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Chapter 5

Spectral stability analysis

In this chapter we prove the two main spectral approximation results presented in Chapter 3:
we show that the zeros of the Evans function &, are approximated by the ones of the reduced
Evans function &) and we derive an expansion of the critical spectral curve attached to the
origin. Yet, we start with collecting some properties of the reduced Evans function &y, which
are necessary for the proof of these approximation results.

5.1 The reduced Evans function

In this section we study the reduced Evans function &, which is defined in terms of the
three eigenvalue problems (3.6), (3.8) and (3.9). Thereby, we provide the proofs of Proposi-
tions 3.10, 3.11 and 3.12.

5.1.1 The fast Evans function

The homogeneous fast eigenvalue problem (3.6) arises when linearizing v, = D,v.,—G(u, v, 0)
about the standing pulse solution vy (x, ug) — see assumption (E1). The homoclinic ¢ (x, 1) =
(Wn(x, up), gn(x, up)) to (2.3) at u = uy converges exponentially to the hyperbolic saddle O as
x — *o00. Hence, system (3.6) is asymptotically hyperbolic. Consequently, it has exponential
dichotomies on both half-lines respecting analyticity in A. This leads to the construction of the
analytic fast Evans function &g which detects the values of A equation (3.6) has exponentially
localized solutions. The above is the content of the following lemma and proposition.

Lemma 5.1. Let K C Cibe an open and bounded set containing the orbit segment {us(X) :
X € [0,260]} such that K C U — see (S1) and (E2). There exists Ay > 0 such that for
A € (—=Ay,0) the spectrum of the matrix,

. 0 Dg‘
AWD =\ 5 6u.0.00+1 0 ) G-
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5.1. THE REDUCED EVANS FUNCTION 90

is bounded away from the imaginary axis on K % Ch by some constant u, > 0.

Proof. For k € Z.( and a matrix A € Mat;(C) denote by ¥ (A) = {v*'Av : v e CEvl=1)
its field of values. Since d,G(u, 0, 0) has positive definite real part by (S2), the field of values
F(8,G(u,0,0)) is for every u € K contained in the positive half-plane by [48, Property 1.2.5a].
In fact, by compactness of K there exists Ag > 0 such that we have F(9,G(u, 0,0)) C C_x, for
every u € K.LetA e (=Ap,0). Foru € K and 1 € Cp we establish using [48, Property 1.2.3]
and [48, Corollary 1.7.7]

a((0,G(u,0,0) + HD;")  (F(9,G(u,0,0)) + HF (D5")
C {z€C:Re(@) 2 dpiy (Ao + M),

max

where d,, is the largest diagonal value of D,. The eigenvalues of A(u, 1) are given by the
square roots of the eigenvalues of (9,G(u,0,0) + )D; I Therefore, we obtain for u € K and
A € Cy that any eigenvalue z € o(A(u, 1)) satisfies |Re(z)| > cos(n/4) V(Ao + A)/dmax, which
concludes the proof. O

Proposition 5.2. Let A € (—Ay,0) with Ag > 0 as in Lemma 5.1. The homogeneous fast
eigenvalue problem (3.6) admits for every A € Cp exponential dichotomies on [0, o) and
(=00, 0] with constants C(A), 1, > 0 and rank n projections Qy,.(x, A), where u, > 0 is as in
Lemma 5.1. The projections Q. (£x, ) are analytic on Cy for each x > 0. Morover, the map
A C(A) is continuous on Cy.

Let B’;."Y: Ca — Maty,,(C) be analytic bases such that Q. (0, D[C¥] = B;‘((/l)[C"] and
ker(Qy-(0, 1)) = B}(/l)[(C"] for A € Ca. The analytic function Ery: Cn — C given by
Ero(D) = det(B;i(/l), B;;(/l)) has the following properties:

1. &ro(A) = 0 if and only if (3.6) admits a non-trivial, exponentially localized solution;
2. Ero(A) # 0 if and only if (3.6) has an exponential dichotomy on R;
3. The zero set 8;})(0) is discrete and independent of the choice of bases B;'S;

4. The multiplicity of a zero A € Cp of &y coincides with the algebraic multiplicity of A
as an eigenvalue of the operator Ly, defined in (3.7).

Proof. By Lemma 5.1 the asymptotic matrix A(uo, -), defined in (5.1), is hyperbolic on Cp
with spectral gap larger than y,, where uy is as in (E2). The stable and unstable eigenspaces of
A(ugp, ) have dimension n for any A € C5. Moreover, estimate (2.6) implies

[Azz.0(x, o, ) — Aug, D|| < K™, xeR,1€Cy,

where K > 0 is a A-independent constant. Therefore, system (3.6) admits by Proposition 4.7
exponential dichotomies on both half-lines with the desired properties.
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By [86, Proposition 2.1] we have Ero(1) # 0 if and only if (3.6) has an exponential di-
chotomy on R. On the other hand, every exponentially localized solution ¢(x, 2) to (3.6) must
satisfy ¢(0, 1) € B_L;(/l)[C”] n B;(/I)[C”]. This settles the first two properties. The third and
fourth property are the content of [1, Section E]. O

Proposition 5.2 provides the fast Evans function and thereby proves Proposition 3.10.

Definition 5.3. Let A € (=Ay,0) with Ag > 0 as in Lemma 5.1. The map E5: Co — C given
by Ef () = det(B;(/l), B;.(/l)), obtained in Proposition 5.2, is called the fast Evans function.

An important consequence of the exponential dichotomies established in Proposition 5.2 is
that the differential operator associated with (3.6) is Fredholm.

Corollary 5.4. Let A € (—A\g,0) with Ay > 0 as in Lemma 5.1. For each A € Cy the bounded
operator L : C})(R, C?"y = Cp(R, C*) given by
Ly = @x — Axn (-, ug, Do,

is Fredholm of index 0. Moreover, L, is invertible if and only if 1 € Cp \ 8;})(0). The
multiplicity of a zero A, € Cp of Ey coincides with the algebraic multiplicity of the operator
pencil A — Lyat A = A,.

Proof. This follows readily from Proposition 5.2, [86, Lemma 4.2] and [1, Section E]. We
also refer to [6, Section 3.2]. O

5.1.2 The slow Evans function

The slow Evans function & is explictly given by (3.10). The matrix solution X,(x, ug, 1) to
the inhomogeneous fast eigenvalue problem (3.8) at u = iy is one of the key ingredients of
E;0. We prove that X;,(x, ug, ) is meromorphic for each x € R. Singularities of X,(x, uo, -)
only occur at the zeros of the fast Evans function &rp.

Proposition 5.5. Let A € (—Ay,0) with Ao > 0 as in Lemma 5.1. There exists a unique
solution X, : R X Up X [Ca \ 8}})(0)] — Maty,xom(C) to the inhomogeneous fast eigenvalue
problem (3.8) with the following properties:

1. Xi(x,ug, ) is meromorphic on Ca and analytic on Cx \ 8}})(0) forall x e R;

2. If A= X (x,ug, A) has a pole at A = A, then its order is at most the multiplicity of A,
as a root of &z,

3. Xin(-, ug, ) is exponentially localized for each A € Cp \ 8},10(0). In particular, there
exists A-independent constants C, u;, > 0 such that

1Xin(x, o, DI < Ce M, x e R,

for all A € Cx with Re(\2) > C;
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4. Let A, € Cp be a simple zero of Ep. Denote by ¢, (x) and Yy (x) exponentially
localized solutions to (3.6) and its adjoint equation (3.14), respectively, at 1 = A,

satisfying
0 (0 0
f Ya.(2) ( I 0 )9% (9)dz = 1. (5.2)
There exists a neighborhood B,, C Cp of A, and a mapping X, : RXB, — Maty,x2,(C),
such that
‘P/l ( )
Xin(x,up, ) = lﬂﬁ (2)" Az10(z, up)dz + Xj,(x, 1), (x,2) ERX By,.

Here, X, (x,-) is analytic on B, for every x € R. Moreover, X, (-, ) is exponentially
localized for every A € B,,.

Proof. For A € Cy, the operator £, established in Corollary 5.4, is Fredholm of index 0 and
L, is invertible if and only if Ef(4) # 0. The multiplicity of a zero A, € Cp of &y coincides
with the algebraic multiplicity of the operator pencil A — £, at A = A,. Combining the latter
with [74, Theorem 1.3.1] settles the first two properties.

We establish the third property. The homogeneous fast eigenvalue problem (3.6) has by
Proposition 5.2 an exponential dichotomy on R for each 4 € Cp \ &; O(()) Thus, since
Aa o(-, up) is exponentially localized by (S1) and estimate (2.6), the same holds for X; (-, ug, A)
by Proposition 4.15. The coordinate change (v,q) — (v, VIAlw) puts system (3.6) into the
form,

D2Vx = \/mW,

([)VG(uo,vh(x, u),0) A ) (v,w) € C*", (5.3)
Wy = + v,
] Vial

where we denote by +/- the principal square root. By Proposition 4.12 there exists a constant
K > 0 such that for any

AEZK:={A€CA:Re(\//_l)>K}c{/l€C,\:|/l|>K2}, (5.4)

system (5.3) admits an exponential dichotomy on R with constants Kj, (1) > 0, where
1() = Re(V) and Ky, iy > 0 are independent of A. Therefore, system (3.6) has for each
A € Xk an exponential dichotomy on R with constants K>(2), u(1) > 0, where K>(1) = V]AK].
Note that 1 — M is bounded by a A-independent constant on Zx. Combining this fact with
Proposition 4.15 ylelds the third property.

Finally, let A, € Ca be a simple zero of Erg. By Corollary 5.4 the operator pencil A — £,
has algebraic multiplicity 1 at A = A,. Hence, the fourth property follows by an application of
Keldysh formula — see [74, Theorem 1.6.5]. O
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Remark 5.6. If A, is a simple zero of &y, then it is always possible to choose exponentially
localized solutions ¢, (x) and ¢, (x) to (3.6) and its adjoint equation (3.14) satisfying (5.2).
Indeed, the kernels of the operator £,, and its adjoint £ are one-dimensional by Corol-
lary 5.4. In addition, since equation (3.6) has exponential dichotomies on both half-lines by
Proposition 5.2, the same holds for its adjoint (3.14). So, the spaces of exponentially localized
solutions to (3.6) and (3.14) are one-dimensional. Now, take non-trivial, exponentially local-
ized solutions ¢, (x) and ¢, (x) to (3.6) and (3.14), respectively. Since the operator pencil
A +— L, has algebraic multiplicity 1 at A = A, by Corollary 5.4, the generalized eigenvalue
problem,

Lyg =0.L),¢a,,

has no bounded solutions. Hence, [86, Lemma 4.2] implies

0+ [Cweratioi= [ ner( ] § e .

Remark 5.7. Let f € C,(R,C?"). The Fredholm alternative in [86, Lemma 4.2] states that
the inhomogeneous equation,

Avp = A o(x, ug, Vg + f(x), ¢ €C,

has a bounded solution if and only if the solvability condition,

f Y(x)" f(x)dx =0,

is satisfied for all bounded solutions ¥ to the adjoint equation (3.14). This agrees with the fact
that X;,(x, u, -) has a removable singularity at a simple zero A, of & if and only if we have

f W, (2)" A 0(z, uo)dz = 0,
by the fourth assertion in Proposition 5.5. -

Remark 5.8. It is possible to obtain expressions for the singular part of the Laurent series
of X, at a zero of &y of higher multiplicity by looking at a canonical system of generalized
eigenfunctions. However, for simplicity of exposition we restrict ourselves to the (generic)
case of a simple zero of Ey. The interested reader is referred to [74, Chapter 1] for the general
set-up. ]

Using Proposition 5.5, we prove Proposition 3.11.

Proof of Proposition 3.11. Assumption (S1), estimate (2.6) and Proposition 5.5 yield that
0, H(ug, vi(-, up)) and X, (-, up, ) are exponentially localized for each A € Cy \ 8}})(0). Thus,

the integral G(ug, 1) converges for each A € Cy \ 8;})(0) and &, is well-defined.
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It is well-known [60, Lemma 2.1.4] that, when the coefficient matrix depends analytically
on a parameter, then the evolution is analytic in this parameter too. Combining this with
Proposition 5.5 yields the first two properties.

Since the solution y(X) to the slow reduced system (2.4) crosses ker(/ — Ry) at X = £y
by (E2), the slow eigenvalue problem (3.9) is R,-reversible at X = {,, i.e. the evolution
T5(%, ¥, ) of (3.9) satisfies R;7T(2£y, 0, DR; = 7,(0,2¢y, A) for each 2 € C. Moreover, we
have R, Y (1o, 1) = Y(uo, )~' R, and the matrices Y(ug, 1) and T5(2£y, 0, 1) have determinant 1
for any A € Ca \ &4,(0). This yields the third property.

Proving the fourth property is more elaborate. We denote by C > 0 a constant, which is
independent of A and y. Putting ¥ = V|A¥ and p = V||D,r rescales the slow eigenvalue
problem (3.9) into

VD =,
O.H, (us (1471%%), 0,0 (u,r) € C?", 1€ C\{0}). (5.5)
\/D—lry=( l(u <|I/|l| }’) )+%]u,

Denote by 71 (3, Z, 4) the evolution operator of system (5.5). It holds
CA1 T (2414160, 0,2) €7 = T, VT (260,0,D), A€ CA\E(0),  (5.6)

with

cor(3 ) gl
4= Dy )0 T AD) T Gue. ) 1

We regard system (5.5) as a perturbation of

VDius =7
VDiry = S,

|4

(u,r) € C¥ 21 € C\ {0} (5.7

Consider the set X defined in (5.4). Clearly, there exists a K > 0 such that (5.7) has for each
A € Xk an exponential dichotomy on R with A-independent constants and rank m projections,

11 -4y
= Pl
Pi(1) 2( _ﬁl 7 ) (5.8)
Taking K > 0 larger if necessary, Proposition 4.12 implies that (5.5) admits an exponential di-
chotomy on [0, 2 v|1]£y] with A-independent constants and corresponding projections Py (x, 1)

satisfying

C
P2 ) = LI < 7 € [0.241160 ], A € 2 (5.9)
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One readily observes from (5.8) that there exists bases B’f"v(/l) € Matasm(C) of Pi()[CH"] =
B{(D[C™"] and ker(P1(1)) = B{(D[C™] such that for each A € X the quantity det(B{ (1), B{(1))
is bounded away from 0 by a A-independent constant. Define B3(1) = P»(0, ))Bj(4) and
By() = (I - P2(2 \/WKO,/I))BLI‘(A). By estimate (5.9) it holds

C

”BZ’S(/D - Blllys(/l)” s I

A€ Xk. (5.10)

Consider the invertible matrix,
H(A) := (T, (0,212, ) By(2), B5(D)), A€ Zg.

Taking K > 0 larger if necessary, Proposition 5.5 yields that X,(:, up, 4) is for each 4 € Xg
exponentially localized with A-independent decay rates. Thus, by (5.10) we have

C

H(Tl(ﬂ)T (2 V260,0,2) = y) H(A) — (BY(A), —yB;'u))H <

A€ k.

Taking determinants in the previous expression gives

6000, detH(2) ~ (9" det (B Bi)| < —=. ye ' A€,

via
using (5.6). Since A — det(B{(4), B{(4)) is bounded away from zero on X by a A-independent
constant and det(7#{ (1)) is non-zero on X, the slow Evans function &, has no roots in g XS I
provided K > 0 is sufficiently large. This proves the third property, because Ca \ Zg is
bounded. |

Finally, we establish the singular part of the Laurent series of &;o(+,y) at a simple zero of &y
and thereby prove Proposition 3.12.

