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Spherical nematic shells with a threefold valence
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We present a theoretical study of the energetics of thin nematic shells with two charge-one-half defects and
one charge-one defect. We determine the optimal arrangement: the defects are located on a great circle at the
vertices of an isosceles triangle with angles of 66◦ at the charge-one-half defects and a distinct angle of 48◦,
consistent with experimental findings. We also analyze thermal fluctuations around this ground state and estimate
the energy as a function of thickness. We find that the energy of the three-defect shell is close to the energy of
other known configurations having two charge-one and four charge-one-half defects. This finding, together with
the large energy barriers separating one configuration from the others, explains their observation in experiments
as well as their long-time stability.
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I. INTRODUCTION

One of today’s major drives in condensed matter physics
is the assembly of mesoscale particles into complex structures
[1]. By creating anisotropy in the interparticle interactions,
one can increase the complexity and functionality of these
structures. A proposed way to achieve anisotropic interactions
is by coating a spherical particle or droplet with an orientation-
ally ordered phase [2]. The topology of the sphere enforces
defects in the coating. Since these defects are very distinct
regions on the sphere, they are suitable for the attachment of
linkers acting as bonds between the particles. For the case
of a vector order parameter, topology requires two defects,
creating a particle with two binding sites. By exploiting
this, de Vries et al. successfully assembled chains of such
divalent nanoparticles [3]. Nematic rather than vector order
allows for defects of charge one-half, referring to the π

rotation experienced by the local average orientation of the
nematic molecules, n, when encircling the defect. In fact, it is
energetically favorable for defects of charge one to split into
two charge-one-half defects; see Fig. 1(a). Nematic order on
the sphere has four topological defects of charge one-half in
its ground state, such that the sum of all charges is equal to
2, the Euler characteristic of the sphere, as demanded by the
Poincaré-Hopf theorem. Their mutual repulsion drives them as
far away from each other as possible: at the vertices of a regular
tetrahedron [4]. Chemical functionalization of the defects of
many colloidal spheres coated with a two-dimensional nematic
liquid crystal might thus result in the diamond structure [2].
In the decade that followed the conception of this idea, a vast
amount of theoretical and numerical work was performed; it
included studying the effect of elastic anisotropies, external
fields, sphericity or shape, and thickness of the nematic
film, considering both uniform and nonuniform nematic films
[5–30]. Most of these works were mainly focusing on spherical
nematic shells with four defects with a charge of one-half.
Experimental investigations on nematic shells generated by
trapping a water droplet inside a nematic droplet, however,
have revealed the existence of a much wider variety of defect

*koning@lorentz.leidenuniv.nl

structures besides the regular tetrahedral defect arrangement
[6,12,18,21,31–33], even with a valence number different from
four [6,12,21]. There exist divalent configurations in which
instead of four one-half defect lines spanning the shell, there
are two pairs of point defects, called boojums, residing on the
bounding surfaces. They arise because the thickness of the
nematic coating is nonzero: the elastic energy of a singular
line with a winding number of one at the boundary is reduced
by escaping into the third dimension, as illustrated in Fig. 1(b).
This route thus forms an alternative to the splitting into s = 1/2
lines spanning the shell.

Surprisingly, also structures containing both boojums as
well as charge-one-half disclination lines have been observed
in experiments [6,12]. These defects structures have threefold
valence yet they are still consistent with Poincaré-Hopf’s
theorem, because the total topological charge of the defects at
the boundary is 1 + 1/2 + 1/2 = 2, the Euler characteristic of
the sphere. As before, this defect configuration arises because
of the finite thickness of the nematic coating. If the shell
is strongly inhomogeneous in thickness, experiments show
that the defects cluster in the thin part of the shell [6,12].
In simulations, the trivalent state has also been observed
for homogeneous [30] and inhomogeneous shells [25]. The
defects were found to be positioned at the vertices of an
isosceles triangle, with the boojums located in the thickest
region of the shell and the s = 1/2 disclination lines in the
thinnest hemisphere.

In this article, we will study theoretically the defect sepa-
rations, energetics, and fidelity of the bonds in homogeneous
spherical nematic shells with threefold valence. We will make
a comparison with divalent and tetravalent shells and find the
optimal valency as a function of the shell thickness as well as
the energy barriers between shells of different valency. We will
compare these results to experiments in which we decrease the
thickness inhomogeneity.

