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ABSTRACT: It is presently unknown how strong lattice potentials influence the fermion
spectral function of the holographic strange metals predicted by the AdS/CFT correspon-
dence. This embodies a crucial test for the application of holography to condensed matter
experiments. We show that for one particular momentum direction this spectrum can be
computed for arbitrary strength of the effective translational symmetry breaking poten-
tial of the so-called Bianchi-VII geometry employing ordinary differential equations. Deep
in the strange metal regime we find rather small changes to the single-fermion response
computed by the emergent quantum critical IR, even when the potential becomes relevant
in the infra-red. However, in the regime where holographic quasi-particles occur, defin-
ing a Fermi surface in the continuum, they acquire a finite lifetime at any finite potential
strength. At the transition from irrelevancy to relevancy of the Bianchi potential in the
deep infra-red the quasi-particle remnants disappear completely and the fermion spectrum
exhibits a purely relaxational behaviour.
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1 Introduction

The holographic description of strongly interacting quantum systems at finite density [1]
has proven very helpful in offering new explanations for the mysterious nature of the elec-
tron systems formed in high-T,. superconductors and other strongly correlated fermion
systems [2]. However, a systematic theoretical understanding of the equilibrium physics is
only available in the spatial continuum. In the gravitational bulk one can use the homo-
geneity of the (stationary) space-time in order to write the equations of motions simply as
ordinary differential equations (ODE’s) involving only the radial coordinate of the emergent
extra holographic dimension. The relevant laboratory systems are characterized by very
strong lattice potentials breaking translational symmetry [2]. These lattices alter the na-
ture of the IR physics, and although it is well understood how to incorporate translational
symmetry breaking (TSB) in holography [3-5], they greatly complicate the bulk computa-
tions. In such geometries one resorts to numerical solutions of systems of non-linear partial
differential equations (PDE’s). Of course this can be and has been done, but presently
only a limited number of results are available, dealing with simple bulk systems (typically
Einstein-Maxwell) and describing mainly macroscopic transport properties [3, 6].

More specifically, most computations focus on the (optical) electrical and thermal con-
ductivities at zero momentum. This is partly because of the relative ease with which these



can be calculated — the equations simplify greatly by considering only zero momentum,
and even more so by considering the zero frequency (DC) limit. The price to be paid
for this convenience is that these macroscopic conductivities contain relatively limited in-
formation regarding the system. In this limit hydrodynamics becomes dominant, i.e. any
finite density system will turn into a perfect metal and the conductivities are to first order
governed by momentum relaxation due to the breaking of translational symmetry; this is
rather insensitive to the detailed nature of the system and/or the actual pattern of TSB.
As a consequence one can get quite far using simplified holographic models like massive
gravity [7] or Q-lattices/axions [8] that introduce momentum non-conservation without an
explicit lattice. Since these simplified models do not capture the physics of Umklapp they
have no bearing on the behaviour of physical quantities at microscopic momenta.

Transport, i.e. conductivity at zero momentum, plays actually a relatively minor role
in the large range of properties that are measured in the condensed matter laboratories,
where its constraints have been realized all along. There is much to be learned by looking at
finite momenta. This is already informative for linear response, either probed through elec-
tromagnetic means [9], through inelastic neutron scattering, which gives access to the full
momentum and energy dependence of the dynamical magnetic susceptibility [2], through
the novel electron energy-loss instruments [10] that promise to give access to the full dy-
namical charge susceptibility in the near future, and especially through the mature photo-
emission and scanning tunnelling spectroscopy techniques that deliver direct information
regarding the single electron propagators [1].

Although holographic photo-emission [11, 12] has played a key role in the early history
of AdS/CMT, there have been surprisingly few studies on holographic spectral functions in
the presence of lattices [13-15], and these only focus on the cases where the lattice deforma-
tion is irrelevant in the infra-red. Here we go beyond this, to study fermion spectral function
at strong lattice potentials. This difficult question is precisely one where the virtues of the
holographic approach come into play. The holographic set-up is the so-called Bianchi-VII
(helical) background [16]. This is a member of the “homogeneous lattice” family of ge-
ometries that have been used in holography in order to simulate effects of translational
symmetry breaking [17-19]. Compared to an actual lattice these models have enhanced
symmetries allowing one to use the geometry’s homogeneity in order to easily compute its
properties using just ODE’s even in the regimes where the TSB deformation is strong. In
the context of the Bianchi-VII background this applies when the probe momentum lies on
the direction of the helix. For generic momenta, which are more natural since they give
rise to Umklapp effects, the usual TSB intuition applies and one has to deal with PDE’s.

We will consider single-fermion two-point functions of the dual boundary QFT in this
holographic background, but it is quite useful to first put our work into context by consider-
ing the features of these fermions in the effective potential corresponding to the Bianchi-VII
geometry. Even though superficially this helix-like potential resembles that of helical mag-
netic order (of the kind encountered in MnSi [20]) it is actually quite different, due to
the peculiar behaviour of the Umklapp scattering. As we will show in detail in section 3,
the fermionic “boundary” degrees of freedom we study holographically are 3 + 1-dim Weyl
fermions 6. From the holographic theory and its effective action (3.9) we can obtain the



equations of motion of the free Weyl fermions in the presence of the potential induced by
a helical source with amplitude A, pitch p and direction along the O,-axis. It reads

|:au7M+ (,u + M5’75)70 =+ VUmklapp 0 =0, (11)
Vimklapp ~ A [008(2pw)(ky7y — k.v®) — sin(2px) (k.Y — kyv'z)],
pd ~ N2

The helical deformation breaks chiral symmetry and this results in a constant shift of
the effective chemical potential of left and right Weyl fermions at all momenta, similar
to the Stoner (spin) splitting found in simple ferromagnetic metals. Moreover the spatial
dependence of the helical source leads to a uni-directional breaking of translations with a
periodicity set by its pitch. This implies a Brillouin zone indicated in figure 1b in terms of
the parallel k| ~ k, and perpendicular k| ~ ky, k, momenta. The Umklapp scattering has
the effect of mixing the states of opposite spin of the chiral Weyl fermions and because the
potential is harmonic this involves a momentum transfer k, — k; + 2p. The interesting
part is that the specific Bianchi-VII construction dictates that the Umklapp coupling is
proportional to k|, i.e. it vanishes as long as k, = k, = 0 (1.1): this property is the reason
why for k; = 0 the problem reduces to a simpler ODE system. Based on standard band
structure wisdom this is already counter-intuitive since in the holographic gravitational bulk
standard lattice potentials would have the effect of maximizing Umklapp in this direction.
In our case it is by moving away from this direction that the Umklapp switches on, causing
band gaps at high symmetry points as one can see on the cartoon figure la: one can clearly
see the absence of Umklapp in the I' — X direction (k; = 0) and the gaps appearing in the
X —Mand I —Y cuts.!

What this simplified band structure misses is the life-time of the boundary fermions.
In the effective action (1.1) this is simply ignored and these quasi-particles are infinitely
long-lived. The true holographic model is a fully consistent and interacting theory, however.
Indeed, these theories famously include a non-trivial IR critical sector possibly interacting
with a more conventional protected mode, such as a Goldstone boson or a Fermi-surface
excitation. The Umklapp described above is an additional universal feature on top of these
interactions. To illustrate the effects of this most clearly, we restrict ourselves to k; =0
and by making use of the simplifications discussed above we will study in detail the effects
of translational symmetry breaking on the finite momentum fermionic response, in the
presence of interactions.

A particular aspect we focus on is that the holographic model under consideration
undergoes a quantum phase transition where the Bianchi-VII TSB potential turns from
irrelevant to relevant in the IR, as a function of the pitch and strength of the helical
potential (figure 2) [16]. Accordingly, the optical conductivity in the parallel direction
turns from relevant to irrelevant upon crossing the quantum phase transition. In both cases

L At the Y-point there is no splitting in the first band, which has kj = 0, because it corresponds to the flat
wave in the periodic direction, hence the spatial modulation is averaged out. Nevertheless the Umklapp at
the Y-point is observed in the second band, which originates from the hybridization of the nested fermionic
dispersions with relative momentum k; + 4p.
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(a) Cartoon of the band structure of boundary  (b) 2D Brillouin zone, Umklapp surfaces are
fermion. The k,-dependent Umklapp gaps shown as thick dashed lines. The profile of
are apparent in the X — M and Y — I" cuts. the Umklapp coupling is shown in blue.
Different colours refer to opposite chiralities.