Corollary 5.9. Let A € (—Ay,0) with Ay > 0 as in Lemma 5.1. Suppose A, is a simple zero of
Ero. Let o, = (@a,,1,00.2):Wa, = Wi, 1,¥a.2), By, and X, as in Proposition 5.5. Define for
de B/{o

Q= f 0yvHa(uo, v(2))pa, 1 (2)dz € C™,

/g f W1,2(2)"0,G(ug, vn(2), 0)dz € Mat;,, (C), (5.11)

Ga(A) = f [0.H2(uo, vi(2)) + 0y Ha (g, vi(2))Va, (2, V)] dz € Mat, (C),

where V,, denotes the upper-left (n X m)-block of the (2n X 2m)-matrix X,,. Moreover, let
(ui(x, ), pi(x, ), i = 1,...,2m be a fundamental set of solutions to the slow eigenvalue
problem (3.9). Finally, let C(A,7y) be the cofactor matrix of

1 0

Halty):= ( G 1

)7}(2&), 0, 1) —yI € Matyom(C).
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For all y € ', the singular part of the Laurent series of E0(-,y) at A, is given by

2m

Z] W60, 1) (" [Ci]" )

=m+1

A=A

Proof. Assume A, is a simple zero of Ey. Using the Laurent series of Xj, provided in
Proposition 5.5, we can split off the singular part of G(up, 1) at A,. Indeed, we have

Guo, A) =

1
+G,(1), A€B,,.
PR Ga(D) i

Using the multi-linearity of the determinant, we expand
1 0 O
85,0(/17 7) - det (L{a(/l’ 7) + ( 901// O

2
R )ﬂ( 50,0,/1)]

= det(U, (1, 7)) +

2m
— TR (¢ [esttn]” )

A

forle By andyeS!. O

Remark 5.10. In the case m = 1, Propositions 3.25 and 3.28 imply that y appears as a factor
in the singular part of the Laurent expansion of E,(+,y) at a simple zero A, of &E. Therefore,
E,0(+,y) has a pole at A, for some y € S if and only if E;(-,) has a pole at A, forall y € S'.
However, in the general setting of Corollary 5.9, the principal part of the Laurent expansion
of E;(:,7y) is polynomial in y. So, it could happen that E;(:,y) has a pole at A, for all but a
discrete set of ¥ € S'. We expect that such a (non-generic) situation occurs precisely when A,
is a limit point of the zero set Jyeg1{1 € Ca : E50(4,y) = 0} [ |

5.2 Approximation of the roots of the Evans function

5.2.1 Introduction

In this section we prove Theorem 3.15. Our plan is to factorize the Evans function into a fast
and a slow component:

Ee(A,7) = E7.6(4,7)E5.6(4,7), (5.12)

and to approximate the factors by the fast and slow Evans functions & and &E;y. The
factorization (5.12) is induced by diagonalizing the full eigenvalue problem (3.3) via the
Riccati transform, which is established in §4.6. Rescaling the p-coordinate in (3.3) by a factor
/€ yields the equivalent system,

VEA 166, ) VEA I (X) 2(m-+n)
o ’ : . @ =.p.v.q) eCY, 5.13
v ( Aoy (x) Apex, ) |9 ¢ (u, p,v,q) (5.13)
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where Ajp ¢, Azl o and Ay . are as in (3.4) and
A1 o(x, 1) 0 by
& -xs = 2 A
" &(0uH ) (dp.s(x). &) + A) + Oy Ho(dps(x)) O
System (5.13) has the required slow-fast form (4.19) for an application of the Riccati transform.
Moreover, the evolution matrices of systems (3.3) and (5.13) are similar. Therefore, it holds

Ec(,y) = det(T o0, ~Le, ) = ¥T (0, Le, 1)), (5.14)

where 7 ,(x, v, A) is the evolution operator of system (5.13). Yet, an application of the Riccati
transformation to (5.13) is only legitimate when system,

(//x = ﬂZZ,s(-xa /D';b’ lﬂ € CZn, (515)

has an exponential dichotomy on R. If A is not a zero of the fast Evans function, then the
homogeneous fast eigenvalue problem (3.6) admits an exponential dichotomy on R by Propo-
sition 5.2. Using roughness techniques the exponential dichotomy of (3.6) carries over to
the perturbed problem (5.15), whenever A is away from 8;’})(0). In that case, system (5.13)
diagonalizes via the Riccati transform. Consequently, using the periodicity of system (5.13)
and identity (5.14), the Evans function &, factorizes as (5.12) for A away from the roots of & .

The two blocks, in which (5.13) diagonalizes, can be approximated in terms of the three
eigenvalue problems (3.6), (3.8) and (3.9). This corresponds to approximating the factor &y,
by the fast Evans function &y and &, by the slow Evans function E;g. Thus, we obtain
the desired approximation of the roots of &, by the zeros of the reduced Evans function
Eo(A,y) = (=y)'E10(DE;0(4,y) using Rouché’s Theorem.

This section is structured as follows. We start by showing that the spectrum of the lin-
earization L, is contained in an e-independent sector. This provides an important a priori
bound on the magnitude of the roots of the Evans function &.. Subsequently, we establish an
exponential dichotomy for system (5.15) for A away from the zeros of &. Then, the Riccati
transform yields the desired diagonalization of (5.13) and the factorization of &.. Then, we
link the factors & and &E; ; to Eyp and &; . Finally, we apply Rouché’s Theorem to conclude
the proof of Theorem 3.15.

5.2.2 A priori bounds on the spectrum

In §3.2 we established the linearization £, of (1.9) about the periodic pulse solution Jﬁp,g.
By [44, Theorem 1.3.2], the differential operator L, is sectorial as a sum of a sectorial and a
bounded operator. The bounded part involves multiplication with the matrix function B.(x),
defined in (3.1), which has a norm of order O(s™!). Yet, the spectrum of £, is confined to an
e-independent sector.
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Proposition 5.11. For € > O sufficiently small, there exists constants w € Ry and @w €
(/2, ), both independent of €, such that the sectorL := {1 € C: 1 # w, larg(1-w)| < @w}U{w}
is contained in the resolvent set p(Ly).

Proof. In the following, we denote by C > 0 a constant, which is independent of £ and A.

Our approach is to decompose L, in more elementary building blocks in order to control
the £'-terms in B,. First, we show that the operator L) .: Cgb(R, R™ c Cp(R,R™) —
C.»(R,R™) given by

Ll,eu = Diugz + gilauHZ(ép,s('))u,

is sectorial with an e-independent sector. Subsequently, we prove this for L.: Cib(R, R™™M) c
Cip(R,R™™"y — Cyp(R,R™") given by

( u ) s ( Ligu +8_1avH2((5p,s('))V )
v

& Davix
Finally, we regard £, as a perturbation of L. by a bounded operator with O(1)-norm.

Our goal is to show that the spectrum of the periodic differential operator £, . is contained in
an e-independent sector. By [38, Proposition 2.1] it is sufficient to show that the associated
eigenvalue problem,

\/Fluic:‘ap,
JBrps = [V 1 @) (u, p) € C™", (5.16)
1Px = — i,
Vie

has no non-trivial bounded solutions for A in some e-independent sector. Here, +/- is the
principal square root. Denote by 7 .(X, , 1) the evolution operator of system (5.16) and let
T1(%, ¥, 2) be the evolution operator of

VDiuy = Vap,
VD1 ps = Vau,

One readily observes that, whenever 4 € C \ R, system (5.17) has an exponential dichotomy
on R with constants Co,u; > 0 with Cy = 1 and p; := ||D1]|""*Re(¥VA). Since we have
leLs — €o| < Ce by Theorem 2.3, there exists a constant C; > 0, independent of &, such that for
all 1 € Py := {u € C: Re(yr) > C1}itholds hy := p;" sinh™' (4) < ¢, := eL,.

(u, p) € C*". (5.17)

Let A € P;. Using (S1) and Theorem 2.3 we estimate

10, Ha(dp e GOl < Ce™® Hol % € [=£,, £,].
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Letw,Z € R such that 0 < 7 —w < 2h, < 2¢£,. Taking into account the 2£,-periodicity of J)p,g,
we have

“ 110 H2(¢ps(x))”d < C

W Vidle Viar
Thus, by Proposition 4.1, we establish

C .
I77E W, ) = T1EW, DIl £ —,  w,ZeRwith | — 2| <2hy,

\/_

where we use that the evolution operator of (5.17) satisfies

T390, D] < CeReVVE 35 2 e R,

X<

So, there exists an e-independent constant C, > 0 such that, whenever A € Py satisfies [1] > C»,
then it holds

1T1@ W, D) = T1 W, DIl < 1, Ww,Z€Rwith W - 2| < 2h,. (5.18)

Now let X; be an e-independent sector disjoint from B(0, C,) U [C \ P;] — see Figure 5.1.
For all 4 € X, there are no non-trivial, bounded solutions to (5.16) by combining (5.18)
with Proposition 4.14. So, by [38, Proposition 2.1] the resolvent set p(L; ) contains the
&-independent sector X;.

Consider the elliptic operator £ : Cih(R, R" c Cp(R,R") — C,p(R,R") given by Lrv =
Djvyz. Clearly, we have p(L£;) = C\ Ry D Xy. For A € X the operator on C,;,(R, R™*")
defined by

(Lie =V w—e'9,Hay, g( NELr = D)7 (V)
v &L -7

is an inverse of Zg — A. Therefore, the sector X is contained in the resolvent set p(Zs).

Define

B,.(9) = ( 0uH(fpo(X).€)  OvH 1 (ps(¥). ) )
© 0uG(9pe(X), &) 0,G(Ppe(X),€) |

Let Lp.: Cip(R,R™™) — C,p(R, R™™) be the multiplication operator [ Ly, c¢](X) = Bp o (¥)¢.

By Theorem 2.3 the norm of £, . is bounded by an e-independent constant.

Invoking [44, Theorem 1.3.2] and its proof yields the conclusion: the sum £, = .Z.; + L), . with
domain Cib(R, R™*") is sectorial with an g-independent sector £ C p(L,), using that ||-L; c|| is
bounded by an e-independent constant and X; is independent of &. O
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Figure 5.1: Construction of the sector X; in the proof of Proposition 5.11.

Let y € S'. By Propositions 3.7 and 5.11 the roots of the Evans function &,(-,y) in the
half-plane C, are confined to an &- and y-independent bounded region. In addition, by
Propositions 5.2 and 3.11 the same holds for the zeros of the reduced Evans function &y(:, y).
Thus, we have established the following result.

Corollary 5.12. Let A € (—Ay,0) with Ag > 0 as in Lemma 5.1. There exists an open and
bounded set 5 o C Cp such that

| (1€ &y) =0 0r &, ) = 0} € Zpp.
yes!

Thus, when proving Theorem 3.15, we may without loss of generality restrict ourselves to the
set X o by the a priori bounds in Corollary 5.12.

5.2.3 An exponential dichotomy capturing the fast dynamics

We wish to apply the Riccati transformation to the rescaled full eigenvalue problem (5.13)
in order to factorize &, into a fast and a slow part as in (5.12). However, according to
Theorem 4.19 this is only legitimate, when system (5.15) has an exponential dichotomy on
R. By Proposition 5.2 the homogeneous fast eigenvalue problem (3.6) admits an exponential
dichotomy on R, whenever A4 € Cy \ 8 0(0). Using roughness techniques the exponential
dichotomy of (3.6) carries over to the perturbed problem (5.15). Therefore, we establish the
following result.
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Notation 5.13. Let A € (—=A,0) with Ag > 0 as in Lemma 5.1 and Zpp C Ca as in
Corollary 5.12. For ¢ > 0, we denote

Sas =20\ | BLO).
1€E74(0)

Theorem 5.14. Let A € (—Ag,0) with Ay > 0 as in Lemma 5.1. Take 6 > 0. Fore > 0
sufficiently small, systems (3.6) and (5.15) have for all A € Z, s an exponential dichotomy on
R with &- and A-independent constants C,uy > 0.

Proof. In the following, we denote by C > 0 a constant, which is independent of A and €.

Our approach is as follows. First, we establish an exponential dichotomy for (5.15) on
an interval [a, 2L, — a] for some a > 0, using that the coefficient matrix Ay, .(x, A) has slowly
varying coeflicients and is pointwise hyperbolic along the slow manifold. We extend the
exponential dichotomy to [0, 2L.]. Similarly, we obtain an exponential dichotomy for (5.15)
on [-2L,0].

Subsequently, we calculate the minimal opening between the kernels and ranges of the di-
chotomy projections at 0. By approximating system (5.15) by the fast eigenvalue problem (3.6),
we show that, whenever A is contained in X, s, this minimal opening is substantial. Therefore,
Lemma 4.11 provides exponential dichotomies for (5.15) on [-2L,,2L.] and for (3.6) on R.
Finally, we extend the exponential dichotomy of (5.15) to R.

We start by establishing exponential dichotomies for (5.15) on [0,2L.] and on [-2L,,0].
Theorem 2.3 yields the following estimates,

pe(x)l| < Cetomintx2La=s),
) Ol = 105 gp ol < CemintsLa=sl -y ¢ [0,21,],
”I/l;),g(-x)“ = ‘9||D1_1Pp,s(x)“ < Cg’

which imply
(102 A22.5(x, D], [ Ao, A) = Alutp o(x), || < € max fe, e7+o mintr2Le=l} (5.19)

for x € [0,2L,] and A € X4 5, where A(u, A) is defined in (5.1). First, by Theorem 2.3 and
Lemma 5.1, there exists an e-independent constant @ > 0 such that, for £ > 0 sufficiently
small, the matrix A(up (%), 4) is hyperbolic for each x € [0,2L,] and A € X, s with spectral
gap larger than 2a. Thus, by estimate (5.19) there exists xo > 0, independent of &, such
that Ay, . is hyperbolic on [xp, 2L, — x9] X X5 s with spectral gap larger than @. Second,
Az e 1s bounded on [0, 2L,] X ) 5 by an e-independent constant using Theorem 2.3. Thus,
taking xo > O larger if necessary, Proposition 4.8 and (5.19) yield, provided € > 0 is suf-
ficiently small, an exponential dichotomy for system (5.15) on [xg, 2L, — x¢] with &- and
A-independent constants. Using Lemma 4.9 we extend this to an exponential dichotomy
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on [0, 2L,.] with constants independent of &€ and A. Similarly, we obtain an exponential di-
chotomy for (5.15) on [-2L,,0]. We conclude that (5.15) has exponential dichotomies on
both [0, 2L,] and [-2L,, 0] for every A € X s with constants C, ary > 0, independent of € and A.

We compare system (5.15) with the homogeneous fast eigenvalue problem (3.6). First, by
Theorem 2.3 and estimate (2.6), the corresponding coefficient matrices Ay . and A o(:, o, *)
are bounded on R X X 5 by a constant M > 1, which is independent of . Second, Theorem 2.3
yields

[ A2.(x, ) = Ay o(x, o, V|| < Cellog(e)l,  x € [log(e), ~log(e)], A € Zng.  (5.20)

Denote by 7,(x,y, A) and 7 ¢(x, y, 4) the evolution operators of (3.6) and (5.15), respectively.
Using Lemma 4.1 and (5.20) we estimate

I7+(x,y, ) = Tpe(x,y, DIl < 1, x,y € [log(e)/4M, —log()/4M], A € T 5. (5:21)

We recall some facts from Proposition 5.2. First, system (3.6) admits for each 4 € Cx
exponential dichotomies on both half-lines with constants that depend continuously on
A. Second, the corresponding projections Qy.(x, 1) are analytic in A. Third, the sub-
spaces Ej(4) := Qr.+(0, D[C?] and Ej(A) := ker(Qy-(0, 1)) are complementary for each
A€ Cy \8}})(0). Therefore, Proposition 4.18 implies that the continuous map 7,: Cp — [0, 00)
given by the minimal opening 71,(1) = n(Ej(4), Ej(4)) is bounded away from O on the set
2. Hence, the projection on Ej(4) along Efj(1) is well-defined on X s and bounded by
a A-independent constant by Proposition 4.18. Thus, Lemma 4.11 yields for each 1 € Z5 5
an exponential dichotomy of the homogeneous fast eigenvalue problem (3.6) on R with A-
independent constants.

Denote by Q. .(x, A) the projections corresponding to the exponential dichotomies of (5.15)
on [0,2L,] and on [-2L,, 0]. Let A € X4 5. By combining estimate (5.21) with Lemma 4.13,
there exists for each w € E3(1) := Q. (0, )[C*"] an element v € E((2) such that

v =wll < Ce%*M|jw]. (5.22)

Similarly, there exists for each w € E(1) := ker(Q- (0, 1)) a vector v € Efj(1) such that (5.22)
holds true. Therefore, Proposition 4.18 yields the estimate

[7,(D) = (EL), EL)| < Ce**M, A € T (5.23)

Finally, we establish the desired exponential dichotomy for (5.15) on R. Recall that the
map 7, is bounded away from O on X, s. Thus, by estimate (5.23) and Proposition 4.18
one deduces that, for £ > 0 sufficiently small, E}(1) and EZ(1) are complementary on X, s.
So, the projection Q.(1) onto E:(1) along E%(A) is well-defined for A € £, s. In addition,
by Proposition 4.18 and (5.23), the norm of Q. is bounded on X, s by an e-independent
constant. Therefore, Lemma 4.11 implies that (5.15) admits an exponential dichotomy for
each A € Zps on [-2L,,2L,] with A- and e-independent constants. Subsequently, for each
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A € Zp 5, Lemma 4.10 yields an exponential dichotomy for system (5.15) on R with 2- and &-
independent constants, where we use that the coefficient matrix Ay; . is e-uniformly bounded
onR X Xy 5. a

In Theorem 5.14 we established exponential dichotomies on R for the homogeneous fast
eigenvalue problem (3.6) and its perturbation (5.15). This enables us to compare solutions to

the inhomogeneous fast eigenvalue problem (3.8) and its perturbation,

Y, = Ape(x, DY + Azio(x), Y € Maty0,(C). (5.24)

Corollary 5.15. Let A € (—Ag,0) with Ag > 0 as in Lemma 5.1. Take 6 > 0. For each
A € X5, there exists a unique bounded solution ¥.(x, ) to (5.24) satisfying

”‘{JS('X? /1) - Xin(-x’ Up, /l)” < C8| log(8)|’ X € [_Lé‘» LS]’ /l € z:1\,(5’

where C > 0 is a A- and e-independent constant.