II. TRIVALENT GROUND STATE

The free energy of a thin curved nematic film is

F = 1

2

∫
dA[k1(Din

i)2 + k3(Dinj− Djni)(D
inj− Djni)],

(1)
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FIG. 1. (a) In a two-dimensional nematic, a s = 1 topological
defect (black dot in left panel) can lower its elastic energy by splitting
into two s = 1/2 defects (purple dots in right panel). (b) A singular
line (left panel) spanning the shell with a winding number of one at the
boundaries is topologically and energetically unstable. The singular
core is indicated by a black dot in the top view shown in the top panel
and by the vertical bold line in a cut shown in the bottom panel. One
way of reducing the elastic energy escaping in the third (vertical)
dimension (right panel), thereby leaving a point defect (green dot),
called boojum, on each boundary.

with k1 and k3 the two-dimensional splay and bend elastic
constants and Di is the covariant derivative. Equation (1) can
be recast in terms of defect separation rather than the director
field n. For a spherical nematic, the elastic energy in the one-
constant approximation k = k1 = k3 reads

F = −πk

Z∑
i<j

sisj log(1 − cos βij ) +
Z∑
i

Ei(R), (2)

where si is the topological charge of defect i, βij is the angular
distance between defects i and j , and Z is the number of
defects or valence number. The self-energy Ei(R) is given by

Ei(R) = πks2
i log

(
R

a

)
+ Ec, (3)

where R is the radius of the sphere and a is a small-scale
cutoff preventing a divergence of the energy. Ec represents a
core energy, which depends on the details of the microscopic
interactions. The self-energy is responsible for the splitting of
the +1 defects in an ideal two-dimensional nematic, because
of its proportionality with s2

i . The other term in Eq. (2)
describes the repulsion between like-charged defects. We
wish to find the optimal location for the defects in a thin
homogeneous shell given that s1 = 1, s2 = 1

2 , and s3 = 1
2 .

This requires minimizing the interaction term of the free
energy. We minimize the interaction energy with respect to
three independent variables, namely β12, β13, and the angle,

FIG. 2. Four views on the bend texture of the director field on
the sphere containing a +1 defect and two +1/2 defects arranged in
an isosceles triangle with β12 = β13 ≈ 132◦, β23 ≈ 96.4◦, α1 ≈ 48◦,
and α2 = α3 ≈ 66◦. The defects lie on a great circle.

C, subtended by the two curved triangular sides (circular arcs)
meeting at the charge one defect. If we apply the law of cosines
on the sphere,

cos β23 = cos β12 cos β13 + sin β12 sin β13 cos C, (4)

we can eliminate β23 in favor of C in the free energy,
and demand ∂F

∂β12
= ∂F

∂β13
= ∂F

∂C
= 0. From the latter equation,

∂F
∂C

= 0, we obtain C = π , implying that the defects lie on
a great circle; see Figs. 2 and 3 for the bend and splay
textures, respectively. There is always a circle that can be
drawn through three points on a sphere; the maximal radius
of this circle reflects the repulsive nature of the defects. With
some straightforward algebra, the other two equations, ∂F

∂β12

and ∂F
∂β13

= 0, then lead to

β12 = β13 = π − arccos 2
3 ≈ 0.73π ≈ 131.8◦, (5)

β23 = 2 arccos 2
3 ≈ 0.54π ≈ 96.4◦. (6)

We thus find that the defects are located at the vertices of
an isosceles triangle rather than equilateral triangle, shown in
Figs. 2 and 3. This less symmetric configuration arises because
of the asymmetry in the magnitude of the topological charge
of the defects: the two +1/2 defects repel each other less
strongly than a charge one and charge one-half such that β12

and β13 are larger than β23. This is in marked contrast with the
regular tetrahedral configuration in which all the defects are
equidistant, because all four charges are identical. The fact that
s2 and s3 are of equal magnitude is still reflected in the equal
length of two of the sides (β12 = β23) of the triangle. Perhaps
surprisingly, the distance between two charge one-half defects
is smaller in the trivalent state than in the more “crowded”
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FIG. 3. Four views on the splay texture of the director field on
the sphere containing a +1 defect and two +1/2 defects arranged in
an isosceles triangle with β12 = β13 ≈ 132◦, β23 ≈ 96.4◦, α1 ≈ 48◦,
and α2 = α3 ≈ 66◦. The defects lie on a great circle:

tetravalent state. The surface angles of the flat triangle can be
found by simple trigonometry: by realizing that the triangle
formed by two defects and the center of the sphere is also an
isosceles triangle (of which two sides have a length equal to
the radius) we obtain

