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ABSTRACT
A first application of multilevel latent class analysis (MLCA) to educational
large-scale assessment data is demonstrated. This statistical technique
addresses several of the challenges that assessment data offers.
Importantly, MLCA allows modeling of the often ignored teacher effects
and of the joint influence of teacher and student variables. Using data from
the 2011 assessment of Dutch primary schools’ mathematics, this study
explores the relation between the curriculum as reported by 107 teachers
and the strategy choices of their 1,619 students, while controlling for
student characteristics. Considerable teacher effects are demonstrated, as
well as significant relations between the intended as well as enacted
curriculum and students’ strategy use. Implications of these results for
both more theoretical and practical educational research are discussed, as
are several issues in applying MLCA and possibilities for applying MLCA to
different types of educational data.

Latent class analysis (LCA) is a powerful tool for classifying individuals into groups based on
their responses on a set of nominal variables (Hagenaars & McCutcheon, 2002; McCutcheon,
1987). LC models have a categorical latent (unobserved) variable, and every class or category of
this latent variable has class-specific probabilities of responses in the categories of the different
observed response variables. As such, each latent class has a specific typical response pattern
where some responses have a higher and others have a lower probability, and different
response profiles of individuals may be discerned based on this. For example, for a test
covering language, mathematics and science, one latent class of students may have a high
probability of correct responses for mathematics and science items but a lower probability for
language items, while for an other latent class the probability of a correct response is high for
language items and lower for mathematics and science items. These two classes then reflect
different performance profiles.

Relatively recently, the technique of LCA has been extended to accommodate an additional
hierarchical level (Vermunt, 2003): not only the nesting of variables within individuals is included
in the model, but also the nesting of individuals in some higher-level group (e.g., students within
school classes). This multilevel LCA (MLCA) is beginning to be applied more and more in various
areas, such as psychiatry (Derks, Boks, & Vermunt, 2012), political science (Morselli & Passini,
2012), and education (Hsieh & Yang, 2012; Mutz & Daniel, 2011; Vermunt, 2003). In the current
investigation, we describe a first application of MLCA to educational large-scale assessment data.
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MLCA for educational large-scale assessment data

MLCA can address several of the challenges of large-scale assessment data. A first challenge that
many large-scale assessments offer is that they employ so-called incomplete designs: the complete
item set is too large to be administered in full to students, and is therefore decomposed into smaller
subsets. Relating these subsets to each other is difficult using traditional techniques, but is possible
using a latent variable to which all items are related (Embretson & Reise, 2000; Hickendorff, Heiser,
Van Putten, & Verhelst, 2009), such as the latent class variable in LCA. No imputation of missing
responses on the items that were not administered is necessary, as the likelihood function of the
analysis is only based on cases’ observed responses (Vermunt & Magidson, 2005). A second
challenge is the complexity of modeling cognitive phenomena that are not measured on an interval
but on a nominal level (such as solution strategy use, item correctness or error types). Nominal
response variables are naturally accommodated by (M)LCA.

The third challenge that MLCA addresses is the inherent multilevel structure of educational data
(items nested within students, who are nested within teachers and schools). Previous applications of
LCA (and also of other techniques) to students’ responses on cognitive tests have generally ignored
the teacher (or school) level in their modeling (e.g., Geiser, Lehman, & Eid, 2010; Hickendorff et al.,
2009; Hickendorff, Van Putten, Verhelst, & Heiser, 2010; Lee Webb, Cohen, & Schwanenflugel, 2008;
Yang, Shaftel, Glasnapp, & Poggio, 2005). Yet, the context of learning is vital to its outcomes. Zumbo
et al. (2015) recently proposed an ecological model of item responding where responses are
influenced by contextual variables at various levels: characteristics of the test, of the individual, of
the teacher and school, of the family and ecology outside of school, and of the larger community.
Based on this model, the authors demonstrate ecologically moderated differential item functioning
(DIF) where different factors in this broader context play a role.

The consideration of a broader context fits in very well with MLCA, as its multilevel aspect makes it
especially suited for the incorporation of contextual factors in models of students’ item responses.
Predictors at different hierarchical levels can be included in the model, a feature that is naturally called
for in modeling the effects of both student and teacher characteristics on students’ item solving.

In the current investigation, we therefore demonstrate the use of MLCA for educational large-
scale assessment data, by applying it to data from the most recent large-scale assessment of Dutch
sixth graders’ mathematics. We investigate the relation between the curriculum on the one hand and
students’ use of solution strategies on the other (while controlling for student characteristics), and
describe the technique of MLCA and some of the challenges in its application in more detail.

Curriculum effects on students’ mathematical achievement and strategies

Recent reviews of research on the effects of mathematics teaching have concluded that the influence
of the intended curriculum (as it is formally laid down in curriculum guides and textbooks;
Remillard, 2005) on achievement is very small, while changes in the enacted curriculum of daily
teaching practices have a much larger influence (Slavin & Lake, 2008). These findings are based
mainly on small experiments, and can be supplemented using large-scale assessment data, which
does not allow for causal inference but does offer much larger samples and representative descrip-
tions of the natural variation in daily teaching practices (Slavin, 2008).

