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Chapter 5

Spectral stability analysis

In this chapter we prove the two main spectral approximation results presented in Chapter 3:
we show that the zeros of the Evans function Eε are approximated by the ones of the reduced
Evans function E0 and we derive an expansion of the critical spectral curve attached to the
origin. Yet, we start with collecting some properties of the reduced Evans function E0, which
are necessary for the proof of these approximation results.

5.1 The reduced Evans function

In this section we study the reduced Evans function E0, which is defined in terms of the
three eigenvalue problems (3.6), (3.8) and (3.9). Thereby, we provide the proofs of Proposi-
tions 3.10, 3.11 and 3.12.

5.1.1 The fast Evans function
The homogeneous fast eigenvalue problem (3.6) arises when linearizing vt = D2vxx−G(u0, v, 0)
about the standing pulse solution vh(x, u0) – see assumption (E1). The homoclinic ψh(x, u0) =

(vh(x, u0), qh(x, u0)) to (2.3) at u = u0 converges exponentially to the hyperbolic saddle 0 as
x→ ±∞. Hence, system (3.6) is asymptotically hyperbolic. Consequently, it has exponential
dichotomies on both half-lines respecting analyticity in λ. This leads to the construction of the
analytic fast Evans function E f ,0 which detects the values of λ equation (3.6) has exponentially
localized solutions. The above is the content of the following lemma and proposition.

Lemma 5.1. Let K ⊂ Cm be an open and bounded set containing the orbit segment {us(x̌) :
x̌ ∈ [0, 2`0]} such that K ⊂ U – see (S1) and (E2). There exists Λ0 > 0 such that for
Λ ∈ (−Λ0, 0) the spectrum of the matrix,

A(u, λ) :=
(

0 D−1
2

∂vG(u, 0, 0) + λ 0

)
, (5.1)
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5.1. THE REDUCED EVANS FUNCTION 90

is bounded away from the imaginary axis on K × CΛ by some constant µr > 0.

Proof. For k ∈ Z>0 and a matrix A ∈ Matk×k(C) denote by F (A) = {v∗Av : v ∈ Ck, ‖v‖ = 1}
its field of values. Since ∂vG(u, 0, 0) has positive definite real part by (S2), the field of values
F (∂vG(u, 0, 0)) is for every u ∈ K contained in the positive half-plane by [48, Property 1.2.5a].
In fact, by compactness of K there exists Λ0 > 0 such that we have F (∂vG(u, 0, 0)) ⊂ C−Λ0 for
every u ∈ K. Let Λ ∈ (−Λ0, 0). For u ∈ K and λ ∈ CΛ we establish using [48, Property 1.2.3]
and [48, Corollary 1.7.7]

σ((∂vG(u, 0, 0) + λ)D−1
2 ) ⊂ (F (∂vG(u, 0, 0)) + λ)F (D−1

2 )

⊂
{
z ∈ C : Re(z) ≥ d−1

max(Λ0 + Λ)
}
,

where dmax is the largest diagonal value of D2. The eigenvalues of A(u, λ) are given by the
square roots of the eigenvalues of (∂vG(u, 0, 0) + λ)D−1

2 . Therefore, we obtain for u ∈ K and
λ ∈ CΛ that any eigenvalue z ∈ σ(A(u, λ)) satisfies |Re(z)| ≥ cos(π/4)

√
(Λ0 + Λ)/dmax, which

concludes the proof. �

Proposition 5.2. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. The homogeneous fast
eigenvalue problem (3.6) admits for every λ ∈ CΛ exponential dichotomies on [0,∞) and
(−∞, 0] with constants C(λ), µr > 0 and rank n projections Q f ,±(x, λ), where µr > 0 is as in
Lemma 5.1. The projections Q f ,±(±x, ·) are analytic on CΛ for each x ≥ 0. Morover, the map
λ 7→ C(λ) is continuous on CΛ.

Let Bu,s
f : CΛ → Mat2n×n(C) be analytic bases such that Q f ,+(0, λ)[C2n] = Bu

f (λ)[Cn] and
ker(Q f ,−(0, λ)) = Bs

f (λ)[Cn] for λ ∈ CΛ. The analytic function E f ,0 : CΛ → C given by
E f ,0(λ) = det(Bu

f (λ), Bs
f (λ)) has the following properties:

1. E f ,0(λ) = 0 if and only if (3.6) admits a non-trivial, exponentially localized solution;

2. E f ,0(λ) , 0 if and only if (3.6) has an exponential dichotomy on R;

3. The zero set E−1
f ,0(0) is discrete and independent of the choice of bases Bu,s

f ;

4. The multiplicity of a zero λ ∈ CΛ of E f ,0 coincides with the algebraic multiplicity of λ
as an eigenvalue of the operator L f , defined in (3.7).

Proof. By Lemma 5.1 the asymptotic matrix A(u0, ·), defined in (5.1), is hyperbolic on CΛ

with spectral gap larger than µr, where u0 is as in (E2). The stable and unstable eigenspaces of
A(u0, λ) have dimension n for any λ ∈ CΛ. Moreover, estimate (2.6) implies∥∥∥A22,0(x, u0, λ) − A(u0, λ)

∥∥∥ ≤ Ke−µh |x|, x ∈ R, λ ∈ CΛ,

where K > 0 is a λ-independent constant. Therefore, system (3.6) admits by Proposition 4.7
exponential dichotomies on both half-lines with the desired properties.
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By [86, Proposition 2.1] we have E f ,0(λ) , 0 if and only if (3.6) has an exponential di-
chotomy on R. On the other hand, every exponentially localized solution ϕ(x, λ) to (3.6) must
satisfy ϕ(0, λ) ∈ Bu

f (λ)[Cn] ∩ Bs
f (λ)[Cn]. This settles the first two properties. The third and

fourth property are the content of [1, Section E]. �

Proposition 5.2 provides the fast Evans function and thereby proves Proposition 3.10.

Definition 5.3. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. The map E f ,0 : CΛ → C given
by E f ,0(λ) = det(Bu

f (λ), Bs
f (λ)), obtained in Proposition 5.2, is called the fast Evans function.

An important consequence of the exponential dichotomies established in Proposition 5.2 is
that the differential operator associated with (3.6) is Fredholm.

Corollary 5.4. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. For each λ ∈ CΛ the bounded
operator Lλ : C1

b(R,C2n)→ Cb(R,C2n) given by

Lλϕ = ϕx −A22,0(·, u0, λ)ϕ,

is Fredholm of index 0. Moreover, Lλ is invertible if and only if λ ∈ CΛ \ E
−1
f ,0(0). The

multiplicity of a zero λ� ∈ CΛ of E f ,0 coincides with the algebraic multiplicity of the operator
pencil λ 7→ Lλ at λ = λ�.

Proof. This follows readily from Proposition 5.2, [86, Lemma 4.2] and [1, Section E]. We
also refer to [6, Section 3.2]. �

5.1.2 The slow Evans function
The slow Evans function Es,0 is explictly given by (3.10). The matrix solution Xin(x, u0, λ) to
the inhomogeneous fast eigenvalue problem (3.8) at u = u0 is one of the key ingredients of
Es,0. We prove that Xin(x, u0, ·) is meromorphic for each x ∈ R. Singularities of Xin(x, u0, ·)
only occur at the zeros of the fast Evans function E f ,0.

Proposition 5.5. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. There exists a unique
solution Xin : R × Uh × [CΛ \ E

−1
f ,0(0)]→ Mat2n×2m(C) to the inhomogeneous fast eigenvalue

problem (3.8) with the following properties:

1. Xin(x, u0, ·) is meromorphic on CΛ and analytic on CΛ \ E
−1
f ,0(0) for all x ∈ R;

2. If λ 7→ Xin(x, u0, λ) has a pole at λ = λ�, then its order is at most the multiplicity of λ�
as a root of E f ,0;

3. Xin(·, u0, λ) is exponentially localized for each λ ∈ CΛ \ E
−1
f ,0(0). In particular, there

exists λ-independent constants C, µin > 0 such that

‖Xin(x, u0, λ)‖ ≤ Ce−µin |x|, x ∈ R,

for all λ ∈ CΛ with Re(
√
λ) > C;
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4. Let λ� ∈ CΛ be a simple zero of E f ,0. Denote by ϕλ�(x) and ψλ�(x) exponentially
localized solutions to (3.6) and its adjoint equation (3.14), respectively, at λ = λ�
satisfying ∫ ∞

−∞

ψλ� (z)∗
(

0 0
I 0

)
ϕλ� (z)dz = 1. (5.2)

There exists a neighborhood Bλ� ⊂ CΛ of λ� and a mappingXλ� : R×Bλ� → Mat2n×2m(C),
such that

Xin(x, u0, λ) =
ϕλ� (x)
λ − λ�

∫ ∞

−∞

ψλ� (z)∗A21,0(z, u0)dz + Xλ� (x, λ), (x, λ) ∈ R × Bλ� .

Here, Xλ�(x, ·) is analytic on Bλ� for every x ∈ R. Moreover, Xλ�(·, λ) is exponentially
localized for every λ ∈ Bλ� .

Proof. For λ ∈ CΛ, the operator Lλ, established in Corollary 5.4, is Fredholm of index 0 and
Lλ is invertible if and only if E f ,0(λ) , 0. The multiplicity of a zero λ� ∈ CΛ of E f ,0 coincides
with the algebraic multiplicity of the operator pencil λ 7→ Lλ at λ = λ�. Combining the latter
with [74, Theorem 1.3.1] settles the first two properties.

We establish the third property. The homogeneous fast eigenvalue problem (3.6) has by
Proposition 5.2 an exponential dichotomy on R for each λ ∈ CΛ \ E

−1
f ,0(0). Thus, since

A21,0(·, u0) is exponentially localized by (S1) and estimate (2.6), the same holds forXin(·, u0, λ)
by Proposition 4.15. The coordinate change (v, q) 7→ (v,

√
|λ|w) puts system (3.6) into the

form,

D2vx =
√
|λ|w,

wx =

(
∂vG(u0, vh(x, u0), 0)

√
|λ|

+
λ
√
|λ|

)
v,

(v,w) ∈ C2n, (5.3)

where we denote by
√
· the principal square root. By Proposition 4.12 there exists a constant

K > 0 such that for any

λ ∈ ΣK :=
{
λ ∈ CΛ : Re

(√
λ
)
> K

}
⊂

{
λ ∈ CΛ : |λ| > K2

}
, (5.4)

system (5.3) admits an exponential dichotomy on R with constants K1, µ(λ) > 0, where
µ(λ) = µ1Re(

√
λ) and K1, µ1 > 0 are independent of λ. Therefore, system (3.6) has for each

λ ∈ ΣK an exponential dichotomy on R with constants K2(λ), µ(λ) > 0, where K2(λ) =
√
|λ|K1.