Proof. In the following, we denote by C > 0 a constant, which is independent of € and A.
Systems (3.6) and (5.15) have by Theorem 5.14 for each A € X, 5 an exponential dichotomy on
R with constants C, uy > 0, which are independent of € and A. Let yo > 0 be as in Theorem 2.3

and take y := 2/ min{uy, to}. Theorem 2.3 yields

([ Az, A) = Az 0(x, 1o, V)|

|15 (0) = At o(x, uo)| < Cellog(e)l,

for x € [2y log(e), —2x log(e)] and A € X, 5. Now, we apply Proposition 4.15 to the inhomo-
geneous equations (3.8) and (5.24): there exists a unique bounded solution W (x, 1) to (5.24)
satisfying

We(x, ) = Xin(x, up, Dl < Cellog(e)l,  x € [xlog(e), —x log(&)], 4 € Ep g, (5.25)

where we use that Ay ., Az o(-, o, -) and X, (-, up, -) are e-uniformly bounded on R X X4 s
and Ay . and Ay o(:, up) are e-uniformly bounded on R by Theorem 2.3 and Proposition 5.5.
Furthermore, by Theorem 2.3, estimate (2.6) and (S1) we have

A2 (Ol < Ce M, x € [-Le, Le],

Ade ZA,(S-
| A21,0(x, up)l| < Ce™M, xR,
Combing the latter with Proposition 4.15 implies

[P (x, Dl < Cemmintursolldi2 -y e [, L].

. A€ Zpp, 5.26
1in s o, | < Cemnborsnlbii2 - e R, " 2

which proves that (5.25) actually holds for all x € [-L,, L] and 1 € 4 5. |
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5.2.4 Factorization of the Evans function via the Riccati transform

We employ the Riccati transform to diagonalize the rescaled full eigenvalue problem (5.13).
This yields the factorization (5.12) of the Evans function.

Theorem 5.16. Let A € (—Ag,0) with Ay > 0 as in Lemma 5.1. Take 6 > 0. Fore > 0
sufficiently small, there exists a function Ug: R X Zp 5 — Maty,xm(C) such that we have the
factorization,

88(1’ 7) = SS,S(/L Y)Sf,s(/l7 7)7 A€ Z/\,(S’ Y € Ca
with E; ., Efc: Tps X C — C given by

83,8(/la 7) = det(Tsd,s(O, _Lg’ /l) - Wsd,s(o, Ls’ /l)),
af,s(/ls Y) = det(de,s(O’ =L, ) - nyd,s(O’ Lg, 2)).

where T 44 .(x,y, A) is the evolution operator of system,

Xe = V& (T (6, D) + A (DU(x, D) x,  x €C™, (5.27)
and T 74(x,y, A) is the evolution operator of system,
wy = (A e(x, 1) = VeU(x, DApe(¥)) w,  w € C™. (5.28)
In addition, U, enjoys the following properties:
1. U, is bounded by an e-independent constant on its domain R X Zp s;
2. Ug(:, A) is 2Lg-periodic for each A € Zp 5;

3. Take

3 121og(e)
min{gn, po, iy}’

[1]

& =

where uy > 0is as in (2.6), po > 0is as in Theorem 2.3 and s > 0 is as in Theorem 5.14.
It holds,

1Ue(x, D) = Xin(x, g, DI < C Vel log(e)l, x €[0,2L],

_ _ A€Zphs,  (5.29)
IU:(x, DIl < C&*, x € [E, 2L — B,

where C > 0 is a A- and e-independent constant.

Proof. In the following, we denote by C > 0 a constant, which is independent of A and &.

System (5.13) is clearly of the slow-fast form (4.19) with coefficient matrices that are -
uniformly bounded on R X X5 s by Theorem 2.3. Furthermore, by Theorem 5.14, system (5.15)
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admits for every A € X s an exponential dichotomy on R with A- and e-independent constants
C,uyr > 0. Hence, we can apply the Riccati transform to (5.13). Thus, Theorem 4.19 yields
matrix functions Hg(x, 4) € Matygunyx2(m+n)(C) and Ug(x, 1) € Matyuo,(C) such that the
change of variables ¢(x) = H.(x, )y(x) transforms (5.13) into the diagonal system,

( Ve (Ao, D) + A () Us(x, D) 0
0 ﬂZZ,S(-x’ - \/EUE(X, A)ﬂlla(x)

with ¥ € C2™*™_ The evolution T ae(x,y, 2) of system (5.30) is a block-diagonal matrix with
consecutively 75q.(x,y, A) and 7 74 .(x, y, 4) on its diagonal. Furthermore, H,(:, 1) and U,(-, 1)
are 2L.-periodic by Theorem 4.19 for any A € X, s. Finally, since H(x, 1) is a product of
two triangular matrices with only ones on the diagonal by (4.23), the determinant of H.(x, A)
equals 1 for every (x, 1) € R X X, 5. Therefore, we obtain the factorization,

Y = ¥, (5.30)

Ex(A,y) = det (Hs(0, ) [T (0, ~Le, A) = YT 4,60, L, D] Ho(Lo, )™') = E (A, )Eo(1,7),

where we use that the Evans function can be expressed as (5.14).

We establish the above properties of U,. The first two properties follow immediately from
Theorem 4.19. Furthermore, combining (4.25) with Corollary 5.15, settles the first estimate
in (5.29). For the second estimate in (5.29) we use the method of successive approximation.
Theorem 2.3 and (S1) yield

Az c(X)]] < Ce™ M x € [-L, L] (5.31)

Because U, is e-uniformly bounded on R X X, s, estimates (4.26) and (5.31) yield | U.(x, )|| <
C Ve for x € [E./4,2L, — E./4] and A € T, 5. Thus, employing (4.26) and (5.31) again gives
|Us(x, V)| < Cefe for x € [Ey/2,2L, — E./2] and A € T 5. Finally, a third application
of (4.26) and (5.31) leads to the second estimate in (5.29). |

Theorem 5.16 provides a diagonalization of the rescaled full eigenvalue problem (5.13) into
two lower-dimensional problems (5.27) and (5.28). The diagonalization yields a factorization
of the Evans function &, into two factors &, and &y.. By relating (5.27) and (5.28) to the
three eigenvalue problems (3.6), (3.8) and (3.9), we link &; to the slow Evans function &,
and &y, to the fast Evans function Eyp.

First, we consider problem (5.27). Along the pulse, the transformation matrix Ug(x, A1) is
approximated by the solution X, (x, uo, 1) to the inhomogeneous fast eigenvalue problem (3.8).
On the other hand, along the slow manifold, U, is small and system (5.27) is a perturbation
of the slow eigenvalue problem (3.9). Thus, we observe that both (3.8) and (3.9) govern the
leading-order dynamics in system (5.27). This leads to the following approximation result.

Lemma 5.17. Let A € (—Ay,0) with Ay > 0 as in Lemma 5.1. Take 6 > 0. Fore > 0
sufficiently small, the map E;,, defined in Theorem 5.16, is approximated as

|E5.5(4.7) = E0(A,y)| < CVellog(e)’, A€ ZpsyeS', (5.32)

where C > 0 is a constant, which is independent of A and &.
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Proof. In the following, E, is as in Theorem 5.16 and C > 0 is a constant, which is indepen-
dent of € and A.

Our approach is as follows. We introduce a splitting of the coefficient matrix of system (5.27)
that is consistent with the decay behavior along the slow manifold, i.e. we write

ﬂll,a(X, A)+ ﬂlZ,a(X)Ug(X, A) = Bl,a(-x’ )+ Bzvg(x’ A,
with
. 0 Dy
Le(¥, ) = € (&;Hl (upe(x),0,8) + /l) o)

B = % 0 )+ AU,

B g(x) := auHZ(up,a(x)a Vp,s(x)) t+e (6uH1 (”p,s(x)’ Vp,a(x)7 g) —0,H, (”p,s(x)’ 0, ‘9)) .

Theorems 2.3 and 5.16 and assumption (S1) imply that B, . and B, are e-uniformly bounded
on R X X, s and it holds

I1B2,0(x, VIl < C&®,  x € [Es,2Ls — Bl A € Zns. (5.33)
The splitting gives rise to an intermediate system,
Xx = VEBi(x, Dy, xeC™ (5.34)

On the one hand, system (5.34) is a perturbation of (a rescaled version of) the slow eigenvalue
problem (3.9). On the other hand, (5.27) and (5.34) are related via the variation of constants
formula. This leads to the desired approximation of &; . by E;0 on Zp 5.

First, we relate systems (5.27) and (5.34) via the variation of constants formula. Denote
by T sa.e(x,y, ) and T .(x,y, A) the evolution operators of system (5.27) and (5.34), respec-
tively. Lemma 4.1 gives the estimate,

||7—sd,a(x5 Yy, /1) - I”» ||7-is,8(-xa Yy, /1) - I” < C \/El 10g(8)|, X,y € [_E‘Ea EEL }' € ZA,(S' (535)

On the other hand, upon rescaling the p-coordinate in (5.34), one obtains the Gronwall
estimates,

C . '
17 5.6, s DI T 5.6, 3, DI < ﬁewﬁ"‘f“, X,y €R,AE€ Ty, (5.36)

where u; > 0 is a A- and e-independent constant. Thus, combining (5.33) and (5.36) with
Lemma 4.1 gives

”TSd,S(-x’ Yy, /1) - 7-1'5,8(x9 Yy, A)” < C829 X,y € [Esv 2L8 - 38]5 /l € ZA,(S? (537)
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where we use that |eL, —{y| < Ce by Theorem 2.3. We apply the variation of constants formula
and write

Le
Tvd,s(()’ Lm /1) = 771?,8(0’ Ls’ /1) - \/g f 7‘;’3‘,8(07 2, /1)82,8(27 /l)Tvd,g(Z’ LS’ /1)dZ, (538)
0

for A € X 5. Estimates (5.33) and (5.36) yield

Le
H f Tise(0, 2, VB2, VT sz, Lo, Ddz|| < Ce, A€ Ty (5.39)
Applying (5.36), (5.37) and (5.39) to (5.38) gives
[T5.6(0, Ls, ) = Fo e( DT 55,600, L, V|| < CeVellog(e)l, A € Ty, (5.40)

where

¢+,8(ﬁ) =1- \/E 7-1“?,8(0, <, /1)82,8(1’ /l)Tvd,s(Z’ Es’ /l)dﬂ'is,s(asa 0’ /l)
0
Using (5.35), we derive

Fro(d) — I+ Ve f " By.(z, D)d|| < Cellog@)P, A€ Sy, (5.41)
0

Recall that the (2n X 2m)-matrix X;,(x, ug, A) is a composition of four block matrices, where
Vin(x, up, 2) is the upper-left n x m-block. Theorems 2.3 and 5.16 and estimates (2.6), (5.26)
and (5.41) yield

Fre(d) —( ! 0 )H < Cellog(e),

—VE [} [8uHa(uo, va(x)) + 8y Ha (g, vi(1)) Vin(x, g, Dl dx - 1
(5.42)

for any A € Xp 5.

Our next step is to relate systems (3.9) and (5.34). We apply two operations on system (5.34).
First, we perform the coordinate change y = C.¥, where C, := ((1) \OE) € Maty,,52,,(C). Second,
we switch to the spatial scale X = ex. Thus, Lemma 4.1 yields the following estimate,

IC; ' Tise(0, Le, DCs = T(0, €, DI < Cs, A € Tp s, (5.43)

where 7 (X, y, 1) is the evolution operator of the slow eigenvalue problem (3.9).

Finally, we approximate &, by the slow Evans function &;y. Applying (5.40), (5.42)
and (5.43) to (5.38) yields

G5 T340, L, DC. = L (DT (0, by, V|| < C Vellog(e), A€ Zng, (5.44)
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with

1 0
1= ( — [ 10, v()) + B Ha(uto, (o) Vin(t, 0, D] dx - 1 ) '

Similarly, we derive
[C5' Ta.e(0, =Le, )C, = T_(DT (260, £y, V|| < C Vellog(@)P, A€ Zps  (545)

with

1 0
- ::( [°. 18, Halutg, () + 8, H(ato, v Vi e ig, D 1 ]

00

For any 1 € X, 5, we have det(7(0, {5, 1)) = 1 and T T_() = Y(uo, ), where T(u, ) is
defined in (3.11). Combining the latter with estimates (5.44) and (5.45) yields (5.32). |

It remains to link the factor & to the fast Evans function &,.

Lemma 5.18. Let A € (=A,0) with Ag > 0 as in Lemma 5.1. Take 6 > 0. There exists p, > 0
such that, for & > 0 sufficiently small, there is a map h.: x5 — C satisfying

0 < |he(D)] < Cetrte,

Ae€Tps,yeST,
|76 V(D) = (=)' Ero(D)] < Ca,

where Ey is as in Theorem 5.16 and C > 0 is a constant, which is independent of A and &.

Proof. In the following, we denote by C > 0 a constant, which is independent of £ and A.

Our approach is as follows. Using roughness techniques we show that system (5.28) has
for each A € X5 5 an exponential dichotomy on R with projections Py, .(x, 1). Moreover, by
Proposition 5.2, the homogeneous fast eigenvalue problem (3.6) admits for every 4 € X s
exponential dichotomies on [0, c0) and (—oo, 0] with A-independent constants C, 1, > 0 and
projections Qy . (x, 4). Recall that the fast Evans function & is defined in terms of bases B}(/l)

and B?,(/l) of Q. (0, D[C?"] and ker(Qy,-(0, 1)), respectively. By comparing system (5.28)
to (3.6), we construct bases By*(1) of Pra (0, AD[C?"] and ker(P4.(0, 1)), which are close
to B;’;S(/l). By tracking the bases By’(1) either forward or backward, we obtain bases of

Prae(Lg, ) [C?"] and ker(P rd.e(Le, 4)). These bases will form the column vectors of a matrix
H¢(A), which connects E to Er.

We start by establishing an exponential dichotomy on R for system (5.28). System (5.15) has
by Theorem 5.14 an exponential dichotomy on R with &- and A-independent constants. In
addition, by Theorems 2.3 and 5.16, A}, . and U, are e-uniformly bounded on R and R X 24 4,
respectively. Therefore, Proposition 4.12 yields that (5.28) has, provided & > 0 is sufficiently
small, an exponential dichotomy on R with projections P4 .(x, A1) and &- and A-independent
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constants C, g > 0. Since the coefficient matrix of (5.28) is 2L -periodic by Theorem 5.16,
the projections Py (-, A) are also 2L.-periodic — see [14, Proposition 8.4].

Our next step is to compare system (5.28) to the homogeneous fast eigenvalue problem (3.6).
Theorems 2.3 and 5.16 yield

[Az.e(x, ) = VEU(x, DA(x) = Ay o(x, g, V|| < C Ve, x € [log(e), - log()].
(5.46)

By (E1) there exists an M > 1 such that Ay (-, up, -) is bounded by M on R X Z 5. Denote by
T(x,y,4) and T 74 £(x, y, A) the evolution operators of (3.6) and (5.28), respectively. Provided
that € > 0 is sufficiently small, Lemma 4.1 and estimate (5.46) imply

log(e) _xlog(e)
8M SM

I77(x,y, ) = Tpas(x.y, DI < 1, x,y€ [ } A€ Zpg- (5.47)

7]

Since 4 — B?;S(/l) is analytic on Cp by Proposition 5.2, B".® is bounded on X, s. Now,
combine estimate (5.47) and Lemma 4.13: there exists, for £ > 0 sufficiently small, bases
By Zas = Matyn(C) of Prg (0, A)[C?'] = BS[C"] and ker(Ps4:(0, 1)) = BZ[C"], such that

IB* () = B (D]l < Ce/®M  deTps. (5.48)

Since B;’s is bounded on X, 4, the some holds for By by (5.48).