Previous research has indicated that this variation in instruction has substantial effects on
students’ achievement growth (Nye, Konstantopoulos, & Hedges, 2004; Rowan, Correnti, & Miller,
2002). In identifying the factors that determine teachers’ influence on students’ mathematical
achievement, a line of research called “education production function research” has focused on
the effects of available resources. Generally, routinely collected information on teachers’ resources
(such as their education level) has failed to show consistent, sizable effects (e.g., Jepsen, 2005; Nye
et al., 2004; Wenglinsky, 2002), while more in-depth teacher resource measurements (such as
knowledge for mathematical teaching) show more consistent positive effects (Hill & Rowan, 2005;
Wayne & Youngs, 2003). The more process-focused line of “process-product research” has most
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notably found positive effects of active teaching, which involves teachers’ direct instruction of
students in formats such as lecturing, leading discussions, and interaction during individual work
(as described by Hill et al., 2005; and Rowan et al., 2002), as contrasted with frequent independent
work of students and working on nonacademic subjects. Also, positive effects have been found of
reform-oriented classroom practice, which involves activities such as exploring possible methods to
solve a mathematical problem (Cohen & Hill, 2000).

These results all concern curriculum effects on students’ mathematical achievement, but the
mathematical strategies of students that are the focus of this investigation are also of great interest.
The various reforms in mathematics education that have taken place in a number of countries in the
past decades (Kilpatrick, Swafford, & Findell, 2001) share a view on strategy use that moves away
from product-focused algorithmic approaches toward process-focused approaches with more space
for students’ own strategic explorations (Gravemeijer, 1997). Investigating which instructional
practices elicit particular patterns of strategy choices may shed light on how reforms actually affect
students’ behavior. On a more theoretical level, the literature on children’s choices between and
performance with mathematical strategies has so far focused on the effects of children’s individual
characteristics and of the nature of the mathematical problems that are offered (e.g., Hickendorff
et al., 2010; Imbo & Vandierendonck, 2008; Lemaire & Lecacheur, 2011; Lemaire & Siegler, 1995),
and may therefore be extended by also exploring the effects of instruction.

Multidigit multiplication and division strategies in the Netherlands

An illustration of the connection between mathematics reforms and changes in strategy choices is
provided by previous research on multidigit multiplication and division strategies in the Dutch
situation (Hickendorff, 2011; Janssen, Van der Schoot, & Hemker, 2005). Multidigit multiplication
and division go beyond simple multiplication table facts (such as 5 × 6 or 72 ÷ 8) and require
operations on larger numbers or decimal numbers (such as 56 × 23 or 544 ÷ 16). The Dutch
mathematics education reform introduced new algorithmic “whole-number-based” approaches for
these multidigit operations, where every step toward obtaining the solution requires students to
understand the magnitude of the numbers they are working with (Treffers, 1987). This approach
deviates from the more traditional “digit-based” algorithms, where the numbers are broken up into
digits that can be handled without an appreciation of their magnitude in the whole number (see
Table 1 for examples of both algorithms). In general, Dutch children’s learning trajectory consists of
first learning the whole-number-based multiplication and division algorithms, and later switching to
the digit-based algorithm for multiplication (and in some schools, also for division; Buijs, 2008).

Using data from large-scale assessments, it was demonstrated that with growing adoption of
reform-based mathematics textbooks in Dutch elementary schools, many primary school students
abandoned the digit-based algorithms for multidigit multiplication and division and switched to
answering without writing down any calculations (mental calculation; Hickendorff et al., 2010)
instead. These mental calculation strategies were found to be much less accurate than written
strategies (digit-based or other) (Hickendorff, 2011; Hickendorff et al., 2009), and were used more
by boys, students with low mathematical proficiency, and lower SES students.

The present study

In the present study, MLCA is used to investigate the relation between both the intended and
enacted curriculum and the use of solution strategies for multidigit multiplication and division items
by 1,619 Dutch sixth graders (11–12-year-olds). The intended curriculum is operationalized as the
mathematics textbook and the enacted curriculum as the self-reports on mathematics teaching
practices of the students’ 107 teachers. The data are from the most recent (2011) large-scale national
assessment of the mathematical abilities of Dutch students at the end of primary school (Scheltens,
Hemker, & Vermeulen, 2013).
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Hypotheses
Based on previous research on Dutch students’ multiplication and division strategy use by
Hickendorff (2011), we expect to find a considerable group of students who mostly answer without
written calculations (with relatively many boys, students with low mathematical proficiency, and
lower socioeconomic status [SES] students), one group where students mostly use the digit-based
algorithm, and one group where students mostly use the whole-number-based algorithm or non-
algorithmic approaches. Hickendorff (2011) considered multiplication and division in isolation, but
we consider them simultaneously and can therefore analyze the relation between individual differ-
ences in strategy use on multiplication and division items. For example, there may be a group of
students who prefer the digit-based algorithm for multiplication and the whole-number-based
algorithm for division, matching the most common end points of the respective learning trajectories.

