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Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose
properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely
geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and
program the flexibility of fold patterns. We exploit a recent connection between spring networks and
quantum topological states to design origami with localized folding motions at boundaries and study them
both experimentally and theoretically. These folding motions exist due to an underlying topological
invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple
example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to
generalize these topological design principles to two dimensions. A striking consequence is that a domain
wall between two topologically distinct, mechanically rigid structures is deformable even when constraints
locally match the degrees of freedom.

DOI: 10.1103/PhysRevLett.116.135501

Recent interest in origami mechanisms has been spurred
by advances in fabrication and manufacturing [1–3], as
well as a realization that folded structures can form the basis
of mechanical metamaterials [4–8]. The ability to identify
kinematic mechanisms—allowable folding motions of a
crease pattern—is critical to the use of origami to design
new deployable structures and mechanical metamaterials.
For example, the mechanism in the celebrated Miura ori
that allows it to furl and unfurl in a single motion [9,10] is
also the primary determinant of the fold pattern’s negative
Poisson ratio [4,5]. Identifying these mechanisms becomes
more challenging when the number of apparent constraints
matches the number of degrees of freedom (DOF).
When there is an exact balance between DOF and

constraints in a periodic structure, the structure is margin-
ally rigid [11,12]. In such a case, new mechanical proper-
ties such as nonlinear response to small perturbations
emerge [13–16]. A recent realization is that the flexibility
of such solids may be influenced by nontrivial topology in
the phonon band structure [17,18]. Here, we show how to
extend these topological ideas to origami and kirigami. We
show that periodically folded sheets may exhibit distinct
mechanical “phases” characterized by a topological invari-
ant called the topological polarization, recently introduced
by Kane and Lubensky [17] using a mapping of mechan-
ically marginal structures to topological insulators [19].
The importance of this invariant has emerged in the study of
the soft modes of spring networks [18], and the nonlinear
mechanics of linkages [20] and buckling [21]. As in these
examples, the phases in our origami and kirigami structures
exhibit localized vibrational modes on certain boundaries,

and transitions from between topological phases are char-
acterized by the appearance of bulk modes that cost zero
energy. These are the hallmarks of topologically protected
behavior in classical mechanical systems [22–29].
Topology provides a new knob to tune how materials
and, as we show here, origami and kirigami structures,
respond to external perturbations.
We denote by origami, mechanical structures consisting

of rigid flat polygonal plates joined by hinges. We will
first discuss origami with no missing plates or “holes,” and
then generalize to kirigami, defined to be origami where
such holes are allowed. We will consider the mechanics
of origami in the geometrical limit—folds will cost zero
energy and faces do not stretch or bend.
To demonstrate the power of our approach, we introduce

an example of a 1D strip of origami analogous to the
Su-Schrieffer-Heeger polyacetylene model [17,30]. It
admits localized modes and stresses determined and pro-
tected by topology, which we realize and characterize in
experiments. Additionally, we show how to generalize this
to 2D periodic origami sheets, where we have observed a
striking property that causes origami without holes to have
zero topological polarization. We give examples of hinged
structures with holes (kirigami) that do admit distinct
polarizations and thus can be used as building blocks for
metasheets with programmable local flexibility.
Quasi-1D origami strip.—We start with a simple

quasi-1D origami structure. Consider an origami strip of
zig-zagging rigid quadrilateral plates, depicted in Fig. 1,
consisting of a periodically repeating unit cell of two
fourfold vertices. Each vertex in a cell (labeled by
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n ¼ 1, 2) has four creases [Fig. 1(a)], and one DOF [31]
that we track with the dihedral angles of the bolded crease,
fnðjÞ, where j indexes the unit cell [Fig. 1(b)]. Each
adjacent pair of dihedral angles is coupled by the kinemat-
ics of the intervening vertex. As each vertex contributes a
DOF and a constraint, this origami structure has marginal
rigidity.
We analyze the mechanical response of the origami strip

by determining its configurations analytically as functions of
the fold pattern angles β1,β2, γ1, and γ2 [defined in Fig. 1(a)].
We define a generalized displacement uðjÞ ¼ cos f2ðjÞ þ 1.
The function uðjÞ encodes the dihedral angle f2 of the
rightmost fold of unit cell j, and satisfies

uðjþ 1Þ ¼ κðα; β1; β2; γ1; γ2ÞuðjÞ; ð1Þ
where

κ ¼
�
sinðα − β1Þ sinðα − γ1Þ
sinðαþ β1Þ sinðαþ γ1Þ

��
sinðα − β2Þ sinðα − γ2Þ
sinðαþ β2Þ sinðαþ γ2Þ

�
:

ð2Þ

The derivation is an application of the spherical law of
cosines and is given in the Supplemental Material [32]. The
fact that uðjÞ determines uðjþ 1Þ implies that the strip has
1 degree of freedom, globally. Equation (1) is solved by
an exponential uðjÞ ¼ uð0Þ exp½j lnðκÞ� with deformation
localized to one side or the other, following the sign of the
inverse decay length l−1 ¼ ln κ.
The mechanical “phase diagram” in Fig. 1(c) shows the

values of l−1 for patterns with γ1 ¼ γ2 ≡ γ, β1 ¼ β2 ≡ β.
There are two phases distinguished by the sign of ln κ,
which is determined here by the sign of γ þ β, a quantity
not obviously related to any symmetry breaking. When
γ þ β > ð<Þ0, κ < ð>Þ1, and by Eq. (1), the mechanical
response is localized to the left (right) of the origami strip.
A special role is played by fold patterns with κ ¼ 1, where
the decay length diverges and uðjÞ neither grows nor
shrinks (denoted by the dashed line). This is precisely
the condition for which a global kinematic mechanism
exists and the fold pattern is deployable [33]. As an
example, when γ ¼ β ¼ 0, the strip realizes a row of the
Miura ori fold pattern, which has a single collapse motion.
More generically, however, as long as ln κ never changes
sign, the deformation in a strip, uðjÞ, is localized even if the
values of α; βj; γj vary due to disorder or imperfections, i.e.,
as long as the material remains within the same phase. The
existence of phases of robust, boundary-localized zero-
energy deformations separated by critical configurations
with bulk zero modes suggests that the origami strip has
topologically protected properties.
To make the topology explicit, we calculate a topological

invariant of the above phases. Unlike in periodic spring
networks with marginal rigidity [17,34,35], a linear analysis
is inadequate to capture the topology of the origami strip.
Coplanar hinges in the flat state are redundant constraints,
and this results in extra zero modes at linear order which
do not extend to higher order. In the Supplemental Material
[32], we derive a rigidity matrix capturing the second-order
deformations of this structure and show that it has the same
pattern of entries as the Hamiltonian of the Su-Schrieffer-
Heeger chain of Refs. [17,30]. Therefore, phases of the
origami strip are characterized by their topological polari-
zation ~PT [17,18], defined as a winding number of the
determinant of the rigidity matrix [36]. Indeed, the sign of
ln κ is precisely correlated with the topological polarization,
and thus the fact that different edges are soft or stiff in
different phases is a manifestation of the bulk-boundary
correspondence [19] in this system.While topologicalmodes
in 1D linkages have been found to lead to propagating
domain walls [20,37], this is not possible for our 1D strip.
In Eq. (2), κ depends only on the fold pattern angles α; βj; γj,
not the dihedral angles fj—this means that the topological
polarization of the unit cell cannot changevia the zero-energy
deformations, which would be necessary for propagation.
To test the consequences of Eq. (1) away from the ideal

limit, in a structure where faces can bend and hinges can

βγ

γ

α
α

β

1 2

21

(a)

(c)

(b)

FIG. 1. A quasi-1D origami strip. (a) A unit cell of the fold
pattern corresponding to the origami mechanism with planar
angles labeled. Red (blue) creases are mountain (valley) folds,
respectively. (b) A 3D depiction of a part of the strip with folding
angles fiðnÞ labeled. (c) The phase diagram where α ¼ π=3,
β≡ β1 ¼ β2, and γ ≡ γ1 ¼ γ2. The colors indicate the phase
(blue for right-localized, red for left-localized); the contours and
intensity of color follow the inverse decay length 1=l (see legend).
Configurations where folds at a vertex become collinear lie on
γ ¼ β, and the green points along that line were constructed in
experiment [along this line, ðγ; βÞ and ð−γ;−βÞ are related by a
rotation in three dimensions].