Finally, we link & to the fast Evans function &7. Define
He(A) := (de,g(—La, 0, VB, T fa.e(Le, 0, /l)Bi(/l)), A€ Xps-

Since Pjry(-,d) is 2L -periodic, the first n columns of H,(1) form a basis of the space
ker(Psq,s(Lg, A)) and the last n columns form a basis of Pyg (L, D[C?]. Thus, H(Q) is
invertible. By Hadamard’s inequality we have | det(H,(1))| < Ce ™4l for each A € Ty 5.
Moreover, using that P4 (-, A) is 2L;-periodic, we estimate

174,600, Lo, DT a.o(=Le, 0, DBL(D|| < Ce™ ke, les (5.49)
€ Zhs. .
774600, Lo, VT ja.o(Le, 0, VB < Ce™ ke, e

We combine estimates (5.48) and (5.49) and derive
(77060, ~Los ) = YT 70,000, Lo, D) Held) - (BoD, B3| < Co/ 8,

forieXpsandy e S !. Taking determinants and defining /(1) := det(#,(2)) concludes the
proof. O

Remark 5.19. In the proof of Lemma 5.18, the connection between &y and &y is given by
the matrix H,. This idea is taken from the proof of [99, Theorem 2]. However, the context
in [99] is different: here it is shown that the eigenvalues of a periodic boundary value problem
are exponentially close to the eigenvalues of the corresponding unbounded problem. ]
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5.2.5 Conclusion

In contrast to the approximation of &, by & in Lemma 5.17, we need to rescale &y
in Lemma 5.18 by an exponentially small quantity 4, in order to approximate it by the &-
independent fast Evans function &. This quantity prevents us from directly estimating the
Evans function &, by the reduced Evans function Eg(4, y) = (=7)"E,,0(4, ¥)E5,0(A). Neverthe-
less, it is still possible to compare the zero sets of &, and & using the classical symmetric
version of Rouché’s Theorem due to Estermann. This yields the proof of Theorem 3.15.

Proof of Theorem 3.14. Let A € (—Ag,0) with Ag > 0 as in Lemma 5.1. Let S c S! be
closed. Take a simple closed curve I'in Cx \ [Ns U 8 0(0)], where N is as in (3.16). Since

E:(-,y) and &Ep(:,y) have no roots in Cp \ Xp o for each y € S by Corollary 5.12, we may
assume ' C Zpp \ [Ns UE !0(0)]. Observe that there exists ¢ > 0 such that I' € X5 5 \ N,
since I' avoids the set of roots of &, which is discrete by Proposition 5.2.

By Propositions 3.7 and 3.11, &.(:,y) and Ey(:, y) are analytic on I" and its interior for each
vy € §. Furthermore, & is bounded away from 0 on the compact set I'X S, because I" is disjoint
from Ny and &y is analytic on Cx X C by Proposition 3.11. Hence, for & > 0 sufficiently small,
we have

186(A4,7) = Eo(A, VI < 1E4,6(A, Y)E1,6(A, VIh() = (=)' Es0(A, V)E 0 ()]
+ (1 = he()|E:(4, y) Ael,yes,
<&, V)| + 1Ee(A, Y,

by Theorem 5.16 and Lemmas 5.17 and 5.18. The result follows by an application of the
symmetric version of Rouché’s Theorem. O

Remark 5.20. The technical Lemmas 5.17 and 5.18 seem to provide a rate at which the
spectrum o (L) converges to its singular limit. However, the approximations in these lemmas
are only valid away from the zeros of the fast Evans function E! So, one can only deduce
that spectrum converging to

{1€C: &L y) = 0for some y € S|\ E;4(0),

does this at an algebraic rate of order O(+/g). We expect that this rate is in fact of order O(g)
and that the square root appears due to the rescaling of the full eigenvalue problem (3.3)
in §5.2.1. By making the parameter § appearing in the proof of Lemma 5.18 dependent on
&, it might be possible to derive an overall rate at which the spectrum o(L,) converges to
its singular limit spectrum. However, this is beyond the scope of this thesis. Yet, we derive
in §5.3 that the critical spectral curve, which is attached to the origin, scales with &2. This
suggest that spectrum converging to the roots of &y does this at an algebraic rate of order
O(&?). [
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5.2.6 Discussion

As mentioned in the introduction in Chapter 1, our factorization method via the Riccati trans-
formation of the Evans function offers one unified analytic alternative to both the elephant
trunk procedure developed by Alexander, Gardner and Jones [1, 37] and the NLEP approach
of [21, 22] — that both have a geometric nature. It is worthwhile to compare and discuss the
links between our work and these methods.

Consider a localized pulse solution to a 2-component, singularly perturbed reaction-diffusion
system of the form (1.1). When the associated eigenvalue problem has a slow-fast struc-
ture (1.5), it is a general phenomenon that it decouples outside the pulse region due to
exponential decay of the solution to its asymptotic background state. This yields a decomposi-
tion of the solution space into three subspaces V. & V.. @ V. at both sides (+) of the pulse
region. Here, V. consists of (fast) exponentially decaying solutions, whereas V.. consists of
exponentially increasing solutions. Lastly, V... consists of solutions that evolve slowly. In the
sense of [85], one could say that the eigenvalue problem admits exponential separations with
respect to the decompositions V. @ V.. @ V.. The difficulty is to ‘glue’ the subspaces V...
and V._ for - = u, s, c together, yielding an exponential separation of the eigenvalue problem
on the whole line. Eventually, this induces a factorization of the Evans function into a fast and
slow component.

Gardner and Jones achieved this in [37] by considering the eigenvalue problem in projective
space. When the eigenvalue problem is asymptotically of constant coefficient type, one can
obtain stable and unstable bundles. These bundles are then split into fast and slow (un)stable
subbundles. The elephant trunk lemma is used to track the fast (un)stable bundle through
the pulse region. By the control on the fast subbundle, it is possible to approximate the
dynamics of the slow (un)stable subbundles. Eventually, this yields a (1, 2, 1)-exponential
separation (in the sense of [85]) of the eigenvalue problem on R. Note that the 2-dimensional
center direction corresponds to the slow (un)stable subbundles. In our stability analysis, the
Riccati transformation plays the role of the elephant trunk lemma — see Section 5.2.4. This
transformation yields an (n, 2m, n)-exponential separation on R of the eigenvalue problem as
long as we are not close to the eigenvalues of the operator Ly, defined in (3.7).

Although the proof of the elephant trunk lemma has been worked out in full detail for some
specific 2-component models [22, 32, 37, 95] only, it is widely accepted that the method can
be followed for a larger class of systems. However, there are some limitations. For instance,
the elephant trunk lemma is only suitable for eigenvalue problems that have an asymptotically
constant coefficient matrix. This is neither a restriction for slowly linear systems as the classi-
cal Gray-Scott and Gierer-Meinhardt models nor for homoclinic pulses on R. However, the
eigenvalue problem associated with spatially periodic patterns in slowly nonlinear systems
exhibits non-autonomous behavior in the background state on its domain of periodicity — and
thus does not approach a constant coefficient matrix. This prohibits the application of the
elephant trunk procedure. Moreover, the elephant trunk lemma is only capable of tracking the
‘most unstable’ fast solution, which corresponds to the (simple) eigenvalue of largest real part
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of the asymptotic coefficient matrix. Therefore, it is unclear how to obtain the exponential
separation with the elephant trunk method in the multi-component setting n > 1.

Furthermore, there is a major difference in the mathematical framework used in [1, 37]
and our work. The framework in [1, 37] has a highly geometrical character, whereas our
method is of a more analytical nature. Alexander, Gardner and Jones track solutions via vector
bundles arising from the projectivized eigenvalue problem. This has the advantage that the
generated bundles have a clean and natural characterization as € tends to zero, whereas the
actual solutions of the eigenvalue problem become singular. On the other hand, one could
argue that exponential dichotomies provide a natural framework to capture the dynamics of
the eigenvalue problem being a non-autonomous linear system, which depends analytically
on the spectral parameter 4. The Riccati transformation is naturally formulated in terms of
exponential dichotomies and is explicit in terms of the coefficient matrix of the eigenvalue
problem. Therefore, the exponential separation of the solution space is much more explicit than
in [1, 37], which shortens proofs. Finally, it is interesting to remark that in both the approach
initiated by Alexander, Gardner and Jones and our method we need an a-priori e-independent
estimate on the sector containing the spectrum. Our proof of this fact in Proposition 5.11 forms
an analytical counterpart to the geometrical proof provided in [1, Proposition 2.2] and [37,
Lemma 3.3].

Based on the geometric methods of Alexander, Gardner and Jones [1, 37], the NLEP ap-
proach was developed in the context of the stability of homoclinic (multi-)pulse patterns in the
Gray-Scott equation [22] and Gierer-Meinhardt-type models [21]. This method established
the approximation of the Evans function by the product (1.4) of an analytic fast Evans func-
tion and a meromorphic slow Evans function and provided explicit analytic expressions for
both factors. The NLEP approach was extended to the spectral analysis of spatially periodic
pulse patterns in the generalized Gierer-Meinhardt equations in [114] and to the stability of
heteroclinic and homoclinic multi-front patterns in 2- and 3-component bistable systems of
FitzHugh-Nagumo-type [23, 116]. Moreover, the method has recently been generalized to
the stability of homoclinic pulses in slowly nonlinear systems in [30, 120]. In each of these
works, the fast and slow Evans functions are interpreted geometrically in terms of fast and
slow transmission functions that encode the passage of specially selected fast and slow basis
functions over the fast pulse regions. The expressions for the slow transmission functions
include Melnikov-type components. The meromorphic character of the slow Evans function
generates the zero-pole cancelation mechanism — also called NLEP paradox — in each of these
models. The spectral analysis for periodic pulse solutions developed here shows that these
phenomena occur in a broad class of multi-component singularly perturbed reaction-diffusion
systems.

Although the present work stands in the tradition of [21, 22, 23, 30, 114, 120], the meth-
ods differ fundamentally. Unlike these works, our analysis is based on an intrinsically analytic
reduction method. This has the advantage that our spectral analysis allows for non-autonomous
behavior of the eigenvalue problem outside the pulse region — a crucial extension in the case
of spatially periodic patterns in slowly nonlinear systems. This extended applicability of the
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present method also plays a role in the spectral analysis of homoclinic patterns as outlined in
Remark 1.4. Moreover, in contrast to the present work, the slow and fast eigenvalue problems
appearing in [21, 22, 23, 30, 114, 120] are scalar, which significantly simplifies the analysis of
these problems. In [21, 22, 114] the slow and fast Evans functions can be explicitly computed
in terms of hypergeometric functions, while in [23, 116] the stability of the (multi-)fronts is
determined by spectrum near the origin, so that the relevant reductions can be determined in a
relatively straightforward manner. An extensive analysis of the multi-component slow and fast
eigenvalue problems, as we did in Section 5.1, is thus not necessary in these cases.

5.3 The critical spectral curve

5.3.1 Introduction

In this section we prove Theorem 3.19. Thus, we assume 0 is a simple zero of the fast Evans
function &f. Moreover, we take 6 > 0 and denote

No={veR:E00,eM) =0}, S;=R\ | Jo-6v+0).
veN,

For each v € R\ N, the reduced Evans function &y(-, ¢") has a simple root at 0 by Remark 3.13.
Since & is analytic by Proposition 3.11, there exists ¢ > 0 such that there are no other roots of
&o(+, €”) in the closed ball B(0, ) for any v € Ss. So, provided & > 0 is sufficiently small, there
exists by Theorem 3.15 a unique (simple) root () of E,(-, ™) in B(0, ¢) for each v € Ss. By
Proposition 3.7 A.: Ss — B(0, ¢) is real-valued, 2x-periodic and even. Moreover, since &, is
analytic by Proposition 3.7, A.: Ss — R is also analytic by the implicit function theorem. By
translational invariance, it holds 1.(0) = 0 if we have 0 € S;. Thus, all that remains to prove
Theorem 3.19 is to approximate A.(v) for any v € Ss with an error bound that is v-uniform.

We describe our approach to obtain a leading-order approximation for 1.(v) for each v € Ss.
Fix v € S5. On the one hand, since &.(1.(v),e”) = 0, the full eigenvalue problem (3.3)
admits at 4 = A.(v) a solution @,.(x) = (i, (x), Pye(x), Py £(X), Gve(x)), Which satisfies
Pre(x) = e""c,bv,a(x + 2L,) for each x € R. On the other hand, the derivative ¢1’D,8(x) of the
periodic pulse solution ¢y o(X) = (Up £(X), Pp (%), Vp (%), gp.(x)) to (2.1) is a solution to (3.3)
at A = 0. Therefore,
L Uy e(x) — V;,g(x)
Ve() 1= ( Gre) — @) () )

solves the inhomogeneous problem,

— 0 2n
Ve = Ayop ( B0+ A1) ) et (550
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where A (x) is the coefficient matrix of the fast variational equation (3.15) and B, .(x) is given
by

800 uG(Bpe(x). ) *( e) — ) ()
e o avG((ip,s(x)v &) — 0,G(uo, vn(x, up), 0) ﬁv,a(x) - V;;,g(x) '

By Proposition 5.2 and Corollary 5.4 the fast variational equation (3.15) has exponential
dichotomies on both half-lines and the corresponding differential operator £ is Fredholm of
index 0. Since 0 is a simple root of &y, Lo has a one-dimensional kernel by Corollary 5.4.
So, there exists a non-trivial, exponentially localized solution ¥,q(x) = (Yaq,1(X), Yag2(x)) to
the adjoint problem (3.19), which is unique up to scalar multiples. Applying the solvability
condition in [86, Lemma 4.2] to equation (5.50) leads to the key identity,

A:(v) f Yad2(X) Prp(X)dx = — f Yad2(X)" By s(X)dx. (5.51)

Hence, to obtain a leading-order expression of A.(v), it is sufficient to approximate the two
integrals in (5.51). Thus, we need leading-order expressions of the solution @, .(x) to (3.3), of
the solution éﬁp,a(x) to (1.10) and of the difference @, .(x) —zf)l’ows(x). Clearly, we can approximate
g?ﬁp,g(x) by its singular limit — see Theorem 2.3. To obtain leading-order expressions for the
other quantities in (5.51), we proceed as follows.

Define
D, ={1eC:|Allog(e)l < n}, (5.52)

with 7 > 0 an e-independent constant. Moreover, consider the intervals,

8log(e)

_— (5.53)
min{uo, fr, tn}

If,s = [-Eg, Eel, Is,s =[5 2L, - E], Eg:i=
with pp, > 0 as in (2.6), yp > 0 as in Theorem 2.3 and y, > 0 as in Lemma 5.1. For
any v € S5 and A € D, . we establish a piecewise continuous solution ¢, .(x, 1) to the
full eigenvalue problem (3.3) on Iy, U I, which has a jump only at x = 0 and satisfies
©re(=8e, ) = eivgov,g(2Lg — B, 1) — see Figure 5.2. We explicitly construct ¢, via Lin’s
method [10, 70, 118] using the singular limit structure (2.9) the periodic pulse solution ¢, . as
our framework.

By Theorem 2.3, ¢, .(x) is for x € I, approximated by the pulse solution ¢p(x, up) to the fast
reduced system (2.2). Moreover, ¢, .(x) is for x € I, approximated by the solution (s(£x), 0)
on the slow manifold, where ¥ solves the slow reduced system (2.4). The endpoints of the
intervals I and Iy, correspond to the x-values for which ¢, .(x) converges to one of the two
non-smooth corners (1, £ (1)) of the singular concatenation (2.9) as € — 0.

For x € Iy, we establish a reduced eigenvalue problem by setting ¢ and A to 0 in (3.3),
while approximating ¢, .(x) by the pulse ¢p(x, up). The reduced eigenvalue problem admits
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Figure 5.2: A sketch of the piecewise continuous eigenfunction ¢, (-, 1) on its domain of
definition [-E,, 2L, — E.]. Also depicted are the u- and v-component of the periodic pulse
solution qAbp,g (inthecasen =m = 1).

exponential trichotomies on both half-lines. Hence, one can construct solutions to (3.3) for
A € D, using variation of constants formulas on the intervals,

I, = [-E,0], I;,g = [0, E.]. (5.54)
We can control the perturbation terms in these formulas by taking 7, & > 0 sufficiently small.

For x € I, the lower-left block A (x) in (3.3) is exponentially small by assumption (S1)
and Theorem 2.3. Thus, we obtain a reduced eigenvalue problem by setting A3 .(x) to 0
in (3.3), while approximating ¢, .(x) by (¥s(x), 0). The reduced eigenvalue problem is upper-
triangular and the spectrum of the lower-right block has a consistent splitting into n unstable
and n stable eigenvalues. This splitting yields the existence of an exponential trichotomy
on the interval /; .. Thus, one can construct solutions to (3.3) on /. using the variation of
constants formula again.