Figure 1. Phenomenology of the effective boundary theory.

0)|(w) ~ w® and at the transition the exponent turns from negative to positive, respectively.
This was called a “metal-insulator” transition, but this is a confusing terminology. In
condensed matter physics an insulator invariably refers to an incompressible state of matter,
characterized by an energy scale below which conduction is suppressed exponentially. The
relevant T'SB regime of the Bianchi-VII model describes a state that is still compressible and
subject to continuous renormalisation while the current operator just becomes irrelevant.
This is alien to finite-density, free-fermion physics of conventional condensed matter, but it
is a distinct possibility in an interacting Quantum Field Theory. For instance, consider the
(engineering) scaling of the conductivity in a d 4+ 1 dimensional CFT o(w) ~ w2 which
for d > 3 turns irrelevant. As we will see soon, probing the system with fermions (instead
of currents) reveals that the physics has no relation to a conventional metal-insulator
distinction. In the remainder we will therefore call the two phases of the Bianchi-VII
system the irrelevant and relevant translation symmetry breaking (TSB) phases.

Let us briefly summarize our findings. As we discuss in section 4, the dynamics and
the spectrum of the fermionic excitations can be neatly understood in terms of the semi-
analytic framework developed for the Reissner-Nordstr”om (RN) metal in [21, 22]. The
Dirac equation in the holographic gravitational bulk can be recast as a Schrédinger equation
and the corresponding potential (figure 3) reveals the qualitative features of the fermionic
response. It can either have well defined quasi-particles, or be dominated by diffusive
dynamics, or be completely governed by the strange metallic “un-particle” Green function.
When we consider the effect of the Bianchi-VII TSB deformation we can distinguish two
scenarios depending on the scaling dimension of the fermionic operator under consideration.



For fermions with low close-to-free field scaling dimension, for which sharp quasi-
particle peaks are observed at finite chemical potential (dual to a pristine RN black hole),
an effect is seen even in the irrelevant TSB phase for any finite helical amplitude A. The
barrier of the Schrédinger potential that encodes the IR physics becomes finite (figure 3)
and the fermion has a finite tunnelling probability to reach the horizon, leading to the quasi-
particles acquiring a finite life-time at zero energy. The Fermi-surface becomes smeared
accordingly. Notice that this is in striking contrast with the principles governing real
Fermi-liquids in a periodic potential.

Computing the actual spectral function of the dual CFT this effect is also clearly seen
as we show in section 5. Upon increasing the potential strength the broadening continues to
increase (figures 5, 9a). At the same time a qualitative change appears to take place at the
transition to the relevant TSB phase. Instead of the damped but still recognizable quasi-
particle spectra (left panel on figure 4) of the irrelevant case, a completely relaxational
response is found (right panel on figure 4). To better understand what is going on, it is
informative to track the spectrum of the AdS bulk quasi-normal modes in the complex
plane, which we do in section 6 (figures 8, 9). These are in one-to-one correspondence
with the poles of the fermionic Green’s function in the dual field theory. As a function of
increasing A one finds that the quasi-particle poles not only reveal the increasing damping
but also a decrease of the Fermi-velocity indicating that the mass of the quasi-particles
is increasing. At the transition from irrelevant to relevant TSB we find that the poles
corresponding to the quasi-particles disappear, “dissolving” in the string of thermal poles
on the imaginary axis that describe the “un-particle” G branch cuts.

The other scenario where the scaling dimension of the fermionic operator is large is
arguably most revealing since the boundary UV fermions directly probe the deep infra-red,
being unimpeded by the quasi-particle resonance. The effects of the Bianchi deforma-
tion are less spectacular in this regime — in stark contrast with the quasi-particle regime
there is still a hard potential wall in IR (figure 3) resulting in the spectral weight van-
ishing identically at precisely zero energy and temperature. Only quantitative changes
occur as the strength of the TSB is increased including the transition from irrelevancy to
relevancy (figure 7).

We will conclude by analysing these results in the context of the particular way trans-
lational symmetry is broken in this model (section 7). The main text is followed by three
appendixes which are devoted to some details about the numerics (appendix A), the small-
w IR Green’s function (appendix B) and the special case of zero frequency Schrodinger
potential (appendix C).

2 The Bianchi-VII background as a model of TSB in holography

In [16] the Bianchi-VII homogeneous space-time with a helical symmetry was suggested
as a toy holographic model for studying effects of translational symmetry breaking and
physics of metal-insulator transition. The following discussion will be based on this set-up,
so here we recall its structure.



In order to explicitly break the translational symmetry one introduces an additional
(massive) vector field on top of the usual Einstein-Maxwell action in 5D AdS bulk:

1 1 2
S = /dac5 V=9 <R +12— ZFMNF/WV - 1WMNWMN - mQBBMBM> , (2.1)

where F' = dA is the strength of the Maxwell field A, mp is a mass of the vector field
Bag, W = dB its strength, and we set the curvature radius to unity and mp to zero.? The
5D spatial indices are M, N € {t,z,y, 2,7}, the boundary 4D theory is spanned by the
usual Minkowski coordinates p,v € {t,z,y,z} and is located at radial infinity r — oo in
our notation. While the asymptotic value of A at r — oo defines the boundary chemical
potential u, the boundary value of B is set by the spatially dependent helical “source”
A(x), which breaks translation symmetry.

A(r) T pdt, B(r,z) = A(z) = Awe, (2.2)

where the helical 1-forms w; are defined as

wy = dz, (2.3)
wo = cos(pz)dy — sin(pz)dz,
ws = sin(pz)dy + cos(pz)dz,

and form an algebra:
dwi =0, dws = —pwy A ws, dws = pwi A wo. (2.4)

They are appropriate for describing a helix with pitch p and direction along the
z-coordinate. It is important to note that because the source A(x) is fixed on the bound-
ary and is not dynamical, it can absorb the momentum of the bulk system. It forces the
geometry to adapt and becomes a channel through which momentum flows towards what
is essentially an infinite external “bath”. The effect of the helical source on the bulk metric
can be obtained with the following Ansatz

dr?
U(r)
B = w(r)ws, A = a(r)dt.

ds? = —U(r)dt? + ——~ + €210 (wy)? 4 €220 (wg)? 4 290 (wg)?, (2.5)

The Killing vector fields of this space-time contain the three fields:

&1 =0, &2 = aya &3 =0, —y0, + Zay . (2'6)

It is clear from these Killing vectors that in the Bianchi-VII space, the z-direction is not
characterised by translational invariance. It should be noted at this point that this property
of the space is genuine and not an artefact of the coordinate choice and therefore cannot

’Tn [16} the additional Chern-Simons term Lcs ~ B A F AW was present but we discard it here because
it is not strictly necessary to generate the helical background.



be reversed by a coordinate transformation. In other words there exists no coordinate
transformation z# — Z*, such that & = 0:.% If that were possible then the only effect
would be a rotation of the direction (beside the already translationally invariant ones)
along which translations would be conserved and the momentum vector would simply
be re-defined.

