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ABSTRACT
We use measurements from the Planck satellite mission and galaxy redshift surveys over the
last decade to test three of the basic assumptions of the standard model of cosmology, �CDM
(� cold dark matter): the spatial curvature of the universe, the nature of dark energy and the
laws of gravity on large scales. We obtain improved constraints on several scenarios that violate
one or more of these assumptions. We measure w0 = −0.94 ± 0.17 (18 per cent measurement)
and 1 + wa = 1.16 ± 0.36 (31 per cent measurement) for models with a time-dependent
equation of state, which is an improvement over current best constraints. In the context of
modified gravity, we consider popular scalar–tensor models as well as a parametrization of the
growth factor. In the case of one-parameter f(R) gravity models with a �CDM background, we
constrain B0 < 1.36 × 10−5 (1σ C.L.), which is an improvement by a factor of 4 on the current
best. We provide the very first constraint on the coupling parameters of general scalar–tensor
theory and stringent constraint on the only free coupling parameter of Chameleon models.
We also derive constraints on extended Chameleon models, improving the constraint on the
coupling by a factor of 6 on the current best. The constraints on coupling parameter for
Chameleon model rule out the value of β1 = 4/3 required for f(R) gravity. We also measure
γ = 0.612 ± 0.072 (11.7 per cent measurement) for growth index parametrization. We
improve all the current constraints by combining results from various galaxy redshift surveys
in a coherent way, which includes a careful treatment of scale dependence introduced by
modified gravity.
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1 IN T RO D U C T I O N

Since its development a century ago, General Relativity (GR) has
consistently provided a very successful framework to describe the
evolution of our Universe (Peebles 1980; Davis & Peebles 1983).
Nowadays, the prediction of GR for the growth of the large-scale
structure that we observe around us is reaching great precision as
cosmic microwave background (CMB) measurements are provid-
ing us with impressively accurate estimates of the cosmological pa-
rameters (Planck Collaboration 2015a). Yet, the excitement about
the advances of observational cosmology is accompanied by the
awareness that we face some major challenges. While the standard
cosmological model, based on the laws of GR, provides a very
good fit to existing data, it relies on a universe of which we under-

� E-mail: shadaba@andrew.cmu.edu

stand only ∼5 per cent of the content. The remaining energy budget
comes in the form of dark matter (∼27 per cent), responsible for the
clustering of structure, and the cosmological constant � (Einstein
1915, ∼ 68 per cent), responsible for the phase of accelerated ex-
pansion recently entered by the universe. In particular, the physical
understanding of cosmic acceleration represents one of the most
important challenges in front of modern physics. While � is in
good agreement with available data, e.g. baryon acoustic oscilla-
tions (BAO; Cole et al. 2005; Eisenstein et al. 2005; Hütsi 2006;
Kazin et al. 2010; Percival et al. 2010; Reid et al. 2010; Anderson
et al. 2014a,b; Aubourg et al. 2015), supernovae (SNe; Perlmutter
& Schmidt 2003; Conley et al. 2011; Goobar & Leibundgut 2011;
Suzuki et al. 2012; Rodney et al. 2014) and CMB (Planck Collabo-
ration 2015a; WMAP9, Bennett et al. 2013) observations, it suffers
from the coincidence and fine tuning problems (Weinberg 1989;
Carroll 2001). Several alternatives to � have been proposed in the
two decades since the discovery of cosmic acceleration (Riess et al.
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1998; Perlmutter et al. 1999), and they can be roughly divided into
two classes. The first class, to which we will refer as modified grav-
ity (MG), corresponds to modifications of the laws of gravity on
large scales, designed to achieve self-accelerating solutions when
matter becomes negligible (Silvestri & Trodden 2009; Clifton et al.
2012); alternatively, one can introduce a dynamical degree of free-
dom, commonly dubbed dark energy (DE; first coined by Huterer
& Turner 1999), which is smoothly distributed and starts to domi-
nate the evolution of the Universe at late times (Copeland, Sami &
Tsujikawa 2006).

Undoubtedly, one of the important tasks for modern cosmologists
is to perform precision tests of the standard model of cosmology
(�CDM, � cold dark matter) and identify areas of tension. In a
joint effort, one needs to also explore the parameter space of alter-
native models. Even though with the current constraints from data,
any departure from �CDM is likely to be small and challenging
to detect, we are in a unique position to test GR, and the other
assumptions of �CDM, to unprecedented precision with modern
observational probes. The three basic assumptions of �CDM which
are popularly tested are the curvature of the universe, the nature of
DE and the laws of gravitational interaction on large scales. The
curvature of the universe can be explored by allowing a curvature
density parameter, �K, to be different from zero and free to vary.
As for the nature of DE, we will focus on smoothly distributed
models where it suffices to test for the deviation of the equation
of state parameter, w, from −1, which is the value it assumes if
the acceleration is driven by �. We will consider both a constant
w and a time-dependent one, resorting to the popular Chevallier–
Polarski–Linder (CPL) parametrization in terms of w0 and wa, i.e.
w = w0 + wa

z
1+z

(Chevallier & Polarski 2001; Linder 2003). Fi-
nally, we will explore the nature of gravity by replacing GR with
various MG models, including Chameleon-type scalar–tensor the-
ories and popular parametrizations of the growth rate. All these
alternatives that we consider in our analysis affect, in one way or
another, the rate at which large-scale structures grow. Models of
smoothly distributed DE, which does not cluster, modify only the
background dynamics of the universe, but this still has an impact on
the rate at which structure forms. On the other hand, models of MG
generally modify both the background and perturbation dynamics,
leading to a significant effect on the growth rate.

Modern galaxy redshift surveys have successfully measured the
growth rate using redshift space distortions (hereafter RSD; Kaiser
1987), which is the distortion induced in the galaxy correlation
function by the peculiar velocity component of the galaxy red-
shift. Hence, on linear scales, RSD offers a handle both on the
distribution of matter overdensity and peculiar velocity of galaxies.
Recent galaxy redshift surveys have provided the measurement of
fσ 8(z) up to redshift z = 0.8, where f is the growth rate, i.e. the
logarithmic derivative of the growth factor, and σ 8 is the rms am-
plitude of matter fluctuations in a sphere of radius 8 h−1 Mpc. In
this paper, we will test all the three assumptions of �CDM listed
above using the Planck CMB measurement (Planck Collaboration I
2014a) and latest RSD measurement from BOSS CMASS (Alam
et al. 2015b), SDSS LRG (Samushia, Percival & Raccanelli 2012),
6dFGRS (Beutler et al. 2012), 2dFGRS (Percival et al. 2004), Wig-
gleZ (Blake et al. 2011a) and VIMOS Public Extragalactic Redshift
Survey (VIPERS; de la Torre et al. 2013). It is difficult to use
the measurement from different surveys as they have different as-
sumptions. We have looked into these assumptions and possible
systematic while combining results from the different survey and
also proposed a way to test scale dependence for MG models using
these results.

2 T H E O RY

In exploring the power of RSD data to constrain deviations from
the standard cosmological scenario, we consider several alternative
models, divided into DE models that modify the background expan-
sion history without introducing any clustering degree of freedom
and those that instead modify only the dynamics of perturbations
while keeping the background fixed to �CDM. In the former case,
we consider one- and two-parameter extensions of the standard
scenario, corresponding to different equations of state for DE or a
non-zero spatial curvature. More specifically, we consider a wCDM
universe, where the equation of state for DE is a constant parameter
that can differ from the �CDM value w = −1; a (w0, wa)CDM
universe, in which the equation of state for DE is a function of time
and is approximation to exact solutions of the scalar field equation
of motion, i.e. the CPL parametrization w = w0 + wa(1 − a); a
o�CDM universe which can have a spatial curvature different from
zero, parametrized in terms of the corresponding fractional energy
density �K. In the case of models that modify the equations for
the evolution of perturbations, we analyse Chameleon-type scalar–
tensor theories, f(R) gravity and a time-dependent parametrization
of the growth rate.