Note that λ 7→ K2(λ)
µ(λ) is bounded by a λ-independent constant on ΣK . Combining this fact with

Proposition 4.15 yields the third property.

Finally, let λ� ∈ CΛ be a simple zero of E f ,0. By Corollary 5.4 the operator pencil λ 7→ Lλ
has algebraic multiplicity 1 at λ = λ�. Hence, the fourth property follows by an application of
Keldysh formula – see [74, Theorem 1.6.5]. �



93 CHAPTER 5. SPECTRAL STABILITY ANALYSIS

Remark 5.6. If λ� is a simple zero of E f ,0, then it is always possible to choose exponentially
localized solutions ϕλ�(x) and ψλ�(x) to (3.6) and its adjoint equation (3.14) satisfying (5.2).
Indeed, the kernels of the operator Lλ� and its adjoint L∗λ� are one-dimensional by Corol-
lary 5.4. In addition, since equation (3.6) has exponential dichotomies on both half-lines by
Proposition 5.2, the same holds for its adjoint (3.14). So, the spaces of exponentially localized
solutions to (3.6) and (3.14) are one-dimensional. Now, take non-trivial, exponentially local-
ized solutions ϕλ�(x) and ψλ�(x) to (3.6) and (3.14), respectively. Since the operator pencil
λ 7→ Lλ has algebraic multiplicity 1 at λ = λ� by Corollary 5.4, the generalized eigenvalue
problem,

Lλ�ϕ = ∂λLλ�ϕλ� ,

has no bounded solutions. Hence, [86, Lemma 4.2] implies

0 ,
∫ ∞

−∞

ψλ� (z)∗∂λLλ�ϕλ� (z)dz =

∫ ∞

−∞

ψλ� (z)∗
(

0 0
I 0

)
ϕλ� (z)dz. �

Remark 5.7. Let f ∈ Cb(R,C2n). The Fredholm alternative in [86, Lemma 4.2] states that
the inhomogeneous equation,

∂xϕ = A22,0(x, u0, λ)ϕ + f (x), ϕ ∈ C2n,

has a bounded solution if and only if the solvability condition,∫ ∞

−∞

ψ(x)∗ f (x)dx = 0,

is satisfied for all bounded solutions ψ to the adjoint equation (3.14). This agrees with the fact
that Xin(x, u0, ·) has a removable singularity at a simple zero λ� of E f ,0 if and only if we have∫ ∞

−∞

ψλ� (z)∗A21,0(z, u0)dz = 0,

by the fourth assertion in Proposition 5.5. �

Remark 5.8. It is possible to obtain expressions for the singular part of the Laurent series
of Xin at a zero of E f ,0 of higher multiplicity by looking at a canonical system of generalized
eigenfunctions. However, for simplicity of exposition we restrict ourselves to the (generic)
case of a simple zero of E f ,0. The interested reader is referred to [74, Chapter 1] for the general
set-up. �

Using Proposition 5.5, we prove Proposition 3.11.

Proof of Proposition 3.11. Assumption (S1), estimate (2.6) and Proposition 5.5 yield that
∂uH2(u0, vh(·, u0)) and Xin(·, u0, λ) are exponentially localized for each λ ∈ CΛ \ E

−1
f ,0(0). Thus,

the integral G(u0, λ) converges for each λ ∈ CΛ \ E
−1
f ,0(0) and Es,0 is well-defined.
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It is well-known [60, Lemma 2.1.4] that, when the coefficient matrix depends analytically
on a parameter, then the evolution is analytic in this parameter too. Combining this with
Proposition 5.5 yields the first two properties.

Since the solution ψs(x̌) to the slow reduced system (2.4) crosses ker(I − Rs) at x̌ = `0
by (E2), the slow eigenvalue problem (3.9) is Rs-reversible at x̌ = `0, i.e. the evolution
Ts(x̌, y̌, λ) of (3.9) satisfies RsTs(2`0, 0, λ)Rs = Ts(0, 2`0, λ) for each λ ∈ C. Moreover, we
have RsΥ(u0, λ) = Υ(u0, λ)−1Rs and the matrices Υ(u0, λ) and Ts(2`0, 0, λ) have determinant 1
for any λ ∈ CΛ \ E

−1
f ,0(0). This yields the third property.

Proving the fourth property is more elaborate. We denote by C > 0 a constant, which is
independent of λ and γ. Putting y̌ =

√
|λ|x̌ and p =

√
|λ|D1r rescales the slow eigenvalue

problem (3.9) into√
D1uy̌ = r,√
D1ry̌ =

∂uH1

(
us

(
|λ|−1/2y̌

)
, 0, 0

)
|λ|

+
λ

|λ|

 u,
(u, r) ∈ C2m, λ ∈ C \ {0}. (5.5)

Denote by Ts1(y̌, ž, λ) the evolution operator of system (5.5). It holds

CλΥ1(λ)Ts1

(
2
√
|λ|`0, 0, λ

)
C−1
λ = Υ(u0, λ)Ts(2`0, 0, λ), λ ∈ CΛ \ E

−1
f ,0(0), (5.6)

with

Cλ :=
(

I 0
0
√
|λ|D1

)
, Υ1(λ) :=

(
I 0

(|λ|D1)−
1
2 G(u0, λ) I

)
.

We regard system (5.5) as a perturbation of√
D1uy̌ = r,√
D1ry̌ =

λ

|λ|
u,

(u, r) ∈ C2m, λ ∈ C \ {0}. (5.7)

Consider the set ΣK defined in (5.4). Clearly, there exists a K > 0 such that (5.7) has for each
λ ∈ ΣK an exponential dichotomy on R with λ-independent constants and rank m projections,

P1(λ) =
1
2

(
I −

|λ|
λ

I
− λ
|λ|

I I

)
. (5.8)

Taking K > 0 larger if necessary, Proposition 4.12 implies that (5.5) admits an exponential di-
chotomy on [0, 2

√
|λ|`0] with λ-independent constants and corresponding projections P2(x, λ)

satisfying

‖P2(x, λ) − P1(λ)‖ ≤
C
|λ|
, x ∈

[
0, 2

√
|λ|`0

]
, λ ∈ ΣK . (5.9)
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One readily observes from (5.8) that there exists bases Bu,s
1 (λ) ∈ Mat2m×m(C) of P1(λ)[C2m] =

Bs
1(λ)[Cm] and ker(P1(λ)) = Bu

1(λ)[Cm] such that for each λ ∈ ΣK the quantity det(Bu
1(λ), Bs

1(λ))
is bounded away from 0 by a λ-independent constant. Define Bs

2(λ) = P2(0, λ)Bs
1(λ) and

Bu
2(λ) = (I − P2(2

√
|λ|`0, λ))Bu

1(λ). By estimate (5.9) it holds∥∥∥Bu,s
2 (λ) − Bu,s

1 (λ)
∥∥∥ ≤ C
|λ|
, λ ∈ ΣK . (5.10)

Consider the invertible matrix,

H(λ) :=
(
Ts1

(
0, 2

√
|λ|`0, λ

)
Bu

2(λ), Bs
2(λ)

)
, λ ∈ ΣK .

Taking K > 0 larger if necessary, Proposition 5.5 yields that Xin(·, u0, λ) is for each λ ∈ ΣK

exponentially localized with λ-independent decay rates. Thus, by (5.10) we have∥∥∥∥(Υ1(λ)Ts1

(
2
√
λ`0, 0, λ

)
− γ

)
H(λ) −

(
Bu

1(λ),−γBs
1(λ)

)∥∥∥∥ ≤ C
√
|λ|
, λ ∈ ΣK .

Taking determinants in the previous expression gives∥∥∥∥Es,0(λ, γ) det(H(λ)) − (−γ)m det
(
Bu

1(λ), Bs
1(λ)

)∥∥∥∥ ≤ C
√
|λ|
, γ ∈ S 1, λ ∈ ΣK ,

using (5.6). Since λ 7→ det(Bu
1(λ), Bs

1(λ)) is bounded away from zero on ΣK by a λ-independent
constant and det(H(λ)) is non-zero on ΣK , the slow Evans function Es,0 has no roots in ΣK×S 1,
provided K > 0 is sufficiently large. This proves the third property, because CΛ \ ΣK is
bounded. �

Finally, we establish the singular part of the Laurent series of Es,0(·, γ) at a simple zero of E f ,0
and thereby prove Proposition 3.12.

Corollary 5.9. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. Suppose λ� is a simple zero of
E f ,0. Let ϕλ� = (ϕλ�,1, ϕλ�,2), ψλ� = (ψλ�,1, ψλ�,2), Bλ� and Xλ� as in Proposition 5.5. Define for
λ ∈ Bλ�

ϕ :=
∫ ∞

−∞

∂vH2(u0, vh(z))ϕλ�,1(z)dz ∈ Cm,

ψ :=
∫ ∞

−∞

ψλ�,2(z)∗∂uG(u0, vh(z), 0)dz ∈ Mat1×m(C), (5.11)

Ga(λ) :=
∫ ∞

−∞

[
∂uH2(u0, vh(z)) + ∂vH2(u0, vh(z))Vλ� (z, λ)

]
dz ∈ Matm×m(C),

where Vλ� denotes the upper-left (n × m)-block of the (2n × 2m)-matrix Xλ� . Moreover, let
(ui(x, λ), pi(x, λ)), i = 1, . . . , 2m be a fundamental set of solutions to the slow eigenvalue
problem (3.9). Finally, let C(λ, γ) be the cofactor matrix of

Ua(λ, γ) :=
(

I 0
Ga(λ) I

)
Ts(2`0, 0, λ) − γI ∈ Mat2m×2m(C).
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For all γ ∈ S 1, the singular part of the Laurent series of Es,0(·, γ) at λ� is given by

1
λ − λ�

2m∑
i=1

(ψui(2`0, λ�))
(
ϕT

[
C ji(λ�, γ)

]2m

j=m+1

)
.

Proof. Assume λ� is a simple zero of E f ,0. Using the Laurent series of Xin provided in
Proposition 5.5, we can split off the singular part of G(u0, λ) at λ�. Indeed, we have

G(u0, λ) =
1

λ − λ�
ϕψ + Ga(λ), λ ∈ Bλ� .

