, low malignant potential, and cancer) were
found to be differentially expressed between the tissue
lysates of those same groups. This might be due to the
fact that the proteins differentially expressed in tissue
lysates are intracellular proteins which do not enter the
bloodstream, or are present at very low concentrations
making them difficult to detect. SELDI-TOF may not be
sensitive enough to detect tiny amounts of tumor
derived peptides in serum which has a huge dynamic
range. The use of pre-fractionation methods in combin-
ation with mass-spectrometry techniques could be used
to see whether tumor derived proteins, present in very
small concentrations could be picked up. The lack of
common peaks in de protein spectra of serum and tissue
of the same patients also reveals that the proteins differ-
entially expressed in serum of the different groups are
not tumor produced proteins but epiphenomena asso-
ciated with the different tumor groups.

Conclusion
Despite the initial promise of high throughput mass
spectrometry techniques such as SELDI-TOF, there are a
number of limitations which have only recently been
addressed [18,28]. Our study shows that with careful
study design, sound processing of the data, and inde-
pendent validation reliable classification results and new
leads in tumor etiology can be obtained.
However, our data also show that SELDI-TOF-generated

serum profiles are not able to outperform existing clinical
methods such as the combination of CA125 and ultrason-
ography when it comes to differentiating between patients
with an ovarian tumor. When searching for tumor-derived
proteins in serum by comparing the serum and tissue pro-
files no tissue-derived proteins could be detected in serum
via SELDI-TOF. However, the differentially expressed pro-
teins found in tissue lysates could still lead to a better
understanding of oncogenesis and be a source of new bio-
markers when detected in serum by other more sensitive
techniques. This could result in a clinical serum-based
assay using a tumor-specific biomarker panel.
Although we believe that high-throughput methods

like SELDI-TOF can still be put to good use when look-
ing for differences or similarities in large patient popula-
tions, novel methods in mass spectrometry such as
qualitative and quantitative proteomic analysis by nano-
scale LC-MS (Liquid Chromatography-Mass Spectrom-
etry) are being used more frequently [29]. These
methods enable researchers to directly identify and
quantify the proteins in a particular sample and circum-
vent the difficult and time-consuming process of identi-
fying individual proteins of interest found in SELDI-TOF
experiments. Although these methods offer advantages
over SELDI-TOF, they are not yet suited for the large
numbers of samples that SELDI-TOF can handle.

Methods
Samples
After informed consent was obtained, samples were pro-
spectively collected from newly diagnosed patients at the
Academic Medical Center. The study was approved by
the Ethical Committee at the Academic Medical Center.
Both training and validation cohort consisted of women
with non-familial epithelial ovarian cancer and patients
with tumors of low malignant potential. The control
group consisted of patients with a range of benign ovar-
ian tumors such as serous and mucinous cystadenoma,
mature cystic teratoma, or fibroma of the ovary. Patients
were matched for age, BMI, and sample storage time
(Table 3). The validation cohort was collected as a separ-
ate group, after inclusion of the patients participating in
the first experiment.
Clinical and pathological characteristics of the three sep-

arate patient groups: cancer, low malignant potential
(LMP) and benign tumor. The characteristics are given for
the serum training, serum validation and tissue experi-
ments. Age, body mass index (BMI) and sample age are
given as a mean value with their standard deviation. In
one patient differentiation grade was not available (NA).
Serum samples were collected before treatment using

a strict protocol. Blood was collected by the same op-
erator at least two hours after the patient’s last meal
and left to clot for 30 minutes. After centrifugation
(at 1750 x g) serum was immediately frozen and stored
at −80°C. Samples used were only thawed once.
From 84 patients included in the serum experiments,

tissue samples were available (Table 3). Histological
analysis was carried out by 2 gynecological pathologists.
Tissue was snap frozen in liquid nitrogen and stored



Table 3 Patients characteristics

Serum (training cohort) Serum (validation cohort) Tissue

Cancer LMP Benign Cancer LMP Benign Cancer LMP Benign

Patients 53 18 57 16 5 21 40 20 24

Age (years) 59.2 (11.4) 53.5 (10.3) 56.6 (12.4) 58.0 (14.8) 43.3 (8.0) 54.0 (14.5) 55.8 (11.7) 50.7 (10.3) 53.4 (15.3)

BMI 26.1 (5.4) 28.7 (8.0) 26.9 (6.0) 26.5 (4.5) 27.4 (5.8) 26.6 (4.1) 26.1 (4.5) 28.8 (8.0) 26.7 (5.0)