We use the publicly available Einstein–Boltzmann solver MGCAMB

(Hojjati, Pogosian & Zhao 2011)1 to evolve the dynamics of scalar
perturbations and obtain predictions to fit to our data set for all the
models considered, except for the (w0, wa)CDM case. The latter
needs to be treated instead through the PPF module (Fang, Hu
& Lewis 2008) in CAMB.2 While the implementation of the non-
clustering DE models is trivial, in the following we shall describe
in more detail the implementation of the MG models.

2.1 Scalar–tensor theories

Going beyond simple extensions of the standard model and non-
clustering DE models, one needs to take into consideration also
the modifications to the equations for cosmological perturbations.
Given the cosmological probes that we consider in our analysis, it
suffices for us to focus on linear scalar perturbations. In this context,
it is possible to generally parametrize deviations from the standard
cosmological scenario in the dynamics of perturbations by means of
two functions of time and scale introduced in the set of Einstein and
Boltzmann equations for metric and matter perturbations. More
precisely, in the absence of anisotropic stress, one can write the
Poisson and anisotropy equations as follows:

k2� = − a2

2M2
P

μ(a, k)ρ
 ,
�

�
= γslip(a, k), (1)

where ρ
 ≡ ρδ + 3 aH
k

(ρ + P )v is the comoving density perturba-
tion of matter fields and we have selected the conformal Newtonian
gauge with � and � representing the perturbation to, respectively,
the time–time and space–space diagonal component of the metric.
And then combine them with the unmodified Boltzmann equations
for matter fields.

We shall focus on scalar–tensor theories where the metric and
the additional scalar degree of freedom obey second-order equa-
tions of motion and will adopt the parametrization introduced in
(Bertschinger & Zukin 2008, BZ) to describe the corresponding

1 http://www.sfu.ca/aha25/MGCAMB.html
2 http://camb.info
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form of (μ, γ slip), i.e.

μ = 1 + β1λ
2
1 k2as

1 + λ2
1 k2as

,

γslip = 1 + β2λ
2
2 k2as

1 + λ2
2 k2as

(2)

where we have adopted the convention of Zhao et al. (2009) and
β1, β2 are dimensionless constants representing couplings, λ1, λ2

have dimensions of length and s > 0 to ensure that at early times
GR is recovered. This parametrization gives a very good represen-
tation of scalar–tensor theories in the quasi-static regime, where
time derivatives of the perturbations to the metric and scalar de-
gree of freedom are neglected with respect to their spatial gradients
on sub-horizon scales (Zhao et al. 2009; de Felice, Mukohyama
& Tsujikawa 2010; Hojjati et al. 2012; Amendola et al. 2013;
Silvestri, Pogosian & Buniy 2013). This is a good approximation
given the observables that we are considering. Additionally, equa-
tion (2) sets the evolution of the characteristic length-scales of the
models to a power law in the scale factor. This is of course a choice
of parametrization for the time dependence of the mass scale of the
scalar degree of freedom, and other choices are possible. Neverthe-
less, as we will discuss in the following, it is a good approximation
for several scalar–tensor models, and data are not that sensitive to
the specific choice of the time dependence.

Equations (2) are built-in in MGCAMB and allow us to easily extract
predictions for scalar–tensor models on a �CDM background for
different observables, including the growth rate.

2.2 Chameleon models

Chameleon models are a class of scalar–tensor theories for which the
additional scalar field has a standard kinetic term and is conformally
coupled to matter fields as follows:

S =
∫

d4x
√−g̃

[
M2

P

2
R̃ − 1

2
˜gμν(∇̃μφ)∇̃νφ − V (φ)

]
+ Si

(
χi, e−καi (φ)g̃μν

)
, (3)

where αi(φ) is the coupling between the scalar field φ and the
ith matter species. The coupling(s) in general can be a non-linear
function(s) of the field φ; however, since the value of the field φ

typically does not change significantly on the time-scales associated
with the epoch of structure formation, we will assume it to be linear
in φ. Since we are dealing with clustering of matter in the late
universe, it is safe to consider one coupling, i.e. to dark matter, that
amounts to neglecting differences between baryons and dark matter,
or simply neglecting baryons, which is safe for the observables
under consideration.

In the quasi-static regime, (μ, γ slip) for Chameleon-type theories
can be well represented by a simplified version of equation (2) for
which

1 + 1

2

(
dα

dφ

)2

= β1 = λ2
2

λ2
1

= 2 − β2
λ2

2

λ2
1

, 1 ≤ s ≤ 4. (4)

Therefore, the effects of Chameleon-type theories on the dynam-
ics of linear scalar perturbations on sub-horizon regimes can be
described with good accuracy in terms of three parameters: {β1,
λ1, s}. The last condition in equation (4) is broadly valid for mod-
els with runaway and tracking-type potentials (Zhao et al. 2009).
Following a convention which is commonly used for f(R) theories,
let us express the length-scale λ2

1 in terms of a new parameter B0,

which corresponds to the value of the inverse mass scale today in
units of the horizon scale (Song, Hu & Sawicki 2007):

B0 ≡ 2H 2
0 λ2

1

c2
, (5)

so that we will work with {β1, B0, s}.
Let us notice that Chameleon theories as defined in action (equa-

tion 3) have necessarily β1 ≥ 1. However, in previous analysis of
Chameleon models under the BZ parametrization, such theoretical
prior has not been generally imposed and a wider range of β1 has
been explored (see e.g. Hojjati et al. 2011; Di Valentino et al. 2012).
Hence, in our analysis we will consider both the case with β1 > 1 and
the case for which β1 is allowed to be smaller than unity, to facilitate
comparison. We will refer to the former as the Chameleon model,
and the latter as the extended Chameleon model (eChameleon).
We shall emphasize that we consider the eChameleon as a purely
phenomenological model within equation (2), without linking it to
action (equation 3), since it would not be viable case of the latter.
While the eChameleon might correspond to a very special subcase
of the parametrization (equation 2), it still represents a possible
choice for (μ, γ slip) and, as we will discuss in Section 6, it will be
interesting to see what data can say about it.

2.3 f(R) gravity

f(R) theories of gravity correspond to the simple modification of the
Einstein–Hilbert action by the addition of a non-linear function of
the Ricci scalar. In the past decade, they have been extensively
explored as candidate models for cosmic acceleration (see e.g.
Silvestri & Trodden 2009; de Felice et al. 2010 and references
therein). They represent a subcase of the larger class of models de-
scribed by action (equation 3), corresponding to a universal fixed
coupling αi = √

2/3 φ and are therefore well represented in the
quasi-static regime by the functions (2) and conditions (4). How-
ever, the fixed coupling αi = √

2/3 φ implies that β1 = 4/3, and
viable f(R) models that closely mimic �CDM have been shown to
correspond to s ∼ 4 (Zhao et al. 2009; Hojjati et al. 2012). Therefore,
the number of free parameters in equations (2) can be effectively
reduced to λ1, which is then expressed in terms of B0. The latter is in
fact the only free parameter needed to label the family of f(R) mod-
els that reproduce a given expansion history, in our case the �CDM
one, and can be usually reconstructed via the so-called designer ap-
proach (Song et al. 2007; Pogosian & Silvestri 2008). Alternatively,
one could adopt the recently developed EFTCAMB package for an
exact implementation of designer f(R) models that does not rely on
the quasi-static approximation (Hu et al. 2014; Raveri et al. 2014).3

The latter method allows one to choose different background histo-
ries; however, for the data and cosmology involved in our analysis,
MGCAMB provides enough accuracy.

