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Chapter 7

Outlook

In this chapter we outline possible future research topics.

7.1 Breaking the symmetry

This thesis focusses on stationary, spatially symmetric, periodic pulse solutions in the singu-
larly perturbed reaction-diffusion system (1.9). Such solutions arise naturally, because the
existence problem (2.1) is R-reversible. Therefore, the associated eigenvalue problem (3.3) is
also R-reversible. These symmetries can be broken by adding advection terms to system (1.9)
or by studying traveling-wave solutions to (1.9) instead of stationary ones. We emphasize that
in some applications advection terms occur naturally, leading to reaction-advection-diffusion
models [2, 63]. It is therefore an interesting and relevant question how symmetry breaking
affects our analysis.

Our existence analysis in Chapter 2 relies heavily on the R-reversibility of system (2.1):
we exploit that any orbit that crosses ker(I — R) twice must be periodic. In the absence of
such a symmetry, additional transversality arguments are required to construct a periodic orbit
using geometric singular perturbation theory. If the singular periodic orbit consists of fast
heteroclinic connections and orbit segments on slow invariant manifolds, then the required
transverse intersections (of the stable and unstable foliations of the slow manifolds) are often
already present in the fast reduced systems arising in the limit £ — 0 — see for instance [110,
Section 7]. On the other hand, if the singular periodic orbit is a concatenation of a homoclinic
connection with an orbit segment on the slow manifold — as is the case in our work — then these
transversal intersections exists only for £ > 0 and tools like Melnikov theory for slowly varying
systems [94] can be employed to find them — see for instance [26, 108] for constructions of
periodic traveling waves in the two-component (Klausmeier-)Gray-Scott model. Moreover,
controlling the periodic orbits close to the transverse intersections might be subtile [108]. It
remains an open problem whether the techniques in [26, 108] can be extended to the general
class of multi-component systems (1.9) with additional advection terms.
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In general, the spectrum associated with periodic wave trains to reaction-advection-diffusion
systems consists of continuous images of the unit circle S' [38]. The presence of symmetry
yields degenerate spectrum: the image of S! covers each curve of spectrum twice so that
any y-eigenvalue is also a y-eigenvalue — see Proposition 3.7. Thus, breaking the symmetry
changes the structure of the spectrum fundamentally. Yet, we expect that the present spectral
techniques extend to the non-symmetric case without any problems. Let us elaborate on this
claim. Recall that our spectral analysis is based on two reduction results: the approximation of
the roots of the Evans function by the ones of the reduced Evans function and the expansion of
the critical spectral curve attached to the origin. First, our Evans-function analysis is based on
the results in [17], where we do not assume that the periodic pulse solutions are symmetric. We
observe that R-reversibility of the eigenvalue problem is not essential for the decomposition of
the Evans function and its reduction. This makes an extension to models with advection terms
straightforward — see also [108].

Second, our expansion method of the critical spectral curve is based on the analyses in [10, 100]
using Lin’s method — see §5.3.6. Both in [10] and in [100] the eigenvalue problem does not
admit a (reversible) symmetry, since one considers traveling waves. Therefore, we expect
that the present expansion method remains valid in the non-symmetric case. Yet, we foresee
that the outcome of the analysis will be different: we conjecture that the critical curve is
not confined to the real axis and scales with ¢ instead of £2. Indeed, the essential spectrum
is no longer degenerate and the O(e)-terms in the expansion of the critical curve will no
longer vanish due to parity arguments. Our hypothesis is further strengthened by the fact that
the critical spectral curve associated with periodic traveling waves in the FitzHugh-Nagumo
equations scales with & and is non-real — see [32].

The non-degeneracy of the spectrum in the non-symmetric case affects the destabilization
mechanisms discussed in Chapter 6. Numerical investigations in the Klausmeier-Gray-Scott
system indicate that the Hopf and belly dance destabilization mechanisms break down in the
presence of O(1) advection: the boundary of the Busse ballon consists no longer of curves of
+1-Hopf instabilities in the limit £ — 0 and the codimension-two points disappear. Instead, the
boundary is smooth in the limit € — 0 and consists of oscillating curves of y-Hopf instabilities,
where y can be any Floquet multiplier in S!. It remains an open problem to confirm this
analytically.