In summary, we obtain variation of constants formulas for solutions to (3.3) on the three
intervals ij’g and /.. Matching of these expressions yields forany 4 € D, and v € S; a
piecewise continuous solution ¢, ;(x, A) to (3.3) on Iy, U I, which has a jump at x = 0 and
satisfies ¢, o(—Z, ) = e"V<,0V,g(2L‘8 — B¢, A). We show that for any v € S; the jump of ¢, .(-, 1)
vanishes at a unique A-value A.(v) € D, .. Thus, since (3.3) is 2L.-periodic, there exists a
continuous solution ¢, to (3.3) at A = (v satisfying

¢V,8(x) = Sav,a(xs ;la(y)), X € If,a U Is,gs

. v € S;s. (5.55)
(;bv,s(-x) = elv¢v,£(2Ls + )C), X € R»
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Consequently, A.(v) must be a zero of the Evans function &,(-, ¢”). Since the Evans function
&4(-,€") has a unique root A,(v) in B(0,¢), we must have 1,(v) = A.(v) for each v € Ss.
Since the key identity (5.51) is satisfied for any solution @, to (3.3) at 1 = A.(v) satisfying
Gre(x) = ei"gbv,g(ZLe + x) for any x € R, it holds in particular for @, = @, .

The variation of constants formulas provide leading-order control over ¢, .(x, 1) on the in-
tervals I% . and I; .. Consequently, we obtain approximations for ¢, and ¢, ¢ — ¢p . for each
v e Ss. Substltutmg these into (5.51) yields the desired leading-order expression for A.(v).

This section is structured as follows. First, we establish the aforementioned reduced eigenvalue
problems along the pulse (i.e. for x € /) and along the slow manifold (i.e. for x € I ) and
we generate exponential trichotomies for these problems. Then, we construct solutions to (3.3)
on [, and I— using variation of constants formulas. By matching these solutions at the
endpoints of the intervals Ij? and /. we obtain the desired piecewise continuous solution ¢,
to (3.3) on I, U I, .. We show that there is a unique A-value for which the jump of ¢, (-, 1)
vanishes. Finally, we substitute leading-order approximations of ¢, . and ¢, — ¢}, , into the
key identity (5.51) and obtain the desired leading-order expression for A.(v).

5.3.2 A reduced eigenvalue problem along the pulse

We establish a reduced eigenvalue problem along the pulse by setting € and A to 0 in (3.3),
while approximating ¢, .(x) by the pulse ¢,(x,uo). Thus, the reduced eigenvalue problem
reads

o= Ao, ¢ = (u,p,v.q) € C", (5.56)
with
A(x) | Ax(x)
A =
o) (ﬂs(x) @-(x))
0 0 0 0
| 0uHa(ug, vi(x,up)) 0O O0vHy(ug, va(x,u9)) 0
= 0 0 0 D'
0,G(ug, vn(x,up),0) 0 0,G(up, va(x, u9),0) 0

Note that (5.56) coincides with the variational equation about the pulse solution ¢y, (x, ug) to
the fast reduced system (2.2).

The u-components of any solution to (5.56) are constant, whereas the p-components are
slaved to the other components. Moreover, given the values of the u-components, the dy-
namics in the v- and g-components is determined by (3.15) via the variation of constants
formula. Therefore, the reduced eigenvalue problem (5.56) is governed by the variational
equation (3.15) about the homoclinic ¥y (x, up) to (2.3) at u = uy.
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Thus, before studying problem (5.56), we study the dynamics of the fast variational equa-
tion (3.15). Naturally, the derivative 0,4, (x, up) is a non-trivial, exponentially localized
solution to (3.15). Moreover, since ¥,(0, ug) is contained in the space ker(/ — Ry) by (E1),
system (3.15) is Ry-reversible at x = 0. We establish exponential dichotomies for (3.15) on
both half-lines that respect the reversible symmetry.

Proposition 5.21. Suppose 0 is a simple root of Es. Then, the fast variational equation (3.15)
admits exponential dichotomies on [0, 00) and (—o0, 0] with constants C,u, > 0 and rank n
projections Py, (x) satisfying

1P (£X) — Pyl < Cemminlirmnlx x> 0, (5.57)

where py, > 0 is as in (2.6), yu, > 0 is as in Lemma 5.1 and Py denotes the spectral projection
onto the stable eigenspace of the asymptotic matrix,

. 0 D;!
Afeo ::xli?wﬂf(x):(avc(uo,o,O) o | (5:58)

The space of exponentially localized solutions to (3.15) is spanned by ky(x) = 0¥ (x, up) =
(0xvn(x, ug), Oxqn(x, up)). Similarly, the adjoint (3.19) has a non-trivial, exponentially localized
solution Yaq(x) = (Yad,1(X), Yaa (X)), which is unique up to scalar multiples and satisfies

f Yaa2 () 0vn(x, up)dx # 0, |Wraal < Ce™D, y e R,

Moreover, we have the decomposition,
Cr"=Y'oY'oY ®r (5.59)
with Y¢ = Sp(kn(0)), Y* = Sp(/,a(0)) and

P O[C" =Y @Y, P, (OC"] =Y oY

N ) (5.60)
ker(P; (0) =Y"®Y", ker(P;_(0)) =Y" @ Y".

The spaces Y" @ Y?®, Y+ and Y° are pairwise orthogonal and the decomposition (5.59) respects
the reversible symmetry:

Rikn(0) = —kp(0),  Rppaa(0) = ¥oa(0),  Ry[Y'] =Y (5.61)

Proof. Since (3.15) coincides with the fast eigenvalue problem (3.6) at A = 0, Proposition 5.2
provides exponential dichotomies for (3.15) on [0, c0) and (—oco, 0] with constants C,, u, > 0
and rank n projections Py, (x). By (2.6) it holds

”ﬂf(x) - ﬂf,m” < Ke#M  xeR,

for some K > 0. Hence, Lemma 4.6 yields estimate (5.57). In addition, by Proposition 5.2, the
space of exponentially localized solutions to (3.15) is one-dimensional, because 0 is a simple
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root of E5. Since k(%) is a non-trivial, exponentially localized solution to (3.15) by (E1), we
deduce Y¢ := Sp(x,(0)) = P f,+(0)[(C2"] Nker(Ps-(0)).

Define Y* to be the (n — 1)-dimensional orthogonal complement of Y* in Pf,+(0)[C2”]. Any
solution ¢(x) to (3.15) with initial condition ¢(0) € Y* decays exponentially to 0 as x — oco. In
addition, since system (3.15) is R ¢-reversible at x = 0, the solution R r¢(—x) to (3.15) decays
exponentially to 0 as x — —oco. Therefore, Y* := R/[Y*] is contained in ker(P/,_(0)). Since
Ry is self-adjoint and R¢[«,(0)] = —«y(0), the n-dimensional space ker(P;_(0)) arises as the
orthogonal sum of Y¢ and Y*.

Because the kernel of the operator £y of Fredholm index 0 is one-dimensional by Corol-
lary 5.4, the adjoint £ has a one-dimensional kernel too. In addition, since equation (3.15)
has exponential dichotomies on both half-lines, the same holds for its adjoint (3.19). So, there
exists a non-trivial, exponentially localized solution ,q(x) to (3.19), which is unique up to
scalar multiples. The pointwise inner product of ,q(x) with any solution ¢(x) to (3.15) is
constant in x. Thus, the pointwise inner product of y,q(x) with solutions ¢(x) to (3.15) that are
decaying to 0 as x — +co must equal 0. Hence, the spaces Y* @ Y*, Y and Y* := Sp(1/,4(0))
must be pairwise orthogonal. Since we have the decomposition (5.59), we may without loss
of generality assume by Lemma 4.5 that P;_(0)[C*"] = Y* & Y* and ker(P;.(0)) = Y" & Y*.

Finally, R sif,9(—x) is also an exponentially localized solution to (3.19). This implies R s1/,4(0) =
a),q(0) for some @ € o(Ry) = {+1}. On the other hand, since the operator pencil A — £, has
algebraic multiplicity 1 at 1 = 0 by Corollary 5.4, the generalized eigenvalue problem,

Lop = 0, Lokn,

has no bounded solutions. Hence, the Fredholm alternative in [86, Lemma 4.2] implies

0# f Yad(x)* 01 Lokn(x)dx = f Wad 2(X)" 0 vn(x, uo)dx.

Therefore, /,42(x) cannot be even, because d,v,(x, up) is an odd function of x. Hence, /,42(x)
is odd and we establish R ;1/,4(0) = 1},4(0). a

The reduced eigenvalue problem (5.56) is governed by the fast variational equation (3.15).
More precisely, the evolution operator of (5.56) can be expressed in terms of the evolution
operator of (3.15) via variation of constants formulas. Thus, the solution k,(x) = 0, ¥n(x, up)
to (3.15) yields the non-trivial, exponentially localized solution,

0
| e A@mn@)dz \ _ | Haluo, va(x,u0)) | _
(ph(x) L ( Kh(x) - axVh(x, Mo) - ax¢h(x’ MO), (562)
0.xqn(x, up)

to (5.56). Moreover, since the matrix function %, (x) := (9,4n(x, up) | 0) solves the inhomo-
geneous problem,

Xy = ﬂf(X)X +Az(x), X € Maty0,(C),
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we obtain a family of solutions,

o, () = [ 1+ [Fe@Ku@) + Ar)]dz (5.63)
Kin(x)
to (5.56). By (S1) and (2.6) there exists a constant C > 0 such that
Tico _
'CDi,,(ix) —( 0 ) <Ce™* x>0, (5.64)
with
1 0
rrioo .= ( iauj(l/t()) I ) € MathXZm(C)a

where 7 : U, — R is defined in (2.5).

We show that the exponential dichotomies of (3.15), established in Proposition 5.21, yield
exponential trichotomies for (5.56) with projections converging to the spectral projections of
the asymptotic matrix,

0 Ay

A = lim Ay(x) =( 0 A,

X—*00

0 0
)’ ﬂz’“‘(asz(uo,o,m o) O

where Ay, is defined in (5.58).

Proposition 5.22. Suppose 0 is a simple root of Erp. System (5.56) admits exponential

U, S,C

trichotomies on [0, o) and (—oo, 0] with constants C, u, > 0 and projections P;*(x) satisfying
[[PL(dx) — Pe|| < Cemmimtimmnl2 x> 0, (5.66)

where puy > 0 is as in (2.6), u, > 0 is as in Lemma 5.1 and P*,P* and P¢ are the spectral
projections onto the unstable, stable and neutral eigenspace of the asymptotic matrix A,
respectively. Moreover, it holds

0 u
P0) :( 0 [ A()®_(x,0)dx ) P0) =( - 0 0 )
0

0 1-P;_(0) (I);’ L0, 0A;(x)dx I - Py4(0)
vy [0 [LAMD (x,0)dx ] s _( i 0 0 )
PO ‘( 0 Pr0) PO e 0nmde P )

(5.67)

where (D;’i(x, y) denotes the (un)stable evolution operator of the fast variational equa-
tion (3.15) under the exponential dichotomies, established in Proposition 5.21, with projections
Py . (x). Finally, we have the decompositions,

ker(P%(0)) = P5(0)[C*™™] @ @,,(0)[C*™],

5.68
ker(P:(0)) = P“(0)[C*™™] @ @;,(0)[C*"], 668
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where ®;, is defined in (5.63), and

PL(O)[CH™™M] = PL(0)[Z°] @ Splgn(0)),  Z* :={(0,b): b e Y*}, (5.69)
P*(0)[C*™™] = P“(0)[Z"] ® Sp(en(0)),  Z":={(0,b): b e Y"}. '

where Y"* are as in Proposition 5.21 and ¢y, is defined in (5.62).

Proof. In the following, we denote by C > 0 a constant.

The evolution @y (x, y) of (5.56) can be expressed in terms of the evolution @ 4(x, y) of (3.15)
as follows
I+ [ [%(z) J @rwAz(wydw + Ay (z)] dz [ A()Os(z y)dz

DQo(x,y) = x
okhY fy @ /(x,2)Az(2)dz D (x,y)

(5.70)

By Proposition 5.21 equation (3.15) admits exponential dichotomies on [0, c0) and (—co, 0]
with constants C, 1, > 0 and rank n projections Py . (x) satisfying

(|Pfa(xx) = Py|| < Cemmintirtmdx x> 0, (5.71)

where P is the spectral projection onto the stable eigenspace of Ay, defined in (5.58). We
construct an explicit exponential trichotomy for (5.56) on (—oo, 0] using the matrix functions,

X 0
A(x) := f ﬂg(z)(bjf-,_(z,x)dx, B(x) := f d);’_(x,z)?(g(z)dz,

E(x) = f Fo ()P _(z, x)dx, D(x) := f @} _(x,2)As3(2)dz.
0 X
Clearly, A, B,D and E are bounded on (—c0,0]. We consider their asymptotic behavior.
By (2.6) and (S1), it holds
A Ol 1A (x) = Ao coll, AN A () — Apooll < Ce M. x R, (5.72)

By writing B(x) as a sum of two integrals over the intervals (x, x/2) and (x/2, 0) and estimating
both integrals independently using (5.72) and the exponential dichotomy of (3.15), we deduce
that B(x) converges exponentially to 0 as x — —oco with rate min{u,, py}/2. Since Ay, is
hyperbolic by Lemma 5.1, the matrix A¢(x) is by (5.72) invertible for x < 0 sufficiently small.
Thus, for x <« 0 we may write

A(x) = f A Af(2) ™ 0.0 _(z, x)dz.

Combining the latter with (5.71) and (5.72), leads, via integration by parts, to the approxima-
tions,

B JAG) = Fo 0L (= Pp)| < Cemintemmlx2 -y < 0, 5.73)
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Similarly, we derive
IDOOL|E(x) = Ao o0 AZLPy|| < CeMMbrinl¥2 - x < 0. (5.74)
We define candidate trichotomy projections,

iy . [ AGBW) A(x) seoy .- [ E@ODX)  E(x)
P(x)"( B(x) I—Pf,_(x))’ P(")"( D(x) Pf,_(x)) x=0,

and we calculate using (5.70)

AXDE_(x, »)B() AX)D;_(x,y)

P (x)Dy(x,y) = ( ) = Oy(x, YPL(Y),

o (LyBe) O ()

EG®S (. 0D)  EGDS_(5,9) x=r=0
: _( EG®_0.9D(x) EG®;_(.9) | _ )
P_()’)(DO()’» x) - ( (ch’_(y, )C)D()C) q)}’_(y’ x) ) - (DO(y9 _X)P_(x),

Since A, B, D and E are bounded on (—oo, 0], the above calculations imply
[P CO@o(x, )| [P0 Do(y, 2)|| < Ce™0, x<y<0.
Define P¢(x) := 1 — P*(x) — P“(x) for x < 0. Observe that

P =( F0) B = e o w0

where the matrices,

Ei(x,y) —I+f ﬂl(Z)dZ-Ff ﬂz(z)f @” _(z, w)Az(w)dwdz

f A(2) f _(z, WAz (w)dwdz + f Ar(2) f _(z, WAz (w)dwdz

y

+ f A (2) f D} _(z, W) Az (w)dwdz,
oo 0
Er(x,y) = f ﬂz(z)CD;i,,(z,y)dz+ f ﬂz(z)q)}’_(z,y)dz,
y y

E3(x,y) := f O} _(x,20A;3(2)dz + f D% _(x,2)As(2)dz.
0 —c0
are bounded on (—o0, 0] X (=0, 0] by (5.72). Therefore, the projections P**“(x) define an
exponential trichotomy for equation (5.56) on (—oo, 0]. The spectral projections £**¢ on the
unstable, stable and neutral eigenspace of the asymptotic matrix A, are given by

- :( 0 AooA, L (~Pp) ) . =( 0 ApuA, | Pr ) - :( I —Fo AL, )

0 I-p; 0 P 0 0
(5.75)
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Thus, the approximations (5.71), (5.73) and (5.74) yield ||P**“(x) — P"*¢|| < Ce™iniurtx/2 for
x < 0. Thus, we have obtained the desired exponential trichotomy for (5.56) on (—co, 0]. The
construction of the exponential trichotomy for (5.56) on [0, o) is analogous.