2.4 Growth index parametrization of the growth rate

In the cosmological concordance model, as well as in non-clustering
DE models, the growth rate of structure is well approximated by

f ≡ d ln δm

d ln a
≈ �m(a)6/11, (6)

where �m(a) ≡ ρm(a)/3M2
P H 2(a), ρm is the background den-

sity of matter and δm ≡ δρm/ρm. This inspired the following

3 http://wwwhome.lorentz.leidenuniv.nl/∼hu/codes/
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Table 1. Measurement of f(z)σ 8(z) from various galaxy redshift surveys
covering redshift between 0.06 to 0.8.

z fσ 8(z) 1/k (h−1 Mpc) Survey

0.067 0.42 ± 0.05 16.0–30 6dFGRS(2012)
0.17 0.51 ± 0.06 6.7–50 2dFGRS(2004)
0.22 0.42 ± 0.07 3.3–50 WiggleZ(2011)
0.25 0.35 ± 0.06 30–200 SDSS LRG (2011)
0.37 0.46 ± 0.04 30–200 SDSS LRG(2011)
0.41 0.45 ± 0.04 3.3–50 WiggleZ(2011)
0.57 0.462 ± 0.041 25–130 BOSS CMASS
0.6 0.43 ± 0.04 3.3–50 WiggleZ(2011)
0.78 0.38 ± 0.04 3.3–50 WiggleZ(2011)
0.8 0.47 ± 0.08 6.0–35 VIPERS(2013)

parametrization for deviations in the growth of structure (Wang
& Steinhardt 1998; Linder 2005; Linder & Cahn 2007)

f = �m(a)γ , (7)

where γ is commonly referred to as growth index (not to be con-
fused with the γ slip defined above, which represents instead the
gravitational slip).

The idea behind this parametrization is that of capturing indepen-
dently in �m and γ the information from, respectively, the expansion
and the growth history. Since in our analysis we fix the background
to �CDM, �m(a) is determined by that and the only parameter of
interest will be γ . While for models of MG and clustering DE in
general γ will be a function of time and scale, in several cases for the
regime of interest it can still be safely approximated by a constant,
which can differ significantly from the �CDM value. See Linder
& Cahn (2007) for more details and some forms of γ in alternative
theories of gravity.

In our analysis, we will assume that γ is constant and explore
constraints on it after extracting predictions for the CMB and growth
of structure from MGCAMB.

3 O BSERVATIONS

We use measurements of CMB angular power spectrum(Cl) from
Planck 2013 (Planck Collaboration XV 2014b) combined with the
measurement of f(z)σ 8(z) from various redshift surveys covering
between z = 0.06 and 0.8 listed in Table 1 as our main data points.
Fig. 1 shows the measurements used with and without corrections
and Planck 2013 prediction. We briefly describe each of the surveys
and fσ 8 measurements in the following sections.

3.1 6dFGRS

The 6dFGRS (6 degree Field Galaxy Redshift Survey) has observed
125 000 galaxies in near-infrared band across 4/5th of southern sky
(Jones et al. 2009). The surveys covers redshift range 0 < z < 0.18,
and has an effective volume equivalent to 2dFGRS (Percival et al.
2004) galaxy survey. The RSD measurement was obtained using
a subsample of the survey consisting of 81 971 galaxies (Beutler
et al. 2012). The measurement of fσ 8 was obtained by fitting 2D
correlation function using streaming model and fitting range 16–30
Mpc h−1. The Alcock–Paczynski (AP) effect (Alcock & Paczynski
1979) has been taken into account and it has a negligible effect
(Beutler et al. 2012). The final measurement uses Wilkinson Mi-
crowave Anisotropy Probe 7 (WMAP7; Bennett et al. 2013) likeli-
hood in the analysis. To be able to use this fσ 8 measurement, we

Figure 1. The measured fσ 8 from different surveys covering redshift range
0.06 < z < 0.8. The empty markers represent the reported measurement of
fσ 8 and the filled markers are for the corrected values for Planck cosmology.
The red band shows the Planck �CDM 1σ prediction.

need to account for the transformation to the Planck best-fitting
cosmology (Planck Collaboration I 2014a).

3.2 2dFGRS

The 2dFGRS (2 degree Field Galaxy Redshift Survey) obtained
spectra for 221 414 galaxies in visible band on the southern sky
(Colless et al. 2003). The survey covers redshift range 0 < z < 0.25
and has an effective area of 1500 square degrees. The RSD mea-
surement was obtained by linearly modelling the observed distortion
after splitting the overdensity into radial and angular components
(Percival et al. 2004). The parameters were fixed at different val-
ues ns = 1.0, H0 = 72. The results were marginalized over power
spectrum amplitude and bσ 8. We are not using this measurement
in our analysis for two reasons. First, the survey has a huge over-
lap with 6dFGRS which will lead to a strong correlation between
the two measurements. Secondly, the cosmology assumed is quite
far from WMAP7 and Planck which may cause our linear theory
approximation used to shift the cosmology to fail.

3.3 WiggleZ

The WiggleZ Dark Energy Survey is a large-scale galaxy redshift
survey of bright emission line galaxies. It has obtained spectra for
nearly 200 000 galaxies. The survey covers redshift range 0.2 < z <

1.0, covering effective area of 800 square degrees of equatorial sky
(Blake et al. 2011b). The RSD measurement was obtained using
a subsample of the survey consisting of 152 117 galaxies. The
final result was obtained by fitting the power spectrum using the
Jennings, Baugh & Pascoli (2011) model in four non-overlapping
slices of redshift. The measured growth rate is fσ 8(z) = (0.42 ±
0.07, 0.45 ± 0.04, 0.43 ± 0.04, 0.38 ± 0.04) at effective redshift
z = (0.22, 0.41, 0.6, 0.78) with non-overlapping redshift slices of
zslice = ([0.1, 0.3], [0.3, 0.5], [0.5, 0.7], [0.7, 0.9]), respectively. We
can assume the covariance between the different measurements to
be zero because they have no volume overlap.
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3.4 SDSS LRG

The Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) is a
large-scale galaxy redshift survey of luminous red galaxies (LRGs;
Eisenstein et al. 2011). The DR7 has obtained spectra of 106 341
LRGs, covering 10 000 square degrees in redshift range 0.16 < z <

0.44. The RSD measurement was obtained by modelling monopole
and quadruple moment of galaxy auto-correlation function using
linear theory. The data were divided in two redshift bins: 0.16 <

z < 0.32 and 0.32 < z < 0.44. The measurements of growth rate are
fσ 8(z) = (0.3512 ± 0.0583, 0.4602 ± 0.0378) at effective redshift
of 0.25 and 0.37, respectively (Samushia et al. 2012). These mea-
surements are independent because there is no overlapping volume
between the two redshift slices.

3.5 BOSS CMASS

SDSS Baryon Oscillation Spectroscopic Survey (BOSS; Dawson
et al. 2013) targets high-redshift (0.4 < z < 0.7) galaxies using a
set of colour–magnitude cuts. The growth rate measurement uses
the CMASS (Reid et al. 2016; Anderson et al. 2014b) sample of
galaxies from Data Release 11 (Alam et al. 2015a). The CMASS
sample has 690 826 LRGs covering 8498 square degrees in the
redshift range 0.43 < z < 0.70, which correspond to an effective
volume of 6 Gpc3. The fσ 8 is measured by modelling the monopole
and quadruple moment of galaxy auto-correlation using convolution
Lagrangian perturbation theory (Carlson, Reid & White 2013) in
combination with Gaussian streaming model (Wang, Reid & White
2014). The reported measurement of growth rate is fσ 8 = 0.462 ±
0.041 at effective redshift of 0.57 (Alam et al. 2015b).