The specific form of the functions U,v;,w and a follow from solving the Einstein-
Maxwell equations. Insisting on an asymptotic approach to AdSs at the boundary the
Ansatz functions should have the following asymptotics:

r— 00 : U(r) ~ 72, vi(r) ~ In(r). (2.7)

In the absence of a TSB potential when A\ = 0 (but at non-zero u) the solution should
reproduce the conventional non-extremal Reissner-Nordstrém black hole in AdS (RN), and
the functions reduce to

RN:  U() =+ [1 - <1 + :fg) (%")4 + ?fi%(ﬁﬂ Cw() =ln(r),  (2.8)
a(r) = [1 - (7;?)2] , w(r) =0,

At finite A > 0 the generic solution remains a non-extremal black hole and the tem-
perature is defined by the surface gravity at the horizon:

U'(rp)
4’

(2.9)

where the radius 7, is the largest root of U(ry) = 0. Accordingly, the near-horizon asymp-
totics of the Ansatz read

r—r: Ur) =0 —rm)U,,  a(r) = —r)EL,  w(r) =w, vilr) =k

)

(2.10)

The great advantage of the Bianchi-VII model is that despite the fact the metric
is explicitly dependent on z-coordinate and breaks translational symmetry, the non-linear
equations of motion can still be recast in the form of ordinary differential equations (ODEs)
in a single radial coordinate [16], which is why it has been extensively used in the study
of various phenomena caused by explicit translational symmetry breaking. In [16] it was
shown that the momentum dissipation leads to the appearance of finite resistivity and,
moreover, the conductivity can become irrelevant in the IR as one continuously tunes
the source A. In [23] the superconducting phase transition in the presence of a helical
lattice was studied, and in [24] the background was analysed from the point of view of
commensurability phenomena. Even though the equations of motion are ODEs, finding the
background solution for a given u, A, p, T’ represents a considerable numerical computation
task. For further details we refer the reader to the aforementioned papers. In this paper
we make use of the numerical procedures described in [24] and [23], in parallel, allowing us
to cross-check our numerical results.

3Excep‘c if v1 = vy = v3.
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Figure 2. Irrelevant/relevant TSB phase diagram of helical background (left panel). The horizon
values of the profile functions (2.10) along the cut p = 2 (right panel) show clearly the crossover
around A ~ 4 at low temperature T' = 1/(80).

The relevant physics of this model is as follows. In [16] it was shown that depending on
the parameters of helical deformation (A, p) the model exhibits a quantum phase transition
at zero temperature. In the bulk this difference of phases corresponds to a change in
thermodynamically preferred near horizon geometry. For a weak helix A < p one is in
a conventional metallic phase with weak TSB that is irrelevant in the IR. That is w(rp)
vanishes and the near-horizon geometry is not modified by the helix. Hence it acquires the
same form as in the pure critical RN case, asymptoting to AdSs x R? at T =0

Irrelevant TSB: U =126, v; = 0, a=2V6e, w=0, (2.11)
T=0, ase=(r—rp) — 0.

For a strong helix the deformation is relevant and the system flows to a new fixed point.
Now w(rp) # 0 and the near-horizon geometry is modified acquiring the form

Relevant TSB: U = upe?, a = age/3, w = wy + w3, (2.12)

0 _ 0 0
eVl — Ve 1/37 v — ev262/3’ ev3 — 6”361/3.

Given the reasoning in the Introduction we will name these two fixed points as irrelevant
and relevant TSB deformations.*

Each T = 0 fixed point has a finite-T" generalisation satisfying (2.10) and we should
stress here that we always study such finite albeit small-T" configurations. Nevertheless
at sufficiently small but finite temperature one can clearly discern the difference by look-
ing at the horizon values of the profiles (see the right panel of figure 2). As it was shown
in [6, 16, 23, 24] and as we will confirm below, the qualitative features of the IR physics are
in essence governed by the T'— 0 fixed point. The phase diagram shown on the left panel
of figure 2, was obtained in [24] by studying the scaling of DC conductivity at small tem-
perature. As we discussed in the Introduction, in the relevant TSB phase the conductivity
vanishes at T' — 0, while it approximates a Drude peak in the irrelevant TSB case.

“They were named “metallic” and “insulating” in [16].



3 Dirac equation

We proceed by introducing the minimally coupled fermion field in the helical background.
The Dirac equation has the standard form [21, 25]

M (8M+ wM FBC—iqAM)—m U =0, (3.1)

4

where A, B € {t, 4,9, 2,7} are the tangent space indices (denoted With an over-dot), r4
are 5D gamma-matrices, I'B¢ = [FB Y], eX! is the vielbein and w? M is the associated
spin connection. ¢ is the charge of the fermion and its corresponding operator in the dual
field theory; the mass m encodes the scaling dimension Ag = (m — d/2). The vielbein can
be chosen in many different ways, so it is natural to bring it to the form possessing the
same symmetries as the background metric. The Ansatz (2.5) suggests using the helical
1-forms (2.3) for its definition. We will be using the co-frame

et = (U(r)l/th, et Mgy, €2y, €3Ny, U(T)fl/er). (3.2)
This co-frame has the neat property that due to (2.4) the spin connection whB A = ewaAC

does not depend on x. In what follows it will also be important that the frame components
e; and e; do not depend on x either.

At this point we can clearly see how the non-conservation of momentum in this back-
ground as manifested through its Killing vectors (2.6) is encoded in the fermionic dynamics.
Recall that the current corresponding to translations is TV o« UTMVN ¥ and this cur-

TMN — 0. Since fermions

rent is conserved if the system is translationally invariant Vg
are defined on the tangent space, the energy-momentum tensor should be properly re-
written for any non-trivial space, in the form TMN \I/eﬁ/‘FAVN V. The divergence of

the z-momentum current is therefore proportional to
Vi TM® = Vo 0e'TAVIT o UeY'TAR v 5c T PO, (3.3)

where Rynap is the Riemann tensor. For a homogeneous, z-translationally invariant
space-time like AdS or black-hole AdS it vanishes identically, because the metric compo-
nents only depend on the radial coordinate. In the Bianchi-VII background space-time
however the metric also has z-dependence, (3.3) does not vanish and z-momentum is not
conserved. This property underpins all of the results that we will present, as it describes
the exact way through which momentum is relaxed, along the z-direction.

Before continuing we choose a representation of the gamma-matrices. In 5D a spinor
has 4 components and the set of gamma-matrices can be obtained from a 4D set I'4 = 44
for A # 7 by adding I'" = 4+°, where 7° = i*1’y¢79727£ is the usual chiral gamma matrix
in 4D [26]. Apparently, there are 2 distinct ways of completing the 5D basis, differing
by the choice of the sign of I'". One can understand this degeneracy by recalling that
due to the absence of chirality in 5D, the holographic fermion in the representation of a
given Clifford algebra describes a fermionic operator of the corresponding chirality on the
boundary. In other words, a certain choice of the Clifford algebra in the 5D bulk gives us
one half of the degrees of freedom of the fermion on the boundary.® Therefore, in order to

®See i.e. [27] for the relevant discussion in a different set-up of AdS/QCD.



describe a Dirac fermion in 4D we need to use both ways of defining gamma-matrices in
the bulk, one for each chirality.%

Since the structure of the background that we are considering has a definite helicity,
we would like to have control over projections of the fermionic spin on the direction of the
helix which is proportional to I'V* [28], and we choose the set of gamma-matrices which
renders it diagonal. At the same time we wish to have a diagonal I'" matrix in order to
facilitate the further treatment of the near-boundary asymptotics of the bulk fermionic
fields. Both goals can be achieved by choosing (consistent with [21])

Ft‘ _ 101 ‘0 : ng _ g9 0 ’ (3'4)
0 201 0 —oo

v — 0 —o9 , I AO —109 ’ ' — & —o3 0 ’
—og 0 102 0 0 —o3

where the choice of “+” or “” in I'" leads to the left or right chirality of the boundary
fermion respectively, as discussed above. As desired, the z-angular momentum is given by

o —i¥ 0
TY% — , 3.5
( 0 iH‘) (3.5)

and we can split the 4-component spinor ¥ into two 2-component Weyl spinors with given

the diagonal operator

Y l,

Thanks to the choice of fermion representation, the Dirac equation (3.1) for different
spin components decouples completely. After adopting the frame (3.2) we can rescale the
fermionic field to eliminate the spin connection from the equations of motion and, using the
aforementioned fact that the coefficients do not depend on z, perform a Fourier transform.

Before turning to the momentum representation it is useful to make the following
observation. The frame (3.2) has a helical structure and “rotates” synchronously with
the background. It helps in simplifying the equations, but is also confusing because one
has to work in a rotating basis. In the limiting case when A = 0 the helix disappears
and the background reduces to AdS-RN (2.8), but this frame does not reduce to the
trivial “static” frame in the boundary Minkowski space. In order to study the boundary
fermions in this “static” frame one needs to unwind them by applying the x-dependent
Lorentz rotation. Due to the fact that the rotation generator I'Y* is diagonal (3.5), the
corresponding unwinding of a spinor ¥ — exp(—ipzI'¥*/2)¥ reduces to a simple shift in
momentum space by p/2 and —p/2 for opposite spins, respectively.