Premenopausal 10 6 22 5 5 11 13 10 9

Postmenopausal 43 12 35 11 10 27 10 15

Sample age (years) 2.5 (0.9) 2.3 (0.5) 2.5 (0.6) 0.7 (0.4) 0.6 (0.2) 1.7 (1.2) 2.5 (1.2) 2.5 (1.0) 2.7 (0.9)

CA125 kU/L 2451 63 42 5078 131 67 4117 89 26

(range) (7–14100) (6–396) (1–164) (111–67448) (56–284) (2–312) (7–67448) (6–396) (5–164)

Histological type

Serous 38 13 13 3 32 6

Mucinous 5 5 1 2 2 14

Endometrioid 3 1 2

Undifferentiated 5 1 3

Clearcell 2 1

Grade

1 2 2

2 12 3 9

3 39 12 29

NA 1

Figo Stage

I 6 6

II 3 1

III 36 13 27

IV 8 3 6

Clinical and pathological characteristics of the three separate patient groups: cancer, low malignant potential (LMP) and benign tumor. The characteristics are
given for the serum training, serum validation and tissue experiments. Age, body mass index (BMI) and sample age are given as a mean value with their standard
deviation. In one patient differentiation grade was not available (NA).
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at −80°C within 30 minutes of surgery. 10 μm cryostat
sections stained with hematoxylin were prepared in
order to detect tissue areas of interest for microdissec-
tion. Corresponding consecutive unstained tissue sec-
tions were mounted on a microscope slide coated with
a membrane (polyethylene naphtalate (PEN) Zeiss/Palm,
Bernried, Germany) and stored at −80°C. Tissue areas
were cut using a Veritas™ Microdissection System (Arc-
turus Molecular Devices, CA, USA). Using microdissec-
tion we obtained samples containing at least 90%
cancer cells or tumor cells of low malignant potential,
and 60% epithelial cells derived from benign ovarian
tumors. Tests were performed to determine optimal
lysis conditions and number of cells necessary for
SELDI-TOF analysis. A tissue sample of 45.000 cells
giving a protein yield of 250 ng per 1000 cells, as deter-
mined by a Lowry protein measurement, gave a reliable
protein profile. Cells were denatured in 20 μl 0.1%
RapiGest detergent solution (Waters Corp., Milford,
MA) and heated at 80°C for 15 minutes. After
centrifugation at 1750 x g for 10 min, supernatants
were collected.

SELDI-TOF MS
Protein profiles of serum and tissue samples were gener-
ated using anionic surfaces of CM10 and cationic surfaces
of Q10 ProteinChip arrays (Ciphergen Biosystems Inc.,
Fremont, CA.). Protocols were performed as described
previously [22]. In order to avoid confounding of the effect
of interest (patient status) with between-chip effects, allo-
cation of samples to each array was stratified with respect
to patient status. To assess intra-chip reproducibility, ran-
domly selected samples were duplicated on half of the
arrays. To assess inter-chip reproducibility, three ran-
domly selected serum samples from the serum training
cohort, one from the validation cohort, and two tissue
samples were put on three different chips. The arrays were
read on a PBSII reader (Ciphergen Biosystems) with a
laser intensity of 175, a detector sensitivity of 7, and a de-
tection size range between 1.5 and 20 kDa. Calibration
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was performed once before measuring the arrays in rapid
succession. The validation cohort was measured on Q10
ProteinChip arrays 6 months after the measurements on
the training cohort.

Pre-processing and peak detection using Ciphergen
ProteinChip Software
Pre-processing was done with commercial ProteinChip
Software (version 3.1.1, Ciphergen Biosystems) as
described earlier [22]. In summary, spectra were normal-
ized to the average total ion current in the mass range
from 2–20 kDa (CM10) and 1.7 - 20 kDa (Q10) in the
serum experiments and from 2.5 - 50 kDa (CM10) and
2–50 kDa (Q10) in the tissue experiments. Optimal set-
tings for peak detection were chosen by visual inspection
of the detected peaks (data not shown). In data obtained
from serum samples, the values for the peak detection
parameters (i) First Pass (signal-to-noise ratio (S/N)), (ii)
Min Peak Threshold (% of all spectra), (iii) Cluster Mass
Window (% of mass), and (iv) Second Pass (S/N) were
set at 5, 25, 0.3 and 2. For pre-processing of the valid-
ation set, calibration coefficients and an external
normalization coefficient were estimated on the training
cohort only. Peak clusters were loaded from the training
cohort, avoiding an information leak when pre-
processing the validation data [22]. Pre-processing of the
data from the tissue experiments was done using the set-
tings 5, 5, 0.3 and 2 for the four peak detection para-
meters. Peak intensities that were zero or negative after
baseline correction were set equal to half the minimum
of the positive corrected intensities for that peak. Fur-
thermore all peak intensities were log2-transformed in
order to stabilize their variance. For both serum and tis-
sue we also made a combined CM10/Q10 dataset by tak-
ing the union of the CM10 and Q10 peak intensities for
each sample.
To see whether a different pre-processing method

would achieve similar results, we also pre-processed the
serum samples using the mean spectrum technique from
the publicly available Cromwell software developed by
the bioinformatics group at the MD Anderson Cancer
Center [30]. Pre-processing results were in agreement
with those of the Ciphergen ProteinChip software (data
not shown). A detailed comparison between the different
pre-processing methods can be found in our previous
study [22].