We are also using the combined measurement of growth rate
(fσ 8), angular diameter distance (DA) and Hubble constant (H)
measured from the galaxy auto-correlation in CMASS sample at
an effective redshift of 0.57 (Alam et al. 2015b). The measurement
and its covariance are given below and it is called eCMASS,

f σ8 = 0.46, DA = 1401, H = 89.15

CeCMASS =
⎛
⎜⎜⎜⎜⎜⎜⎝

0.0018 −0.6752 −0.1261

−0.6752 550.61 45.881

−0.1261 45.881 14.019

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8)

3.6 VIPERS

VIPERS (de la Torre et al. 2013) is a high-redshift small-area galaxy
redshift survey. It has obtained spectra for 55 358 galaxies covering
24 square degrees in the sky from redshift range 0.4 < z < 1.2. The
measurement of growth factor uses 45 871 galaxies covering the
redshift range 0.7 < z < 1.2. The fσ 8 measurement is obtained by
modelling the monopole and quadruple moments of galaxy auto-
correlation function between the scale 6 and 35 h−1 Mpc. They
have reported fσ 8 = 0.47 ± 0.08 at effective redshift of 0.8. The
perturbation theory used in the analysis has been tested against
N-body simulation and shown to work at mildly non-linear scale
below 10 h−1 Mpc (de la Torre et al. 2013).

3.7 Planck CMB

Planck is a space mission dedicated to the measurement of CMB
anisotropies. It is the third generation of all sky CMB experiment
following COBE and WMAP. The primary aim of the mission is
to measure the temperature and polarization anisotropies over the
entire sky. The Planck mission provides a high-resolution map of

Figure 2. Correlation matrix between all the measurements used in our
analysis. We have estimated the correlation as the fraction of overlap volume
between two surveys to the total volume of the two surveys combined.

CMB anisotropy which is used to measure the cosmic variance-
limited angular power spectrum CT T

� at the last scattering surface.
The Planck measurements help us constrain the background cos-
mology to unprecedented precision (Planck Collaboration I 2014a;
Planck Collaboration XVI 2014c; Planck Collaboration 2015a). We
are using the CMB measurements from Planck satellite in order to
constrain cosmology. We have assumed that Planck measurements
are independent of the measurement of growth rate from various
galaxy redshift surveys.

3.8 Correlation matrix

We use the measurements of fσ 8 from six different surveys.
Although these surveys are largely independent, and in some
cases they probe different biased tracers, they are measuring in-
herently the same matter density field. Therefore, the parts of the
survey observing the same volume of sky cannot be treated as in-
dependent. We have predicted an upper limit to the overlap volume
using the data from different surveys. We have estimated the frac-
tional overlap volume between any two samples as the ratio of the
overlap volume to the total volume of the two samples. We estimate
the correlation between two measurements as the fractional overlap
volume between the two measurements. Fig. 2 shows our estimate
of the correlation between the surveys. The four measurements of
WiggleZ survey cover the redshift range between 0.1 and 0.9 and
hence show most correlation with other measurements like SDSS
LRG and CMASS in the same redshift range.

4 POTENTI AL SYSTEMATI CS

The collection of fσ 8 data points that we are using in this analy-
sis contains measurements from several different surveys, obtained
during the last decade, each with a different pipeline. Furthermore,
often the latter implicitly assumes a GR modelling, which does not
take into account the different predictions for the growth factor in
modified theories of gravity. It is important to account for some cru-
cial differences in order to use these measurements in our analysis.
We have looked at following different aspects of measurements and
theoretical prediction before using them in our analysis.
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4.1 Fiducial cosmology of the growth rate (fσ 8)

The measurements of fσ 8 have been obtained over the time when we
had transition from WMAP best-fitting cosmology (Hinshaw et al.
2013) to the Planck best-fitting cosmology (Planck Collaboration I
2014a). Since we are using Planck likelihood (Planck Collaboration
XV 2014b) in our analysis, we have decided to convert all the mea-
surements to Planck cosmology. The three-dimensional correlation
function can be transformed from WMAP to the Planck cosmology
using AP effect (Alcock & Paczynski 1979),

ξPlanck(r‖, r⊥, φ) = ξWMAP(α‖r‖, α⊥r⊥, φ), (9)

where α‖ is the ratio of the Hubble parameters (α‖ =
HPlanck/HWMAP) and α⊥ is the ratio of the angular diameter dis-
tances (α⊥ = DWMAP

A /DPlanck
A ). The r‖, r⊥ are pair separations along

the line of sight and perpendicular to the line of sight, and φ is the
angular position of pair separation vector in the plane perpendic-
ular to the line of sight from a reference direction. In practice,
the correlation function is isotropic along φ. We can calculate the
corresponding power spectrum by applying Fourier transform to
correlation function,

PPlanck(k‖, k⊥, kφ) =
∫

dr‖dr⊥r⊥dφξPlanck(r‖, r⊥, φ)e−ik.r (10)

=
∫

dr ′
‖dr ′

⊥
r ′
⊥

α‖α2
⊥

ξWMAP(r ′
‖, r

′
⊥, φ)e−ik′.r ′

(11)

= PWMAP(k‖/α‖, k⊥/α⊥, kφ)

α‖α2
⊥

. (12)

The Kaiser formula for RSD gives the redshift space correlation
function as P s

g (k, μ) = b2Pm(k)(1 + βμ2)2 (Kaiser 1987). Using
the linear theory Kaiser prediction and the above approximation
between WMAP and Planck power spectrum, we can get a relation to
transform the growth function from WMAP to Planck cosmology,

1 + βPlanckμ
′2

1 + βWMAPμ2
= C

√
PPlanck(k′, μ′)
PWMAP(k, μ)

(13)

= C

√
1

α‖α2
⊥

, (14)

where C is the ratio of isotropic matter power spectrum with WMAP
and Planck cosmology integrated over scale used in β measure-
ment,

C =
∫ k2

k1

dk

√
P m

WMAP(k)

P m
Planck(k′)

, (15)

with k′
(‖,⊥) = k(‖,⊥)/α(‖,⊥). When the right-hand side of equa-

tion (14) is close to 1, then we can approximate the above equation
as follows:

βPlanck = βWMAPC
μ2

μ′2

√
1

α‖α2
⊥

. (16)

The ratio μ2

μ′2 can be obtained using simple trigonometry which
gives following equations, where the last equation is approximation
for α2

‖ ≈ α2
⊥,

μ2

μ′2 = 1

α2
⊥

(
α2

‖ + (α2
⊥ − α2

‖)μ2
) ≈

(
α‖
α⊥

)2

. (17)

We can substitute equation (17) in equation (16) in order to get the
required scaling for f (growth factor) assuming that bias measured
is proportional to the σ 8 of the cosmology used,

βPlanck = βWMAPC

(
α‖
α2

⊥

)(3/2)

(18)

f σ8Planck = f σ8WMAPC

(
α‖
α2

⊥

)(3/2) (
σ Planck

8

σ WMAP
8

)2

. (19)

We have tested prediction of equation (19) against the measure-
ment of fσ 8 reported in table 2 of Alam et al. (2015b) at redshift
0.57 using both Planck and WMAP cosmology. In principle, the bias
in the measurements of fσ 8 should be corrected for the each step of
MCMC to the chosen cosmology. But, we choose not to incorporate
that and apply only an overall correction. Because the corrections
are negligible compared to the error on measurements.

4.2 Scale dependence

GR predicts a scale-independent growth factor. One of the impor-
tant features of the MG theories we are considering is that they
predict a scale-dependent growth factor which has a transition from
high to low growth at certain scale which depends on the redshift
z and the model parameters. The measurements we use from the
different surveys assume a scale-independent fσ 8 and uses charac-
teristic length-scale while analysing data. In order to account for
all these effects, we have done our analysis in two different ways.
In the first method, we assume that the measurements correspond
to an effective k and in the second method, we treat the average
theoretical prediction over range of k used in fσ 8 analysis.