PRL 116, 135501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

135501-2



twist, a mylar sheet (200 μm thick) is perforated by a laser
cutter into the desired crease pattern, rendering it foldable
along lines of perforations. We strengthen the facets by
sandwiching the mylar sheet between pairs of 1 mm thick,
plastic plates made of polylactic acid (PLA) on a 3D
printer. To mount the plastic plates onto the mylar sheet, we
use a pushed-in clip design: one facet has clips and the
corresponding facet has holes. Equivalent holes are cut on
the mylar sheet so that the clips can be pushed through to
meet the holes on the plate on the other side of the mylar.
An example of the assembled origami structure is shown in
Fig. 2(a). Here, we fixed the angle α ¼ π=3 and varied
γ ≡ β1 ¼ γ1 ¼ β2 ¼ γ2 to explore the localization of the
deformation within one phase (with κ < 1) [38]. A video
camera captured the deformation of the strip from above as
it was symmetrically compressed. The position of each
vertex was obtained via image analysis, and fit with a 3D
model to reconstruct the complete morphology of the
origami strip, as shown in Fig. 2(b). Finally, the folding
angles along the interior creases were extracted from the 3D
shape and were used to compute the generalized strain u.
Figure 2(c) shows the strain as a function of distance along

the strip for samples with different values of the pattern
parameter γ. Observe that there is a “soft” edge (cell index
0), where the deformation is high, and on the other end a
“stiff” edge, with low deformation.
As shown by a semilog fit [dashed lines in Fig. 2(c)], the

strains decay exponentially at small distances from the soft
edge. For small γ, the folding angles level off to a roughly
constant value at larger distances, which violates Eq. (1).
The constant folding angle background corresponds to the
activation of a mode with uniform deformation. This mode
is easy to excite as it is the zero energy mode at γ ¼ 0
and thus remains very low energy for small γ. A deviation
from the ideal geometrical limit is possible due to the finite
flexibility of the facets and the finite crease thicknesses.
Despite the nonideality of the experimental origami strip,
the decay lengths extracted from the fit are in good
agreement with 1=l ¼ ln κ [Fig. 2(d)], confirming the
robustness of our topological design principle.
Two-dimensional origami.—Having established that

marginally rigid 1D periodic origami can exhibit topologi-
cal phases, we now ask whether marginality also leads to
similar phases in 2D origami. We first characterize the
class of marginally rigid 2D periodic origami and show
that they must have a triangulated crease pattern. To avoid
trigonometric complexity inherent to a folding angle
representation, we model the kinematics of triangulated
origami as a central-force spring network with vertices as
joints and hinges as springs. Triangles in such a network
automatically enforce the no-bending constraint on the
facets. Arbitrary origami can be modeled with spring
networks, but nontriangular faces require additional inter-
nal springs to remain rigid.
In this framework, each joint has 3 degrees of freedom

and each spring adds one constraint, so marginal structures
satisfy E ¼ 3V where E is the number of bonds and V is
the number of joints. In a triangulated surface without a
boundary, each of the F faces is a triangle, so 3F ¼ 2E.
The Euler characteristic χ is defined as χ ¼ V − Eþ F;
thus we obtain E ¼ 3ðV − χÞ.
Periodic origami structures in two dimensions have the

topology of the torus and thus χ ¼ 0, which shows that
triangulations are marginally rigid. While achieving margin-
ality in granular packings and glassy networks requires
some fine-tuning in pressure or coordination, the analogous
origami triangulations arise naturally. Any nontriangular
plate in an origami pattern can be triangulated by adding
diagonals, and the bending of nontriangular plates in real
origami can be modeled as the addition of new creases [4,6].
One might now expect a variety of topological phases

upon changing the angles and lengths of a triangulated
crease pattern, by analogy with the 1D strip. Surprisingly,
our calculations indicate otherwise. As discussed above, an
analysis of the rigidity of flat origami must go beyond
linear order. To bypass this complication, we consider
periodic triangulated origami where we break the flat-state

(a) (b)

(c) (d)

FIG. 2. (a) Localized deformations in an experimental realiza-
tion of the origami strip (α ¼ π=3, γ1 ¼ γ2 ¼ β1 ¼ β2 ¼ 0.062).
(b) 3D reconstruction of the configuration of the strip from a flat
image (γ ¼ 0.124). (c) Normalized generalized strain u=u0 as a
function of distance from the deformable boundary (measured in
number of unit cells) from experiments (shaded curves) with fits
to an exponential decay (dashed lines). Each curve shows the
average of data from 6 to 30 experimental images and has a width
equal to the standard error. Folding angles f2ð1Þ [related to u0 via
u0 ¼ 1þ cos f2ð1Þ] at cell 1 varied from 1.06 to 1.45. (d) Inverse
decay lengths (1=l) versus γ, where data points are averages
over the fitting coefficients of all images for each γ and error bars
show 95% confidence bounds. The analytical result for l−1 ¼ ln κ
[Eq. (2)] is plotted as a solid red line. The deviations for small γ
arise from a “uniform bending mode” (see text).
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degeneracy by introducing small vertical displacements to
the vertices. The linear rigidity and topological properties
of such a structure can then be expressed in terms of the
(Fourier-transformed) rigidity matrix R for its associated
spring network [17,18]. However, for all triangulated
periodic fold patterns we have considered, the function
detRðqÞ, a priori a complex-valued function, is in fact real
valued for all q in the Brillouin zone [39]. Though a proof
of this statement for all triangulated origami eludes us,
extensive numerical tests on a large number of distinct fold
patterns bear out this conjecture. We give details and partial
results in the Supplemental Material [32].
A consequence of the “reality” property is that the