α1 = π − β12 = arccos
2

3
≈ 48.2◦, (7)

α2 = α3 = β12

2
= π

2
− arccos 2

3

2
≈ 65.9◦. (8)

Given the defect locations, the energy-minimizing director
field can be found by means of a stereographic projection
of the planar solution. The bend texture is displayed in Fig. 2.
Rotating this director field over an angle α yields the same free
energy in the one-constant approximation. The splay texture
(Fig. 3) corresponds to α = π/2. We note that the escape in
the third dimension, in which the singular region is distributed
over a larger distance of the order of the thickness, occurs in
shells of finite thickness and is somewhat different than the
problem of three point defects in a two-dimensional nematic
solved above. However, we expect that the defect separations
will be marginally affected as long as the thickness is small
compared to the radius. In addition, we have assumed that
there are no elastic forces or other contributions present that
compromise the homogeneity of the nematic film.

To test the theoretical expectations, we generate nematic
shells using microfluidics [6]. The shells produced with this
method are double emulsions with an inner aqueous droplet
that is contained inside an outer liquid crystal droplet which
is, in turn, dispersed in an aqueous solution. We use salt to
establish the osmotic pressures of both the inner droplet and

FIG. 4. (a–c) Cross-polarized images of a shell at different stages
of a swelling process, which makes the shell more homogeneous in
thickness. Each bounding surface of the shell has three topological
defects: one defect of charge +1, characterized by four black brushes,
and two defects of charge +1/2, characterized each one by two black
brushes. The three defects depict a triangle whose angles, α1, α2,
and α3, change as the shell swells, see evolution from left to right.
The exact values of α1, α2, and α3 as a function of the shell average
thickness h/R are shown in (d). The triangle depicted by the defects
is initially oriented perpendicularly to the gravitational direction, but
it tilts off as the shell swells, as shown in (e), where θz stands for the
angle between gravity ḡ and the flat triangle normal N̄ .

the continuous phase and thus the osmotic pressure difference
between them. The stability of the emulsion is guaranteed
by the presence of polyvinyl alcohol (PVA), which also
enforces planar anchoring of the liquid crystal, 4-Cyano-4′-
pentylbiphenyl (5CB), at both the inner and outer interfaces.
The shells are heterogeneous in thickness due to buoyancy
effects; they are thinner at the top and thickest at the bottom
[6]. Hence, the shell thickness gradually increases from the top
to the bottom of the shell. Typical values of the outer radius, R,
and thickness of the shell, h, are in the ranges [20,60] μm and
[1,10] μm, respectively. In this shell geometry, the defects are
confined to the top, as shown in Fig. 4(a), since this reduces
the Frank free energy [12].

As a result of the imposed osmotic pressure difference
between the inner droplet and the continuous phase, the inner
droplet swells while the shell becomes thinner and more
homogeneous. This happens quasistatically [12]. We then
monitor the evolution of the defects throughout the process.
We find that the defects progressively spread, as shown in
Figs. 4(a)–4(c). Interestingly, the shape of the triangle defined
by the positions of the three defects changes as this happens;
the surface angles α1, α2, and α3 progressively evolve as the
shell becomes thinner and more homogeneous, as shown in
Fig. 4(d). For shells with h/R � 0.03, the surface angles reach
values that are consistent with those predicted theoretically:
α1 ≈ 46◦ and α2 = α3 ≈ 68◦. This configuration corresponds
to an isosceles triangle with the lower angle placed at the
+1 defect. However, the defects are not yet in a great circle.
In fact, for h/R = 0.03, the defects all lie in the upper
hemisphere of the shell and are contained in a plane that
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FIG. 5. Defect configuration of a very thin and almost homoge-
neous trivalent nematic shell. (a–c) Cross polarised images of the shell
at different focal planes: the +1 defect is in an upper plane shown in
(a), while the +1/2 defects are at lower planes; see arrows in (b) and
(c). (d, e) Histograms of the angular distances between defects. The
three defects depict an isosceles triangle where the two equal sides
correspond to the distance between the +1 defect and each of the
+1/2 defects, β12 = (118 ± 19)◦, and the unequal side corresponds
to the distance between the two +1/2 defects, β23 = (77 ± 15)◦.