Figs 11 and 12 show the parameter constraint for Chameleon
models and f(R) gravity. The grey and red contours result from
using two different model predictions to test the scale dependence.
The grey contours correspond to the model where we average fσ 8

over k used in respective fσ 8 analysis and red contours correspond
to fσ 8 evaluated at k = 0.2 h Mpc−1. It is evident from the plots that,
at the current level of uncertainty, we obtain very similar constraint
and hence do not detect any significant effect of scale dependence
of fσ 8.

4.3 Other systematics

The measurements of fσ 8 are reported at the mean redshift of the
surveys. But the galaxies used have a redshift distribution which in
principle can be taken into account by integrating the theoretical
prediction. This should be a very small effect because the fσ 8(z) is
relatively smooth and flat (see Fig. 1 and Huterer et al. 2015) for
the redshift range of the survey and also because the survey win-
dow for every individual measurement is small. Another important
point is the assumption of GR-based modelling for the measure-
ment. We have looked at the modelling assumption for each of
the measurements. All measurements of fσ 8 except WiggleZ and
VIPERS allow the deviation from GR through AP effect (Alcock &
Paczynski 1979) which justifies our use of MG models. The inclu-
sion of AP in WiggleZ and VIPERS will marginally increase the
error on the measurements. Different surveys use different ranges of
scale in the RSD analysis. This will be important especially while
analysing MG models. To account for the different scales used, we
evaluate the prediction for each survey averaged over the scale used
in the respective analysis.
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5 A NA LY SIS

We have measurement of fσ 8 from various surveys covering redshift
range 0.06–0.8 (see Table 1). We first correct these measurements
for the shift from WMAP cosmology to Planck cosmology as de-
scribed in Section 4.1. The next step is to evaluate prediction from
different MG theories by evolving a full set of linear perturbation
equations. The theoretical predictions for fσ 8 are generally scale
and redshift dependent (see Section 4.2). Therefore, we consider
two cases for theoretical prediction: (1) evaluate fσ 8 at effective
k and (2) evaluate fσ 8 averaged over range of k used in measure-
ments. We also predict CT T

l for different MG theories. Finally, we
define our likelihood, which consists of three parts, one by matching
Planck temperature fluctuation CT T

l , second by matching growth
factor from Table 1 and third by using eCMASS data as shown in
equation (8). Therefore, we define the likelihood as follows:

L = LPlanckLf σ8LeCMASS (20)

Lf σ8 = e−χ2
f σ8

/2 (21)

χ2
f σ8

= 
f σ8C
−1
f σT

8 . (22)

The 
fσ 8 is the deviation of the theoretical prediction from the
measurement and C−1 is the inverse of covariance which has diago-
nal error for different surveys and correlation between measurement
as described in Section 3.8. Note that we do not include fσ 8 from
CMASS while using eCMASS with fσ 8(z) to avoid double count-
ing. This likelihood is sampled using modified version of COSMOMC

(Lewis & Bridle 2002; Hojjati et al. 2011). We sample over 6 cos-
mology parameters {�bh2, �ch2, 100�MC, τ , ns, log(1010As)} and
all 18 Planck nuisance parameters as described in Planck Collab-
oration I (2014a) with the respective extension parameters or MG
parameters. The priors we have used on all the parameters are the
same as the priors in Planck Collaboration I (2014a), and the priors
we used on the parameters of MG model are given in Table 2.

6 R ESULTS

We have combined CMB data set and measurements of growth
from various redshift surveys in order to constrain the parame-
ters of standard cosmology (�CDM), extended cosmology models
and MG. Our analysis gives consistent constraints for the standard
�CDM parameters {�bh2, �ch2, 100�MC, τ , ns, log(1010As)} as
shown in Table 3. Fig. 3 shows the constraint on �m–σ 8 plane for
�CDM, wCDM, o�CDM, scalar–tensor model, Chameleon grav-
ity, eChameleon, f(R) and growth index parametrization. These are
our best constraints obtained using Planck +eCMASS + fσ 8(z).
Fig. 4 shows the theoretical predictions of fσ 8(z) for each of the
models considered in this paper.

6.1 �CDM

Fig. 5 shows the one-dimensional marginalized likelihood for stan-
dard �CDM cosmology. The black line shows the constraints from
Planck 2013 alone. The red, blue and magenta lines are pos-
terior obtained for the data set combinations Planck+eCMASS,
Planck+fσ 8(z) and Planck+eCMASS+fσ 8(z), respectively. Our
parameter constraints are completely consistent with the Planck
2013 results. Adding measurements of the growth rate to Planck

Table 2. The list of extension parameters for all the models used in our
analysis. For each parameter, we provide their symbol, prior range, central
value and 1σ error.

Model Parameter Prior range Posterior

wCDM w0 −2.0 to 0.0 −0.873 ± 0.077

w0waCDM w0 −2.0 to 0.0 −0.943 ± 0.168
wa −4.0 to 4.0 0.156 ± 0.361

o�CDM �k −1.0 to 1.0 −0.0024 ± 0.0032

β1 0 to 2.0 1.23 ± 0.29
β2 0 to 2.0 0.93 ± 0.44

Scalar–tensor λ2
1 × 10−6 0 to 1 0.49 ± 0.29

λ2
2 × 10−6 0 to 1 0.41 ± 0.28

s 1.0 to 4.0 2.80 ± 0.84

β1 1.0 to 2.0 <1.008
Chameleon B0 0 to 1.0 <1.0

s 1.0 to 4.0 2.27 < s < 4.0

β1 0 to 2.0 0.932 ± 0.031
eChameleon B0 0 to 1.0 <0.613

s 1.0 to 4.0 2.69 < s < 4.0

f(R) Ba
0 10−10 to 10−4 <1.32 × 10−5

Growth index γ 0.2 to 0.8 0.611 ± 0.072

aWe have tried using both logarithmic and linear prior on B0 for the f(R)
model and obtained similar results for the upper limit on B0. But, our final
results are obtained using logarithmic prior on B0 because the linear prior
never converged due to huge range and strong constraint.

data does not improve the results (see Fig. 5) due to already tight
constraints from Planck observations (see Fig. 1).

6.2 DE equation of state (wCDM)

We have looked at the wCDM, i.e. the one-parameter extension of
�CDM where the DE equation of state is a constant, w. Fig. 6 shows
the two-dimensional likelihood of w0 and �m. The grey contours
are Planck-only constraint (w0 = −1.27 ± 0.42), red contours are
Planck and eCMASS (w0 = −0.92 ± 0.10) and blue contours show
Planck combined with eCMASS and growth factor measurements
(w0 = −0.87 ± 0.077). We obtain w0 = −0.87 ± 0.077 (8.8 per cent
measurement) which is consistent with the fiducial value of w =
−1 for �CDM. The constraint we obtained is similar in precision
as compared to BAO only, but has different degeneracy. Therefore,
combined measurement of growth rate and anisotropic BAO for all
of these surveys will help us improve the precision of w0.

6.3 Time-dependent DE (w0waCDM)

The wCDM model which proposes a constant DE is limited in its
physical characteristics. Many models propose time-dependent DE
which is popularly tested using linear relation w(z) = w0 + wa

z
1+z

,
with w0 and wa as free parameters. This model has been shown
to match exact solutions of distance, Hubble, growth to the 10−3

level of accuracy (de Putter & Linder 2008) for a wide variety of
scalar field (and MG) models. The dynamical evolution of w(z) can
change the growth factor significantly and leave an imprint on the
CMB. The combination of CMB and collection of growth factor at
different redshifts is a unique way to test the time-dependent DE
model.

Fig. 7 shows the 1σ and 2σ region for (w0, wa). The grey con-
tour is from the Planck temperature power spectrum data alone
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Table 3. The list of standard �CDM parameters used in our analysis. For each parameter, we provide its symbol, prior range, central value and 1σ error.
We have used the same prior as Planck 2013 on these parameters. We have also marginalized over all the nuisance parameters of Planck likelihood. We
report the results for each of the models analysed in this paper.