Taking all these ingredients into account, we arrive at the transformation

U(z,,7) = exp [—z‘wt +i (km + g) o+ ikyy + zkz] (Ue2vrtorte))yVigp)  (3.7)

In holographic studies it is usually assumed that one can obtain the results for opposite chirality by
switching the sign of the mass term. This is indeed equivalent to the sign change of I'" up to some trivial
redefinitions of the spinor components, as can be seen from (3.8).

~10 -



where “ F”7 — —1 for spin up components and “F” — +1 for spin down. The Dirac
equation for right chirality takes the following form:

w+ qA;
U

oS

Wi E[COSh(Ug —wv3) — 1] F kx> o1+
(1 709 (hy i) + (1= €279) P20 (hy i) | ooy =0, (38)

. R
5 2‘72] Pl

e V2
+ -
2/U

where the choice of signs is associated with the up and down spin states, respectively. The
equations for left chirality have opposite signs in front of the J, derivatives.

Let us now analyse the structure of the Dirac equation in the Bianchi-VII TSB back-
ground. The only place were the non-homogeneity of the background appears in the equa-
tions is the x-dependent part of the coupling between opposite spins. This coupling gener-
ically leads to the Umklapp scattering with momentum transfer 2p between the modes in
different Brillouin zones, giving rise to the corresponding band gaps. Interestingly though,
the coupling is also proportional to the value of the projection of the fermion momentum,
which is transverse to the helical axis — kg, k. in this case. As also explained in the In-
troduction this is a distinctive feature of the helical “homogeneous lattice” background.
Indeed, the helix preserves the diagonal combination of the translation symmetry along O,
and rotation symmetry in the transverse plane. Until the probe, propagating in this geom-
etry, singles out a certain direction in the (O, O;)-plane, the diagonal symmetry subgroup
allows for the homogeneous, z-independent, dynamics. Any finite transverse momentum
of the probe breaks the rotation symmetry alongside with the translations along O,. The
Umklapp coupling should of course vanish in the limit A = 0. This is easily verified as in
that case one has the RN background (2.8) with va(r) = vs(r).

Another interesting feature of equations (3.8) becomes apparent when one sets k, =
k., = 0. Even though the z-dependent part vanishes, the helical structure of the background
is still manifested through the chiral asymmetry. In the p = 0 case the equation for spin
“up” right fermion coincides with the spin “down” left fermion. In order to demonstrate
this, one needs to transpose the components of the ¢f 2-spinor and use the symmetry
of the equations under the simultaneous flip of the spin and change of sign of k,. When
p # 0 this matching is not possible any more due to the change of sign in front of p. This
behaviour is indeed expected because the background has a definite helicity and thereby
breaks P-symmetry. Henceforth the left and right fermions are not degenerate.

As it has already been argued in the Introduction, we can qualitatively illustrate
the above features of bulk holographic fermions by looking at the dual boundary theory.
Given the bottom-up nature of this holographic construction we cannot directly derive an
explicit action for the boundary field theory, but we can employ the symmetries of the bulk
equations in order to deduce the possible lowest order terms in the effective Lagrangian.
From the point of view of the boundary one can think about a low-energy effective theory
in which the chiral components of the Dirac spinors don’t mix. We should rather consider
a pair of Weyl fermions, which we denote by 6. The helical source A(z) = Awsq, which is
present on the boundary as an external field, gives rise to an effective potential V'[\]. This
potential consists of at least two parts: one of them accounts for the transverse-momentum-
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dependent Umklapp coupling, discussed above, and the other is independent of x and lifts
the degeneracy between chiralities due to the broken P-symmetry.

The Umklapp term must meet the following requirements: it is proportional to the
transverse momentum of the fermion, hence it must include the derivative operator, and
it is periodic with momentum 2p, including two instances of the helical source A(x), and
it preserves chirality. This is enough to fix the form of this term as Vymlapp ~ v* 4,470, .

As to the homogeneous part of the potential, the obvious choice would be V = V(A2),
but this will not be enough as it doesn’t posses the information about the helicity of the
background and will only shift the energy levels uniformly. The other xz-independent value is
an “angular momentum” pseudo-vector Q* = e**#79, A,A,. This must be multiplied by the
pseudo-vector fermionic current which preserves chirality §7u759- Thus we can illustrate
the effective dynamics of the low-energy degrees of freedom by the following action

Sup = / d'x 0 [y 0, + (1 + 5] A7) 7 + 507" Qp + 557" 4,470,] 0, (3.9)

with some phenomenological coupling constants s;. The second term accounts for the
presence of the chemical potential. For a given form of A = Awy the pseudo-vector € has
only the t-component Q = pA?dt, hence the effect of the s term reduces to the chirality-
dependent shift of the effective chemical potential, which is similar to the magnetic field
induced splitting of levels in semi-metals. The equations of motion obtained from this action
have a qualitative form, discussed in the Introduction (1.1). There is one crucial difference
between the effective action (3.9) and the exact holographic system. The action (3.9) is
minimally coupled to the helical lattice and does not dissipate, in the usual way. This is
due to lattice momentum conservation. In the true holographic system the lattice is non-
minimally coupled through the vielbein. Because of this, momentum can be transferred to
the helical background, which acts as a perfect momentum sink.

4 Analytic treatment

4.1 Schrodinger potential

As has been pointed out in [21, 25, 29, 30] much of the fermion physics in a holographic set-
up can be qualitatively understood by examining the effective Schrédinger potential which
arises when one rewrites the equations of motion in a second order form. Generically
the form of the potential is described by the three features: (a) near the AdS boundary
(the UV in the dual field theory) the potential rises, corresponding to the fact that all
(massive) particles in AdS can never reach the boundary, (b) near the horizon it becomes
strongly negative and describes the fermions falling through the horizon, corresponding to
the finite lifetime of the boundary field theory excitations, (¢) when the bulk fermion mass
(boundary scaling dimension) is sufficiently small a potential barrier develops well into the
intermediate region, where quasi-bound states can form. These bound states correspond
to the holographic quasi-particles. These can tunnel through the barrier to the horizon,
and this is reflected in the self-energy of these holographic quasi-particles. For the pristine
RN black hole, this barrier becomes infinitely high precisely at zero energy and at Fermi
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momentum kg, resulting in the emergence of infinitely long-lived quasi-particles, defining
a precise Fermi-surface. (d) For large Fermion masses, this barrier does not exist and
excitations can only tunnel into the horizon. This tunnelling rate encodes the spectrum of
these excitations and is proportional to the near-horizon AdSy propagator G(k,w) ~ w?Vk.
The holographic quasi-particles are formed with propagators G(w, k) ™! = w—vek — X(w, k)
where ¥ ~ w?# | with the caveat that ¥”(w = 0,k = kr) = 0.