is essentially perpendicular to the gravitational direction, ḡ;
the angle θz between the normal of this plane, N̄ , and ḡ

is essentially zero. As h/R becomes smaller than 0.03, θz

increases [see Fig. 4(e)] and the defects progressively separate
from each other while approximately maintaining the values
of the surface angles and hence the shape of the isosceles
triangle. As this happens, the shell progressively approaches
the expected configuration for an infinitely thin nematic shell,
where the defects lie on a great circle. Indeed, for h/R ≈ 0.01,
the +1 defect is located at the top of the shell, see Fig. 5(a),
while the +1/2 defects are in the lower hemisphere of the
shell, as indicated with the arrows in Figs. 5(b) and 5(c).
In this configuration, the distributions for the angles β12 and
β23 are both Gaussians chacterized by a mean of β12 = 118◦
and β23 = 77◦ and corresponding widths of �β12 = 19◦ and
�β23 = 15◦, as shown in Figs. 5(d) and 5(e). These values
are slightly lower than the theoretical ones, indicating that
the defects have not completely reached yet a great circle,
possibly due to a remaining thickness inhomogeneity in the
shell. Finally, note that throughout this process the pair of
boojums is located in the thinnest hemisphere, whereas in
the simulations of Ref. [25] the pair of boojums was found
to be located in the thickest hemisphere. These simulations,
however, are carried out for shells with a much larger thickness
than the shells in this experiment.

III. VALENCE TRANSITIONS

We will now proceed with an estimate of the energy of the
trivalent shell when this escape is taken into account. In doing
so, we follow the arguments in Ref. [5]. We first consider
the energy when three singular lines are spanning the shell at

angular distances reported above. We estimate this energy as
the product of the two-dimensional result and the thickness, h,
thus effectively taking k = Kh:

E′
Z=3 = πKh

[(
1 + 2 × 1

4

)
log

(
R

a

)
− 0.54 + 3Ec

πKh

]
.

(9)
A heuristic yet adequate method to include the escape is by

replacing the microscopic cutoff by the thickness of the shell,
since the singular core is spread out over spatial dimensions of
the order of h. To account for the pair of boojums an energy
4.2Kπh is added [5,21,34]. We then obtain

EZ=3 = πKh

[
log

(
R

h

)
+ 1

2
log

(
R

a

)
+ 3.65 + 2Ec

πKh

]
.

(10)

By comparing this to the energy of a shell with four
disclination lines,

EZ=4 = πKh

[
log

(
R

a

)
− 0.43 + 4Ec

πKh

]
, (11)

we can find the critical value for h above which the triva-
lent defect configuration is energetically preferable over the
tetravalent one:

h∗
34/R = e4.08−2Ec/πKh

√
a

R
. (12)

Similarly, one can find the critical value for h below which
the trivalent defect configuration is energetically preferable
over the divalent one by setting EZ=3 equal to the approxima-
tion of the energy of a shell with two diametrically opposite
pairs of surface defects, EZ=2. Again, we will first find the
energy of a shell with two singular lines,

E′
Z=2 = πKh

[
2 log

(
R

a

)
− 0.69 + 2Ec

πKh

]
, (13)

after which we apply the same reasoning we used to find EZ=3

to obtain

EZ=2 = πKh

[
2 log

(
R

h

)
+ 7.69

]
. (14)

We find a very similar value,

h∗
23/R = e4.04−2Ec/πKh

√
a

R
. (15)

The energy as a function of thickness is plotted in Fig. 6 for
all three different valencies.