Using the multi-linearity of the determinant, we expand

Es,0(λ, γ) = det
[
Ua(λ, γ) +

1
λ − λ�

(
0 0
ϕψ 0

)
Ts(2`0, 0, λ)

]
= det(Ua(λ, γ)) +

1
λ − λ�

2m∑
i=1

(ψui(2`0, λ�))
(
ϕT

[
C ji(λ�, γ)

]2m

j=m+1

)
,

for λ ∈ Bλ� and γ ∈ S 1. �

Remark 5.10. In the case m = 1, Propositions 3.25 and 3.28 imply that γ appears as a factor
in the singular part of the Laurent expansion of Es,0(·, γ) at a simple zero λ� of E f ,0. Therefore,
Es,0(·, γ) has a pole at λ� for some γ ∈ S 1 if and only if Es,0(·, γ) has a pole at λ� for all γ ∈ S 1.
However, in the general setting of Corollary 5.9, the principal part of the Laurent expansion
of Es,0(·, γ) is polynomial in γ. So, it could happen that Es,0(·, γ) has a pole at λ� for all but a
discrete set of γ ∈ S 1. We expect that such a (non-generic) situation occurs precisely when λ�
is a limit point of the zero set

⋃
γ∈S 1 {λ ∈ CΛ : Es,0(λ, γ) = 0}. �

5.2 Approximation of the roots of the Evans function

5.2.1 Introduction
In this section we prove Theorem 3.15. Our plan is to factorize the Evans function into a fast
and a slow component:

Eε(λ, γ) = E f ,ε(λ, γ)Es,ε(λ, γ), (5.12)

and to approximate the factors by the fast and slow Evans functions E f ,0 and Es,0. The
factorization (5.12) is induced by diagonalizing the full eigenvalue problem (3.3) via the
Riccati transform, which is established in §4.6. Rescaling the p-coordinate in (3.3) by a factor
√
ε yields the equivalent system,

ϕx =

( √
εÃ11,ε(x, λ)

√
εA12,ε(x)

A21,ε(x) A22,ε(x, λ)

)
ϕ, ϕ = (u, p, v, q) ∈ C2(m+n), (5.13)
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whereA12,ε,A21,ε andA22,ε are as in (3.4) and

Ã11,ε(x, λ) :=
(

0 D−1
1

ε
(
∂uH1(φ̂p,ε(x), ε) + λ

)
+ ∂uH2(φ̂p,ε(x)) 0

)
.

System (5.13) has the required slow-fast form (4.19) for an application of the Riccati transform.
Moreover, the evolution matrices of systems (3.3) and (5.13) are similar. Therefore, it holds

Eε(λ, γ) = det(T̃ε(0,−Lε, λ) − γT̃ε(0, Lε, λ)), (5.14)

where T̃ε(x, y, λ) is the evolution operator of system (5.13). Yet, an application of the Riccati
transformation to (5.13) is only legitimate when system,

ψx = A22,ε(x, λ)ψ, ψ ∈ C2n, (5.15)

has an exponential dichotomy on R. If λ is not a zero of the fast Evans function, then the
homogeneous fast eigenvalue problem (3.6) admits an exponential dichotomy on R by Propo-
sition 5.2. Using roughness techniques the exponential dichotomy of (3.6) carries over to
the perturbed problem (5.15), whenever λ is away from E−1

f ,0(0). In that case, system (5.13)
diagonalizes via the Riccati transform. Consequently, using the periodicity of system (5.13)
and identity (5.14), the Evans function Eε factorizes as (5.12) for λ away from the roots of E f ,0.

The two blocks, in which (5.13) diagonalizes, can be approximated in terms of the three
eigenvalue problems (3.6), (3.8) and (3.9). This corresponds to approximating the factor E f ,ε

by the fast Evans function E f ,0 and Es,ε by the slow Evans function Es,0. Thus, we obtain
the desired approximation of the roots of Eε by the zeros of the reduced Evans function
E0(λ, γ) = (−γ)nE f ,0(λ)Es,0(λ, γ) using Rouché’s Theorem.

This section is structured as follows. We start by showing that the spectrum of the lin-
earization Lε is contained in an ε-independent sector. This provides an important a priori
bound on the magnitude of the roots of the Evans function Eε. Subsequently, we establish an
exponential dichotomy for system (5.15) for λ away from the zeros of E f ,0. Then, the Riccati
transform yields the desired diagonalization of (5.13) and the factorization of Eε. Then, we
link the factors E f ,ε and Es,ε to E f ,0 and Es,0. Finally, we apply Rouché’s Theorem to conclude
the proof of Theorem 3.15.

5.2.2 A priori bounds on the spectrum

In §3.2 we established the linearization Lε of (1.9) about the periodic pulse solution φ̌p,ε.
By [44, Theorem 1.3.2], the differential operator Lε is sectorial as a sum of a sectorial and a
bounded operator. The bounded part involves multiplication with the matrix function Bε(x),
defined in (3.1), which has a norm of order O(ε−1). Yet, the spectrum of Lε is confined to an
ε-independent sector.
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Proposition 5.11. For ε > 0 sufficiently small, there exists constants ω ∈ R>0 and $ ∈
(π/2, π), both independent of ε, such that the sector Σ := {λ ∈ C : λ , ω, |arg(λ−ω)| ≤ $}∪{ω}
is contained in the resolvent set ρ(Lε).

Proof. In the following, we denote by C > 0 a constant, which is independent of ε and λ.

Our approach is to decompose Lε in more elementary building blocks in order to control
the ε−1-terms in Bε. First, we show that the operator L1,ε : C2

ub(R,Rm) ⊂ Cub(R,Rm) →
Cub(R,Rm) given by

L1,εu = D1ux̌x̌ + ε−1∂uH2(φ̌p,ε(·))u,

is sectorial with an ε-independent sector. Subsequently, we prove this for L̂ε : C2
ub(R,Rm+n) ⊂

Cub(R,Rm+n)→ Cub(R,Rm+n) given by(
u
v

)
7→

(
L1,εu + ε−1∂vH2(φ̌p,ε(·))v

ε2D2vx̌x̌

)
.

Finally, we regard Lε as a perturbation of L̂ε by a bounded operator with O(1)-norm.

Our goal is to show that the spectrum of the periodic differential operator L1,ε is contained in
an ε-independent sector. By [38, Proposition 2.1] it is sufficient to show that the associated
eigenvalue problem, √

D1ux̌ =
√
λp,√

D1 px̌ =

√λ +
∂uH2(φ̌p,ε(x̌))
√
λε

 u,
(u, p) ∈ C2m, (5.16)

has no non-trivial bounded solutions for λ in some ε-independent sector. Here,
√
· is the

principal square root. Denote by T1,ε(x̌, y̌, λ) the evolution operator of system (5.16) and let
T1(x̌, y̌, λ) be the evolution operator of√

D1ux̌ =
√
λp,√

D1 px̌ =
√
λu,

(u, p) ∈ C2m. (5.17)

One readily observes that, whenever λ ∈ C \ R≤0, system (5.17) has an exponential dichotomy
on R with constants C0, µλ > 0 with C0 = 1 and µλ := ‖D1‖

−1/2Re(
√
λ). Since we have

|εLε − `0| < Cε by Theorem 2.3, there exists a constant C1 > 0, independent of ε, such that for
all λ ∈ P1 := {µ ∈ C : Re(

√
µ) ≥ C1} it holds hλ := µ−1

λ sinh−1(4) ≤ `ε := εLε.

Let λ ∈ P1. Using (S1) and Theorem 2.3 we estimate

‖∂uH2(φ̌p,ε(x̌))‖ ≤ Ce−ε
−1µ0 |x̌|, x̌ ∈ [−`ε, `ε].
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Let w̌, ž ∈ R such that 0 ≤ ž − w̌ ≤ 2hλ ≤ 2`ε. Taking into account the 2`ε-periodicity of φ̌p,ε,
we have ∫ ž

w̌

‖∂uH2(φ̌p,ε(x̌))‖
√
|λ|ε

dx̌ ≤
C
√
|λ|
.

Thus, by Proposition 4.1, we establish

‖T1(ž, w̌, λ) − T1,ε(ž, w̌, λ)‖ ≤
C
√
|λ|
, w̌, ž ∈ R with |w̌ − ž| ≤ 2hλ,

where we use that the evolution operator of (5.17) satisfies

‖T1(ž, w̌, λ)‖ ≤ CeRe(
√
λ)|ž−w̌|, w̌, ž ∈ R.

So, there exists an ε-independent constant C2 > 0 such that, whenever λ ∈ P1 satisfies |λ| > C2,
then it holds

‖T1(ž, w̌, λ) − T1,ε(ž, w̌, λ)‖ < 1, w̌, ž ∈ R with |w̌ − ž| ≤ 2hλ. (5.18)

Now let Σ1 be an ε-independent sector disjoint from B(0,C2) ∪ [C \ P1] – see Figure 5.1.
For all λ ∈ Σ1, there are no non-trivial, bounded solutions to (5.16) by combining (5.18)
with Proposition 4.14. So, by [38, Proposition 2.1] the resolvent set ρ(L1,ε) contains the
ε-independent sector Σ1.

Consider the elliptic operator L2 : C2
ub(R,Rn) ⊂ Cub(R,Rn) → Cub(R,Rn) given by L2v =

D2vx̌x̌. Clearly, we have ρ(L2) = C \ R≤0 ⊃ Σ1. For λ ∈ Σ1 the operator on Cub(R,Rm+n)
defined by (

u
v

)
7→

(
(L1,ε − λ)−1(u − ε−1∂vH2(φ̌p,ε(·))(ε2L2 − λ)−1(v))

(ε2L2 − λ)−1(v)

)
,

is an inverse of L̂ε − λ. Therefore, the sector Σ1 is contained in the resolvent set ρ(L̂ε).

Define

Bb,ε(x̌) =

(
∂uH1(φ̌p,ε(x̌), ε) ∂vH1(φ̌p,ε(x̌), ε)
∂uG(φ̌p,ε(x̌), ε) ∂vG(φ̌p,ε(x̌), ε)

)
.

Let Lb,ε : Cub(R,Rm+n)→ Cub(R,Rm+n) be the multiplication operator [Lb,εϕ](x̌) = Bb,ε(x̌)ϕ.
By Theorem 2.3 the norm of Lb,ε is bounded by an ε-independent constant.

Invoking [44, Theorem 1.3.2] and its proof yields the conclusion: the sum Lε = L̂ε +Lb,ε with
domain C2

ub(R,Rm+n) is sectorial with an ε-independent sector Σ ⊂ ρ(Lε), using that ‖Lb,ε‖ is
bounded by an ε-independent constant and Σ1 is independent of ε. �
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Figure 5.1: Construction of the sector Σ1 in the proof of Proposition 5.11.

Let γ ∈ S 1. By Propositions 3.7 and 5.11 the roots of the Evans function Eε(·, γ) in the
half-plane CΛ are confined to an ε- and γ-independent bounded region. In addition, by
Propositions 5.2 and 3.11 the same holds for the zeros of the reduced Evans function E0(·, γ).
Thus, we have established the following result.