As an example, we take the equations for the spin up right chirality component of (3.8).
One can rewrite the system of two first order ODEs as one second order ODE for a sin-
gle component of the Weyl spinor ¢f = (¢1,$2)T. Performing an additional coordinate
transformation it is brought to the Schrodinger form [92 — V (s)]¢1 = 0 with the potential

1

Y=g ap

(K —Q
<—M? ~K?4+Q*-9,M + a;{_Q)> : (4.1)

where the new coordinate is s = ¢y f;; dr(K — ). The s-dependent profiles in the case of

(R 1) fermion are

M = %, K = 6\;; <g[cosh(v2 —wv3) — 1] —k), Q

For any finite frequency w the range of s is unbounded (we discuss the special case of w = 0

 wtaqdy
-7

(4.2)

in the appendix C). Due to the near-horizon behaviour of Q ~ w/(r — 1), the integral for
s diverges logarithmically. Therefore it is convenient to set rg to the UV radius r, so that
the AdS boundary is now located at s = 0 and the horizon is at s — —oo. In this region
the potential (4.1) flattens out and approaches the finite value V'~ —c¢; 2,

The form of the fermionic response is now critically dependent on the existence of
bound states with zero energy in this potential well. The frequency and the momentum of
the bulk fermion are parameters of the potential. The presence of a bound state, a solution
with vanishing boundary conditions at a given (w, k), also known as a quasi-normal mode
(see section 6), is associated with a pole in the spectral function of the holographically
dual field theory (see section 5). A zero energy bound state is in direct correspondence to
the existence of well defined quasi-particles in the spectrum of the dual boundary theory.
The set of potential profiles for fermion mass m = 0 is shown in the left plot of figure 3.
We assume a finite, but very small value of w and the momentum k is chosen so that
the A = 0 profile crosses the zero-energy level, exhibiting a zero-energy bound state. In
other words, this momentum coincides with the Fermi momentum kp in the RN set-up.
For A = 0 the bound state is separated from the horizon at s — —oo by a large potential
barrier rendering the quasi-particle state very long-lived. Upon turning on the translational
symmetry breaking source A > 0 we observe that this barrier gets suppressed in the near-
horizon IR region and is eventually washed out. At moderate A\ the quasi-particle at w = 0
will acquire a finite life-time while eventually at large A, in the relevant TSB phase where
the IR geometry is qualitatively different, the bound state will disappear, becoming a
runaway wave-function. Hence, in the exact spectral function we expect that the quasi-
particle states fade away, to eventually completely disappear from the fermionic response
functions.
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Figure 3. Form of the Schrodinger potentials (4.1) in various regimes at zero energy (w = 0.001).
We choose A = 2 for irrelevant TSB phase, A = 6 for relevant TSB and A = 4 in transition region;
RN corresponds to A = 0. The boundary is at s = 0 whereas the horizon at s -+ —oo. We set
k=0.8 = kp for m =0 plot, and k = 0 for m = 2.5. ¢o = 10 and p = 2.

The other case of interest is when the fermion mass gets so large that the potential does
not cross the zero energy level at any k, so that the quasi-particle bound states disappear
even in the RN set-up [22, 25]. For example the corresponding profiles for m = 2.5 are
shown on the right plot of figure 3. No substantial change is observed in the potential profile
when one turns on the TSB helical background; bound states are not formed. Accordingly,
we do not expect drastic changes in the fermionic response in this regime.

4.2 IR Green function

This Schrodinger potential analysis is particularly useful to isolate the presence of bound
states corresponding to sharp excitations in the spectrum. The full properties of this low-
frequency fermionic response function can in fact be understood as the combination of two
contributions. The presence or absence of this bound state and the contribution from a
local quantum critical IR fixed point [1, 21, 22, 30]. This one is fundamentally unrelated to
quasi-particles. In the case of large mass, when the quasi-particle contribution is absent, the
fermion response is dominated by this non-Fermi liquid part. It is possible to reconstruct
the boundary response by studying the near-horizon geometry of the model and performing
the “matching trick” at small w [21, 22, 30]. The fermionic Green function is therefore
related to the “IR Green function”, computed in the near horizon geometry. In the case
of zero temperature the IR Green function has a simple power-law form: G|r—q = w?¥*,
with a momentum dependent power v;. On the complex w-plane this gives rise to a branch
cut, originating from w = 0. At finite temperatures the branch-cut resolves into a series
of poles which we therefore name the “thermal poles” of the Green function. From the
asymptotic form of the Dirac equations, one can show (see appendix B for details) that
at finite temperature the contribution of the IR fermion Green function to the density of
states at small w has the same form as in [22]:”
o (M — i) Ry —iqég —v T(=20)[(L +v — 32 4+ igé )T (1 + v — iqéy)
(m —im)Ry —igeq +v TV —v— % +ige)T(1 — v —igéy)
(4.3)

"Our calculation coincides with (5.23) of [22] up to a choice of signs in the first term, which proves to

Gr = (47T)

be irrelevant.
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where the constants get corrections due to the helical background (2.10):

2 2
. TE}—24 ,sh[vh—ol]" 5 , w? i _
= ( 12 p 20" 2P pekrdy | 0 9T EnR;, (4.4)
8 1 p L _ - -
m:m [kz—§ (cosh(v2 —v3)—1>} , v = \/Rg(mz-kmz)—q?efl.

One discerns the set of “thermal” poles, which is given by the zeroes of the I'-function in
the denominator.

In the metallic phase the near-horizon limit of the helical background at zero temper-
ature is AdS? x R3 (2.11). In this case the corrections in (4.4) vanish due to the fact that
vg = v:}f and wp = 0. Therefore the spectral density at low w behaves in the same way
as the one in the RN case, even though the helical source in the UV is not vanishing. On
the other hand, the near-horizon geometry of the relevant TSB phase is affected by the
helical lattice operator (see figure 2). At zero temperature it is substantially different from
AdS? x R? (2.12). In the case of zero temperature the IR equations of motion have an
irregular singular point at r = 7, and it is not clear to us whether an analytic expression
for Ggr exists. Nevertheless at finite temperature the role of the helical deformation is to
provide sizeable corrections to (4.4), while the formula itself should still hold. In the fol-
lowing sections we will compare the prediction (4.3) with the numerical results and check
the reliability of the near-horizon treatment in both cases.

5 Spectral function

With this intuition at hand, we are now ready to proceed with solving the Dirac equations
numerically to obtain the retarded two-point function of the boundary fermionic operator
dual to the bulk fermion field ¥. We will mostly be interested in the spectral function
which is defined as the trace over spin polarizations of the imaginary part of the retarded
Green’s function: )

p(w, k) = —;Tr ImGT(w, k). (5.1)

The retarded Green’s function can be obtained in the standard way [1, 11, 21, 25, 30-32]
by solving the bulk equations of motion (3.8) with in-falling boundary conditions at the
black hole horizon .

Go~ (r—rp) Tn 4 ..., (5.2)

and a fixed infinitesimal source at the AdS boundary. Once the profile for the bulk fermionic
field is known, the source and the response of the dual boundary operator are encoded in
the coeflicients of leading and sub-leading terms of its near-boundary expansion. Substitut-
ing the asymptotic background values (2.7) into the equations of motion (3.8) we obtain
the expansion for, e.g., right chirality spin up component gbf = (¢1,¢2)". The leading
terms are:

. ¢1\ _ [Alw k)™ +...) + Blw,k)(r~™ )
(1. R): <¢2> N <C’(w, EYrm =t 4+ )+ D(w, k)(r™™ + ... )) ’ (5:3)
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and similar expansions can be derived for the other polarizations. The dots refer to sub-
leading terms in r—!. In practice we use up to 6 orders of the expansion of UV boundary
conditions: the details are listed in appendix A. The corresponding holographic response
function of this spinor component is associated with the ratio®

StRAR = M (5.4)

The total response function on the boundary is, of course, a 4 X 4 matrix in the spinor
representation and every component of the spinor with certain chirality and spin contributes
to one entry on its diagonal. The off-diagonal components vanish due to the choice of the
gamma matrices (3.4), making it possible to completely decouple the equations of motion.
The retarded Green’s function can then be obtained as a suitable rotation of the response

matrix:?

Gl = —iS~,. (5.5)

The complete spectral function (5.1), which is a sum of four terms corresponding
to different fermionic polarisations, is obtained by numerically solving the equations of
motion (3.8) with boundary conditions (5.3), (5.2) for every value in the (w, k) domain
in the given helical background characterized by two parameters: (\,p). The numerical
calculations are performed for two values of the fermion mass discussed in section 4: m = 0
and m = 2.5. All dimensionful quantities are normalized with respect to the chemical
potential p. The calculations are performed for finite, but low temperature

1

T=—p. 5.6
oM (5.6)

With this in hand we can follow how the structure of collective excitations in the dual
boundary theory changes when the system undergoes the irrelevant to relevant TSB tran-
sition, by examining the spectral function. We scan the parameter space (A, p) along the
trajectories shown on figure 2. The scan with fixed p = 2 and A € [0, 10] shows an evolution
of the spectral function upon the irrelevant-relevant phase transition. The two scans with
fixed A allow us to explore the dependence of the results on the helical pitch p € [0, 5] in the
irrelevant TSB (A = 1) and relevant TSB (A = 6) phases. We will now discuss the results.