The lack of research on the effects of the curriculum on strategy use makes it hard to make strong
predictions in that area, but a tentative generalization of curriculum effects on achievement suggests
that the effects of the enacted curriculum might be greater than those of the intended curriculum—
although this could be countered by the fact that the mathematics textbooks that form the intended
curriculum are an important direct source of strategy instruction. As for the particular effects of the
enacted curriculum, the previously discussed achievement literature described positive effects of
direct instruction rather than independent work, so these activities might affect choices for more
accurate (written) or less accurate (mental) strategies. Differentiated instruction might also have such
effects, especially because of the association between ability and strategy choices. Furthermore, we
expect effects of teachers’ strategy instruction in algorithms, mental calculation, and strategy
flexibility, because of the apparent direct connection to students’ strategy use.

Issues in applying MLCA
The application of MLCA with predictors which is the focus of the present study comes with several
practical issues that require attention. The first is the specification of the multilevel effect in the
model. The common parametric approach specifies a normal distribution for group (in our case,
teacher) deviations from the overall parameter value, but this distributional assumption is strong and
the interpretation of such group effects is abstract. The nonparametric approach proposed by
Vermunt (2003) instead creates a latent class variable for the groups (in addition to the latent
class variable for the individuals), requiring less strong distributional assumptions, making compu-
tations less intensive, and allowing for easier substantive interpretation. Therefore, we will use the
nonparametric approach.

Table 1. Examples the digit-based algorithms, whole-number-based algorithms, and non-algorithmic strategies applied to the
multiplication problem 23 × 56 and the division problem 544 ÷ 34.

Strategy Multiplication Division

digit-based algorithm 56 34/544\16
23× 34

168 204
1120+ 204
1288 0

whole-number-based algorithm 56 544: 34 =
23× 340–10×
18 204
150 102– 3×
120 102
1000+ 102– 3×+
1288 0 16×

non-algorithmic written strategies 1120 + 3 × 56 10 × 34 = 340
1120 + 168 13 × 34 = 442
1288 16 × 34 = 544
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The second issue is the inclusion of predictors in the model, as discussed by Bolck, Croon, and
Hagenaars (2004). In the so-called one-step approach, the measurement part of the model (the part
of the model without predictors) and the structural part (the predictor part) are estimated simulta-
neously. While this leads to unbiased effect estimates, the number of models that needs to be fitted
and compared can quickly become unfeasible (all combinations of lower level and higher level latent
class structures, combined with all predictor structures). In addition, the structural part of the model
may influence the measurement part: individuals’ class membership may be different with and
without predictors. These problems do not occur in the three-step approach, where the measurement
model without any predictors is fitted first, then individual class membership predictions are
computed, and finally these class membership predictions are treated as observed variables in an
analysis with the predictors. However, this approach treats class membership as deterministic and
leads to systematic underestimation of the effects of the predictors. This can be corrected by taking
into account the misclassification in the second step during the final third step (Asparouhov &
Muthén, 2014). Therefore, we will use this corrected three-step approach.

The third issue is the selection of the best model. This is usually done based on information
criteria that consider model fit and complexity simultaneously, such as the popular Aikaike and
Bayesian Information Criterion (AIC and BIC). However, these criteria penalize model complexity
differently and therefore often identify different models as optimal (Burnham & Anderson, 2004).
The issue is further complicated with the introduction of a multilevel effect, because the BIC
penalization depends on sample size, and it is then unclear whether to use the number of individuals
or groups for that (Jones, 2011). Lukočienė and Vermunt (2010) investigated this issue and
demonstrate optimal performance of the group-based BIC, and underestimation of complexity by
the individual-based BIC and overestimation by the AIC. In our analyses, model selection with all
three criteria is compared.

Method

Sample

For our data from the most recent large-scale assessment of the mathematical abilities of Dutch
students, 107 schools from the entire country were selected according to a random sampling
procedure stratified by socioeconomic status. From a total of 2,548 participating sixth graders (11–
12-year-olds) in those schools, 1,619 students from the classes of 107 teachers (one teacher per
school, between 5 and 25 students per school in most cases) solved multidigit multiplication and
division problems (because of the incomplete assessment design, not all students solved this type of
problems). Of the 1619 children, 49% were boys and 51% were girls. Fifty percent of the children had
a relatively higher general scholastic ability level, as they were to go to secondary school types after
summer that would prepare them for higher education, while the other 50% were to go to vocational
types of secondary education. In terms of SES, most children (88%) had at least one parent who
completed at least two years of secondary school, while 12% did not.