Quality control
Quality control consisted of (i) visual inspection of the
spectra, (ii) assessment of intra- and inter-chip reprodu-
cibility based on technical replicates, (iii) hierarchical
clustering of the pre-processed data. Based on visual in-
spection, seven tissue samples on one of the Q10 arrays
were left out, since their spectra had very high and
irregular baseline levels. Hierarchical clustering identi-
fied one serum training sample on a CM10 array as a
potential outlier. This sample was discarded and pre-
processing was repeated on the remaining samples.

Statistical analysis
Pre-processed data of technical replicates were aver-
aged. In order to detect any chip biases, we performed
a factorial analysis of variance (ANOVA) with patient
status and chip as main effects. The ANOVA analysis
showed clear evidence of a chip effect for a number of
peaks on the Q10 arrays for both serum and tissue
samples. However, no significant interaction effect be-
tween patient status and chip was detected. None of
the peaks that could differentiate between chips could
also differentiate between patient groups (data not
shown). A moderated t-test was then used to identify
peaks that were pairwise differentially expressed be-
tween patient groups. Resulting p-values were corrected
for multiple testing using the Benjamini-Hochberg False
Discovery Rate (FDR) adjustment. Tests were consid-
ered significant if the adjusted p-values were <0.05.

Classification
To test whether patient status could be predicted from
the peak profiles obtained, we used two classification
models often used for microarray and proteomics data,
linear Support Vector Machines (SVM) and Diagonal
Linear Discriminant Analysis (DLDA) [31]. These two
models were selected because they were among the top
performers in our previous study where multiple linear
and non-linear classification models were compared on
clinical SELDI-TOF datasets [22]. Classification analysis
was performed for the discrimination of cancer from be-
nign tumors (2-class) and when including tumors of low
malignant potential as a third class. Model training and
evaluation was performed as described previously [22].
In short, models were validated with repeated random
sampling methodology, as advocated by Michiels et al.
[32]. Random splits of each dataset of N samples were
performed to generate 500 different training sets (size n)
and associated test sets (size N–n). In each of the ran-
dom splits, the number of samples for the patient groups
was balanced in both the training and test sets. The ac-
curacy of the resulting classifiers was assessed on the
corresponding test sets. To investigate the influence of
the training set size on the accuracy of the classifiers, we
varied the training set size (n= 40,60,80 for the serum
dataset and n= 20,40,60 (three-class) or n= 20,35,50
(two-class) for the tissue dataset. If not mentioned
otherwise, results reported are for the largest training set
size. The optimal values for the cost hyperparameter of
the SVMs were estimated using 5-fold cross-validation
on the training set. Feature selection was used to extract
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the peaks most informative for predicting patient status.
For each training set, an optimal classifier was identified
from the 5, 10,. . .,50 peaks with the highest correlation
between expression and patient status as determined by
either t-statistics (two-class) or F-statistics (three-class).
The optimal number of peaks was again selected with
5-fold cross-validation on the training set. Such a
double cross-validation scheme provides an almost un-
biased estimate of the true error [33].
In the serum experiments an independent group of

validation samples was available. These samples were
classified by models trained on the serum training co-
hort only and with optimal values for the hyperpara-
meters (# features, SVM cost parameter), as estimated
on the training cohort by the double cross-validation
scheme described above. Statistical analyses were per-
formed using Bioconductor packages and in-house
scripts in the statistical software package R [34].

Additional files

Additional file 1: Representative SELDI spectra. Spectra (x-axis: m/z
ratio (Da); y-axis: normalized intensity) obtained for the different chip
types (CM10 and Q10) and specimens (serum and tissue) from the same
patient with a serous adenocarcinoma.

Additional file 2: Representative SELDI spectra. Spectra (x-axis: m/z
ratio (Da); y-axis: normalized intensity) showing a differentially expressed
peak at 10,884 Da (see Table 1 in the main text) between a patient with
a benign and a patient with a malignant ovarian mass. The spectra were
obtained using serum on a CM10 array.
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