For the low fermion mass m = 0, everywhere in the irrelevant TSB phase one can see
the pronounced Dirac cone and a well defined Fermi surface near w = 0, related to the
presence of quasi-particles (see left plot on figure 4 and corresponding cuts on figure 5). This
is indeed expected from our qualitative analysis of the Schrodinger potential of section 4.1.
We see, that even though the momentum dissipation is sizeable in the irrelevant phase, as
long as the IR geometry remains AdS? x R? the quasi-particles remain well defined degrees
of freedom in the dual theory. These quasi-particles are expected to behave in accordance
to the effective boundary field theory (3.9) sketched in section 3. In particular, one should
be able to detect the asymmetry between the two chiralities, which leads to the splitting of

8B(w, k) and C(w,k) coefficients do not bear any additional information since due to the first order
nature of the Dirac equation ¢1 and ¢2 components do not represent independent degrees of freedom.
9See [31] for details.
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Figure 4. The spectral function for m = 0 as measured in the irrelevant TSB and relevant TSB
phase. The former corresponds to A = 1,p = 2, the latter to A = 6,p = 2.
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Figure 5. Density of states p, for k¥ = kp as a function of w (left) and for w = 0 as a function
of momentum k& (right). The lines correspond to increasing helical strength, corresponding to the
irrelevant (A = 1), intermediate (A = 4) and relevant (A = 6) phases.

the Fermi momenta. We evaluated the components of the spectral function separately for
different chiralities and studied this asymmetry. For the parameters we have been using,
the splitting is of order Akr/kr ~ 10~ and is barely visible.! One would expect this
effect to be more pronounced in the region of the parameter space with larger A and p.
The behaviour of the m = 0 fermion spectral density in the relevant TSB state is very
difficult (see right plot of figure 4). One sees immediately that the quasi-particles have
disappeared. The spectral function is heavily damped and it’s weight is suppressed —
there is barely any remnant of the sharp Dirac cone. As we stated in the Introduction this
has nothing in common with a conventional insulator, characterized by the reconstruction
of the fermion dispersion relation and opening of the gap in the band structure, no sign of a
gap is observed. Instead it appears that the quasi-particles themselves become ill defined.
This is exactly according to expectations based on the analysis of the Schrodinger potential.

0For instance when A = 2,p = 2 we get k% = 0.7994, k% = 0.7995. For larger A\, when X\ = 6,p = 4.2 the
splitting is more pronounced: k2 = 0.9657, k% = 0.9665.
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Figure 6. Spectral function for m = 2.5 in irrelevant and relevant phase. The contribution from
only left chirality, spin up component is shown. The irrelevant phase corresponds to A = 1,p = 2,
while the relevant to A = 6, p = 2. No sign of quasi-particles is observed.

There is a higher spectral density near the former Fermi momentum points around
w = 0 (see also figure 5). This is quite unnatural from the point of view of conventional
condensed matter theory. The spectral density on the Fermi surface must be either zero, or
display a sharp peak related to the quasi-particles, with the width fixed by the temperature.
At zero temperature the quasi-particles in a Fermi liquid are infinitely sharp on the Fermi
surface regardless of the strength of the interaction. In the case under consideration one
clearly sees that the quasi-particles acquire sizeable width at w = 0, which is much larger
then the temperature scale and signals the deconstruction of the Fermi surface itself due to
the strong momentum relaxation in the helical lattice. We will address this issue in more
detail by studying the behaviour of the quasi-normal modes, associated with poles in the
Green’s function, in the next section.

We now turn to the case of the large fermion mass m = 2.5. In accordance to the
Schrédinger potential study, there are no longer quasi-particle peaks in the spectral func-
tions which are quite featureless both in the irrelevant and relevant states (figure 6). It is
interesting to examine the constant-k cuts of the spectral functions in order to check the
scaling behaviour at low temperatures anticipated from the IR Green function matching,
discussed above. These profiles are shown in figure 7. In both cases the data exhibit good
agreement in the intermediate scales 1072 < w < 10~!. At large w one does not expect the
IR matching procedure to give reliable estimates, while in the small w region our numerical
accuracy is no loner sufficient. One can see, that the excellent matching between the data
points and analytic predictions (4.3) around k = 0 in the irrelevant TSB case and k = 1
in the relevant TSB case is quickly destroyed when we consider wider range of momenta.
Importantly, this is happening not only in the relevant TSB regime, where one can ex-
pect deviations from the scaling (4.3) due to the reconstruction of the low temperature
geometry, but also in the irrelevant one, where there are no physical reasons for mismatch.
This signals that our numerical results, which are limited by the accuracy of the calculated
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Figure 7. Constant-k cuts of the spectral function for m = 2.5: irrelevant and relevant phase.
The former corresponds to A = 1,p = 2, the latter to A = 6,p = 2. Solid lines show the analytic
prediction of (4.3), whereas the points correspond to the numerical results.

gravitational background, become less reliable when one considers larger momenta. With
the current precision we cannot resolve the breakdown of the analytic IR scaling formula,
discussed earlier, in relevant TSB case.

6 Quasi-normal modes

In the previous section several interesting features of the fermionic dynamics were identified,
the most striking being the fading away of the Fermi peaks as the system transitions from
the irrelevant TSB to the relevant TSB phase. In order to better understand and quantify
these phenomena we will in this section turn to the description of holographic response
functions in terms of quasi-normal modes (QNMs). Quasi-normal modes correspond to
poles in the Green’s function of the operators under consideration. They constitute a
particularly convenient tool in holography since they can be readily computed and capture
important information of the system under investigation. In this case we are interested
in the QNMs of the fermionic Green’s function and we will compute them numerically,
following the procedure detailed in appendix A, which is similar to the computation of the
spectral functions in section 5.

We first want to establish the understanding of how the QNMs capture the known
dynamics of our system in the irrelevant case. In figure 8a a plot of the spectral function,
as derived in the previous section, along with the corresponding results for QNMs are shown
side by side. For clarity, we focus only on one of the spinor components unlike figure 4,
where all four components are combined.

The right panel of figure 8a shows the set of fermionic QNMs for progressively smaller
values of momenta in an overlaid fashion. In other words, moving along the horizontal
direction in the spectral function on the left panel of figure 8a corresponds to tracing the
motion of the QNMs. For each momentum value k& we observe two types of QNMs. One
category includes the poles (three of which are depicted by squares in figure 8a) that lie
on the complex plane close to the imaginary axis, with almost exclusively imaginary parts.
These “thermal” poles are characteristic of low-temperature QNMs and can be readily read
off from the expression for the IR Green function (4.3) (the actual analytic predictions
following from (4.3) are shown on the plots by blue lines.) The other type of QNM is the
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one that appears to have a significant real part, while for some values of k it is actually
the one closest to the real axis. We will call this quasi-particle pole, since it corresponds
to the peak in the spectral function near w = 0 which is the one governing the low-energy
excitations near the Fermi surface. Equivalently, this is the pole associated with the Weyl
cone. As we tune k away from kp, which in figure 8a would correspond to moving along
the cone away from the Fermi surface, the pole recedes into the complex plane, acquiring a
larger imaginary part and the corresponding quasi-particle therefore begets a finite width
at finite frequency. Conversely when we tune k close to kr we see the quasi-particle pole
approaching the origin, which is an indication of long-lived quasi-particle dynamics near
the Fermi surface. The apex quasi-particle pole, i.e. the one with minimum imaginary part
due to k =~ kp is emphasised on the right panel of figure 8a by a larger, full circle. Similarly,
the set of the thermal poles corresponding to the apex values of k are highlighted by larger,
filled squares.

To summarise the irrelevant case, we observe the standard thermal series of poles,
with a moderate dependence on the momentum. On top of these we see the isolated quasi-
particle pole, with Weyl-cone dynamics and a sharp k-dependence, corresponding to the
quasi-particle excitations around the Fermi surface. Departure from momentum values
close to kp results in broadening of said quasi-particles.