Corollary 5.12. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. There exists an open and
bounded set ΣΛ,0 ⊂ CΛ such that⋃

γ∈S 1

{λ ∈ CΛ : E0(λ, γ) = 0 or Eε(λ, γ) = 0} ⊂ ΣΛ,0.

Thus, when proving Theorem 3.15, we may without loss of generality restrict ourselves to the
set ΣΛ,0 by the a priori bounds in Corollary 5.12.

5.2.3 An exponential dichotomy capturing the fast dynamics
We wish to apply the Riccati transformation to the rescaled full eigenvalue problem (5.13)
in order to factorize Eε into a fast and a slow part as in (5.12). However, according to
Theorem 4.19 this is only legitimate, when system (5.15) has an exponential dichotomy on
R. By Proposition 5.2 the homogeneous fast eigenvalue problem (3.6) admits an exponential
dichotomy on R, whenever λ ∈ CΛ \ E

−1
f ,0(0). Using roughness techniques the exponential

dichotomy of (3.6) carries over to the perturbed problem (5.15). Therefore, we establish the
following result.
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Notation 5.13. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1 and ΣΛ,0 ⊂ CΛ as in
Corollary 5.12. For δ > 0, we denote

ΣΛ,δ := ΣΛ,0 \
⋃

λ∈E−1
f ,0(0)

B(λ, δ).

Theorem 5.14. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. Take δ > 0. For ε > 0
sufficiently small, systems (3.6) and (5.15) have for all λ ∈ ΣΛ,δ an exponential dichotomy on
R with ε- and λ-independent constants C, µ f > 0.

Proof. In the following, we denote by C > 0 a constant, which is independent of λ and ε.

Our approach is as follows. First, we establish an exponential dichotomy for (5.15) on
an interval [a, 2Lε − a] for some a > 0, using that the coefficient matrixA22,ε(x, λ) has slowly
varying coefficients and is pointwise hyperbolic along the slow manifold. We extend the
exponential dichotomy to [0, 2Lε]. Similarly, we obtain an exponential dichotomy for (5.15)
on [−2Lε, 0].

Subsequently, we calculate the minimal opening between the kernels and ranges of the di-
chotomy projections at 0. By approximating system (5.15) by the fast eigenvalue problem (3.6),
we show that, whenever λ is contained in ΣΛ,δ, this minimal opening is substantial. Therefore,
Lemma 4.11 provides exponential dichotomies for (5.15) on [−2Lε, 2Lε] and for (3.6) on R.
Finally, we extend the exponential dichotomy of (5.15) to R.

We start by establishing exponential dichotomies for (5.15) on [0, 2Lε] and on [−2Lε, 0].
Theorem 2.3 yields the following estimates,

‖vp,ε(x)‖ ≤ Ce−µ0 min{x,2Lε−x},

‖v′p,ε(x)‖ = ‖D−1
2 qp,ε(x)‖ ≤ Ce−µ0 min{x,2Lε−x},

‖u′p,ε(x)‖ = ε
∥∥∥D−1

1 pp,ε(x)
∥∥∥ ≤ Cε,

x ∈ [0, 2Lε],

which imply∥∥∥∂xA22,ε(x, λ)
∥∥∥ , ∥∥∥A22,ε(x, λ) − A(up,ε(x), λ)

∥∥∥ ≤ C max
{
ε, e−µ0 min{x,2Lε−x}

}
, (5.19)

for x ∈ [0, 2Lε] and λ ∈ ΣΛ,δ, where A(u, λ) is defined in (5.1). First, by Theorem 2.3 and
Lemma 5.1, there exists an ε-independent constant α > 0 such that, for ε > 0 sufficiently
small, the matrix A(up,ε(x), λ) is hyperbolic for each x ∈ [0, 2Lε] and λ ∈ ΣΛ,δ with spectral
gap larger than 2α. Thus, by estimate (5.19) there exists x0 > 0, independent of ε, such
that A22,ε is hyperbolic on [x0, 2Lε − x0] × ΣΛ,δ with spectral gap larger than α. Second,
A22,ε is bounded on [0, 2Lε] × ΣΛ,δ by an ε-independent constant using Theorem 2.3. Thus,
taking x0 > 0 larger if necessary, Proposition 4.8 and (5.19) yield, provided ε > 0 is suf-
ficiently small, an exponential dichotomy for system (5.15) on [x0, 2Lε − x0] with ε- and
λ-independent constants. Using Lemma 4.9 we extend this to an exponential dichotomy
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on [0, 2Lε] with constants independent of ε and λ. Similarly, we obtain an exponential di-
chotomy for (5.15) on [−2Lε, 0]. We conclude that (5.15) has exponential dichotomies on
both [0, 2Lε] and [−2Lε, 0] for every λ ∈ ΣΛ,δ with constants C, α f > 0, independent of ε and λ.

We compare system (5.15) with the homogeneous fast eigenvalue problem (3.6). First, by
Theorem 2.3 and estimate (2.6), the corresponding coefficient matricesA22,ε andA22,0(·, u0, ·)
are bounded on R×ΣΛ,δ by a constant M > 1, which is independent of ε. Second, Theorem 2.3
yields∥∥∥A22,ε(x, λ) −A22,0(x, u0, λ)

∥∥∥ ≤ Cε| log(ε)|, x ∈ [log(ε),−log(ε)], λ ∈ ΣΛ,δ. (5.20)

Denote by Tr(x, y, λ) and T f ,ε(x, y, λ) the evolution operators of (3.6) and (5.15), respectively.
Using Lemma 4.1 and (5.20) we estimate

‖Tr(x, y, λ) − T f ,ε(x, y, λ)‖ < 1, x, y ∈ [log(ε)/4M,−log(ε)/4M], λ ∈ ΣΛ,δ. (5.21)

We recall some facts from Proposition 5.2. First, system (3.6) admits for each λ ∈ CΛ

exponential dichotomies on both half-lines with constants that depend continuously on
λ. Second, the corresponding projections Q f ,±(x, λ) are analytic in λ. Third, the sub-
spaces E s

0(λ) := Q f ,+(0, λ)[C2n] and Eu
0(λ) := ker(Q f ,−(0, λ)) are complementary for each

λ ∈ CΛ \E
−1
f ,0(0). Therefore, Proposition 4.18 implies that the continuous map ηr : CΛ → [0,∞)

given by the minimal opening ηr(λ) = η(E s
0(λ), Eu

0(λ)) is bounded away from 0 on the set
ΣΛ,δ. Hence, the projection on E s

0(λ) along Eu
0(λ) is well-defined on ΣΛ,δ and bounded by

a λ-independent constant by Proposition 4.18. Thus, Lemma 4.11 yields for each λ ∈ ΣΛ,δ

an exponential dichotomy of the homogeneous fast eigenvalue problem (3.6) on R with λ-
independent constants.

Denote by Q±,ε(x, λ) the projections corresponding to the exponential dichotomies of (5.15)
on [0, 2Lε] and on [−2Lε, 0]. Let λ ∈ ΣΛ,δ. By combining estimate (5.21) with Lemma 4.13,
there exists for each w ∈ E s

ε(λ) := Q+,ε(0, λ)[C2n] an element v ∈ E s
0(λ) such that

‖v − w‖ ≤ Cεα f /4M‖w‖. (5.22)

Similarly, there exists for each w ∈ Eu
ε(λ) := ker(Q−,ε(0, λ)) a vector v ∈ Eu

0(λ) such that (5.22)
holds true. Therefore, Proposition 4.18 yields the estimate∣∣∣ηr(λ) − η(E s

ε(λ), Eu
ε(λ))

∣∣∣ ≤ Cεα f /4M , λ ∈ ΣΛ,δ. (5.23)

Finally, we establish the desired exponential dichotomy for (5.15) on R. Recall that the
map ηr is bounded away from 0 on ΣΛ,δ. Thus, by estimate (5.23) and Proposition 4.18
one deduces that, for ε > 0 sufficiently small, E s

ε(λ) and Eu
ε(λ) are complementary on ΣΛ,δ.

So, the projection Qε(λ) onto E s
ε(λ) along Eu

ε(λ) is well-defined for λ ∈ ΣΛ,δ. In addition,
by Proposition 4.18 and (5.23), the norm of Qε is bounded on ΣΛ,δ by an ε-independent
constant. Therefore, Lemma 4.11 implies that (5.15) admits an exponential dichotomy for
each λ ∈ ΣΛ,δ on [−2Lε, 2Lε] with λ- and ε-independent constants. Subsequently, for each
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λ ∈ ΣΛ,δ, Lemma 4.10 yields an exponential dichotomy for system (5.15) on R with λ- and ε-
independent constants, where we use that the coefficient matrixA22,ε is ε-uniformly bounded
on R × ΣΛ,δ. �

In Theorem 5.14 we established exponential dichotomies on R for the homogeneous fast
eigenvalue problem (3.6) and its perturbation (5.15). This enables us to compare solutions to
the inhomogeneous fast eigenvalue problem (3.8) and its perturbation,

Ψx = A22,ε(x, λ)Ψ +A21,ε(x), Ψ ∈ Mat2n×2m(C). (5.24)

Corollary 5.15. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. Take δ > 0. For each
λ ∈ ΣΛ,δ, there exists a unique bounded solution Ψε(x, λ) to (5.24) satisfying

‖Ψε(x, λ) − Xin(x, u0, λ)‖ ≤ Cε| log(ε)|, x ∈ [−Lε, Lε], λ ∈ ΣΛ,δ,

where C > 0 is a λ- and ε-independent constant.

Proof. In the following, we denote by C > 0 a constant, which is independent of ε and λ.

Systems (3.6) and (5.15) have by Theorem 5.14 for each λ ∈ ΣΛ,δ an exponential dichotomy on
R with constants C, µ f > 0, which are independent of ε and λ. Let µ0 > 0 be as in Theorem 2.3
and take χ := 2/min{µ f , µ0}. Theorem 2.3 yields∥∥∥A22,ε(x, λ) −A22,0(x, u0, λ)

∥∥∥ , ∥∥∥A21,ε(x) −A21,0(x, u0)
∥∥∥ ≤ Cε| log(ε)|,

for x ∈ [2χ log(ε),−2χ log(ε)] and λ ∈ ΣΛ,δ. Now, we apply Proposition 4.15 to the inhomo-
geneous equations (3.8) and (5.24): there exists a unique bounded solution Ψε(x, λ) to (5.24)
satisfying

‖Ψε(x, λ) − Xin(x, u0, λ)‖ ≤ Cε| log(ε)|, x ∈ [χ log(ε),−χ log(ε)], λ ∈ ΣΛ,δ, (5.25)

where we use that A22,ε,A22,0(·, u0, ·) and Xin(·, u0, ·) are ε-uniformly bounded on R × ΣΛ,δ

andA21,ε andA21,0(·, u0) are ε-uniformly bounded on R by Theorem 2.3 and Proposition 5.5.
Furthermore, by Theorem 2.3, estimate (2.6) and (S1) we have

‖A21,ε(x)‖ ≤ Ce−µ0 |x|, x ∈ [−Lε, Lε],

‖A21,0(x, u0)‖ ≤ Ce−µh |x|, x ∈ R,
λ ∈ ΣΛ,δ.