Different mathematics textbooks were used on which the children’s mathematics instruction was
based. These textbooks are part of a textbook series that is used for mathematics instruction
throughout the various grades of primary school, and are therefore not (solely) determined by the
sixth grade teacher. All textbooks in our sample could be considered reform-based, but they differ in
instruction elements such as lesson structure, differentiation, and assessment. Textbooks from six
different methods were used in our sample: Pluspunt (PP; used by 37% of the teachers in our
sample); Wereld in Getallen (WiG; 30%); Rekenrijk (RR; 14%); Alles Telt (AT; 11%); Wis en Reken
(6%); and Talrijk (2%).
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Materials

Multiplication and division problems
The assessment contained 13 multidigit multiplication and eight division problems, of which
students solved systematically varying subsets of three or six problems according to an incomplete
design (see Hickendorff et al., 2009, for more details on such designs). The problems are given in
Table 2, including whether the problem to be solved was provided in a realistic context (such as
determining how many bundles of 40 tulips can be made from 2,500 tulips). Students were allowed
to write down their calculations in the ample blank space in their test booklets, and these calculations
were coded for strategy use. Six categories were discerned: the aforementioned digit-based and
whole-number-based algorithms, written work without an algorithmic notation (such as only writing
down intermediate steps), no written work, unanswered problems, and other (unclear) solutions (see
Table 1 for examples). The coding was carried out by the first and third author and three under-
graduate students, and interrater agreement was high (Cohen’s κ’s (J. Cohen, 1960) of .90 for the
multiplication and .89 for the division coding on average, based on 112 multiplication and 112
division solutions categorized by all).

Teacher survey about classroom practice
The teachers of the participating students filled out a survey about their mathematics teaching
practices. The 14 questions in the survey that concerned multiplication, division, and mental
calculation strategy instruction were used to create four scores (by taking the mean of the standar-
dized responses to the questions), as were the 10 questions that concerned instruction formats, and
the 10 questions that concerned instruction differentiation. The Appendix gives the questions that
were used to create each score.

Table 2. The content of the 13 multidigit multiplication problems and eight multidigit division problems in the assessment, and
the strategy use frequency on each item.

Strategy use (percent)

Problem Context Digit Number Non-alg. No written Unanswered Other n

M01 9 × 48 = 432 yes 39 4 24 30 2 2 368
M02 23 × 56 = 1288 yes 45 6 21 17 5 6 358
M03 209 × 76 = 15884 no 49 5 24 12 7 3 344
M04 35 × 29 = 1015 yes 40 4 28 23 3 2 353
M05 35 × 29 = 1015 no 43 4 23 24 3 3 352
M06 24 × 37.50 = 900 no 39 2 31 18 6 5 352
M07 9.8 × 7.2 = 70.56 no 40 3 17 27 10 3 352
M08 8 × 194 = 1552 yes 43 3 25 27 2 1 355
M09 6 × 192 = 1152 no 33 2 33 23 4 5 352
M10 1.5 × 1.80 = 2.70 yes 1 0 13 79 3 4 353
M11 0.18 × 750 = 135 no 41 2 16 27 12 2 356
M12 6 × 14.95 = 89.70 yes 32 1 29 34 2 2 359
M13 3340 × 5.50 = 18370 yes 41 3 23 18 10 5 359

D01 544 ÷ 34 = 16 yes 18 32 5 27 10 7 368
D02 31.2 ÷ 1.2 = 26 no 9 10 6 50 18 7 369
D03 11585 ÷ 14 = 827.5 yes 17 30 4 32 10 7 345
D04 1470 ÷ 12 = 122.50 yes 19 25 11 31 12 3 350
D05 1575 ÷ 14 = 112.50 no 17 30 16 22 12 3 355
D06 47.25 ÷ 7 = 6.75 yes 17 25 10 33 10 5 352
D07 6496 ÷ 14 = 464 yes 16 24 5 36 12 7 354
D08 2500 ÷ 40 = 62 yes 12 15 11 45 6 11 359

total multiplication 37 3 24 28 5 3 4613

total division 16 24 9 35 11 6 2852

Parallel versions of problems not yet released for publication are in italics.
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Multilevel latent class analysis

We estimated latent classes of students reflecting particular strategy choice profiles using MLCA,
which classifies respondents in latent classes that are each characterized by a particular pattern of
response probabilities for a set of problems (Goodman, 1974; Hagenaars & McCutcheon, 2002). For
our case, let Yijk denote the strategy choice of student i of teacher j for item k. A particular strategy
choice on item k is denoted by sk. The latent class variable is denoted by Xij, a particular latent class
by t, and the number of latent classes by T. The full vector of strategy choices of a student is denoted
by Yij and a possible strategy choice pattern by s. This makes the model:

P Yij ¼ S
� � ¼ �

T

t¼1
P Xij ¼ t
� �

�
K

k¼1
P Yijk ¼ sk Xij ¼ t

��� �
: (1)

In this model, the general probability of a particular pattern of strategy choices, P (Yij = s), is

decomposed into T class-dependent probabilities, �
K

k¼1
P (Yijk = sk|Xij = t). These class-dependent

probabilities are each weighted by the probability of being in that latent class, P (Xij = t). The
interpretation of the nature of the latent classes is based on the class-dependent probabilities of
strategy choices on each of the problems, P (Yijk = sk|Xij = t). The model is extended with a multilevel
component by adding a latent teacher class variable, on which students’ probability of being in each
latent student class (P (Xij = t)) is dependent. Predictors at the teacher and student level that
influence class probabilities can also be added, as described by Vermunt (2003, 2005). For such a
multilevel model with one teacher-level predictor Z1j and one student-level predictor Z2ij, let Wj

denote the latent teacher class that that teacher j is in, with m denoting a particular teacher class. The
model then becomes:

PðXij ¼ tjWj ¼ mÞ ¼ expðγtm þ γ1tZ1j þ γ2tZ2ijÞ
PT

r¼1
expðγrm þ γ1rZ1j þ γ2rZ2ijÞ

: (2)

See Henry and Muthén (2010) for graphical representations of this type of models.
The MLCA was conducted with version 5.0 of the Latent GOLD program (Vermunt & Magidson,

2013). All 13 multiplication and eight division strategy choice variables were entered as observed
response variables and a teacher identifier variable as the grouping variable for the multilevel effect.
Models with latent structures with up to eight latent student classes and 11 latent teacher classes
were fitted, and the model with the optimal structure was selected using the AIC and BICs. Using the
three-step approach (Bakk, Tekle, & Vermunt, 2013), this measurement model was then fixed and
curriculum and student predictors were added to the model in groups, because of the high number
of predictors. The successive models were compared using information criteria and the best model
was investigated in more detail by evaluating the statistical significance of each of the predictors with
a Wald test. The practical significance of the predictors was evaluated based on the magnitude of the
changes in the probability of class memberships associated with different levels of the predictors.
Effect coding was used for all predictors.

Results

The latent class measurement model

For the LC measurement models fitted on the strategy data, both the AIC and BICs (see Table 3)
show that adding a multilevel structure greatly improves model fit, signifying a considerable within-
teacher dependency of observations. While the AIC identifies a very complex model as optimal (10
latent teacher classes and six latent student classes), the BICs are in near agreement on a more simple
model (four latent teacher classes and three or four latent student classes). Of these simpler models,
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the model with four student classes has a much clearer interpretation and is also favored by the
group-based BIC that is optimal according to Lukočienė and Vermunt (2010). This model has an
entropy R2 of .87 for the latent student classes and .82 for the teacher classes, which both indicate a
high level of classification certainty (Dias & Vermunt, 2006).

We also estimated measurement models with a parametric rather than a non-parametric teacher
effect (see the bottom part of Table 3). The parametric model with the lowest group-based BIC also had
four student classes, and the class-specific probabilities of these classes were very similar to those of the
classes in the non-parametric model (indicating very similar nature of the classes), but the classes
differed considerably in size in the two approaches (by 13, 4, 25, and 15 percentage points, respectively).
Latent teacher classes cannot be compared as there are none in the parametric approach, which also
prevents later easy substantive interpretation of the multilevel effect. The fit of the best parametric
model was not better than that of the best non-parametric model according to the information criteria,
and the entropy R2 for the student classes of the parametric model was lower (.80).

Latent student classes
Overall, students solved multiplication problems most often with the digit-based algorithm, while
solutions without written work were most frequent for division (see Table 2 for frequencies for each
strategy). The class-dependent probabilities of choosing each strategy in each of the four latent
student classes are given in Table 4, which shows that every latent student class is dominated by high
probabilities of choosing one or two strategies.

The largest student class (with a class probability of .31, i.e., containing 31% of students) is
characterized by a high probability of answering without written work for every item, and also a
considerable probability of leaving problems unanswered (especially division problems). Because of
this, we label this class the “no written work class.” The second largest student class (probability of
.29) is characterized by a high probability of solving multiplication problems with the digit-based

Table 3. Fit statistics for the non-parametric and parametric multilevel latent class models.

Latent classes BIC

Teachers Students Log-likelihood Parameters AIC Individual-based Group-based

1 (no multi- 2 −9801 209 20020 21146 20587
level effect) 3 −9388 314 19403 21096 20242

4 −9165 419 19169 21427 20289
5 −8964 524 18976 21800 20376

2 2 −9717 211 19856 20993 20419
3 −9253 317 19141 20849 19988
4 −8912 423 18670 20950 19800
5 −8713 529 18484 21335 19898

3 2 −9707 213 19839 20987 20408
3 −9207 320 19054 20779 19910
4 −8819 427 18491 20792 19632
5 −8614 534 18295 21173 19723

4 2 −9705 215 19840 20999 20415
3 −9178 323 19002 20743 19865
4 −8790 431 18441 20764 19593
5 −8585 539 18248 21153 19688

5 2 −9705 217 19844 21013 21965
3 −9220 326 19092 20849 19963
4 −8866 435 18257 21189 19711
5 −8584 544 18234 21167 19689

parametric 2 −9708 210 19836 20968 20397
3 −9205 316 19042 20745 19887
4 −8861 422 18566 20841 19694
5 −8661 528 18377 21223 19789

The lowest BICs are bold. The lowest AIC was for 10 teacher and 6 student classes.
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algorithm and a high probability of solving division problems with the number-based algorithm (the
“mixed algorithm class”). The third largest student class (probability of .21) is characterized by a
high probability of solving multiplication problems with non-algorithmic written strategies and a
mixture of the number algorithm, non-algorithmic written strategies and no written work for the
division problems (the “non-algorithmic written class”). The smallest student class (probability of
.20) is characterized by a high probability of solving both multiplication and division problems with
digit-based algorithms (the “digit-based algorithm class”).