Let us now increase the strength of the helix \. It is instructive to examine the inter-
mediate A = 4 case separately, roughly corresponding to the edge of the irrelevant phase
where the transition to the relevant T'SB is happening. In figure 8b the QNMs and spectral
function are juxtaposed as before. One can see that the quasi-particle pole now acquires a
significant imaginary part and its “trajectory” when we scan through momentum k dives
more rapidly down the imaginary half-plane. The broadening of the quasi-particle at finite
w is much stronger than before; the window around the Fermi surface where the quasi-
particle can be defined becomes quite narrow. More strikingly, as we have already noticed
in the previous section, the imaginary part of the pole remains sizeable even at the apex,
i.e. at the would-be Fermi surface. Hence due to the increased momentum dissipating po-
tential the quasi-particle has a finite lifetime even at the Fermi surface, leading to a finite
spectral weight at w = 0.

We can examine this issue in more detail by following the quasi-particle pole, tuned to
the apex k ~ kr(X), where it has the minimal imaginary part and dominates the irrelevant
phase, for increasing values of A € [0,4]. The results are presented in figure 9a. The
imaginary part of the quasi-particle pole starts at a non-zero value at A\ = 0, as we are
at low but non-zero temperature, and then becomes more negative as A increases. The
progressively larger size of the imaginary part gives rise to a dissipative behaviour, which
results in smearing of the Fermi surface already in the irrelevant phase. Moreover as the
helical strength is tuned closer to the transition value, which is roughly A\ ~ 4, the rate
at which the imaginary part of the quasi-particle pole becomes more negative, increases.
It must be stressed here that the results so far have been of left chirality, as defined in
eq. (3.4). For completeness in figure 9a we present the dependence of the quasi-particle
pole on A for the right chirality as well. The observed difference between left and right
chiralities are almost insignificant.

—90 —



0.
5 |
—0.02}
4
—0.04}+
3 t
3 3
= | | | |
2 006} - ol .
1 | | % | |
0.8t e H
0
T i
—0.2 —0.1 0. 0.1 0.2
k Rew

(a) Irrelevant phase A = 1. Trajectory of the quasi-particle pole is seen and has
the apex at k = kp = —0.75.
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(b) Irrelevant-relevant transition region A = 4. quasi-particle pole acquires
significant imaginary part. The apex momentum is k = —0.9.
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(c) Relevant phase A\ = 6. quasi-particle pole can not be identified.

Figure 8. The density of states (left panels) and the QNMs (right panels) in the case of m = 0.
Parameters are: p=2, T = ﬁ. The positions of QNMs are shown for momentum k ranging from
k = —0.5 to k = —1.5 in the direction of the eye-guides. The blue lines show the estimations for
the thermal QNMs coming from (4.3).
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Pushing now into the relevant TSB phase, at A = 6, the picture becomes even more
intriguing. The density of states and QNMs in this regime are shown on figure 8c. Here
we see only the thermal poles, being consistent with the theoretical prediction (4.3) at a
given temperature and A. No significant dependence on the momentum k is observed any
longer, meaning that there is no distinct kr where quasi-particle poles govern dynamics.
Reflecting the non-existence of a distinguished pole, in figure 8c all of them are depicted
identically. The four apparent bunches are essentially the poles at different values of k. As
we see, for large values of A, into the relevant TSB phase, the notion of a quasi-particle
pole becomes ill-defined, which is consistent with the fast decrease of the imaginary part
in figure 9a.

Before proceeding further we would like to better understand the transition between
the irrelevant and relevant phases as reflected in the QNMs and in particular in the “fate” of
the quasi-particle pole. For this purpose we sampled a set of fixed momenta and followed
the associated poles for increasing values of A. The results are show in figure 9b. It
is clear from this plot that for low values of A the by now familiar arches tracing the
quasi-particle pole emerge. In other words for small A one can tune the momentum so
that the quasi-particle pole comes close to the origin and therefore governs the low-energy
excitations. In the transition region, near A ~ 4, the slope with respect to the momentum
becomes steeper as A increases and eventually the poles that we used to name quasi-particle
poles hit the imaginary axis and become indistinguishable from the other thermal poles
predicted by (4.3). At this point distinction between quasi-particle and other poles becomes
meaningless. The particular endpoint of the evolution of the quasi-particle pole depends on
the momentum, but is always next to a certain member of the thermal series. In particular,
at k = —0.75 which for our set of parameters is the Fermi momentum at A = 0 (i.e. in
absence of momentum dissipation), it evolves into the lowest lying thermal pole. This
behaviour reflects a substantial reconstruction of the fermionic Green’s function at the
irrelevant-relevant phase transition. While in the irrelevant case the characteristics of the
Green’s function could be attributed to the “quasi-particle” and “quantum critical” part,
in the relevant TSB phase they are merged into a new, un-factorizable form, described by
the new discrete series of poles in the complex plane. We should also note here that the
series of thermal poles at A = 6 is substantially different from the thermal poles at A ~ 0,
because the deviations in the parameters (4.4) are sizeable.

Finally we turn towards the strange metal regime by increasing the mass of the fermions
in which case there are no Fermi surfaces to begin with as discussed in the previous section.
The expectations from the spectral function calculation is that there should be no low-lying
QNMs, since we observe no spectral weight near the w ~ 0 region. As before we compute
the corresponding QNMs first in the irrelevant phase figure 10a and subsequently in the
relevant TSB phase figure 10b. Indeed we observe that in both irrelevant and relevant
phases there are no low-lying QNMs. Instead we see only poles down the imaginary axis,
which coincide with the poles coming from the analytic form of the IR Green function (4.3).
There is no qualitative difference between the irrelevant and relevant state, confirming our
previous claim that in the case of large mass the dynamics in both phases is governed by
the IR geometry equally well.
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Figure 9. Dynamics of the quasi-particle pole at increasing lattice strength.
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7 Conclusion

In this work we have studied how strong translational symmetry breaking (TSB) affects
fermionic correlators with the use of holography. The gravitational model we used is the
Bianchi-VII (helical) background. Translational symmetry breaking affects the fermions
in two characteristic ways. When the momentum transverse to the helix does not vanish
k1 # 0 Umklapp scattering occurs, based on an effective action that we deduced, resembling
the phenomenology of Condensed Matter systems. For the special case k; = 0, however,
no Umklapp effect can be observed even though momentum conservation is violated along
the z-direction, i.e. that of the helical axis.
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In both cases translational symmetry breaking is different from well-known lattice
physics in condensed matter. There the lattice breaks translational invariance down to
a discrete symmetry (Z), hence Umklapp occurs but the Bloch momentum is effectively
conserved within the Brillouin zone. In the Bianchi-VII model translational symmetry while
still periodic is broken completely, in the sense that momentum conservation is violated at
all scales in addition to Umklapp.

Choosing k£, = 0 throughout this work, we are focusing on this latter kind of momen-
tum relaxation which is different to what is observed in condensed matter systems. This
mechanism of translational symmetry breaking effectively consists of an external, infinite
bath coupled to our system and which can absorb momentum. The role of this classical
sink is to externally source translational symmetry breaking potential. Notice that the
geometry of the Bianchi-VII space is the channel through which momentum is transferred.
The TSB potential is encoded in a field that in turn forces the geometry to take the form
that allows momentum relaxation.

The Bianchi-VII model has two phases distinguished by the (ir)relevancy of the TSB
potential. In the irrelevant TSB regime at small A, we observe the existence of well-defined
quasi-particles. We have shown that these develop finite life-times, or in other words
the quasi-normal pole that corresponds to them acquires a non-zero imaginary part, for
any finite value of the helical strength A. This is in striking disagreement with regular
Fermi-liquid theory, since the latter is expected to be a stable fixed point, immune to
small perturbations, whereas here we see that we can continuously attenuate the suppos-
edly infinite-lived quasi-particles. Given our analysis this should come as no surprise —
the background turns momentum into a progressively worse quantum number and there-
fore quasi-particles, which should carry definite momentum, cannot survive and become
damped. This can also be seen through a Schrédinger potential analysis of the holographic
Dirac equation that governs fermionic excitations. At small A it supports bound states,
whereas it becomes shallower as A increases until fermions fall unimpeded through the
horizon, exhibiting purely relaxational behaviour. Yet another way of understanding this
comes from the symmetry discussion above — since momentum conservation is violated at
all scales in the Bianchi-VII model, even small perturbations around the Fermi surface are
not protected.