Finally, we establish the decompositions (5.68) and (5.69). The upper (2m X 2m)-block
of @;,(0) is lower-triangular and has determinant 1. Therefore, the columns of ®;,(x) consti-
tute 2m linearly independent solutions to (5.56), which are bounded, but not exponentially
localized by (5.64). On the other hand, P4 *(0) has rank n, since Py (0) is a rank n projection.
This yields the decomposition (5.68). Furthermore, it holds P$(0)[C2"*™] = PS (0)[{(0,b) :
be Pf,+(0)[C2"]}]. Since we have Pf,+(0)[C2”] = Y* @ Y° with Y° = Sp(k,(0)) by Proposi-
tion 5.21, the decomposition of P (0) [C2m+m] in (5.69) follows. Analogously, we obtain the
decomposition of P*(0)[C>"+™] in (5.69). |

As mentioned in §5.3.1, our goal is to construct a piecewise continuous solution ¢, .(x, 1)
to the full eigenvalue problem (3.3), which has a jump at x = 0 only. The solution ¢, c(x, 1)
arises by matching solutions to (3.3), which are defined on the three intervals Iy . and [,
given by (5.53) and (5.54). We match these solutions in such a way that the j ]ump at 0 is
confined to the one-dimensional space spannend by (0, ¥,4(0)), where ,4(x) is the solution
to the adjoint variational equation (3.15), established in Proposition 5.21. Thus, we need the
following lemma.

Lemma 5.23. Suppose 0 is a simple root of Ero. Let Y*,Y*,Y° and Y* be as in Proposi-
tion 5.21. Denote by Q° the projection on Y¢ along Y* @ Y" @ Y*, by Q° the projection on Y*
along Y" & Y ® Y* and by Q" the projection on Y" along Y* ® Y & Y*. The projections,

@ 12( 8 gc ) & :z( (1) — [° A(0D(x, 0)dxQ" — Ofﬁﬂz(x)@f(x, 0)dx(Q* + 0°) )

Q* ._( 0 0 ) Q" '_( 0 ) )
T\ o [T o0 0Mmdx 0 )T T [T o0 0Adx Q" )

(5.76)
are well-defined and it holds
L= ker(@) Nker(@) N ker@) Nker(@),  Z* = (0.6): be V. (577)
Moreover, we have
QD;(0) = 0, choh(O)z( ) ) QC( 0 I R, ) 0, QD,(0) = (é)
(5.78)

& = ( (1) — [7, A () D(x, 0)dx(Q" +OQ") ~ [ A0 (x, 0)dxQ* ] ’

where ¢, and ®;, are defined in (5.62) and (5.63), respectively, and kn(x) = 0 (x, up).
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Proof. The integrals in (5.76) converge by (5.60). Thus, the projections in (5.76) are
well-defined. Furthermore, the homoclinic solution ¥ (x, ug) to (2.3) at u = uq satisfies
Ry (x, ug) = yYn(—x, up) for any x € R by (E1). Taking derivatives yields

Ryxn(0) = —kn(0),  Rykin(0) = kin(0), (5.79)

where k;,(x) = 9,yn(x, up). Consequently, any column of «;,(0) lies in the orthogonal comple-
ment of Y¢ = Sp(ky(0)), which is given by Y* @ Y* @ Y+ by Proposition 5.21. Hence, we have
O;»(0) = 0 and the first two identities in (5.78) follow.

The fast variational equation (3.15) is Ry-reversible at x = 0 by (E1). Thus, by (5.61) it
holds ®;(-x,0)0" = Ry®(x,0)Q°Ry and O ;(—x,0)0° = R;Ds(x,0)Q°Ry for any x > 0.
Combining the latter with (5.79) leads to the other three identities in (5.78), where we use that
Fr ()R = Ar(x) and Az (x) = Ap(—x) holds for any x € R by (E1).

Using (5.60) we immediately establish Z+ € ker(@Q)Nker(Q°) Nker(Q*) Nker(@Q"). Conversely,
assume (a, b) € ker(Q°) N ker(Q°) N ker(@*) N ker(Q") with a € C*" and b € C?". Then, it
holds

0 0
o°b=0, a= f A (x)Ds(x,0)dxQ"b + f A (x)Ds(x, 0)dx(Q° + O°)b,

0°'b=-0° f_m D40, x)Az(x)adx, Q"b= —Q“f D (0, x)Az(x)adx.
0 0

We derive that a is strictly lower-triangular implying As(x)a = O for any x € R. Hence, it
holds 0"*b = 0 yielding b € Y* and a = 0. We conclude (a,b) € Z*. |

5.3.3 A reduced eigenvalue problem along the slow manifold

Along the slow manifold, the v-components of the periodic pulse solution ¢y, -(x) are exponen-
tially small and the u-components are approximated by u;(ex) — see Theorem 2.3. Hence, by
assumption (S1), the lower-left block Ajy; -(x) in the full eigenvalue problem (3.3) is exponen-
tially small, whereas the upper-left block (A -(x, 4) is approximated by eA(ex), where A;
is the coefficient matrix of the slow variational equation (2.7). Thus, along the slow manifold,
we arrive at the reduced eigenvalue problem,

@r = Ae(x, Do, @ = (u, p,v,q) € CHm, (5.80)
with

[ eAlex) App(x)
ﬂ*,s(x, /l) . ( 0 ﬂzz,g(x, A) *

Due to its upper-triangular block structure, the dynamics in system (5.80) is governed by the
blocks on the diagonal via the variation of constants formula. The lower-right block Az (X, A)
has slowly varying coefficients and is pointwise hyperbolic along the slow manifold. Hence,
on the interval I ., defined in (5.53), system (5.15) admits an exponential dichotomy, which
yields an exponential trichotomy for the reduced eigenvalue problem (5.80).
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Proposition 5.24. Provided ¢,& > 0 are sufficiently small, system (5.80) has for every 1 €
B(0, ¢) an exponential trichotomy on I with constants C, jt; > 0, independent of € and A, and
projections Py (x, A). We have p, = 3y, where p, > 0 is as in Lemma 5.1. The projections
P2(x,-) are analytic on B(0, §) for each x € I, and satisfy

| ’ |

where Z; is as in (5.53) and P",P° and P° are the spectral projections onto the unstable,
stable and neutral eigenspace of the asymptotic matrix A, defined in (5.65).

PI:,S,C(ES, /1) _ PM,S,C

,E

PYSQ2L, — B, A) — P|| < C (el log(e)] +14])., (5.81)

Proof. In the following, we denote by C > 0 a constant, which is independent of € and A.

We start by establishing an exponential dichotomy for the subsystem (5.15) of the reduced
eigenvalue problem (5.80). We define

Jos = [Es/a,2L; — E ], a > 0.
First, by Theorem 2.3 it holds
i) Ol = & || D7 ppe)]| < Ce, I (0l = 1D o o)l < C&%, x € Jug,
which implies
[0:A22.0(x, V|| < Ce, x € Ty, A € BO, ).
Second, by Theorem 2.3 we have
[[Bp.6x) = (o), 0)|| < C&%, x € U,

which implies

[[Arzo(x, ) = Aty o(x), V|| < Ce,  x € Jup, A € BO, ), (5.82)

where A(u, A) is defined in (5.1). By Theorem 2.3 and Lemma 5.1, the matrix A(up o(x), A) is,
provided & > 0 is sufficiently small, hyperbolic for each x € J4 and A € B(0, ¢) with spectral
gap larger than u, = 2u;. So, by (5.82), the same holds for Ay o(x, 1), provided & > 0 is
sufficiently small. Third, Ay . is bounded on J4 . X B(0, ¢) by an e-independent constant using
Theorem 2.3. Combining these three items with Proposition 4.8 yields, provided £ > 0 is
sufficiently small, an exponential dichotomy for system (5.15) on J, . with constants C, pt; > 0
and projections Il .(x, A). The projections Il .(x, -) are analytic on B(0, ¢) for each x € J, .
and satisfy

[IT7s(x, D) = Qu(x, V)| < Ce,  x € Jrpd € BO,5), (5.83)

where Q.(x, A) is the spectral projection onto the stable eigenspace of Ay (x, 2). On the other
hand, by Theorem 2.3 and estimate (2.6) we have

[8p.6(Es) — (w0, 0)]| < Cellog(e)l.
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yielding
[Ar.6(Eer ) = Apoo|| < C (ellog@)] + [A), A€ BO,s),

where Ay, is given by (5.58). Thus, the same bound holds true for the spectral projections
associated with Ay ¢(E,, 1) and Ay.. Combining the latter with (5.83) yields

[M15e(Ee, ) = Py < C (ellog(e)] +141), 2 € BO,5), (5.84)
where P is the spectral projection onto the stable eigenspace of A, .

The next step is to express the evolution 7~ o(x, y, 2) of the upper-triangular block system (5.80)
in terms of the evolution 77 4(x, y, 4) of (5.15) and the evolution ®4(%, ¥) of the slow variational
equation (2.7). Thus, via the variation of constants formula we obtain

q)i 9 ’ q)i 9 E E Vs /l d
Toe(x,3, ) = ( sex.ey) [ Dulex, Ao 1oy, Dz | (5.85)
’ 0 Tye(x,3, )
We define candidate trichotomy projections,
P () o= 0 szf%sg Oy(ex, £) AT} (2, X, Ddz ’
- 0 ;e (x, )
P (x,) = 0 ﬁXE Dg(ex, SZ)ﬂIZ,s(Z)TM’S(Z, x, )dz X € Is,s’ A€ B(0,¢),
*,E\TV L 0 = I _ Hf’g(x’ /l) ’

Pi,g(x’ /l) =1- Pi,g()@ /l) - P’:,g(x7 /l),

where T}‘Es (x,y, 4) denotes the (un)stable evolution under the exponential dichotomy of (5.15)

Uu,s,C

on J,.. The projections P..“(x,-) are analytic on B(0,¢) for each x € I, because the
projections Il (x, 1) and the evolution 774(x, y, 4) are analytic in A using [60, Lemma 2.1.4].
On the other hand, lemma 4.1 it yields

lDs(ex, )l < C, X,y € Jog, (5.86)

because it holds [eL, — {y| < Ce by Theorem 2.3. Using (5.85) we calculate for x,y € I, and
1€ B(0,¢)

0 [ 1z Pulex, e AT}, (2,5, Ddz
0 “ T2,(x6,y,)

= *,S(x’ y7 /I)Pi,g()’, A)a
0 [iz ®y(ey, e AT (2, x, Ddz
2=e i

0 T, %, )

= T e, X, P (X, D),

Pi,g(-x7 /1)7;,8()@ y, /1) = [

Pz,g(% /1)7—*80]3 X, /1) = [
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and

P e DT o3, 2) :=( Do) BV 7 ey PL0D. (58Y)

Y
Es(x,y, ) := - f Dy(ex, £9) AT} ,(2.y, Ddz

2L,-1E,

.
- f By(ex, €0 AT 2y, Dz,

2

Using estimate (5.86) and the fact that Aj, ¢ is e-uniformly bounded on J, . by Theorem 2.3,
the above calculations imply for x,y € I; . and A € B(0, )

P} (6, DT oo(x, 3, || [P0 DT, 5, V|| < Ce™OD, x>y,

and

|

Therefore, the projections P.3“(x) define an exponential trichotomy for equation (5.80) on I, .

P, DT, 3, D) < C.

Finally, we establish the approximations (5.81). Define Js = [2_.6, 2_‘6] First, by Lemma 4.1
it holds

|Ds(ex, gy) — I|| < Cellog(e)l, x € J,, (5.88)
Second, by Theorem 2.3 and estimate (2.6) we have
[[8p.6(x) = (0, 0)|| < Cellog(e)l, x.y € Jp,
yielding for x € J, and A € B(0, <)
[A12.000 = Aoo|| < Collog(®)l, [ Arne(x, D) = Ap|| < C(sllog(@)] + 1), (5.89)

where Aj ., is defined in (5.65). Since Ay, is hyperbolic by Lemma 5.1, the matrix A .(x, 1)
is by (5.89) invertible for each x € J, and 1 € B(0, ¢), provided &, ¢ > 0 are sufficiently small.
Thus, for A € B(0, ¢) we may write

f _' Oy(6Es, ) A1,()T } (2, Be, Dz

- f Dy(6Z, 502D R0, A DT 2 B V2 (1 = T 4B D)

Combining the latter with (5.84), (5.88) and (5.89), leads, via integration by parts, to the
approximation,

f Oy (eE,, £2) AL g(z)’/"fg(z, Ee, Ddz — Ay mﬂfio(l P < C (elloge)l + |4]),

2

(5.90)
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for A € B(0, ), where we use y, = 2u,. Similarly, we derive

ﬁ 0,65, £ Ao (T L, (0 B Dz — Py o AP

< C(elloge)l + 1), (5.91)

2

for A € B(0, ). On the other hand, (5.86) yields

3
2

f Dy(eEe, A 4T, (2 B iz

2L,—3E,

<Ce, 1€B0,s). (5.92)

The spectral projections £**¢ on the unstable, stable and neutral eigenspace of the asymptotic
matrix A, are given by (5.75). Thus, the approximations (5.84), (5.90), (5.91) and (5.92)
yield ||[Py ¢ (Be, ) — P < C(ellog(e)| + |A]) for A € B(0, ¢). The other estimate in (5.81)
follows analogously. O

5.3.4 Construction of a piecewise continuous eigenfunction

Let S5, Dy, and E; be as in (3.21), (5.52) and (5.53), respectively. In this section we
establish for any 1 € D, and v € S; a piecewise continuous solution ¢, .(x, A) to the full
eigenvalue problem (3.3) on the interval [-Z,,2L, — E.], which has a jump only at x = 0
and satisfies ¢, (—E;, 1) = e""gom(2L5 — B¢, ). The construction of ¢, is based on Lin’s
method [10, 70, 100].

Theorem 5.25. Suppose 0 is a simple root of Eo. Take 6 > 0. Provided n,& > 0 are
sufficiently small, there exists for every A € D, . and v € S5 a piecewise continuous solution
©ye(x, A) to the full eigenvalue problem (3.3) on [-Z.,2L, — Z.], which has a jump only at
x =0, satisfies

@ro(=Ep, D) = €”,.2L, — E,, ),
and enjoys the estimates,
[[ovex. ) = en(x)|| < Cllog()l (£l log(&)] + 1l) , x € [-E,, 2L, - E,], (5.93)
lvex ) = 8 .(x) + 8P ()B)|| < Cllog(e)l (2llog(e) +1Al),  x€[-F, 5], (5.94)

where B(v), ¢n and Dy, are defined in (3.20), (5.62) and (5.63), respectively, and C > 0 is a
constant independent of €, A and v. In addition, for any v € Ss there exists a unique A-value
() € D, ¢ for which the jump of ¢, (-, A) vanishes.

Proof. In the following, we denote by C > 0 a constant, which is independent of &, 4 and v.

Let Iy, = I U If and I, be as in (5.53) and (5.54). Our approach is to regard the
full elgenvalue problem (3.3) as a perturbation of the reduced eigenvalue problems (5.56)
and (5.80) on the intervals /5 and I, respectively. Propositions 5.22 and 5.24 yield expo-

nential trichotomies for (5.56) and (5.80). For A € D,,, this leads to variation of constants



5.3. THE CRITICAL SPECTRAL CURVE 128

formulas for solutions to (3.3) on the three intervals /;, and / ;Z We match these solutions
at the endpoints 0, +=; and 2L, — E; of the intervals /;, and Ifi using the estimates (5.66)
and (5.81) on the trichotomy projections and identity (5.77). Thus, we obtain for any A € D,
and v € S; a piecewise continuous solution ¢, -(x, ) to (3.3) on I, U I, ., which has a jump
only at x = 0 and satisfies ¢, (—E, 1) = e""tpv,s(ZL8 — g, A). Foreach A € D, and v € S;
the jump

Jv,a(/l) = hf{)l ‘Pv,s(xa - h%l ()Dv,s(xv ), (5.95)

is contained in the one-dimensional space Z*, defined in (5.77). Pairing the jump with the
solution ¥,4(x) to the adjoint (3.19), established in Proposition 5.21, leads to an (analytic)
equation in A and v, which has a unique solution () € D,

The variation of constants formulas provide leading-order expressions for ¢, ¢(x, 1) on the three
intervals f and /.. Finally, since the derivative ¢p -(x) is a solution to (3.3) at 4 = 0, we can
write ¢}, .(x) in terms of similar variation of constants formulas on I+ yielding leading-order
approximation for ¢, .(x, A1) — ¢p’s(x)

Thus, we start by establishing expressions for solutions to the full eigenvalue problem (3.3)
along the pulse. We regard (3.3) as the perturbation,

©r = (Ap(x) + Boe(x, ) @, @€ CHmm,

of the reduced eigenvalue problem (5.56). By Theorem 2.3, the perturbation matrix By .(x, 4) :=
A(x, 1) — Ay(x) is bounded by

1Bo,s(x, DIl < C (ellog(e)l +1Al), x€lfe,AeC. (5.96)

By Proposition 5.22, system (5.56) has exponential trichotomies on [0, co) and (—oo, 0] with
constants C,x, > 0 and projections PL*“(x) satisfying (5.66). We denote by ®¢"“(x,y)
the stable, unstable and neutral evolution operator of system (5.56) under the exponen-
tial trichotomies. For convenience, we abbreviate (DY” L(6y) = (I = PL(x))®y(x,y) and

OF, (x,y) = (I = PL(x)Do(x, ).