Latent teacher classes
The latent student class probabilities (or sizes) from Table 4 are the mean for all the teachers. Within
the four latent teacher classes, the student class probabilities differ greatly. As can be seen in Table 5,
the probability of the digit algorithm class varies most over teacher classes (between .00 and .74),
followed by that of the mixed algorithm class (between .00 and .61), and that of the non-algorithmic
written class (between .03 and .51). The probability of the no written work class varies relatively little
over teacher classes (between .23 and .38). The largest teacher class (size of .39) is characterized by a
high probability of the mixed algorithm class, the second largest teacher class (.30) by a high
probability of the non-algorithmic written strategy class, the third largest teacher class (.19) by a
high probability of the digit-based algorithm class, and the smallest teacher class (.12) by substantial
probabilities for all classes except the non-algorithmic written class.

These insightful results on the magnitude and nature of teachers’ effects illustrate one of the
advantages of the nonparametric specification of the multilevel effect.

Adding predictors to the latent class model

Next, the structural part was added to the model: predictors for students’ probability of being in a
particular latent strategy class. First the relation between the intended and enacted curriculum
(textbook and instruction) was investigated, using a MANOVA with textbook as the between-

Table 4. The mean probabilities of choosing each of the six strategies for the multiplication and division problems for each latent
class.

Mean probability of strategy choice (proportion students in class)

No written work Mixed algorithm Non-algorithmic Digit algorithm
class (.31) class (.29) class (.21) class (.20)

Strategy × ÷ × ÷ × ÷ × ÷

digit-based algorithm .06 .01 .71 .01 .04 .03 .68 .70
whole-number-based alg. .01 .02 .02 .54 .14 .37 .02 .01
non-algorithmic written .25 .03 .15 .10 .68 .21 .16 .03
no written work .52 .65 .10 .24 .08 .22 .10 .17
unanswered .13 .23 .02 .06 .03 .08 .03 .03
other .04 .05 .02 .05 .04 .10 .02 .06

The highest strategy probability per operation within a class is in boldface.

Table 5. The latent student class probabilities in each of the four latent teacher classes.

Latent student class probability

Latent teacher class No written work class Mixed algorithm class Non-algorithmic class Digit algorithm class

1 (P = .39) .27 .61 .11 .00
2 (P = .30) .38 .08 .51 .02
3 (P = .19) .23 .00 .03 .74
4 (P = .12) .34 .22 .09 .36

Total .31 .29 .21 .20

The highest latent student class probability within a latent teacher class is in boldface.
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group independent variable and the twelve teachers’ instruction scores as the dependent variables.
No significant relation was found, Wilks’ λ = .57, F (48, 322) = 1.05, p = .39. Next, student
characteristics and intended and enacted curriculum predictors were added to the model in a
stepwise fashion. As can be seen in Table 6, according to both BICs model fit is best with only
the student characteristics as predictors, whereas the AIC identifies the more complex model with all
predictors as optimal. The group-based BIC is nearly as low for the model with the textbook and
strategy instruction predictors added as for the model with only student predictors (3257 vs. 3250).
Since curriculum effects were our primary interest, we chose to proceed with this more extensive
model.

The statistical significance of the covariates in this model was evaluated with Wald tests, and the
magnitude of the effects is illustrated by comparisons of the probabilities of membership of the latent
student classes for individuals at the different levels of the predictors (see Table 7). These prob-
abilities were calculated with all of the other selected predictors in the model set at their mean. For
the interval-level instruction variables, probabilities are compared for students of teachers who score
one standard deviation above the mean of that variable and students of teachers who score one
standard deviation below the mean. Probabilities for the different levels of a predictor that differ by
.10 or more are discussed.

Student characteristics
Student gender had a significant effect on class probabilities, W2 = 107.1, p < .001, with the
probability of being in the no written work class being .33 higher for boys than for girls. The
probability of being in the mixed algorithm class was .17 higher for girls than for boys. Students’
general scholastic ability also had a significant effect, W2 = 53.0, p < .001, with the probability of
being in the no written work class being .25 higher for students with a lower compared to a higher
ability, and the probability of being in the non-algorithmic class .12 lower. SES also had a significant
effect, W2 = 8.4, p = .04, but class probability differences between children with a different SES were
all smaller than .10.

Intended curriculum
Mathematics textbook had a significant effect, W2 = 123.6, p < .001. Students being instructed from
the PP textbook had a probability for the non-algorithmic class that is .14 higher than than that of
the total, and a .13 lower probability for the digit-based algorithm class. Students with the RR
textbook had a .16 lower probability for the digit algorithm class. Students with the AT textbook had
a .16 lower probability of being in the mixed algorithm class and a .13 higher probability of being in
the non-algorithmic written class. Students with other textbooks had .14 lower probability of being
in the mixed algorithm class and a .14 higher probability of being in the digit algorithm class.