Models �bh2 �ch2 100θMC τ ns ln (1010As)

Prior range 0.005–0.10 0.001–0.99 0.50–10.0 0.01–0.8 0.9–1.1 2.7–4.0
�CDM 0.0219 ± 0.0002 0.1208 ± 0.0020 1.0410 ± 0.0006 0.0442 ± 0.0236 0.953 ± 0.0068 3.0007 ± 0.0450
wCDM 0.0221 ± 0.0003 0.1183 ± 0.0028 1.0414 ± 0.0006 0.0911 ± 0.0449 0.9615 ± 0.0097 3.0884 ± 0.0843
w0waCDM 0.0221 ± 0.0003 0.1181 ± 0.0029 1.0415 ± 0.0007 0.0906 ± 0.0454 0.9619 ± 0.0099 3.0871 ± 0.0850
o�CDM 0.0220 ± 0.0003 0.1191 ± 0.0031 1.0413 ± 0.0007 0.0518 ± 0.0278 0.9582 ± 0.0094 3.0118 ± 0.0514
Scalar–tensor 0.0221 ± 0.0003 0.1199 ± 0.0020 1.0412 ± 0.0006 0.0333 ± 0.0198 0.9591 ± 0.0071 2.9769 ± 0.0377
Chameleon 0.0219 ± 0.0002 0.1205 ± 0.0020 1.0411 ± 0.0006 0.0390 ± 0.0222 0.9539 ± 0.0067 2.9894 ± 0.0425
eChameleon 0.0218 ± 0.0003 0.1222 ± 0.0023 1.0409 ± 0.0006 0.1313 ± 0.0467 0.9537 ± 0.0079 3.1780 ± 0.0914
f(R) 0.0221 ± 0.0004 0.1182 ± 0.0033 1.0414 ± 0.0008 0.0733 ± 0.0354 0.9607 ± 0.0101 3.0526 ± 0.0663
Growth index (γ ) 0.0218 ± 0.0003 0.1214 ± 0.0023 1.0409 ± 0.0006 0.0699 ± 0.0400 0.9525 ± 0.0075 3.0534 ± 0.0788

Figure 3. The 1σ and 2σ regions for each of the models considered in this
paper in the �m–σ 8 plane. It shows that the posterior likelihood is consistent
for each of the models in this parameter space. The top plot shows the models
which are extension to �CDM and the bottom plot shows the MG models.

Figure 4. The black points show the corrected fσ 8 used in our analysis,
along with the error bar. Lines of different colours show the best fit for the
various models used in our analysis. The best fit and χ2 are for the case of
Planck +fσ 8 + eCMASS fits. Notice that the eChameleon model predicts
the smallest growth rate by preferring lower values of the coupling constant
(β1), even though the scalar amplitude of primordial power spectrum is high.

(w0 = −0.99 ± 0.52, wa = −1.50 ± 1.46). The red contours are
from Planck and eCMASS (w0 = −1.23 ± 0.26, wa = 0.63 ±
0.49) and blue contour shows Planck combined with eCMASS and
growth factor measurement (w0 = −0.94 ± 0.17, wa = 0.16 ±
0.36). The �CDM prediction of (w0, wa) = (−1, 0) is completely
consistent with our posterior. We have obtained constraint on
w0 = −0.94 ± 0.17 (18 per cent measurement) and 1 + wa = 1.16
± 0.36 (31 per cent measurement) which is stronger constraint than
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Figure 5. �CDM: we use GR as the model for gravity to determine the
growth factor and fit for fσ 8(z) and eCMASS measurement with Planck
likelihood. The black line shows the constraints from Planck 2013 alone.
The red, blue and magenta lines are posterior obtained for the data set combi-
nations Planck+eCMASS, Planck+fσ 8(z) and Planck+eCMASS+fσ 8(z),
respectively. The two most prominent effects are in optical depth τ and
scalar amplitude of primordial power spectrum As, which is also reflected
in the derived parameter σ 8 and mid-redshift of reionization zre.

Figure 6. wCDM: the two-dimensional posterior likelihood w and �m for
wCDM. The grey contour is for Planck (w0 = −1.27 ± 0.42); red contour is
combined constraint from Planck and eCMASS (w0 = −0.92 ± 0.10). The
blue contour represents constraint from combining Planck with eCMASS
and fσ 8(z) (w0 = −0.87 ± 0.077).

Figure 7. w0waCDM: the two-dimensional posterior likelihood of w0 and
wa for time-dependent DE model. The grey contour is for Planck (w0 =
−0.99 ± 0.52, wa = −1.50 ± 1.46); red contour is combined constraint
from Planck and eCMASS (w0 = −1.23 ± 0.26, wa = 0.63 ± 0.49). The
blue contour represents results from combining Planck with eCMASS and
fσ 8(z) (w0 = −0.94 ± 0.17, wa = 0.16 ± 0.36).

the current best measurement of wa = −0.2 ± 0.4 from Aubourg
et al. (2015).

6.4 Spatial curvature (o�CDM)

We consider a model with spatial curvature parametrized with �K

as free parameter called o�CDM along with �CDM parameters.
Fig. 8 shows the posterior for the �K and �m plane. The grey contour
is from the Planck temperature power spectrum data alone (�k =
−0.060 ± 0.047). The red contours are from Planck and eCMASS
(�k =−0.0024 ± 0.0034) and blue contour shows Planck combined
with eCMASS and growth factor measurements (�k = −0.0024 ±
0.0032). The �CDM prediction of �k = 0 is completely consis-
tent with our posterior. We have obtained constraint on 1 + �k =
0.9976 ± 0.0032 (0.3 per cent measurement) which is competitive
with the current best measurements (Aubourg et al. 2015). It will
be interesting to see if combined RSD and BAO at all redshifts will
give any improvement on the precision of curvature.

6.5 Scalar–tensor gravity (BZ parametrization)

The general scalar–tensor theories of gravity are analysed using five-
parameter model called BZ parametrization. The five parameters of
scalar–tensor gravity (β1, β2, λ1, λ2, s) are constrained along with
the standard �CDM parameters using Planck, fσ 8(z) and eCMASS
measurements. BZ model predicts a scale-dependent growth rate
(fσ 8(k, z)), whereas the measurements are at some effective k. In
order to incorporate the k-dependence in our analysis, we use the
two different approaches described in Section 4.2. Fig. 9 shows two-
dimensional posterior in the plane (β1, β2). The green contour is
combined constraint from Planck and eCMASS (β1 = 1.18 ± 0.29,
β2 = 0.95 ± 0.43). The grey contour is the combined constraint
from Planck and fσ 8(z) with averaged over k (β1 = 1.24 ± 0.3,
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Figure 8. o�CDM: the two-dimensional posterior likelihood of �k and
�m for o�CDM. The grey contour is for Planck (�k = −0.060 ± 0.047);
red contour is combined constraint from Planck and eCMASS (�k =
−0.0024 ± 0.0034). The blue contour represents results from combining
Planck with eCMASS and fσ 8(z) (�k = −0.0024 ± 0.0032).

Figure 9. BZ: the two-dimensional posterior likelihood of β1–β2 for five-
parameter scalar–tensor theory parametrized through the BZ form of equa-
tion (2). The green contour is the combined constraint from Planck and
eCMASS (β1 = 1.18 ± 0.29, β2 = 0.95 ± 0.43). The grey contour is
the combined constraint from Planck and fσ 8(z) with averaged over k (β1

= 1.24 ± 0.3, β2 = 0.96 ± 0.45); red contour is the combined con-
straint from Planck and fσ 8(z) at effective k = 0.2 h Mpc−1 (β1 = 1.24
± 0.3, β2 = 0.95 ± 0.45). The blue contour represents results from the
combination of Planck, fσ 8(z) and eCMASS (β1 = 1.23 ± 0.29,
β2 = 0.93 ± 0.44).