Combing the latter with Proposition 4.15 implies

‖Ψε(x, λ)‖ ≤ Ce−min{µ f ,µ0}|x|/2, x ∈ [−Lε, Lε].

‖Xin(x, u0, λ)‖ ≤ Ce−min{µ f ,µh}|x|/2, x ∈ R,
λ ∈ ΣΛ,δ, (5.26)

which proves that (5.25) actually holds for all x ∈ [−Lε, Lε] and λ ∈ ΣΛ,δ. �
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5.2.4 Factorization of the Evans function via the Riccati transform
We employ the Riccati transform to diagonalize the rescaled full eigenvalue problem (5.13).
This yields the factorization (5.12) of the Evans function.

Theorem 5.16. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. Take δ > 0. For ε > 0
sufficiently small, there exists a function Uε : R × ΣΛ,δ → Mat2n×2m(C) such that we have the
factorization,

Eε(λ, γ) = Es,ε(λ, γ)E f ,ε(λ, γ), λ ∈ ΣΛ,δ, γ ∈ C,

with Es,ε,E f ,ε : ΣΛ,δ × C→ C given by

Es,ε(λ, γ) := det(Tsd,ε(0,−Lε, λ) − γTsd,ε(0, Lε, λ)),
E f ,ε(λ, γ) := det(T f d,ε(0,−Lε, λ) − γT f d,ε(0, Lε, λ)).

where Tsd,ε(x, y, λ) is the evolution operator of system,

χx =
√
ε
(
Ã11,ε(x, λ) +A12,ε(x)Uε(x, λ)

)
χ, χ ∈ C2m, (5.27)

and T f d,ε(x, y, λ) is the evolution operator of system,

ωx =
(
A22,ε(x, λ) −

√
εUε(x, λ)A12,ε(x)

)
ω, ω ∈ C2n. (5.28)

In addition, Uε enjoys the following properties:

1. Uε is bounded by an ε-independent constant on its domain R × ΣΛ,δ;

2. Uε(·, λ) is 2Lε-periodic for each λ ∈ ΣΛ,δ;

3. Take

Ξε := −
12 log(ε)

min{µh, µ0, µ f }
,

where µh > 0 is as in (2.6), µ0 > 0 is as in Theorem 2.3 and µ f > 0 is as in Theorem 5.14.
It holds,

‖Uε(x, λ) − Xin(x, u0, λ)‖ ≤ C
√
ε| log(ε)|, x ∈ [0, 2Lε],

‖Uε(x, λ)‖ ≤ Cε3, x ∈ [Ξε, 2Lε − Ξε],
λ ∈ ΣΛ,δ, (5.29)

where C > 0 is a λ- and ε-independent constant.

Proof. In the following, we denote by C > 0 a constant, which is independent of λ and ε.

System (5.13) is clearly of the slow-fast form (4.19) with coefficient matrices that are ε-
uniformly bounded on R×ΣΛ,δ by Theorem 2.3. Furthermore, by Theorem 5.14, system (5.15)
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admits for every λ ∈ ΣΛ,δ an exponential dichotomy on R with λ- and ε-independent constants
C, µ f > 0. Hence, we can apply the Riccati transform to (5.13). Thus, Theorem 4.19 yields
matrix functions Hε(x, λ) ∈ Mat2(m+n)×2(m+n)(C) and Uε(x, λ) ∈ Mat2n×2m(C) such that the
change of variables ϕ(x) = Hε(x, λ)ψ(x) transforms (5.13) into the diagonal system,

ψx =

( √
ε
(
Ã11,ε(x, λ) +A12,ε(x)Uε(x, λ)

)
0

0 A22,ε(x, λ) −
√
εUε(x, λ)A12,ε(x)

)
ψ, (5.30)

with ψ ∈ C2(m+n). The evolution Td,ε(x, y, λ) of system (5.30) is a block-diagonal matrix with
consecutively Tsd,ε(x, y, λ) and T f d,ε(x, y, λ) on its diagonal. Furthermore, Hε(·, λ) and Uε(·, λ)
are 2Lε-periodic by Theorem 4.19 for any λ ∈ ΣΛ,δ. Finally, since Hε(x, λ) is a product of
two triangular matrices with only ones on the diagonal by (4.23), the determinant of Hε(x, λ)
equals 1 for every (x, λ) ∈ R × ΣΛ,δ. Therefore, we obtain the factorization,

Eε(λ, γ) = det
(
Hε(0, λ)

[
Td,ε(0,−Lε, λ) − γTd,ε(0, Lε, λ)

]
Hε(Lε, λ)−1

)
= Es,ε(λ, γ)E f ,ε(λ, γ),

where we use that the Evans function can be expressed as (5.14).

We establish the above properties of Uε. The first two properties follow immediately from
Theorem 4.19. Furthermore, combining (4.25) with Corollary 5.15, settles the first estimate
in (5.29). For the second estimate in (5.29) we use the method of successive approximation.
Theorem 2.3 and (S1) yield

‖A21,ε(x)‖ ≤ Ce−µ0 |x|, x ∈ [−Lε, Lε]. (5.31)

Because Uε is ε-uniformly bounded on R×ΣΛ,δ, estimates (4.26) and (5.31) yield ‖Uε(x, λ)‖ ≤
C
√
ε for x ∈ [Ξε/4, 2Lε − Ξε/4] and λ ∈ ΣΛ,δ. Thus, employing (4.26) and (5.31) again gives

‖Uε(x, λ)‖ ≤ Cε
√
ε for x ∈ [Ξε/2, 2Lε − Ξε/2] and λ ∈ ΣΛ,δ. Finally, a third application

of (4.26) and (5.31) leads to the second estimate in (5.29). �

Theorem 5.16 provides a diagonalization of the rescaled full eigenvalue problem (5.13) into
two lower-dimensional problems (5.27) and (5.28). The diagonalization yields a factorization
of the Evans function Eε into two factors Es,ε and E f ,ε. By relating (5.27) and (5.28) to the
three eigenvalue problems (3.6), (3.8) and (3.9), we link Es,ε to the slow Evans function Es,0
and E f ,ε to the fast Evans function E f ,0.

First, we consider problem (5.27). Along the pulse, the transformation matrix Uε(x, λ) is
approximated by the solution Xin(x, u0, λ) to the inhomogeneous fast eigenvalue problem (3.8).
On the other hand, along the slow manifold, Uε is small and system (5.27) is a perturbation
of the slow eigenvalue problem (3.9). Thus, we observe that both (3.8) and (3.9) govern the
leading-order dynamics in system (5.27). This leads to the following approximation result.

Lemma 5.17. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. Take δ > 0. For ε > 0
sufficiently small, the map Es,ε, defined in Theorem 5.16, is approximated as∣∣∣Es,ε(λ, γ) − Es,0(λ, γ)

∣∣∣ ≤ C
√
ε| log(ε)|2, λ ∈ ΣΛ,δ, γ ∈ S 1, (5.32)

where C > 0 is a constant, which is independent of λ and ε.
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Proof. In the following, Ξε is as in Theorem 5.16 and C > 0 is a constant, which is indepen-
dent of ε and λ.

Our approach is as follows. We introduce a splitting of the coefficient matrix of system (5.27)
that is consistent with the decay behavior along the slow manifold, i.e. we write

Ã11,ε(x, λ) +A12,ε(x)Uε(x, λ) = B1,ε(x, λ) + B2,ε(x, λ),

with

B1,ε(x, λ) :=
(

0 D−1
1

ε
(
∂uH1(up,ε(x), 0, ε) + λ

)
0

)
,

B2,ε(x, λ) :=
(

0 0
B2,ε(x) 0

)
+A12,ε(x)Uε(x, λ),

B2,ε(x) := ∂uH2(up,ε(x), vp,ε(x)) + ε
(
∂uH1(up,ε(x), vp,ε(x), ε) − ∂uH1(up,ε(x), 0, ε)

)
.

Theorems 2.3 and 5.16 and assumption (S1) imply that B1,ε and B2,ε are ε-uniformly bounded
on R × ΣΛ,δ and it holds

‖B2,ε(x, λ)‖ ≤ Cε3, x ∈ [Ξε, 2Lε − Ξε], λ ∈ ΣΛ,δ. (5.33)

The splitting gives rise to an intermediate system,

χx =
√
εB1,ε(x, λ)χ, χ ∈ C2m. (5.34)

On the one hand, system (5.34) is a perturbation of (a rescaled version of) the slow eigenvalue
problem (3.9). On the other hand, (5.27) and (5.34) are related via the variation of constants
formula. This leads to the desired approximation of Es,ε by Es,0 on ΣΛ,δ.

First, we relate systems (5.27) and (5.34) via the variation of constants formula. Denote
by Tsd,ε(x, y, λ) and Tis,ε(x, y, λ) the evolution operators of system (5.27) and (5.34), respec-
tively. Lemma 4.1 gives the estimate,

‖Tsd,ε(x, y, λ) − I‖, ‖Tis,ε(x, y, λ) − I‖ ≤ C
√
ε| log(ε)|, x, y ∈ [−Ξε,Ξε], λ ∈ ΣΛ,δ. (5.35)

On the other hand, upon rescaling the p-coordinate in (5.34), one obtains the Grönwall
estimates,

‖Tsd,ε(x, y, λ)‖, ‖Tis,ε(x, y, λ)‖ ≤
C
√
ε

eεµs |x−y|, x, y ∈ R, λ ∈ ΣΛ,δ, (5.36)

where µs > 0 is a λ- and ε-independent constant. Thus, combining (5.33) and (5.36) with
Lemma 4.1 gives

‖Tsd,ε(x, y, λ) − Tis,ε(x, y, λ)‖ ≤ Cε2, x, y ∈ [Ξε, 2Lε − Ξε], λ ∈ ΣΛ,δ, (5.37)
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where we use that |εLε−`0| ≤ Cε by Theorem 2.3. We apply the variation of constants formula
and write

Tsd,ε(0, Lε, λ) = Tis,ε(0, Lε, λ) −
√
ε

∫ Lε

0
Tis,ε(0, z, λ)B2,ε(z, λ)Tsd,ε(z, Lε, λ)dz, (5.38)

for λ ∈ ΣΛ,δ. Estimates (5.33) and (5.36) yield∥∥∥∥∥∥
∫ Lε

Ξε

Tis,ε(0, z, λ)B2,ε(z, λ)Tsd,ε(z, Lε, λ)dz

∥∥∥∥∥∥ ≤ Cε, λ ∈ ΣΛ,δ. (5.39)

Applying (5.36), (5.37) and (5.39) to (5.38) gives∥∥∥Tsd,ε(0, Lε, λ) − F+,ε(λ)Tis,ε(0, Lε, λ)
∥∥∥ ≤ Cε

√
ε| log(ε)|, λ ∈ ΣΛ,δ, (5.40)

where

F+,ε(λ) := I −
√
ε

∫ Ξε

0
Tis,ε(0, z, λ)B2,ε(z, λ)Tsd,ε(z,Ξε, λ)dzTis,ε(Ξε, 0, λ).

Using (5.35), we derive∥∥∥∥∥∥F+,ε(λ) − I +
√
ε

∫ Ξε

0
B2,ε(z, λ)dz

∥∥∥∥∥∥ ≤ Cε| log(ε)|2, λ ∈ ΣΛ,δ. (5.41)

Recall that the (2n × 2m)-matrix Xin(x, u0, λ) is a composition of four block matrices, where
Vin(x, u0, λ) is the upper-left n × m-block. Theorems 2.3 and 5.16 and estimates (2.6), (5.26)
and (5.41) yield∥∥∥∥∥∥F+,ε(λ) −

(
I 0

−
√
ε
∫ ∞

0 [∂uH2(u0, vh(x)) + ∂vH2(u0, vh(x))Vin(x, u0, λ)] dx I

)∥∥∥∥∥∥ ≤ Cε| log(ε)|2,

(5.42)

for any λ ∈ ΣΛ,δ.