In the non-symmetric case there are three types of robust instabilities: Hopf, sideband or
spatial-temporal period doubling — see [93]. As far as the author knows, there is no numerical
evidence that periodic pulse solutions can destabilize through a fold or Turing instability in
the absence of symmetry (provided & > 0 is sufficiently small). This suggests that, as in the
symmetric case, fold and Turing instabilities cannot occur. However, analytical grip on the
spectrum in the non-symmetric case is needed to confirm this hypothesis.
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7.2 Dynamics of periodic pulses upon destabilization

The explicit insights in the spectral geometry in Chapters 3 and 6 is a key to understanding
the weakly nonlinear dynamics of periodic pulse solutions to (1.9) as they become spectrally
unstable. A first step in this direction has been taken in [119], in which a normal form approach
associated with a Hopf destabilization of homoclinic pulses in 2-component, slowly nonlinear
models of the form (1.9) is developed. Unlike known classical slowly linear examples such as
the Gray-Scott and Gierer-Meinhardt models, the Hopf bifurcation for homoclinic pulses can
be supercritical. It can even be the first step in a sequence of further bifurcations that leads to
complex (amplitude) dynamics of a standing solitary pulse — as observed in the simulations
of [120]. We expect that the weakly nonlinear dynamics of periodic pulse solutions to (1.9)
beyond their destabilization is also very rich — and thus an interesting direction of future
research — as indicated by the Hopf and belly dance destabilization mechanisms described in
Chapter 6 and the fact that the pulses that together form the periodic pattern are in semi-strong
interaction [24, 92]. We stress that it is still unknown whether the Hopf and belly dance
destabilization mechanisms generalize to systems (1.9) with multiple components (the regime
n>1lorm>1).

7.3 Multiple spatial dimensions

In this thesis we focus on solutions to singularly perturbed reaction-diffusion systems on the
line. However, in some applications [46, 73, 89, 109], the associated reaction-diffusion models
are naturally formulated on the plane or an unbounded cylinder. This give rise to the following
class,

u; = D1Au— H(u,v, ¢),

) u(¥, ) e R" v(x,n eR", XeRXxQ, (7.1)

v = &"DyAv — G(u, v, &),
of reaction-diffusion systems, where 0 < & < 1 and Q c R* can be a bounded or unbounded
domain. Spatially multi-dimensional systems of the form (7.1) are far less well understood
than their one-dimensional counterparts (1.1). Obviously, solutions to (1.1) give rise to striped
solutions to (7.1) by trivially extending them into a transverse spatial direction. Similarly, by
switching to polar coordinates one can construct spots, which are constant along concentric
circles. Using singular perturbation techniques, one can construct more elaborate solutions
to (7.1) like spiral waves and target patterns — see [113] and references therein.

In the stability analysis of stripes and spots one proceeds by applying the Fourier trans-
form in the transverse or radial direction — see for instance [36, 77, 105, 111]. Consequently,
the associated eigenvalue problem depends on one additional parameter, but is still a singularly
perturbed ordinary differential equation. Therefore, we expect that many of the spectral
reduction techniques presented in this thesis can be employed to determine the stability of spot
and stripe solutions to (7.1). Pioneering work in that direction can be found in [29, 109, 117]
in the context spots and stripes in FitzHugh-Nagumo and Gray-Scott type models.
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If a solution to (7.1) has a more elaborate structure, then such a reduction via the Fourier
transform is impossible and the associated eigenvalue problem is a partial differential equation.
In some specific cases, the eigenvalue problem can be reduced to a scalar, non-local PDE.
Via this non-local problem one can prove spectral stability of the underlying pattern — see for
instance [124, 125], where spectral stability is established for (asymmetric) spotty patterns in
the Gray-Scott and Gierer-Meinhardt models on the plane.

However, it is still an open problem whether the spectral reduction results presented in
this thesis have infinite-dimensional counterparts. We emphasize that many of the employed
ODE-techniques carry over to the PDEs: exponential dichotomies [44], Lin’s method [96] and
the Evans function [18, 69] can be utilized by rewriting the eigenvalue problem as an evolution
equation in the spatial variables corresponding to the unbounded directions. This so-called
spatial dynamics approach was introduced in [62] — see also [16, 91, 103] and references
therein. All in all, this could provide the desired framework that facilitates a reduction induced
by the small parameter € in (7.1), possibly through a factorization of the Evans function.
Eventually, this might lead to a systematic approach for studying the (spectral) stability of
patterns in singularly perturbed systems of the form (7.1) that allow for multiple components,
multiple spatial dimensions and slow nonlinearities.