β2 = 0.96 ± 0.45); the red contour is the combined constraint from
Planck and fσ 8(z) at effective k = 0.2 h Mpc−1 (β1 = 1.24 ± 0.3,
β2 = 0.95 ± 0.45). The blue contour represents results from the
combination of Planck, fσ 8(z) and eCMASS (β1 = 1.23 ± 0.29, β2

= 0.93 ± 0.44). We obtain the following joint constraint on the five
BZ parameters: β1 = 1.23 ± 0.29, β2 = 0.93 ± 0.44, λ2

1(×10−6) =
0.49 ± 0.29, λ2

2(×10−6) = 0.41 ± 0.28 and s = 2.80 ± 0.84. By
looking at the joint 2D likelihood for (β1, β2) in Fig. 9, we notice
that there is a strong degeneracy between the two parameters which
reflects the degeneracy between μ and γ for the observables that we
are using. Similar results have been found in Hojjati et al. (2012)
and Planck Collaboration (2015b). For the next models that we will
discuss, β1 and β2 are not independent and this will allow data to
place more stringent constraints.

While the constraints on the length-scale of the scalar field (λ1,
λ2) and (s) are very broad, the one on the coupling, β1 and β2, is the
first ever constraint obtained on these parameters for general scalar–
tensor gravity. The discrepancy in the strength of the constraints on
the coupling and on the length-scale can be linked to the fact that
data strongly prefer values of the coupling constants close to 1. For
such values, the scale and time dependences in (μ, γ ) become less
important and therefore are loosely constrained. We will encounter
this again in the Chameleon and f(R) gravity cases.

6.6 Chameleon gravity

The three parameters of Chameleon gravity (β1, B0, s) are con-
strained along with the standard �CDM parameters using Planck,
fσ 8(z) and eCMASS measurements. Chameleon models predict a
scale-dependent growth rate (fσ 8(k, z)), whereas the measurements
are at some effective k. In order to incorporate the k-dependence
in our analysis, we use the two different approaches described in
Section 4.2. Fig. 10 shows the two-dimensional posterior in the
plane (�m, β1), (B0, β1) and (s, β1). The grey and red contours
show the posteriors from combined data set of Planck and growth
rate measurements. The red contours are likelihood while eval-
uating the growth rate at an effective k (β1 < 1.010), whereas
grey contours are for the case when we use an effective growth
rate, averaged over the scales used in the actual fσ 8 measurement
(β1 < 1.010). The green contour is combined constraint from Planck
and eCMASS (β1 < 1.013). Finally, the blue contours show the
posterior from combined data of Planck, eCMASS and growth rate
(β1 < 1.008). We obtain the following joint constraint on the three
Chameleon parameters: β1 < 1.008, B0 < 1.0 and 2.27 < s < 4.
While the constraints on the length-scale of the scalar field, B0 and
s are very broad, the one on the coupling, β1, is very strong and
predicts β1 = 1 to 0.8 per cent, bringing μ to its GR value. As
we already discussed for the scalar–tensor case, the discrepancy in
the strength of these constraints is due to the fact that data prefer
values of the coupling constant close to 1, for which the time and
scale dependences of (μ, γ slip) become negligible. This is even more
the case for Chameleon models, where the theoretical prior forces
β1 > 1, which corresponds to enhanced growth, and data conse-
quently require very small values for this coupling, pushing μ very
close to its GR value.

We have also looked at the extended Chameleon model where we
allow β1 to be less than 1 following previous analysis of this model.
Fig. 11 shows the two-dimensional posterior in the plane (�m, β1).
The red contours are likelihood while evaluating the growth rate at
an effective k (β1 = 0.940 ± 0.032), whereas grey contours are for
the case when we use an effective growth rate, averaged over the
scales used in the actual fσ 8 measurement (β1 = 0.936 ± 0.032).
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Figure 10. Chameleon theory: the two-dimensional posterior likelihood
for Chameleon gravity. The green contour is the combined constraint from
Planck and eCMASS (β1 < 1.013). The grey contour is the combined
constraint from Planck and fσ 8(z) with averaged over k (β1 < 1.010); the
red contour is the combined constraint from Planck and fσ 8(z) at effective
k = 0.2 h Mpc−1 (β1 < 1.010). The blue contour represents results from the
combination of Planck, eCMASS and fσ 8(z) (β1 < 1.008).

The green contour is combined constraint from Planck and eC-
MASS (β1 = 0.932 ± 0.04). Finally, the blue contours show the
posterior from combined data of Planck, eCMASS and growth rate
(β1 = 0.932 ± 0.031). We obtain the following joint constraint on
the three eChameleon parameters: β1 = 0.932 ± 0.031, B0 < 0.613
and 2.69 < s < 4. Like in the more general scalar–tensor case,
while the constraints on the length-scale of the scalar field, B0 and
s are very broad, the one on the coupling, β1, is a huge improve-
ment on the previous constraint of β1 = 1.3 ± 0.25 (19.2 per cent
measurement) using WMAP CMB, SNe and ISW data set (Hojjati
et al. 2011). Let us notice that when we constrain jointly the three
eChameleon parameters, data select a region in the parameter space
which corresponds to β1 < 1, i.e. to suppressed growth. This region
excludes standard Chameleon models, including f(R) theories, for
which β1 > 1 and the growth is enhanced. After all, as we have
seen above and will see in the next section, the same data place
very stringent constraints on Chameleon and f(R) models, forcing
them to be very close to �CDM (see Figs 11 and 12). Hence, the
combination of data sets that we employ favours models with a
suppressed growth rate, which adopting the BZ parametrization can
be obtained with β1 < 1; a suppressed growth was favoured also

Figure 11. eChameleon theory: the two-dimensional posterior likelihood
of β1 and �m for extended Chameleon gravity. The green contour is the
combined constraint from Planck and eCMASS (β1 = 0.932 ± 0.04). The
grey contour is the combined constraint from Planck and fσ 8(z) with aver-
aged over k (β1 = 0.940 ± 0.032); red contour is combined constraint from
Planck and fσ 8(z) at effective k = 0.2 h Mpc−1 (β1 = 0.936 ± 0.032). The
blue contour represents results from the combination of Planck, fσ 8(z) and
eCMASS (β1 = 0.932 ± 0.031).

Figure 12. f(R) gravity: the two-dimensional posterior likelihood of B0 and
�m for f(R) gravity. The green contour is combined constraint from Planck
and eCMASS (B0 < 3.43 × 10−5). The grey contour is the combined
constraint from Planck and fσ 8(z) with averaged over k (B0 < 2.77 ×
10−5); the red contour is the combined constraint from Planck and fσ 8(z) at
effective k = 0.2 h Mpc−1 (B0 < 1.89 × 10−5). The blue contour represents
results from the combination of Planck, fσ 8(z) and eCMASS (B0 < 1.36 ×
10−5).
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by the data set used in Planck Collaboration (2015b), although in
that case the authors employed a time-dependent parametrization.
Theoretically viable scalar–tensor models with a suppressed growth
are discussed in Perenon et al. (2015), where they are analysed via
a scale-independent parametrization in the effective field theory
language.

6.7 f(R) theory

We consider one-parameter (B0) model of f(R) gravity. The pa-
rameter B0 parametrizes the deviation from �CDM. The model
approaches GR when B0 is zero. Similar to Chameleon theory, f(R)
gravity predicts a scale-dependent growth rate (fσ 8(k, z)). Fig. 12
shows the two-dimensional posterior in B0 and �m plane. The green
contour is combined constraint from Planck and eCMASS (B0 <

3.43 × 10−5). The grey and red contours show posterior from com-
bined data set of Planck and growth rate measurements. The red
contours are likelihood while evaluating the growth rate at an effec-
tive k (B0 < 1.89 × 10−5), whereas grey contours are for the case
when we use effective growth rate, which is averaged over scales
used in the actual fσ 8 measurements (B0 < 2.77 × 10−5). The blue
contours show the posterior from combined data of Planck, eC-
MASS and growth rate (B0 < 1.36 × 10−5). We obtained B0 <

1.36 × 10−5 (1σ C.L.), which is an improvement by a factor of
4 on the most recent constraint from large-scale structure of B0 =
5.7 × 10−5 (1σ C.L.; Xu 2015). Our constraint is competitive with
the constraint from Solar system tests and clusters (Hu & Sawicki
2007; Schmidt, Vikhlinin & Hu 2009; Cataneo et al. 2015).