Our next step is to relate systems (3.9) and (5.34). We apply two operations on system (5.34).
First, we perform the coordinate change χ = Cεχ̃, where Cε :=

(
I 0
0
√
ε

)
∈ Mat2m×2m(C). Second,

we switch to the spatial scale x̌ = εx. Thus, Lemma 4.1 yields the following estimate,

‖C−1
ε Tis,ε(0, Lε, λ)Cε − Ts(0, `0, λ)‖ ≤ Cε, λ ∈ ΣΛ,δ, (5.43)

where Ts(x̌, y̌, λ) is the evolution operator of the slow eigenvalue problem (3.9).

Finally, we approximate Es,ε by the slow Evans function Es,0. Applying (5.40), (5.42)
and (5.43) to (5.38) yields∥∥∥C−1

ε Tsd,ε(0, Lε, λ)Cε − Υ+(λ)Ts(0, `0, λ)
∥∥∥ ≤ C

√
ε| log(ε)|2, λ ∈ ΣΛ,δ, (5.44)
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with

Υ+(λ) :=
(

I 0
−

∫ ∞
0 [∂uH2(u0, vh(x)) + ∂vH2(u0, vh(x))Vin(x, u0, λ)] dx I

)
.

Similarly, we derive∥∥∥C−1
ε Tsd,ε(0,−Lε, λ)Cε − Υ−(λ)Ts(2`0, `0, λ)

∥∥∥ ≤ C
√
ε| log(ε)|2, λ ∈ ΣΛ,δ, (5.45)

with

Υ−(λ) :=
 I 0∫ 0
−∞

[∂uH2(u0, vh(x)) + ∂vH2(u0, vh(x))Vin(x, u0, λ)] dx I

 .
For any λ ∈ ΣΛ,δ, we have det(Ts(0, `0, λ)) = 1 and Υ+(λ)−1Υ−(λ) = Υ(u0, λ), where Υ(u, λ) is
defined in (3.11). Combining the latter with estimates (5.44) and (5.45) yields (5.32). �

It remains to link the factor E f ,ε to the fast Evans function E f ,0.

Lemma 5.18. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. Take δ > 0. There exists µp > 0
such that, for ε > 0 sufficiently small, there is a map hε : ΣΛ,δ → C satisfying

0 < |hε(λ)| ≤ Ce−µpLε ,∣∣∣E f ,ε(λ, γ)hε(λ) − (−γ)nE f ,0(λ)
∣∣∣ ≤ Cεµp ,

λ ∈ ΣΛ,δ, γ ∈ S 1,

where E f ,ε is as in Theorem 5.16 and C > 0 is a constant, which is independent of λ and ε.

Proof. In the following, we denote by C > 0 a constant, which is independent of ε and λ.

Our approach is as follows. Using roughness techniques we show that system (5.28) has
for each λ ∈ ΣΛ,δ an exponential dichotomy on R with projections P f d,ε(x, λ). Moreover, by
Proposition 5.2, the homogeneous fast eigenvalue problem (3.6) admits for every λ ∈ ΣΛ,δ

exponential dichotomies on [0,∞) and (−∞, 0] with λ-independent constants C, µr > 0 and
projections Q f ,±(x, λ). Recall that the fast Evans function E f ,0 is defined in terms of bases Bs

f (λ)
and Bu

f (λ) of Q f ,+(0, λ)[C2n] and ker(Q f ,−(0, λ)), respectively. By comparing system (5.28)
to (3.6), we construct bases Bu,s

ε (λ) of P f d,ε(0, λ)[C2n] and ker(P f d,ε(0, λ)), which are close
to Bu,s

f (λ). By tracking the bases Bu,s
ε (λ) either forward or backward, we obtain bases of

P f d,ε(Lε, λ)[C2n] and ker(P f d,ε(Lε, λ)). These bases will form the column vectors of a matrix
Hε(λ), which connects E f ,ε to E f ,0.

We start by establishing an exponential dichotomy on R for system (5.28). System (5.15) has
by Theorem 5.14 an exponential dichotomy on R with ε- and λ-independent constants. In
addition, by Theorems 2.3 and 5.16,A12,ε and Uε are ε-uniformly bounded on R and R× ΣΛ,δ,
respectively. Therefore, Proposition 4.12 yields that (5.28) has, provided ε > 0 is sufficiently
small, an exponential dichotomy on R with projections P f d,ε(x, λ) and ε- and λ-independent
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constants C, µd > 0. Since the coefficient matrix of (5.28) is 2Lε-periodic by Theorem 5.16,
the projections P f d,ε(·, λ) are also 2Lε-periodic – see [14, Proposition 8.4].

Our next step is to compare system (5.28) to the homogeneous fast eigenvalue problem (3.6).
Theorems 2.3 and 5.16 yield∥∥∥A22,ε(x, λ) −

√
εUε(x, λ)A12,ε(x) −A22,0(x, u0, λ)

∥∥∥ ≤ C
√
ε, x ∈ [log(ε),− log(ε)].

(5.46)

By (E1) there exists an M > 1 such thatA22,0(·, u0, ·) is bounded by M on R×ΣΛ,δ. Denote by
Tr(x, y, λ) and T f d,ε(x, y, λ) the evolution operators of (3.6) and (5.28), respectively. Provided
that ε > 0 is sufficiently small, Lemma 4.1 and estimate (5.46) imply

‖Tr(x, y, λ) − T f d,ε(x, y, λ)‖ < 1, x, y ∈
[
log(ε)

8M
,−
χ log(ε)

8M

]
, λ ∈ ΣΛ,δ. (5.47)

Since λ 7→ Bu,s
f (λ) is analytic on CΛ by Proposition 5.2, Bu,s

f is bounded on ΣΛ,δ. Now,
combine estimate (5.47) and Lemma 4.13: there exists, for ε > 0 sufficiently small, bases
Bu,s
ε : ΣΛ,δ → Mat2n×n(C) of P f d,ε(0, λ)[C2n] = Bs

ε[C
n] and ker(P f d,ε(0, λ)) = Bu

ε[C
n], such that

‖Bu,s
ε (λ) − Bu,s

f (λ)‖ ≤ Cεµr/(8M), λ ∈ ΣΛ,δ. (5.48)

Since Bu,s
f is bounded on ΣΛ,δ, the some holds for Bu,s

ε by (5.48).

Finally, we link E f ,ε to the fast Evans function E f ,0. Define

Hε(λ) :=
(
T f d,ε(−Lε, 0, λ)Bu

ε(λ),T f d,ε(Lε, 0, λ)Bs
ε(λ)

)
, λ ∈ ΣΛ,δ.

Since P f d,ε(·, λ) is 2Lε-periodic, the first n columns of Hε(λ) form a basis of the space
ker(P f d,ε(Lε, λ)) and the last n columns form a basis of P f d,ε(Lε, λ)[C2n]. Thus, Hε(λ) is
invertible. By Hadamard’s inequality we have | det(Hε(λ))| ≤ Ce−2nµd Lε for each λ ∈ ΣΛ,δ.
Moreover, using that P f d,ε(·, λ) is 2Lε-periodic, we estimate

‖T f d,ε(0, Lε, λ)T f d,ε(−Lε, 0, λ)Bu
ε(λ)‖ ≤ Ce−2µd Lε ,

‖T f d,ε(0,−Lε, λ)T f d,ε(Lε, 0, λ)Bs
ε(λ)‖ ≤ Ce−2µd Lε ,

λ ∈ ΣΛ,δ. (5.49)

We combine estimates (5.48) and (5.49) and derive∥∥∥∥(T f d,ε(0,−Lε, λ) − γT f d,ε(0, Lε, λ)
)
Hε(λ) −

(
Bu

f (λ), γBs
f (λ)

)∥∥∥∥ ≤ Cεµr/(8M),

for λ ∈ ΣΛ,δ and γ ∈ S 1. Taking determinants and defining hε(λ) := det(Hε(λ)) concludes the
proof. �

Remark 5.19. In the proof of Lemma 5.18, the connection between E f ,ε and E f ,0 is given by
the matrix Hε. This idea is taken from the proof of [99, Theorem 2]. However, the context
in [99] is different: here it is shown that the eigenvalues of a periodic boundary value problem
are exponentially close to the eigenvalues of the corresponding unbounded problem. �
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5.2.5 Conclusion

In contrast to the approximation of Es,ε by Es,0 in Lemma 5.17, we need to rescale E f ,ε

in Lemma 5.18 by an exponentially small quantity hε in order to approximate it by the ε-
independent fast Evans function E f ,0. This quantity prevents us from directly estimating the
Evans function Eε by the reduced Evans function E0(λ, γ) = (−γ)nEs,0(λ, γ)E f ,0(λ). Neverthe-
less, it is still possible to compare the zero sets of Eε and E0 using the classical symmetric
version of Rouché’s Theorem due to Estermann. This yields the proof of Theorem 3.15.