We apply the variation of constants formula. Thus, by the decompositions (5.68) and (5.69),
any solution go;’a(x, A) to (3.3) must satisfy the following integral equation on Ifg:

G0 D) = B (1. E o) + By, + f ;. (6,180,005, Vg (3, Dy
0

x (5.97)

Fone, + @, (x,0)d, + f .6, ) B0, D, 0 Dy,

for some a, € P(E.)[C*"™*™], b, € C*", ¢, € C and d, € Z*, where Z* is defined in (5.69).
Provided n,& > 0 are sufficiently small, there exists by (5.96) for any A € D, a unique
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solution <p (X, ) t0 (5.97) on I; using the contraction mapping principle. Note that ¢ fg(x )
is linear in (a+, b,,c.,d,) and satisfies the bound,

SHP lgF o Ce DI < C llasll + 10411+ lex| + lldell), A € Dy, (5.98)

xel

by estimate (5.96), taking 7, & > 0 smaller if necessary. Similarly, by (5.68) and (5.69), any
solution go;ys(x, A) to (3.3) must satisfy the following integral equation on Ilzg:

£1, 00 = O (5o + 00+ [ O (3B, 0. i, 0 Dy
. (5.99)
Fne + 0 0+ [ O (080,00 g7, 01 0

for some a_ € P*(—E,)[CH™*™], b_ € C*", ¢_ € Cand d_ € Z*, where Z" is defined in (5.69).
There exists for any A € D, . a unique solution ‘P},g(x’ A) t0 (5.99) on I‘;g, which is linear in
(a_,b_,c_,d_) and satisfies the bound,

sup [loy (x, DIl < C(lla-|l + [Ib-|l + lc-| + [ld-[]), A € Dy, (5.100)

xe( ;_E

taking n, £ > 0 smaller if necessary.

Our next step is to obtain expressions for solutions to the full eigenvalue problem (3.3)
along the slow manifold. We regard (3.3) as the perturbation,

Or = (A6, D) + Boo(x, D)) g, ¢ € CUY,
of the reduced eigenvalue problem (5.80). By Theorem 2.3 it holds
lltp.(x) — us(ex)|| < Ce,  |Vp(OIl < Ce*,  x € I,.
Therefore, by (S1) the perturbation matrix B, .(x, 4) := A(x, 1) — A, £(x, A) is bounded by

|

By Proposition 5.24 system (5.80) admits for every A € D, an exponential trichotomy on /.
with constants C, i, > 0, independent of € and A, and projections P, ;“(x, A) satisfying (5.81).
We denote by 7.5"(x, y, A) the stable, unstable and neutral evolution operator of system (5.80)
under the exponential trichotomy.

B, o(x, V)| < Ce(e+a), xel,,A1€C. (5.101)

We apply the variation of constants formula. Thus, any solution ¢;.(x, 2) to (3.3) must
satisfy the following integral equation on I .:

Pos(6, ) = T2 (0 E D + TS (5 E D + f T2 ey, DBy Dy Dy
| (5.102)
T - E gt [ T B0 g . Uy,

2L.—E,
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for some f € Pi,g(ES)[(Cz(’””')], g€ P’;’S(ZLg—:g)[Cz“"*”)] and h € Pi’g(ES)[CZ(’“”)]. Provided
n,& > 0 are sufficiently small, there exists by (5.101) for any A € D, . a unique solution
@s.6(x, A) to (5.102) on I, using the contraction mapping principle. The solution ¢, .(x, 2) is
linear in (f, g, h) and enjoys the bound,

sup [lgso(x, DIl < C AN + Mgl + 1Al . A € Dy, (5.103)

x€ls,

using estimate (5.101) and the fact that |eL, — {y| < Ce by Theorem 2.3.

Now, we match the solutions <p;8(x, A) and ¢, .(x, ), given by (5.97), (5.99) and (5.102),
at the endpoints x = +=, and x = 2L, — Z; of the intervals I, and I;g. Applying the
projection P; (E,, 4) to the difference 90;8(58, A) — ¢5.£(Eg, A) yields the matching condition,

f = 7_(;’/](61+7 b+’ Ci, d+)9

1 € Dye (5.104)
IH (s, by, cr, d)ll < C (ellog(e)] + A1) (layll + 1154l + lex] + [1ds 1D,

where we use (5.66), (5.68), (5.81), (5.96) and (5.98) to obtain the bound on the linear map
7(81 1+ Similarly, applying Py .(E¢, 4) to go}r’g(Eg, A= (B, A) yields for A € D, . the matching
condition,
a+ = 7-{‘3,/{(“+7 b+’ C+9 d+’ fa g’ h)7
I ((as, by cordss £ 8 WL < C e (e + 1D AIFI+ llgll + 171D (5.105)
+(ellog(@)] + 1A lall + 1Dl + lex | + lld+ DT,
where we use (5.66), (5.68), (5.81), (5.96), (5.98), (5.101), (5.103) and |eL, — {y| < Ce to

obtain the bound on the linear map ‘Hi - Finally, applying P (Z,, 1) to (,o;;’g(Eg, D=¢s(Ee, )
yields the matching condition,

h = ( TD(O)[%— ) + 7’[3,/1(‘1+sb+’c+’d+)’

I 1(@s, by, co, d)Il < (sllog(e)] + ) (lasll + 1]l + les] + Il 1D

A€ D,,, (5.106)

where we use (5.64), (5.66), (5.81), (5.96) and (5.98) to obtain the bound on the linear map
(Hi 1+ Note that 7{81”12’3 are analytic in A, because the perturbations matrices By .(x, 1) and
B. £(x, 2), the projections Py;“(x, 1) and the evolution 7~ .(x, y, A) are analytic in A by Propo-
sition 5.24 and [60, Lemma 2.1.4].

Take v € Ss. We obtain the following matching conditions for any A € D, by applying the
projections Py7“(2L, — 2., A) to the difference ¢, (2L, — E;, 1) — eivgo;’s(—Eg, A):

g="H;(a_,b_,c_,d),

A (5.107)
IH, ;(a-,b_,c_,d )|l < C (ellog(e)l + |A]) (lall + lb_[| + e[ + lld-D),
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a_ =H (a_,b_,c_.d_, f,g.h),

I (a—s b, c_,d_, f, g, DIl < C [(&]log(e)l + [AD)(la- |l + Ib-ll + le-| + lld-I) ~ (5.108)
+ (e + 1A A+ gl + NIRiD]

T 2L, — By, B, D = er( T-gb-

IHS (a—s b, c—.d-, f.g Wl < C[(sllog(@)] + A1) (la-ll + Ib-II + le-| + lld-I)

+ (e + 1D S+ gl + NIAID]

where we use (5.64), (5.66), (5.68), (5.81), (5.96), (5.100), (5.101), (5.103) and |eL.—¢y| < Ce
to obtain the bounds on the linear maps ijﬁ, which are analytic in 4. We introduce the short-
hand notation a = (a,,a_), b = (b;,b_), c= (c4,c-) and d = (d,,d-). Substituting (5.106)
into (5.109) yields a linear map 7-(; ,» which is analytic in 4, satisfying

) - 7—{21(“_’ b—’ c-, d—’ f? g’ h)7
(5.109)

Dy(200,0)Tehs \ o Toob
0 =€ 0

1] (@, b, ¢, d, f, g Wl < C [(ellog(e)] + A1) (lall + 11BIl + llcll + Il
+ (e + 1A AN+ gl + NIRID]

) + W;!A(a’ b’ C7 d,f7g7 h)
A1€D,,, (5.110)

where we use (5.87), |eL, — €| < Ce and the bound,
|Ds(ex, ey) — || < Cellog(e)l, |x -yl < 2E, (5.111)

which follows from Proposition 4.1. The matching conditions (5.104), (5.105), (5.106),
(5.107), (5.108) and (5.110) constitute a system of 6 linear equations in 11 variables. One
readily observes that, provided 7, £ > 0 are sufficiently small, this system can be solved for
as, f, g, h and b_ yielding linear maps Wjj which are analytic in A and satisfy

(f’ g’ a) = 7-(68,,1(b+5 c, d)y
(h, b_) = (Toob+, e_ivToo(Ds(2€09 O)Toob+) + (}-{59,,1(b+7 c, d), A€ DT],E? (51 12)
-3 (b, ¢, )]l < C (ellog(&)] + 1) (Ib- + ] + Il -
Thus, since the projections Py2“(x, A) are complementary, we observe that (f, g, h, a, b_) satis-

fies (5.112) if and only if both ¢,+(E¢, 1) = ¢} (Es, ) and (2L, — E;, ) = eivs@},g(—Eg, )
hold true.

Our next step is to match the solutions ga;—;g(x, A), given by (5.97) and (5.99), at x = 0

such that the jump cp;,g(O, ) — 40;8(0, A) is confined to the one-dimensional space Z*, which is
defined in (5.77). First, we apply the projections Q**, given by (5.76). By (5.60) and (5.67) it
holds

QP 0)=Q°, QP(0)=0, (I-QP(0)[Z°]=0. (5.113)
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Applying the projection Q° to the difference 90;8(0, D=¢; .0, yields the matching condition,

d. =H(a,b,c,d),

10 Dy., (5.114)
[H; 2(a, b, ¢, d)Il < Cllog(e)l (ellog(e)] + A1) (llall + [1BI] + [lcll + Il ,

where we use (5.68), (5.69), (5.96), (5.98), (5.100) and (5.113) to obtain the bound on the
linear map ‘H;’O, which is analytic in A. Similarly, applying Q" to tp;’g(O, D = ¢, (0,0), we

establish a linear map #!!

1> Which is analytic in 4, satisfying

d-=H'(a,b,c,a),

11 Dy, (5.115)
1H 1(a, b, ¢, I < Cllog(e)l (ellog(e)l + |A]) (llall + 11B]l + llcll + lldID) ,

Next, we apply the projections Q° and Q, given by (5.76). By (5.60) and (5.67) it holds
QP (0) = Q = QP0), QP0)=@Q =QPO0). (5.116)
Applying Q° to the difference go}’.)s(O, A) = ¢; (0, 2) yields the matching condition,
cy =C_, (5.117)

where we use (5.78) and (5.116). Finally, applying & to 90;8(0, A) — 40;8(0, A) yields for
A € D, ; the matching condition,

0
(75" )= [ @000 va0eds + Hi @b

- f) Q°Do(0,Y)Bo (v, Dpn(y)c+dy, A€ Dy, (5.118)

:‘2

IH(a, b, ¢, d)l| < Cllog(e)| (el log(e)] + 141) [(lall + 1Bl + lidIl)
+|log(e)l (el log(e)l + [4]) licll] .

where we use (5.78), (5.96), (5.98), (5.100) and (5.116) to obtain the bound on the linear map

H?, which is analytic in A.

We wish to approximate the integral expressions in (5.118). Therefore, we split the per-
turbation By .(y, 1) in an e-dependent and A-dependent patrt, i.e. it holds

B0 ) = Bo (v, 0) - 4B,

<Celdl, yelp,1€C, (5.119)

with

0 O 0 0
B, = ( 0 B, ) € Matgimx2am)(C), By = ( I 0 ) € Matyx2(C).



133 CHAPTER 5. SPECTRAL STABILITY ANALYSIS

First, we approximate the A-dependent part of the integrals in (5.118). Recall that sys-
tem (3.15) is Ry-reversible at x = 0 by (E1). Thus, the evolution ®((x, y) of (3.15) satisfies
Ri®¢(x,y)Rs = Op(—x,—y) for any x,y € R. Hence, using (5.70) we calculate

Do (0, DBupn(x) = ( [ Ao) (3, ) B (xly ) _ ( ~ [ o)y, ~0)B.kn(~0)dy )
B D (0, x)B..kh(x) R;® (0, —X)B.kn(—x)

=( o R )%(0, ~DB.gn(~),

where we use that R¢B, = —B.Ry, Ap(X)Ry = As(x), Rpkn(x) = —kp(—x) and Az (x) = Ar(—x)
holds true for any x € R by (E1). Combining the latter identity with (5.78) yields

0 0
Q [ f _ @00, 9)B.on(y)dy — ﬁ (0, y)B*tph(y)dy] =0. (5.120)

Next, we approximate the e-dependent part of the integrals in (5.118). This can be done by
using that the derivative ¢}, .(x) is a solution to (3.3) at 4 = 0. Thus, ¢;, .(x) satisfies the integral
equation (5.97) on I;,S at A =0, i.e. we have for x € I;’g

800 = O (1. Eo)atp + D (b + f S (5)B0, 0y 0, ()
0

. (5.121)

+n@ps + B, (1. 0y + f (5, ) B0y, 006 )y,

&

for some constants a,, € P‘J‘r(ES)[CZ(’”*”)], by € c2m ¢p+ € Cand d,, € Z*, where we
suppress their e-dependence for notational convenience. Similarly, it holds for x € I,

Gpe(X) = Dy _(x, =Ee)ap - + Oy (0)by - + f OF_(x,9)B0.(y, 0)p,, -(0)dy
. (5.122)
O (6, )B0.(, 0}, 0y,

=

+ n(X)cp- + Df _(x,0)d, - + f

for some a,_ € P*(-E,)[C*"™™], b,_ € C*, ¢,_ € Cand d,_ € Z". By applying suitable
projections, we obtain leading-order approximations for the constants a .+, bp s, ¢p + and d, .
This leads to the desired approximations for the integrals in (5.118).

First, Theorem 2.3 and (S1) yield
+D7 T (uo)
$) (2E) — & H (”%’ 0.00 1 < ce?j10g(e)l, (5.123)
0

where we use that ¢, solves the differential equation (2.1). By applying the projections
P4 (E;) and PS(E,) to (5.121) at x = E;, we derive via (5.68) and (5.69)

tps = PLEIG) o(E)s  PUENDn(Ebps = PLEND, (E,).
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Similarly, we apply P’ (-E,) and P°(—E;) to (5.122) at x = —E, yielding
ap- = PL(=Eo)p}, (-Ep),  PL=Eo)Qin(—Eo)bp- = PL(-E.)¢;, .(—Eo).

Combining the latter two identities with (5.64), (5.66), (5.75) and (5.123) gives

-1
llap Il < Ce,  ||bp — STW,( =Dy J (o) ) < C&*log(e). (5.124)

H(u,0,0)

Recall that we have ¢p(x) = d,@n(x, up). Thus, by Theorem 2.3 it holds

65,000 — en(@)|| < Cellog(e)l,  x € Iy, (5.125)

where we use that ¢, . and ¢y, solve (2.1) and (2.2), respectively. Next, we apply Q° to (5.121)
and (5.122) at x = 0, yielding

0 ’
(0) ) » 9p.(0)
Cp = % —cpes ope—1|<Co, (5.126)

by (5.78), (5.116) and (5.125). Finally, applying Q@ to (5.121) and (5.122) at x = 0, gives the
identity,

bys —by_ sl _ 0 ,
( P O P ) = Q |:CD&),_(07 _:‘E)ap,— + f_ (DO(O’ y)BO,S(Y7 0)¢p,5()’)dy

=

- q)?)’_p (07 Ea)ap,+ - j:Q q)o(()’ y)'go,s(ys 0)¢;,g@)dy] s

by (5.78) and (5.116). Using (5.96), (5.124) and (5.125), we approximate both sides of the
latter identity, yielding

0 0 2] )
@| [ 0n0.080.0:0000s - [ 00.980.0.0000] -2 0
0
< Ce’|log(e)?, (5.127)

which gives together with (5.119) and (5.120) the desired leading-order expressions of the
integrals in (5.118).

Thus, the matching conditions (5.112), (5.114), (5.115), (5.117) and (5.118) constitute a
system of 10 linear equations in 11 variables. Provided 7, & > 0 are sufficiently small, this

system can be solved for a, b, c_, d, f, g, h yielding analytic linear maps H Bv H,* and ?{Bl
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for A € D, satisfying
(a,d, f,g,h) = H(co),

C- =Cy,y

_ -1
by = 26 (I — € " T ®y(260, 0) Y. ‘( b g (o) ) ey + HY (),
L( Dl (5.128)
b_=2¢ (er'r,mcbs(o, 200)Y oo — 1) ( ! 0 (o) )c+ + HD(ch),

IH eIl < Cllog(e)l (el log(e)] + 1) e,
“7_{14 Beoll < Clloge)l (sl log(e)] + (1) e,

where we use (5.119), (5.120), (5.127) and the fact that det(l — e Yo ®s(260, 0) o) =
2 E (0, e™) and det(e™ Y _o®s(0,260) oo — I) = E4(0, €) are bounded away from 0 by a
v-independent constant.