6.8 Growth index (γ ) parametrization

The standard cosmological model, based on GR, predicts a precise
value for the growth factor in the linear regime, i.e. f = �0.55

m . In
order to test deviations from GR, we have parametrized the growth
factor using growth index γ (Linder & Cahn 2008) as f = �γ

m. The
marginalized two-dimensional likelihood for �m and γ is shown
in Fig. 13. The grey contour is combined constraint from Planck
and eCMASS (γ = 0.477 ± 0.096). The red contours show the
constraint obtained using Planck and fσ 8(z) measurement (γ =
0.595 ± 0.079) and the blue contours are for combined data set
of Planck with fσ 8(z) and eCMASS (γ = 0.612 ± 0.072). We
have obtained γ = 0.612 ± 0.072 (11.7 per cent measurement)
completely consistent with the GR prediction.

7 D ISCUSSION

We have constrained the parameters of the standard cosmological
model, �CDM, as well as those of various extensions using the cur-
rent measurements of growth rate between redshift 0.06 and 0.83
(Fig. 4), eCMASS and Planck 2013. We have been careful with sev-
eral important details while combining results from various surveys
and different cosmologies of measurements. We have first showed
that the standard �CDM parameter space has a consistent posterior,
independent of the model considered except for Chameleon grav-
ity. Next, we focused on each model and analysed the constraint
on its extension parameters. As for the standard model, �CDM,
using the growth factor we do not improve constraints on any of its
parameters because the growth rate is already highly constrained
with Planck measurement for the standard model of cosmology. It
is impressive to notice that �CDM, without any extra parameter,
is completely consistent with the measurements of fσ 8 from very
different galaxy types and redshifts. In the case of the extension

Figure 13. Growth index (γ ): the two-dimensional posterior likelihood of γ

and �m for growth index parametrization. The grey contour is the combined
constraint from Planck and eCMASS (γ = 0.477 ± 0.096). The red contour
is the combined constraint from Planck and fσ 8(z) (γ = 0.595 ± 0.079).
The blue contour represents results from the combination of Planck, fσ 8(z)
and eCMASS (γ = 0.612 ± 0.072).

where the DE equation of state is constant but free to vary, wCDM,
we obtain w0 = −0.87 ± 0.077 (8.8 per cent measurement). This is
a 3.7 times improvement on the precision compared to Planck-only
measurement w = −1.27 ± 0.42 (33 per cent measurement) and
comparable to the 8 per cent measurement of Samushia et al. (2012).
Our measurement prefers w < −1 at the 1σ level. We have also
noticed that the growth rate and BAO have slightly different degen-
eracy for wCDM. This shows the potential to improve the constraint
on w by combining the growth rate and BAO measurements from a
range of galaxy redshift surveys. However, one difficulty in doing
so is to model the correlation between the measurement of growth
rate and BAO.

We also report one of the best measurements on the parameters of
the model with a time-dependent equation of state, w0waCDM. We
have measured w0 = −0.94 ± 0.17 (18 per cent measurement) and
1 + wa = 1.16 ± 0.36 (31 per cent measurement). This represents a
significant improvement on wa compared to all other measurements
(Aubourg et al. 2015; Planck Collaboration I 2014a). The measure-
ments of fσ 8, H and DA in eCMASS help to constrain �CDM
parameters, while the evolution of the growth rate over a large red-
shift range, obtained through measurements of fσ 8(z) at multiple
redshifts, improves the constraint on evolving DE. This hints at the
potential of using combined growth rate and anisotropic BAO as a
function of redshifts, when future surveys like eBOSS and Euclid
(Laureijs et al. 2011) will provide much stronger growth rate and
BAO constraints at much higher redshifts. We have also looked at
the possibility of a non-zero curvature for the universe, o�CDM,
finding 1 + �k = 0.9976 ± 0.0032 (0.3 per cent measurement),
which is the same as the best constraint reported in Samushia et al.
(2012). We notice that the optical depth (τ ) and amplitude of scalar
power spectrum (As) are relatively low for o�CDM, which predicts
smaller redshift of reionization (zre = 7.20 ± 2.81) but is above the
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lower limit observed through Lyman α forest observations (Becker
et al. 2001).

We have also looked at some of the popular modifications of
gravity and found no significant deviations from GR using growth
rate and Planck 2013 measurement. We have investigated gen-
eral scalar–tensor theories under the parametrization introduced in
Bertschinger & Zukin (2008), constraining the corresponding five
parameters. We have found constraints on the two coupling param-
eters (β1 = 1.23 ± 0.29, β2 = 0.93 ± 0.44), while the posterior
of other three parameters was largely non-constraining. We then
restricted to the subset of Chameleon theories, for which only three
parameters are needed. While imposing a theoretical bound of β1 >

1, we constrained the coupling of Chameleon theories to β1 < 1.008
(1σ C.L.), while jointly varying the remaining two free parameters
that describe the length-scale of the scalar degree of freedom, {B0,
s}. While the latter are loosely constrained by data, the constraint
on the coupling is quite stringent. We also explored an extension of
Chameleon models, which we dubbed eChameleon, where we let
the coupling β1 vary within the range [0, 2]. Also in this case, data
place a stringent bound on the coupling, while loosely constraining
{B0, s}. Interestingly, for this case data select a region where β1 <

1, with the bound β1 = 0.932 ± 0.031; the latter corresponds to a
region of the parameter space for which growth is suppressed. This
improves significantly over previous analysis, e.g. the bound β1 =
1.3 ± 0.25 (19.2 per cent measurement) obtained in Hojjati et al.
(2011) using WMAP CMB, SNe and ISW data set. This excludes
standard Chameleon models, including f(R) theories, for which
β1 > 1 and the growth is enhanced. After all, the same data place
very stringent constraints on the latter models, forcing them to be
very close to �CDM (see Figs 11 and 12). We also notice that
the optical depth (τ ) and amplitude of scalar power spectrum (As)
are higher for eChameleon gravity. This predicts higher redshift
of reionization (zre = 14.43 ± 3.77) and higher growth. In such a
situation, the only way in which the model can align itself with the
measured fσ 8 is by choosing a smaller coupling parameter (β1). We
have placed very stringent bounds on f(R) models with a �CDM
background, constraining their only free parameter to be B0 <

1.36 × 10−5 (1σ C.L.). This is competitive with the constraint
from Solar system tests and clusters (Hu & Sawicki 2007; Schmidt
et al. 2009; Cataneo et al. 2015) and other cosmological measure-
ments (Dossett, Hu & Parkinson 2014; Raveri et al. 2014; Planck
Collaboration et al. 2015b; Xu 2015).

Finally, we have analysed the growth index parametrization of the
growth rate, measuring γ = 0.612 ± 0.072 (11.7 per cent measure-
ment), which is completely consistent with the GR prediction. This
is a slight improvement on the 16 per cent measurement of Samushia
et al. (2014). We also note that our measurement of growth index
is slightly less precise than current best measurement γ = 0.665
± 0.0669 (10 per cent measurement; Johnson et al. 2015) using
combination of galaxy power spectrum, velocity power spectrum,
Type Ia SNe, the CMB, CMB lensing and the temperature-galaxy
cross-correlation.

It is remarkable to notice that even after allowing many different
kinds of degrees of freedom, our analysis shows that everything is
consistent with vanilla �CDM cosmology and general theory of
relativity.
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