Proof of Theorem 3.14. Let Λ ∈ (−Λ0, 0) with Λ0 > 0 as in Lemma 5.1. Let S ⊂ S 1 be
closed. Take a simple closed curve Γ in CΛ \ [NS ∪ E

−1
f ,0(0)], where NS is as in (3.16). Since

Eε(·, γ) and E0(·, γ) have no roots in CΛ \ ΣΛ,0 for each γ ∈ S by Corollary 5.12, we may
assume Γ ⊂ ΣΛ,0 \ [NS ∪ E

−1
f ,0(0)]. Observe that there exists δ > 0 such that Γ ⊂ ΣΛ,δ \ NS ,

since Γ avoids the set of roots of E f ,0, which is discrete by Proposition 5.2.

By Propositions 3.7 and 3.11, Eε(·, γ) and E0(·, γ) are analytic on Γ and its interior for each
γ ∈ S . Furthermore, E0 is bounded away from 0 on the compact set Γ×S , because Γ is disjoint
fromNS and E0 is analytic on CΛ ×C by Proposition 3.11. Hence, for ε > 0 sufficiently small,
we have

|Eε(λ, γ) − E0(λ, γ)| ≤ |Es,ε(λ, γ)E f ,ε(λ, γ)hε(λ) − (−γ)nEs,0(λ, γ)E f ,0(λ)|
+ (1 − hε(λ))|Eε(λ, γ)|

< |E0(λ, γ)| + |Eε(λ, γ)|,
λ ∈ Γ, γ ∈ S ,

by Theorem 5.16 and Lemmas 5.17 and 5.18. The result follows by an application of the
symmetric version of Rouché’s Theorem. �

Remark 5.20. The technical Lemmas 5.17 and 5.18 seem to provide a rate at which the
spectrum σ(Lε) converges to its singular limit. However, the approximations in these lemmas
are only valid away from the zeros of the fast Evans function E f ,0! So, one can only deduce
that spectrum converging to{

λ ∈ C : Es,0(λ, γ) = 0 for some γ ∈ S 1
}
\ E−1

f ,0(0),

does this at an algebraic rate of order O(
√
ε). We expect that this rate is in fact of order O(ε)

and that the square root appears due to the rescaling of the full eigenvalue problem (3.3)
in §5.2.1. By making the parameter δ appearing in the proof of Lemma 5.18 dependent on
ε, it might be possible to derive an overall rate at which the spectrum σ(Lε) converges to
its singular limit spectrum. However, this is beyond the scope of this thesis. Yet, we derive
in §5.3 that the critical spectral curve, which is attached to the origin, scales with ε2. This
suggest that spectrum converging to the roots of E f ,0 does this at an algebraic rate of order
O(ε2). �
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5.2.6 Discussion

As mentioned in the introduction in Chapter 1, our factorization method via the Riccati trans-
formation of the Evans function offers one unified analytic alternative to both the elephant
trunk procedure developed by Alexander, Gardner and Jones [1, 37] and the NLEP approach
of [21, 22] – that both have a geometric nature. It is worthwhile to compare and discuss the
links between our work and these methods.

Consider a localized pulse solution to a 2-component, singularly perturbed reaction-diffusion
system of the form (1.1). When the associated eigenvalue problem has a slow-fast struc-
ture (1.5), it is a general phenomenon that it decouples outside the pulse region due to
exponential decay of the solution to its asymptotic background state. This yields a decomposi-
tion of the solution space into three subspaces Vs± ⊕ Vc± ⊕ Vu± at both sides (±) of the pulse
region. Here, Vs± consists of (fast) exponentially decaying solutions, whereas Vu± consists of
exponentially increasing solutions. Lastly, Vc± consists of solutions that evolve slowly. In the
sense of [85], one could say that the eigenvalue problem admits exponential separations with
respect to the decompositions Vs± ⊕ Vc± ⊕ Vu±. The difficulty is to ‘glue’ the subspaces V·+
and V·− for · = u, s, c together, yielding an exponential separation of the eigenvalue problem
on the whole line. Eventually, this induces a factorization of the Evans function into a fast and
slow component.

Gardner and Jones achieved this in [37] by considering the eigenvalue problem in projective
space. When the eigenvalue problem is asymptotically of constant coefficient type, one can
obtain stable and unstable bundles. These bundles are then split into fast and slow (un)stable
subbundles. The elephant trunk lemma is used to track the fast (un)stable bundle through
the pulse region. By the control on the fast subbundle, it is possible to approximate the
dynamics of the slow (un)stable subbundles. Eventually, this yields a (1, 2, 1)-exponential
separation (in the sense of [85]) of the eigenvalue problem on R. Note that the 2-dimensional
center direction corresponds to the slow (un)stable subbundles. In our stability analysis, the
Riccati transformation plays the role of the elephant trunk lemma – see Section 5.2.4. This
transformation yields an (n, 2m, n)-exponential separation on R of the eigenvalue problem as
long as we are not close to the eigenvalues of the operator L f , defined in (3.7).

Although the proof of the elephant trunk lemma has been worked out in full detail for some
specific 2-component models [22, 32, 37, 95] only, it is widely accepted that the method can
be followed for a larger class of systems. However, there are some limitations. For instance,
the elephant trunk lemma is only suitable for eigenvalue problems that have an asymptotically
constant coefficient matrix. This is neither a restriction for slowly linear systems as the classi-
cal Gray-Scott and Gierer-Meinhardt models nor for homoclinic pulses on R. However, the
eigenvalue problem associated with spatially periodic patterns in slowly nonlinear systems
exhibits non-autonomous behavior in the background state on its domain of periodicity – and
thus does not approach a constant coefficient matrix. This prohibits the application of the
elephant trunk procedure. Moreover, the elephant trunk lemma is only capable of tracking the
‘most unstable’ fast solution, which corresponds to the (simple) eigenvalue of largest real part



5.2. APPROXIMATION OF THE ROOTS OF THE EVANS FUNCTION 112

of the asymptotic coefficient matrix. Therefore, it is unclear how to obtain the exponential
separation with the elephant trunk method in the multi-component setting n > 1.

Furthermore, there is a major difference in the mathematical framework used in [1, 37]
and our work. The framework in [1, 37] has a highly geometrical character, whereas our
method is of a more analytical nature. Alexander, Gardner and Jones track solutions via vector
bundles arising from the projectivized eigenvalue problem. This has the advantage that the
generated bundles have a clean and natural characterization as ε tends to zero, whereas the
actual solutions of the eigenvalue problem become singular. On the other hand, one could
argue that exponential dichotomies provide a natural framework to capture the dynamics of
the eigenvalue problem being a non-autonomous linear system, which depends analytically
on the spectral parameter λ. The Riccati transformation is naturally formulated in terms of
exponential dichotomies and is explicit in terms of the coefficient matrix of the eigenvalue
problem. Therefore, the exponential separation of the solution space is much more explicit than
in [1, 37], which shortens proofs. Finally, it is interesting to remark that in both the approach
initiated by Alexander, Gardner and Jones and our method we need an a-priori ε-independent
estimate on the sector containing the spectrum. Our proof of this fact in Proposition 5.11 forms
an analytical counterpart to the geometrical proof provided in [1, Proposition 2.2] and [37,
Lemma 3.3].

Based on the geometric methods of Alexander, Gardner and Jones [1, 37], the NLEP ap-
proach was developed in the context of the stability of homoclinic (multi-)pulse patterns in the
Gray-Scott equation [22] and Gierer-Meinhardt-type models [21]. This method established
the approximation of the Evans function by the product (1.4) of an analytic fast Evans func-
tion and a meromorphic slow Evans function and provided explicit analytic expressions for
both factors. The NLEP approach was extended to the spectral analysis of spatially periodic
pulse patterns in the generalized Gierer-Meinhardt equations in [114] and to the stability of
heteroclinic and homoclinic multi-front patterns in 2- and 3-component bistable systems of
FitzHugh-Nagumo-type [23, 116]. Moreover, the method has recently been generalized to
the stability of homoclinic pulses in slowly nonlinear systems in [30, 120]. In each of these
works, the fast and slow Evans functions are interpreted geometrically in terms of fast and
slow transmission functions that encode the passage of specially selected fast and slow basis
functions over the fast pulse regions. The expressions for the slow transmission functions
include Melnikov-type components. The meromorphic character of the slow Evans function
generates the zero-pole cancelation mechanism – also called NLEP paradox – in each of these
models. The spectral analysis for periodic pulse solutions developed here shows that these
phenomena occur in a broad class of multi-component singularly perturbed reaction-diffusion
systems.

Although the present work stands in the tradition of [21, 22, 23, 30, 114, 120], the meth-
ods differ fundamentally. Unlike these works, our analysis is based on an intrinsically analytic
reduction method. This has the advantage that our spectral analysis allows for non-autonomous
behavior of the eigenvalue problem outside the pulse region – a crucial extension in the case
of spatially periodic patterns in slowly nonlinear systems. This extended applicability of the
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present method also plays a role in the spectral analysis of homoclinic patterns as outlined in
Remark 1.4. Moreover, in contrast to the present work, the slow and fast eigenvalue problems
appearing in [21, 22, 23, 30, 114, 120] are scalar, which significantly simplifies the analysis of
these problems. In [21, 22, 114] the slow and fast Evans functions can be explicitly computed
in terms of hypergeometric functions, while in [23, 116] the stability of the (multi-)fronts is
determined by spectrum near the origin, so that the relevant reductions can be determined in a
relatively straightforward manner. An extensive analysis of the multi-component slow and fast
eigenvalue problems, as we did in Section 5.1, is thus not necessary in these cases.

5.3 The critical spectral curve

5.3.1 Introduction

In this section we prove Theorem 3.19. Thus, we assume 0 is a simple zero of the fast Evans
function E f ,0. Moreover, we take δ > 0 and denote

N� =
{
ν ∈ R : Es,0(0, eiν) = 0

}
, Sδ = R \

⋃
ν∈N�

(ν − δ, ν + δ).

For each ν ∈ R\N� the reduced Evans function E0(·, eiν) has a simple root at 0 by Remark 3.13.
Since E0 is analytic by Proposition 3.11, there exists ς > 0 such that there are no other roots of
E0(·, eiν) in the closed ball B(0, ς) for any ν ∈ Sδ. So, provided ε > 0 is sufficiently small, there
exists by Theorem 3.15 a unique (simple) root λε(ν) of Eε(·, eiν) in B(0, ς) for each ν ∈ Sδ. By
Proposition 3.7 λε : Sδ → B(0, ς) is real-valued, 2π-periodic and even. Moreover, since Eε is
analytic by Proposition 3.7, λε : Sδ → R is also analytic by the implicit function theorem. By
translational invariance, it holds λε(0) = 0 if we have 0 ∈ Sδ. Thus, all that remains to prove
Theorem 3.19 is to approximate λε(ν) for any ν ∈ Sδ with an error bound that is ν-uniform.