Since h∗
23 < h∗

34, there is no h for which the trivalent shell
has lower energy than both the divalent and tetravalent shell.
Our calculation in the uniform shell limit suggests that the
trivalent shell is metastable. Experimentally, however, we do
observe divalent, trivalent, and tetravalent shells. Furthermore,
they appear with similar likelihood, with a slight tendency
toward formation of the trivalent shell, as shown in the
histogram of Fig. 7(a) for shells with h/R in the range
[0.20,0.35] made using microfluidics. Similar results are
obtained for shells with h/R � 0.1, as shown in the histogram
of Fig. 7(b). The presence of all shell types likely results from
their similar energies; this makes all three of them accessible
while they are being generated. We attribute the lack of valence
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FIG. 6. Elastic energy as a function of shell thickness for divalent
(red, dashed), trivalent (green, solid), and tetravalent (blue, dotted)
defect configuration for R/a = 105 and Ec = 0. Either the divalent or
tetravalent configuration, but not the trivalent configuration, is lowest
in energy.

transitions and hence the observed lifelong stability of a certain
shell type, irrespective of whether it corresponds or not to
the ground state, to the energy barrier between shells with
different defect number. To ascertain this, we calculate the
corresponding energy barriers. For going from the trivalent to
the tetravalent shell, we simply have to undo the escape in the
third dimension. The associated barrier thus corresponds to the
difference between E′

Z=3 and EZ=3:

�E3→4 = πKh

[
log

(
h

a

)
− 4.19 + Ec

πKh

]
. (16)

The energy barrier for going from the divalent to the
tetravalent shell lies in overcoming the repulsion between the
two +1/2 defects and can thus be estimated by the difference
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FIG. 7. Coexistence of divalent, trivalent, and tetravalent con-
figurations in shells with (a) h/R in the range [0.20,0.35] and
(b) h/R � 0.1. The histogram shows the different populations in
a sample of 60 shells.

between E′
Z=2 and E′

Z=3:

�E3→2 = πKh

[
1

2
log

(
R

a

)
− 0.15 − Ec

πKh

]
. (17)

Since K ≈ 10−11N , for a thin shell with h = 1 μm, these
barriers are four orders of magnitude larger than the thermal
energy scale (at room temperature), kBT , where T denotes
temperature and kB is Boltzmann’s constant. This provides
stability of any of the shell types after made, likely explaining
why valence transitions are not observed experimentally. We
also note that when bringing the shells close to the nematic-
isotropic phase transition temperature of 5CB, we observe no
significant defect motion that could anticipate a shell valency
change.

To understand the tendency toward the trivalent shell, we
recall that while the shells are generated, the inner droplet is
usually never at the center of the outer liquid crystal droplet.
This implies that the shells are heterogeneous in thickness, with
a thinner and a thicker part. Since defect nucleation happens
at random locations inside the shell, we might be providing
conditions for formation of two +1/2 lines in the thin part of
the shell, where h < h∗

23 and E4 < E3 < E2. Similarly, since
in the thick part of the shell, h > h∗

34, where E2 < E3 < E4,
we might be providing conditions for formation of a pair of
+1 boojums in this part of the shell. The tendency observed
experimentally toward the trivalent state could then rely on
the thickness heterogeneity of the shells, as they are made by
using the microfluidic techniques mentioned before. Once the
shells are made, their thickness and thickness inhomogeneity
reach their equilibrium configuration and the defects locate at
the top, where the elastic free energy of the nematic liquid
crystal is minimum.

We finally note that thickness inhomogeneities could
potentially change the defect energetics and hence generate a
window of stability for the trivalent structure since the energies
of the different textures are very close. Such subtle effects are
likely to depend on the detailed thickness profile and elastic
anisotropies, which are not easily captured by our simplified
models and ansatz. We note, however, that in the experiments
the presence of the trivalent configuration persists over a wide
range of thickness inhomogeneities and temperature, which
is consistent with our assumption that it is generically a
metastable state. On the contrary, if it were an absolute energy
minimum, we would expect it to occur over a special range
of shell parameters. Nevertheless, more refined computational
studies are needed to fully elucidate this aspect of our results.