For values of the helical strength where the Bianchi-VII model transitions to relevant
TSB, the picture changes significantly. In this regime there are no quasi-particles left and
the Green’s function is dominated by “thermal” poles, that match very well the analytic
prediction based only on the infra-red geometry. Similarly, for large-dimension operators
in the strange-metal regime of the Bianchi-VII background either for irrelevant or relevant
TSB, no quasi-particles can be found and the IR calculation perfectly describes the cor-
relator. This is consistent with momentum not being a meaningful quantum number any
more. The strange-metal spectral function is rather insensitive to the momentum — all
the quantities that have none or weak momentum dependence remain unaffected by the
violation of its conservation.

The study of the Bianchi-VII background using finite-momentum probes and in partic-
ular fermions opens up an interesting perspective. Since it can accommodate both Umklapp
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and non-Umklapp momentum conservation violation, it can be used as a laboratory to ex-
plore the interplay between the two phenomena. An interesting balance can be noted here
— the mechanisms of breaking translational symmetry most familiar to CMT are the most
challenging in holography though they are within reach, while the easiest holographic mech-
anism turns out to be quite novel for CMT. At the same time this study demonstrates, that
if one intends to describe holographically lattices that are relevant for condensed matter
applications, one needs to consider periodic lattices instead of homogeneous ones. Given
the aforementioned understanding on the origin of translational invariance breaking, based
on the remaining symmetries, we believe that the last statement is quite generic, beyond
the specifics of the helical model.
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A  Numerical methods

In this appendix we will elaborate on the numerics used for the calculations of this paper.
Most of what follows is shared between the calculation for the spectral density and QNMs.
For both calculations we need the asymptotic expansion of the fermionic fields near both
the boundary and the horizon. These expansions are computed by iteratively solving the
Dirac equation in the respective region and they depend on knowledge of the corresponding
expansions of the background fields. The latter are similarly computed by recursively
solving the background equations of motion near the boundary and the horizon. This
is necessary because otherwise the background fields are only known numerically. The
background expansions are relatively computationally cheap and we were able to push
them up to sixth order for the IR and twelfth for the UV, which were more than enough.

With these background field expansions at hand we then proceeded to expand the
fermionic fields. First we need to impose the in-falling boundary condition. At first order

the near-horizon asymptotic behaviour of the background fields is: !

U=U"r—-1), v, =0, A4 =E"(r-1). (A1)

"Here we set r;, = 1 by employing the symmetry of the equations of motion associated with the overall
shift of the radial coordinate: r — r + dr.
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Substituting A.1 into the Dirac equation (3.8) for, e.g., spin up right chirality, we obtain:

(U" —1)0,¢1 — wepp =0, (A.2)
(U" = 1)0,p2 + wey = 0. (A.3)
Introducing the variable € = r — 1 and rewriting the equations in a second order form:
1 w?
02 —0, ——d1 =0, A4
5¢1+6 ¢1+U262¢1 (A.4)

resulting in the near boundary asymptotics of the fermionic component:
g1~ (r— 1), (A.5)

where the “minus” sign corresponds to the in-falling boundary condition. The other com-
ponent at the horizon is then equal to

P2 = —ig1. (A.6)
Similar boundary conditions can be imposed for other spin projections and chiralities. We
then recursively solve the Dirac equation up to sixth order in the UV (which turned out
to be an overkill) but more importantly up to third order in the IR. The IR expansion
demanded some more care — what is meant by third order is

; 1 3.5
= ) _127 = 7771777277 : A.
Y ;c(r ) i=0,2,15 3 (A.7)

5
The half-integer powers are required by the nature of the singular points of the equations
of motion (3.8). Expansion only in integer powers would result in an algebraic system of
equations for the coefficients ¢;, that has no solution. Another, equivalent, way would be
to re-define the background fields that appear under a square root in the Dirac equation.
It is important to note that increasing the IR order turned out to be necessary, in the case
of the QNMs, in order to be able to distinguish the ones down the imaginary axis. Initial
attempts to limit the order to the absolute minimum, obscured that part of the complex
plane, whereas the eventual choice allowed us to reach all the way to the numerical limit
imposed by the precision with which the background was computed.

Having computed the UV and IR expansions for the fermionic fields we can now de-
termine boundary conditions for the bulk fermions. In the IR we only have one degree
of freedom left, since we have imposed in-falling boundary conditions, therefore there is
only one linearly independent solution, which we determine by numerically integrating the
corresponding initial-value problem. In the UV there are two independent solutions, as
indicated by the two integration constants that are left un-determined by the iterative so-
lution. We construct these solutions by imposing two sets of linearly independent boundary
conditions, encoded in the choice of the integration constants. In order to compute the
spectral function we perform both UV and IR integrations up to an intermediate point,
where we demand they match. In fact we solve

a -y + 0 Yoy, = YRl (A.8)
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for o and &, where the indices 1,2 refer to the two linearly independent solutions. From
the standard fermionic “entries” of the holographic “dictionary”, we know that given the
UV asymptotics

Pr~ A+ BT (A.9)
Y~ Corm DT (A.10)

the Green’s function is %, which in our scheme is simply %. From there the spectral
function is trivially calculated, for a range of frequencies w and momenta k.

In the case of QNMs, by definition, we need to impose one extra boundary condition,
namely the vanishing of the source on the boundary. This requirement eliminates one of the
two linearly independent solutions stemming from the UV and we only need to integrate
once from the boundary and once from the horizon, meeting at an intermediate point where
matching is tested by requiring

dot <¢IR,T ¢UV,T>

=0, A1l
YIR,| YUV, ( )

T=TM

where 7j; is the matching point. The complex frequency plane is then scanned for these
zeros, which correspond, by construction, to the QNMs.

Of course, given the introduction of an artificial scale, namely the matching point 7,4,
all the results must be and have been tested for independence against said scale, by repeat-
ing the calculations for a range of matching points without observing any significant change.

B IR Green function

At finite temperature we can make use of the asymptotic value of the background pro-
file (2.10) and rewrite it in a form:

U(r) = R;Q(r —rp)(r+ 71y — 27, (B.1)
T—Th
-2 .
TE?—24 sh [Uh—vh]Z 5 w? R2
Ry = b b2 8] T2 h o =rp——2U,. (B2
2 < 12 +p ezv? + 12p 62(113—1—1):’;‘) y r Th 9 h ( )

this allows us to introduce the variables
sR3

~
r— T

sR2
Co = 2

’I"h—f*7

T = st, o=slw (B.3)

(=

and, by taking s — oo, express the background (2.5) in the near-horizon region as

R2 dc? h 2
i = B (i g5 ) r W)l f0=1-G
‘%:?0_5) éq = EnR2. (B.5)
0
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Finally, we bring the equations of motion (3.8) to a form identical to the one used in [22]:

X A
(8< g tadn) g

i féfan me') @
7 ) C%ﬂ +mé') @, (B.6)

where 6% = Wy ® o' and the new spinor field is ® = %(1 +4i61)®. The value of m is
modified by the helical profile as well:
m = ;h [k _ b (cosh(vé1 — oy — 1>} . (B.7)
vV Uhevl 2

After these identifications are made we can use the result of [22] in order to write down
the expression for the retarded IR Green function at small w and finite temperature (4.3).

C Schrodinger potential at zero frequency

Let us analyse the special case of w = 0 in the Shrodinger potential (4.1). Due to the
near-horizon behaviour (2.10) in this case the s-coordinate spans a finite interval which
can be rescaled to unity by appropriate choice of ¢y and assuming ro = 7p:

w=0: 1:/wmm>ny (1)

Moreover, one can study the value of the potential exactly on the horizon s = 0. Using the
expansions (2.10) we find

1 k3 +m2k — 1ELm - ok P P
R L L R

One can see that due to the exponential factor e~! the helical background reduces the
effective value of the momentum on the horizon, which leads eventually to the negative
value of the potential (see figure 2). This effect is consistent with the momentum dissipating
nature of the considered background.
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any medium, provided the original author(s) and source are credited.
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