Enacted curriculum
All strategy instruction scores had significant effects. When comparing students whose teacher scored
one standard deviation above the mean in their focus on the digit-based algorithm for multiplication to

Table 6. Fit statistics for the latent class models with successively added predictors.

BIC

Predictors added to the model Log-likelihood Parameters AIC Individual Group

none −1651 15 3333 3414 3373
student characteristics gender, ability, SES −1569 24 3186 3315 3250
intended curriculum textbook −1550 36 3172 3366 3268
enacted curriculum strategy instruction −1517 48 3129 3388 3257

instruction formats −1500 60 3120 3443 3280
instruction differentiation −1479 72 3103 3491 3295

The lowest information criteria are in boldface.
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students whose teacher scored one standard deviation below the mean (and who were thus more
focused on the whole-number-based algorithm for multiplication), their probability of being in the
mixed algorithm class was .25 higher, while their probability of being in the non-algorithmic written
class was .14 lower, W2 = 36.6, p < .001. Students whose teacher scored above rather than below the
mean for digit-based division had a .26 higher probability of being in the digit algorithm class, and a .18
and .12 lower probability of being in the mixed algorithm and non-algorithmic written class respec-
tively, W2 = 100.9, p < .001. Students whose teacher scored above rather than below the mean in their
attention to various aspects of mental calculation had a .18 higher probability of being in the mixed
algorithm class and a .15 lower probability of being in the digit algorithm class, W2 = 49.0, p < .001.
Students whose teachers scored above rather than below the mean for the use of multiple strategies per
operation type, had a .35 lower probability of being in the mixed algorithm class and a .18 higher
probability of being in the no written work class, W2 = 54.0, p < .001.

Discussion

The present study demonstrated a first application of MLCA to educational large-scale assessment
data. We argued that this technique is especially suitable for the challenges of this type of data and
for evaluating contextual effects on problem solving (Zumbo et al., 2015). We demonstrated the
added value of adequately modeling the multilevel structure inherent to educational data: though
teacher effects are often ignored by researchers, we found them to be considerable. Model fit was
much better with than without a multilevel structure for the teacher level, and latent teacher groups
were found with large differences in students’ probability of having a certain strategy choice profile.
Ignoring teacher effects therefore seems to result in the omission of a crucial part of the model, and
thereby in an incomplete representation of reality. The present study also demonstrated the
relevance of the possibility of including predictors at different hierarchical levels in the model by
simultaneously controlling for student characteristics and investigating curriculum effects, which led
to interesting results relevant to both educational practice and theory.

Substantive conclusions

The results with regard to strategy choice profiles (or latent classes) that were found were largely in
line with our hypotheses: there were profiles dominated by answering without written work, by the
digit-based algorithm, by non-algorithmic approaches and the whole-number-based algorithm, and
by both algorithms depending on the operation (multiplication or division). Students’ probability of
being in each of these classes was found to depend strongly on the teacher, because it varied
considerably between latent teacher groups. The range was largest for the algorithmic classes and
smallest for the no written work class. Therefore, teachers appear to have large effects on students’
strategy use, but these effects unfortunately seem smallest for the inaccurate mental strategies
without written work.

Intended and enacted curriculum predictors were added, controlling for student characteristics.
Consistent with previous research findings, boys and students who were going to a lower secondary
school level were more likely to answer without written work. The intended curriculum and enacted
curriculum were not significantly related to each other, and were both found to be related to strategy
choices, despite the suggestion from the literature of limited effects of the intended curriculum. As
for the intended curriculum, the textbooks mostly appeared to be related to students’ probability of
using the different algorithmic and non-algorithmic written strategies.

As for the enacted curriculum, its relation to strategy use appeared somewhat stronger than that
of the intended curriculum. Teaching digit-based algorithms was associated with an accordingly
higher use of these strategies, while teaching whole-number-based algorithms appeared to have the
unexpected side-effect of a higher use of non-algorithmic written strategies. Devoting more attention
to mental strategies was associated with higher probability of the mixed algorithm class and lower
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probability of the digit-based algorithm class. Teaching more than one strategy per operation was
associated with lower probability of the mixed algorithm class and higher probability of the no
written work class. Instruction formats did not have significant effects on strategy use, thereby not
confirming our expectations regarding the effects of direct instruction versus independent work.
Instruction differentiation also did not have a significant effect.

Limitations

A limitation of the present study could be the sample size, which is both relevant for the
estimation of the complex MLCA models and the generalizability of the results. As for the
sample size required for the estimation of MLCA models (or LCA models more generally),
there are no general rules of thumb. Our sample of 1,619 students with 107 teachers seems to
be of a similar order of magnitude as those in the examples used by Vermunt (2003) in his
introduction of MLCA, where applications were featured with 886 employees in 41 teams, 2156
students in 97 schools, and 3584 respondents in 32 countries. A more precise estimate for a
specific situation can be made using Monte Carlo simulations, where factors such as the number
and type of problems, the separation of the classes and their relative sizes (approximately equal or
not) and the amount of missing data play a role (Muthén & Muthén, 2002; Nylund, Asparouhov,
& Muthén, 2007). Nylund et al. (2007) found particular problems with information criteria when
a small sample (N = 200) was combined with unequal class sizes, as small classes then contain
very few subjects. This is not the case in our sample.