IV. BOND FIDELITY

In this section, we will consider the fidelity of the three
bonds by considering its robustness against thermal fluctu-
ations. We will expand the energy around the equilibrium
values for the zenith and azimuthal angles, {θ0

i ,φ0
i }. We

parametrize the departures from the equilibrium angles with
a 2Z-component vector q, whose first three components are
the deviations along the lines of longitude of the sphere and
whose final three components are the deviations along the lines
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of latitude of the sphere. We thus have

qi = δθi, (18)

q3+i = δφi sin θi . (19)

Again, we employ the law of cosine on the sphere,

cos βij = cos
(
θ0
i + qi

)
cos

(
θ0
j + qj

)
+ sin

(
θ0
i + qi

)
sin

(
θ0
j + qj

)
× cos

(
φ0

i − φ0
j + q3+i

sin θ0
i

− q3+j

sin θ0
j

)
, (20)

to rewrite F in Eq. (2) as an expansion to quadratic order in q:

F = F
(
θ0
i ,φ0

i

) + 1

2

∑
ij

Mijqiqj + O(q4). (21)

The 6 × 6 matrix M can thus be found by

Mij =
(

∂2F

∂qi∂qj

)
qi=qj =0

. (22)

This calculation is performed without loss of generality upon
choosing the ground-state defect locations to be on the equator,
i.e., θ0

i = π/2. We diagonalize this matrix:

M = UDUT . (23)

The matrix D has the following eigenvalues on the diagonal:

{λi} = πk

20
{0,0,0,15,17,18}. (24)

The columns of the matrix U are the corresponding orthonor-
mal eigenvectors, {ui}, and UT is the transpose of U . The
eigenvectors belonging to the three zero eigenvalues represent
rigid body rotations. The other eigenvectors are

u4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

− 1√
2

1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, u5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4√
34
3√
34
3√
34

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0√

2
3

1√
6

1√
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (25)

The fourth and sixth eigenvalues also correspond to deforma-
tions that keep the defects located at a great circle. The fourth
one corresponds to a displacement of the charge one-half
defects such that their distance to the charge one defect grows
or shrinks in equal manner and hence preserves the isosceles
shape of the triangle [Fig. 8(a)].

The sixth eigenvalue corresponds to a mode deformation
that does not possess this property, thus breaking the symmetry
of reflection of the bisector of the distinct angle [Fig. 8(c)]. The
mode of deformation corresponding to the fifth eigenvalue,

FIG. 8. Schematics of the three nontrivial eigenmodes corre-
sponding to (a) u4, (b) u5, and (c) u6. The defects (represented by
dots) continue to lie on a great circle in (a) and (c), but not in (b). The
defects continue to form an isosceles triangle in (a) and (b), but not
in (c).

however, retains the isosceles shape of the triangle but shrinks
the size of the triangle as the defects do not lie on a great
circle anymore [Fig. 8(b)]. We change the basis from qi to wi ,
which is the departure from the trivalent ground state in the
ith eigendirection:

qi = Uijwj . (26)

This basis transformation yields to quadratic order in wi :

F = F
(
θ0
i ,φ0

i

) + 1
2λ4w

2
4 + λ5w

2
5 + λ6w

2
6. (27)

By equipartition, each term contributes 1
2kBT . The eigenvalues

corresponding to the trivalent modes of deformation are equal
or larger than the tetravalent ones (which are 3

8πk and 3
4πk

[2,5]): the trivalent ground state is thus somewhat better
protected against thermal fluctuations.

V. CONCLUSION

In a spherical nematic shell of finite thickness a stable defect
structure with two s = 1/2 lines and one pair of boojums
is observed experimentally besides the bipolar and regular
tetrahedral configuration. For the case of homogeneous shells,
the repulsive interdefect interaction pushes the defects to lie
on a great circle. The strength of the interaction depends
on the charges of the defects. Consequently, the defects are
located at the vertices of an isosceles triangle, in contrast to
the tetravalent ground state in which the defects are equidistant.
In this trivalent configuration, we obtain for the central angles
β12 = β13 = 0.73π , β23 = 0.54π and for the angles in the
(flat) isosceles triangle α1 = 48◦ and α2 = α3 = 66◦. These
values are in agreement with experimental values. Estimations
of the elastic energy show that there is no shell thickness
for which the trivalent ground state is lower than both
the tetravalent and divalent ground state. However, there are
energy barriers to provide stability for the trivalent state once
it is created. We note that our calculations do not include
thickness heterogeneity. Including this effect is the next step
toward our continued understanding of trivalent nematic shells.
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