winding numbers of Arg detRðqÞ along any closed curves
in the Brillouin zone must be zero (when defined), and,
hence, the topological polarization ~PT must vanish.
Localized boundary modes for such origami still exist,
but must be isotropically distributed. Even if the hinges in a
unit cell break left-right symmetry, the number of boundary
modes per unit cell on each edge of a finite patch is left-
right and up-down symmetric. If in fact all triangulated
periodic origami structures have this property, the only way
to get an imbalance in the number of zero modes at the
boundary of origami is by locally adding or removing
constraints. This behavior contrasts with that of the 1D strip
of origami studied above as well as 3D periodic networks
and marginal spring networks confined to 2D.
Topological kirigami.—Thus the question remains: do

there even exist 2D periodic hinged structures with a
nonzero topological polarization? The answer is yes, but
we must go beyond origami to kirigami, folded structures
with holes. There is a simple way to generate marginal
kirigami from triangulated origami. Cutting out an adjacent
pair of triangles removes one bond from the associated
spring network, eliminating a constraint. Likewise, merg-
ing two triangles into a rigid quadrilateral plate adds a
constraint. We therefore modify a triangular lattice by
cutting and merging twice, resulting in a structure with
two quadrilateral plates and two quadrilateral holes per unit
cell (top center of Fig. 3). Now detRðqÞ is complex-
valued, and by randomly perturbing a flat realization, we
find the “green” (left) and “blue” (right) structures depicted
in Fig. 3, which have ~PT ¼ ð1; 0Þ and (0,0), respectively
(see Supplemental Material [32] for more details). With
free boundary conditions, the boundary soft modes in the
green kirigami are polarized to the þx edge (analogous to
the 1D strip and in contrast to the blue kirigami and all
triangulated origami structures we tested).
Finding the green kirigami answers the question above

positively, and we leave a determination of the possible
phases that can occur in the modified triangular lattice to
future work. A full characterization will likely be difficult
due to the high dimensionality of the realization space
(cf. Ref. [40], which shows the complexity of the phase
diagram in a simpler mechanical system). We thus switch

gears and present an example of localized modes designed
into a kirigami “heterostructure” to illustrate the power of
our techniques. In Fig. 3, we show a kirigami structure that
exhibits zero modes localized at a domain wall (one per unit
cell) between the two kirigami structures described above.
The zero modes render the heterostructure flexible in
the vicinity of the domain wall (the mode depicted leads
to out-of-plane wrinkling), while keeping it rigid further
away. By contrast, a domain wall between distinct patterns
with equal polarization has no such localized modes (see
Supplemental Material [32]). In general, domain walls
between structures with different polarizations create either
soft lines along which the system easily deforms, or
“stressed” lines which first bear the loads under applied
strains [21]. Similar effects may arise at point defects in
otherwise uniform polarized structures [41].
Outlook.—We have demonstrated that origami and

kirigami structures are characterized by a topological
polarization that classifies the ways that a marginally rigid
fold pattern can be floppy close to its boundaries. Our
results give strong constraints on the types of boundary
modes that can be created in origami and will guide the
design of fold patterns that achieve a targeted mechanical
response. In the design space of geometric realizations, two

FIG. 3. Topologically protected zero mode (red) in a kirigami

heterostructure [left green with topological polarization ~PT ¼
ð1; 0Þ / right blue with ~PT ¼ ð0; 0Þ]. Numerically the mode
depicted has energy nearly indistinguishable from the translation
modes. This is a close-up of a larger periodic 50 × 5 system,
divided into two 25 × 5 domains (two copies in the shorter
direction are shown). The magnifying glass insets show the
fine structure of four unit cells of each type, and between them
is a schematic showing how the quadrilateral plates, strips of
triangles, and quadrilateral holes are joined by hinges. The
schematic shows four unit cells, with the lower left cell high-
lighted in green.
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structures with different polarizations must be separated by
globally flexible, i.e., deployable, realizations. Thus not
only can structures with distinct phases be combined in real
space to form domain walls with useful functionality, but
also they can be used to find deployable patterns in design
space. These realization spaces are high dimensional in
general, so the problem of determining simple rules to
create a given polarization remains open.
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