Another limitation is the correlational nature of the large-scale assessment data. We of course had
no influence on the intended or enacted curriculum, and therefore the causal nature of the found
relations between curriculum and strategy use is uncertain and requires further (experimental)
investigation. The present study does provide a starting point for such follow-up research. It should
also be noted that the intended and enacted curriculum do not reflect (direct) effects of the teachers
in our sample to the same extent, as the enacted curriculum is in the hands of the teacher, whereas
the intended curriculum (the textbook) is determined on a school level.

Implications

The results suggest several implications (though the limited sample size should be noted). They suggest
that models for strategy choices such as the Adaptive Strategy Choice Model (ASCM; Lemaire & Siegler,
1995) may need to be extended to include factors beyond the student and the problem (in line with
suggestions by Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009), and the same goes for other
investigations of mathematical strategy use that have overlooked instructional factors so far (e.g.,
Hickendorff et al., 2010; Imbo & Vandierendonck, 2008; Lemaire & Lecacheur, 2011). The results
also suggest that the investigations of curriculum effects on achievement may so far have omitted an
important mediator: curriculum affects strategy use, and there are strong performance differences
between strategies (Hickendorff, 2011; Hickendorff et al., 2009), so the curriculum may (in part) affect
achievement through its effect on strategy use.

For educational reforms, our results suggest that although positive effects on achievement have
been found of instructional practices congruent with reform ideas (Cohen, & Hill, 2000), reform-
oriented instruction may also have unexpected side-effects: teaching that is more oriented toward the
whole-number-based algorithms introduced by the Dutch mathematics education reform, is not only
associated with more use of those algorithms, but also with more use of non-algorithmic strategies
that have previously been shown to be less accurate than algorithms (Hickendorff et al., 2009).
Finally, our finding that the effects of teachers and the curriculum on the proportion of students who
mainly use mental strategies were small suggests that it might be challenging to reduce students’ use
of mental strategies through means of regular instruction, and that perhaps special interventions are
necessary to promote their use of more accurate written strategies.
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Conclusion

We would like to conclude by noting that our application of MLCA is relevant to applications of this
technique to educational data more generally, and that several generalizations can be thought of:
applications to other domains (e.g., strategies in spelling or reading), other types of nominal
response data (e.g., error types), and also educational data from other sources than large-scale
assessments (e.g., educational intervention studies with a large enough sample). With this article,
we hope to have increased the attractiveness and accessibility of MLCA for educational researchers.
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Appendix: Teacher survey questions used to create the scores

For brevity, similar questions were combined in one sentence with the differences between the questions denoted by
forward slashes (/); the number of questions used to create each score is given between brackets.

Strategy instruction

Focus on digit-based versus whole-number-based algorithm for multiplication (2). Which multiplication
algorithm (whole-number-based, both, digit-based) reflects the practice in your class most closely? To what extent
do you as a teacher prefer the whole-number-based or digit-based multiplication algorithm?

Focus on digit-based versus whole-number-based algorithm for division (2). Which division algorithm (whole-
number-based, both, digit-based) reflects the practice in your class most closely? To what extent do you as a teacher
prefer the whole-number-based or digit-based division algorithm?

Attention to various aspects of mental calculation (6). How many times a week do you pay attention to mental
calculation and numerical estimation in your mathematics lessons? How often do you pay attention to these aspects of
mental calculation: basic multiplication and division skills / smart number-dependent strategies / multiple strategies
for one problem type / numerical estimation / applying approximations, estimations and rounding off?

Use of multiple strategies per operation type (4). Do your students use one or more strategies for mental
multiplication / division? Do your students use one or more strategies for multidigit multiplication / division?

Instruction formats

Focus on group instruction (2). How important is giving group instruction in mathematics lessons to you? How
much time do you spend on average on giving group instruction?

Focus on individual instruction (2). How important is giving (extra) individual instruction in mathematics
lessons to you? How much time do you spend on average on giving (extra) individual instruction?

Focus on individual work (2). How important is letting students work individually in mathematics lessons to you?
How much time do you spend on average on letting students work individually?

Actively involving students in instruction (4). How often do the following situations occur during mathematics
lessons: you ask the class questions during instruction / you let students write out calculations on the blackboard / you
ask students how they found an answer they gave / you discuss frequent errors with the class?

Instruction differentiation

Understanding students’ thinking (3). How well do you understand the thinking of your students with low /
average / high performance?

Differentiation within mathematics lessons (2). Do low-performing students get more learning time than average
students? To what extent do you differentiate in your mathematics teaching by level or pace?

Extra support within the school (2). Are there possibilities for extra individual support in mathematics for
students in your school from a remedial teacher or a mathematics specialist? How satisfied are you with the results of
the school support that students receive?

Extra support outside the school (3). How intensive is the support of students at home, by parents or caretakers?
Are there students who receive external support, for example in homework classes? How satisfied are you with the
results of the support at home / external support that students receive?
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