Recall that (f, g, h,a,b_) satisfy (5.112) if and only if both ¢, (E;, 1) = go;p(:g,/l) and
@se2Le — B¢, ) = e”’(p (—E¢, ) hold true. Moreover, by identity (5.77), (a, b, c,d) sat-
isfy (5.114), (5.115), (5. 117) and (5.118) if and only if the jump ¢pf8(() ) — @ (0, 4) lies in
Z*+. Thus, take ¢, := Cp,+ and define quantities a, b, c_, ds, f, g and h through (5 128), where
we suppress their -, A- and v-dependence for notational convenience. Then, (5.97), (5.99)
and (5.102) define for any A € D, and v € Ss a piecewise continuous solution ¢, .(x, 1)
to (3.3) on I, UI, ., which has a jump only at x = 0 in the space Z* and satisfies ¢, (-2, 1) =
eivgov,a(ZLa - Eav /l)

Now, estimate (5.93) follows readily by approximating the coefficients (a, b, ¢, d, f, g, h) in
the variation of constants formulations (5.97), (5.99) and (5.102) of the solution ¢, .(x, 1)
using (5.96), (5.98), (5.100), (5.101), (5.103), (5.126) and (5.128).

Next, we show that for any v € S; the jump J, (1), defined in (5.95), of ¢, (x,) at x =0
vanishes for a unique A-value in D,,. Fix v € Ss. The jump J, (1) can be expressed as
the difference of the two variation of constants formulas (5.97) and (5.99) at x = 0 with
coefficients as, b., c: and d; defined through (5.128) and ¢, = ¢,,. We observe that J,, is
analytic on D, ., because the perturbation B .(x, 1) and the linear maps 7‘181;, JH14 o and 7‘(23
are analytic in A. For any A € D, . the jump is approximated by

0

Jee) —dy +d_— A f B (0. )Bogn(y)dy - A f“

00 —00

D (0,y)B.on(y)d
0.- (0, )B.¢n(y) yH (5.129)

< Cllog(e)l* (& + 1] (el log(e)| + |41)) ,

using (5.93), (5.96), (5.119) and (5.128). By Proposition 5.21 we have ¢,4(0) € ker(Py,(0)")N
P;_(0)*[C?"]. Therefore, it holds

+ C ker(P5(0)*) N ker(P“(0)), (5.130)
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by (5.67). The jump J, .(2) € Z* of ¢, -(x, ) at x = 0 vanishes if and only if

0 —
<( Vaa0) ),Jv,gu)> =0. (5.131)

With the aid of (5.130) we calculate

0 0
<( %Da;)(o) ), f D7, (0, )B.pn(y)dy — f (0, y)B*<Ph(V)dy>

=—f (Wad2(x), Oxvn(x, up)) dx.

Combining the latter with (5.129) yields

H<( mf(o> ) : Jv,g(ﬂ>> +4 f _ (Waa2(0): v (x. o)) dx
< Cllog(e))* (¢ + || (¢ log(e)| + 1)),

A€ D,

since d, € Z* and d_ € Z" are in the orthogonal complement of Z* by Proposition 5.21.
Hence, because the A- and e-independent integral L D:o (Wag2(X), dvi(x, up)) dx is non-zero
by Proposition 5.21 and the jump J, . is analytic on D, ., Rouché’s Theorem implies that
equation (5.131) has, provided 1, & > 0 are sufficiently small, a unique solution A.(v) € D,,...

Our last step is to prove estimate (5.94). Fix v € S;. First, we establish the a priori bound,
[eve(x, D) = ), (|| < C (ellog(e)l + 1),  x € Ife,d € Dy, (5.132)

using (5.93) and (5.125). By subtracting (5.121) from (5.97) and (5.122) from (5.99), we

obtain variation of constants formulas for ¢, -(x, 1) — ¢}, ,(x) on I;,a and I;E, respectively. Our

approach is to obtain leading-order expressions for the coeflicients a. —ap s+, by —bp s+, c+ —Cp s
and d;. — d,, . in these variation of constants formulas. By (5.124), (5.126) and (5.128) it holds

c:—cps =0,
[lax — ap+|| < Cllog(e)l (el log(e)] + 141)., A€ Dy, (5.133)
b= = by« + BO)|| < Cllog(e)P (sl log(e)] + A1),
where B(v) is defined in (3.20). Estimating d.. — dj, » is more elaborate. Note that the jump

Jy(A) € Z* lies in the kernels of @ and Q° by (5.77). Thus, to estimate d,. — dj, .., we apply
the projection Q° to

Tuol) = lim (e (6, ) = 67,(0) = 1im (o0, D) = ¢,(0), A€ Dy,
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yielding

0
&=ty = [ 0000 0600 = 50,0.005,0)]

-@ f ' 0, (0,) | Boe (s Ve, ) = Bo oy, 065,00 dy
FO)_(0.~E,)a_ - ap.).
by (5.68), (5.113) and (5.133). Therefore, (5.93), (5.96), (5.119), (5.132) and (5.133) imply
ld. = dy..|| < Cllog(e)l (7 log(&)P +141), A € Dy (5.134)

Subtracting (5.121) from (5.97) gives for each A € D, ;. a variation of constants formula for
QDV,E(-X:’ A) - ¢;),5('x) on I;’g:

Pre(x, D) = ¢y (%) = OF L (x, Ee)ar = ap) + Pin(x)(by = bpy) + Qg (x,0)(d — dp.+)

[0 B0, D00 = B, 065,

+ f O, (6,3) [Bo.o (. Doy, ) = B (v, 0)},, ()] .
where we use ¢, = cp ;. Applying (5.93), (5.96), (5.119), (5.132), (5.133) and (5.134) to the
latter identity yields the approximation (5.94) on [0, E./2]. The proof of (5.94) on [-E./2,0]
is analogous. O

Remark 5.26. The proof of Theorem 5.25 provides a Lyapunov-Schmidt type reduction pro-
cedure. Finding a bounded solution to the full eigenvalue problem (3.3) amounts to inverting
the operator £, —A defined in §3.2. By constructing the piecewise continuous solution ¢, -(x, A)
to (3.3) via Lin’s method, we invert a certain part of £, — A and we obtain a one-dimensional
reduced equation (5.131) describing the remaining unsolved part.

Thus, solving (5.131) for A yields the desired simple eigenvalue A.(v) of L. about the origin.
A leading-order expression of A.(v) can be obtained by calculating the leading order of the
&- and A-dependent parts of (5.131). Alternatively, we use the key identity (5.51) to derive a
leading-order expression for A,(v) — see §5.3.5. ]

5.3.5 Conclusion

In this section we provide the proof of Theorem 3.19. Let Ss, D,, . and Z, be as in (3.21), (5.52)
and (5.53), respectively. In Theorem 5.25 we constructed for any 4 € D, and v € S5 a
piecewise continuous solution ¢, .(x, 1) to the full eigenvalue problem (3.3) on the interval
[-E¢, 2L, — Z;] which has a jump only at x = 0. In addition, we obtained leading-order
expressions for ¢, .(x, ) and @, £(x, 1) — ¢;, ().
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Moreover, we proved in Theorem 5.25 that for any v € S; there is a unique A-value A.(v) € D,
for which the jump of ¢, .(x, 1) vanishes. As mentioned in §5.3.1 this A-value coincides with
the unique root A,(v) of the Evans function &,(-, ) about the origin. We extend the continuous
solution ¢, .(x, A:(»)) to the whole real line via (5.55). In §5.3.1 we derived an identity (5.51)
for A.(v) in terms of this extended solution ¢, . to (3.3). Plugging the leading-order expressions
for ¢y .(x) and @, £(x) — ¢y, (x) into (5.51) yields the desired approximation (3.17) of A:(v).

Proof of Theorem 3.19. In the following, we denote by C > 0 a constant, which is indepen-
dent of &£ and v.

In §5.3.1 we established a ¢ > 0 such that, provided £ > 0 is sufficiently small, there
exists for any v € Sy a unique (real) root 1,(v) € B(0,¢) of E.(-, ™). We showed that the
function 4, : S5 — R is analytic, even and 2-periodic and satisfies 1.(0) = 0 whenever 0 € S;.

Fix v € Ss. Consider the solution ¢, .(x, 1,(v)) to the full eigenvalue problem (3.3), es-
tablished in Theorem 5.25, and define ¢, . by (5.55). Clearly, ¢, . is a solution to (3.3) on the
whole real line. In §5.3.1 we showed that it holds A,(v) = A,(v) and that the key identity (5.51)
is satisfied for ¢, (x) = (i1, £(X), Pye(xX), Py £(X), Gye(x)). To obtain a leading-order expression
for A.(v) we approximate the integrals in (5.51) using Theorem 5.25.

First, Theorem 2.3 and estimate (5.93) imply that ¢, . and ¢, . are bounded on R by a constant
independent of & and v. On the other hand, the solution ¢,q(x) = (Yaq,1(X), Yaa2(x)) to the
adjoint equation (3.19) satisfies

Wl < Ce M, xeR,
by Proposition 5.21. Thus, using estimate (5.93) we approximate

< Cllog(e)| (el log(e)] +14,(e))
(5.135)

H f Wad 2(X) Py s (x)dx — f Wad 2(X)*Oxvn(x, up)dx

In addition, by estimate (5.94) and Theorem 2.3 we have

I a2 (G @p,€) = 8,6, 1(510,0) () = v 0) |

< Cellog(e)” (£°l log(e) + 11:())

(5.136)

where we use that ,42(x) is odd by Proposition 5.21, qAﬁp,g(x) is even by Theorem 2.3, vy (x, up)
is even by (E1) and the v-components of ®;,(x)B(v) are even by (E1). Integration by parts
gives

f Va1 2(0) 0GBy o(x), &) (it (x) — 1, (1)) dx

=—¢ f f Va120) 0uG(Bp.e(v), £DT (Brs(¥) = Pl (1)) dydlx,
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since Y,q2(x) is odd and (/Aﬁp,g(x) is even. Applying estimate (5.94) and Theorem 2.3 to the
latter yields

H f T Yaap (' 0,y e),8) (o) = ) () dx
(5.137)

-& f f Va2 () 0,G (1o, va(y, tp), 0)dydxB(v)
< Cellog(e)| (7| log(@)l’ + 14,(2)]).

with B(v) defined in (3.20), where we use ,42(x) is odd, vy(x, up) is even and the p-component
of (I — ®;,(x))B(v) is odd by (E1). Finally, since the integral f_ o; Wad 2(X) 0 vn(x, up)dx is
non-zero by Proposition 5.21, the key identity (5.51) in combination with the estimates (5.135),
(5.136) and (5.137) gives

Lo [ ¥aa2(0)0uG (o, vy, o), 0)yd xB(v)

A:(v) + =
o f,m Wad2(X)*0xvn(x, up)dx

< C&’l log(s)ls.

The latter yields the leading-order expression (3.17) of A.(v) by switching the order of integra-
tion in the numerator using that ,q4, is odd and v,(x, up) is even. O

Remark 5.27. In the proof of Theorem 3.19 we have obtained for any v € S; an eigenfunction,

~ 1y
wy,g(%) = ( g:’jgi_l‘;; )elvx/%’g c ngr([o’ 258]’Cm+n)’
corresponding to the eigenvalue A.(v) of the operator L, . defined in §3.2.1. The approxima-
tions in Theorem 5.25 and its proof provide leading-order control over this eigenfunction.
We observe that i, .(¥) is approximated by (0, d,vn(¢™' ¥, ug)) along the pulse. The derivative
0.vh(x, up) corresponds to the translational eigenfunction at 4 = 0 of the linearization of
vy = Dovy — G(ug, v, 0) about the standing pulse solution vy, (x, up). Thus, along the pulse, the
leading-order dynamics of the eigenfunction ¥, . is independent of v. On the other hand, along
the slow manifold, i.e. for eX € I ., ¥, (X) is approximated by the u-components of

. . _ -1
2ee™/2e D%, 0)Fo (I — e Lo ®s(2Lo, 0)To) 1( b { (o) )

by (5.87), (5.101), (5.102), (5.103), (5.111), (5.112) and (5.128), where g is given by (2.5),
@4(%, ) is the evolution (2.7) and Yy is defined in (3.20). Thus, along the slow manifold,
the leading-order dynamics of the eigenfunction ¢, is dictated by the slow variational
equation (2.7) and the value of v. [ |
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5.3.6 Discussion

Our approach to expanding the critical spectral curve relies on Lin’s method. As mentioned
in the introduction in Chapter 1 a similar approach is employed in [10, 100] to determine the
spectral geometry about the origin. In this section we compare the analyses in [10, 100] with
ours.

In [100] one considers 2L-periodic wave trains to general reaction-diffusion systems that
converge to a homoclinic pulse solution in the long-wavelength limit L — co. An expansion
of the critical spectral curve is obtained in terms of the period L. It is assumed that the
translational eigenvalue at the origin corresponding to the limiting homoclinic pulse is simple.
Therefore, the variational equation about the homoclinic pulse has exponential dichotomies
on both half-lines such that the spaces of solutions decaying as x — co and x — —oo have a
one-dimensional intersection. Thus, one obtains a decomposition (5.59) of the solution space
as exhibited by our fast variational equation (3.15).

The variational equation about the limiting homoclinic serves as the backbone for the con-
struction of solutions to the eigenvalue problem associated with the periodic wave train. Using
Lin’s method a piecewise continuous eigenfunction ¢, (x) is constructed on [—L, L] for any
v € R that has a jump at 0 and satisfies ¢(L) = e”¢(—L). The exponential dichotomies of the
variational equation about the homoclinic control the dynamics of the eigenvalue problem on
the growing interval [-L, L]. The jump at 0 depends on the spectral parameter A, the period L
and the Floquet exponent v, because the eigenvalue problem is a (1, L™!)-perturbation of the
homoclinic variational equation. Using Melnikov theory the jump can be equated to 0 yielding
an expansion of the critical spectral curve in terms of e~.

In our work there are two systems that serve as the backbone for the construction of so-
lutions to the full eigenvalue problem (3.3): the reduced eigenvalue problems (5.56) and (5.80)
which describe the leading-order dynamics along the fast pulse and along the slow manifold.
In contrast to [100], the reduced eigenvalue problems admit exponential ¢trichotomies in ac-
cordance with the slow-fast structure of the eigenvalue problem (3.3). Moreover, the full
eigenvalue problem (3.3) is a (4, &)-perturbation of the reduced eigenvalue problems. As a
result, the jump of the obtained piecewise continuous eigenfunction in our work depends on &,
A and v. The center dynamics captured by the exponential trichotomies prevents the critical
curve from being exponentially small in terms of the period as in [100]; instead the curve
scales with &2.

In [10] the location of a critical eigenvalue near the origin is determined in the context
of fast traveling pulses (with oscillatory tails) in the FitzHugh-Nagumo equations. Again,
Lin’s method is employed to obtain a leading-order expression for this critical eigenvalue in
terms of the small parameter €. Similar to our work, the slow-fast structure yields a framework
for the construction of a piecewise continuous eigenfunction to the associated eigenvalue
problem. This framework consists of four (reduced) eigenvalue problems arising along the fast
front and back and along the orbit segments on the slow manifolds which together constitute
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the pulse profile in the limit & — 0. However, in contrast to our work, it is sufficient to
distinguish between center-stable dynamics and unstable dynamics in the eigenvalue problem.
Thus, the introduction of an exponential weight yields exponential dichotomies for the reduced
eigenvalue problems.

Lin’s method then yields a piecewise continuous eigenfunction that has rwo &- and A-dependent
jumps in the middle of the front and the back. Thus, Lyapunov-Schmidt reduction leads to
a quadratic equation in A rather than a linear one as in [100] and our work. One root of the
quadratic corresponds to the translational eigenvalue sitting at the origin. The second root
corresponds to the critical, non-trivial eigenvalue that scales with ¢ in the monotone case,
while the scaling in the oscillatory case is £/3.

In the aforementioned spectral analyses, the fine structure of the spectrum about the ori-
gin is decisive for stability, but not detectable in the relevant asymptotic limit. In these cases
Lin’s method proves to be a powerful tool to determine how the spectrum locally perturbs
from the asymptotic limit. Therefore, we expect that Lin’s method can be applied to a wide
range of spectral perturbation problems — see also Remark 1.3.