We describe our approach to obtain a leading-order approximation for λε(ν) for each ν ∈ Sδ.
Fix ν ∈ Sδ. On the one hand, since Eε(λε(ν), eiν) = 0, the full eigenvalue problem (3.3)
admits at λ = λε(ν) a solution ϕ̃ν,ε(x) = (ũν,ε(x), p̃ν,ε(x), ṽν,ε(x), q̃ν,ε(x)), which satisfies
ϕ̃ν,ε(x) = eiνϕ̃ν,ε(x + 2Lε) for each x ∈ R. On the other hand, the derivative φ′p,ε(x) of the
periodic pulse solution φp,ε(x) = (up,ε(x), pp,ε(x), vp,ε(x), qp,ε(x)) to (2.1) is a solution to (3.3)
at λ = 0. Therefore,

ψν,ε(x) :=
(

ṽν,ε(x) − v′p,ε(x)
q̃ν,ε(x) − q′p,ε(x)

)
,

solves the inhomogeneous problem,

ψx = A f (x)ψ +

(
0

Bν,ε(x) + λε(ν)ṽν,ε(x)

)
, ψ ∈ C2n, (5.50)
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whereA f (x) is the coefficient matrix of the fast variational equation (3.15) and Bν,ε(x) is given
by

Bν,ε(x) :=
(

∂uG(φ̂p,ε(x), ε)
∂vG(φ̂p,ε(x), ε) − ∂vG(u0, vh(x, u0), 0)

)T (
ũν,ε(x) − u′p,ε(x)
ṽν,ε(x) − v′p,ε(x)

)
.

By Proposition 5.2 and Corollary 5.4 the fast variational equation (3.15) has exponential
dichotomies on both half-lines and the corresponding differential operator L0 is Fredholm of
index 0. Since 0 is a simple root of E f ,0, L0 has a one-dimensional kernel by Corollary 5.4.
So, there exists a non-trivial, exponentially localized solution ψad(x) = (ψad,1(x), ψad,2(x)) to
the adjoint problem (3.19), which is unique up to scalar multiples. Applying the solvability
condition in [86, Lemma 4.2] to equation (5.50) leads to the key identity,

λε(ν)
∫ ∞

−∞

ψad,2(x)∗ṽν,ε(x)dx = −

∫ ∞

−∞

ψad,2(x)∗Bν,ε(x)dx. (5.51)

Hence, to obtain a leading-order expression of λε(ν), it is sufficient to approximate the two
integrals in (5.51). Thus, we need leading-order expressions of the solution ϕ̃ν,ε(x) to (3.3), of
the solution φ̂p,ε(x) to (1.10) and of the difference ϕ̃ν,ε(x)−φ′p,ε(x). Clearly, we can approximate
φ̂p,ε(x) by its singular limit – see Theorem 2.3. To obtain leading-order expressions for the
other quantities in (5.51), we proceed as follows.

Define

Dη,ε :=
{
λ ∈ C : |λ|| log(ε)| < η

}
, (5.52)

with η > 0 an ε-independent constant. Moreover, consider the intervals,

I f ,ε := [−Ξε,Ξε], Is,ε := [Ξε, 2Lε − Ξε] , Ξε := −
8 log(ε)

min{µ0, µr, µh}
, (5.53)

with µh > 0 as in (2.6), µ0 > 0 as in Theorem 2.3 and µr > 0 as in Lemma 5.1. For
any ν ∈ Sδ and λ ∈ Dη,ε we establish a piecewise continuous solution ϕν,ε(x, λ) to the
full eigenvalue problem (3.3) on I f ,ε ∪ Is,ε, which has a jump only at x = 0 and satisfies
ϕν,ε(−Ξε, λ) = eiνϕν,ε(2Lε − Ξε, λ) – see Figure 5.2. We explicitly construct ϕν,ε via Lin’s
method [10, 70, 118] using the singular limit structure (2.9) the periodic pulse solution φp,ε as
our framework.

By Theorem 2.3, φp,ε(x) is for x ∈ I f ,ε approximated by the pulse solution φh(x, u0) to the fast
reduced system (2.2). Moreover, φp,ε(x) is for x ∈ Is,ε approximated by the solution (ψs(εx), 0)
on the slow manifold, where ψs solves the slow reduced system (2.4). The endpoints of the
intervals Is,ε and I f ,ε correspond to the x-values for which φp,ε(x) converges to one of the two
non-smooth corners (u0,±J(u0)) of the singular concatenation (2.9) as ε→ 0.

For x ∈ I f ,ε, we establish a reduced eigenvalue problem by setting ε and λ to 0 in (3.3),
while approximating φp,ε(x) by the pulse φh(x, u0). The reduced eigenvalue problem admits
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Figure 5.2: A sketch of the piecewise continuous eigenfunction ϕν,ε(·, λ) on its domain of
definition [−Ξε, 2Lε − Ξε]. Also depicted are the u- and v-component of the periodic pulse
solution φ̂p,ε (in the case n = m = 1).

exponential trichotomies on both half-lines. Hence, one can construct solutions to (3.3) for
λ ∈ Dη,ε using variation of constants formulas on the intervals,

I−f ,ε := [−Ξε, 0], I+
f ,ε := [0,Ξε]. (5.54)

We can control the perturbation terms in these formulas by taking η, ε > 0 sufficiently small.

For x ∈ Is,ε, the lower-left blockA21,ε(x) in (3.3) is exponentially small by assumption (S1)
and Theorem 2.3. Thus, we obtain a reduced eigenvalue problem by setting A21,ε(x) to 0
in (3.3), while approximating φp,ε(x) by (ψs(εx), 0). The reduced eigenvalue problem is upper-
triangular and the spectrum of the lower-right block has a consistent splitting into n unstable
and n stable eigenvalues. This splitting yields the existence of an exponential trichotomy
on the interval Is,ε. Thus, one can construct solutions to (3.3) on Is,ε using the variation of
constants formula again.

In summary, we obtain variation of constants formulas for solutions to (3.3) on the three
intervals I±f ,ε and Is,ε. Matching of these expressions yields for any λ ∈ Dη,ε and ν ∈ Sδ a
piecewise continuous solution ϕν,ε(x, λ) to (3.3) on I f ,ε ∪ Is,ε which has a jump at x = 0 and
satisfies ϕν,ε(−Ξε, λ) = eiνϕν,ε(2Lε − Ξε, λ). We show that for any ν ∈ Sδ the jump of ϕν,ε(·, λ)
vanishes at a unique λ-value λ̃ε(ν) ∈ Dη,ε. Thus, since (3.3) is 2Lε-periodic, there exists a
continuous solution ϕ̌ν,ε to (3.3) at λ = λ̃ε(ν) satisfying

ϕ̌ν,ε(x) = ϕν,ε(x, λ̃ε(ν)), x ∈ I f ,ε ∪ Is,ε,

ϕ̌ν,ε(x) = eiνϕ̌ν,ε(2Lε + x), x ∈ R,
ν ∈ Sδ. (5.55)
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Consequently, λ̃ε(ν) must be a zero of the Evans function Eε(·, eiν). Since the Evans function
Eε(·, eiν) has a unique root λε(ν) in B(0, ς), we must have λε(ν) = λ̃ε(ν) for each ν ∈ Sδ.
Since the key identity (5.51) is satisfied for any solution ϕ̃ν,ε to (3.3) at λ = λε(ν) satisfying
ϕ̃ν,ε(x) = eiνϕ̃ν,ε(2Lε + x) for any x ∈ R, it holds in particular for ϕ̃ν,ε = ϕ̌ν,ε.

The variation of constants formulas provide leading-order control over ϕν,ε(x, λ) on the in-
tervals I±f ,ε and Is,ε. Consequently, we obtain approximations for ϕ̌ν,ε and ϕ̌ν,ε − φ′p,ε for each
ν ∈ Sδ. Substituting these into (5.51) yields the desired leading-order expression for λε(ν).

This section is structured as follows. First, we establish the aforementioned reduced eigenvalue
problems along the pulse (i.e. for x ∈ I f ,ε) and along the slow manifold (i.e. for x ∈ Is,ε) and
we generate exponential trichotomies for these problems. Then, we construct solutions to (3.3)
on Is,ε and I±f ,ε using variation of constants formulas. By matching these solutions at the
endpoints of the intervals I±f ,ε and Is,ε we obtain the desired piecewise continuous solution ϕν,ε
to (3.3) on I f ,ε ∪ Is,ε. We show that there is a unique λ-value for which the jump of ϕν,ε(·, λ)
vanishes. Finally, we substitute leading-order approximations of ϕ̌ν,ε and ϕ̌ν,ε − φ′p,ε into the
key identity (5.51) and obtain the desired leading-order expression for λε(ν).

5.3.2 A reduced eigenvalue problem along the pulse
We establish a reduced eigenvalue problem along the pulse by setting ε and λ to 0 in (3.3),
while approximating φp,ε(x) by the pulse φh(x, u0). Thus, the reduced eigenvalue problem
reads

ϕx = A0(x)ϕ, ϕ = (u, p, v, q) ∈ C2(m+n), (5.56)

with

A0(x) :=
(
A1(x) A2(x)
A3(x) A f (x)

)

:=


0 0

∂uH2(u0, vh(x, u0)) 0
0 0

∂vH2(u0, vh(x, u0)) 0
0 0

∂uG(u0, vh(x, u0), 0) 0
0 D−1

2
∂vG(u0, vh(x, u0), 0) 0

 .
Note that (5.56) coincides with the variational equation about the pulse solution φh(x, u0) to
the fast reduced system (2.2).

The u-components of any solution to (5.56) are constant, whereas the p-components are
slaved to the other components. Moreover, given the values of the u-components, the dy-
namics in the v- and q-components is determined by (3.15) via the variation of constants
formula. Therefore, the reduced eigenvalue problem (5.56) is governed by the variational
equation (3.15) about the homoclinic ψh(x, u0) to (2.3) at u = u0.
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Thus, before studying problem (5.56), we study the dynamics of the fast variational equa-
tion (3.15). Naturally, the derivative ∂xψh(x, u0) is a non-trivial, exponentially localized
solution to (3.15). Moreover, since ψh(0, u0) is contained in the space ker(I − R f ) by (E1),
system (3.15) is R f -reversible at x = 0. We establish exponential dichotomies for (3.15) on
both half-lines that respect the reversible symmetry.

Proposition 5.21. Suppose 0 is a simple root of E f ,0. Then, the fast variational equation (3.15)
admits exponential dichotomies on [0,∞) and (−∞, 0] with constants C, µr > 0 and rank n
projections P f ,±(x) satisfying

‖P f ,±(±x) − P f ‖ ≤ Ce−min{µr ,µh}x, x ≥ 0, (5.57)

where µh > 0 is as in (2.6), µr > 0 is as in Lemma 5.1 and P f denotes the spectral projection
onto the stable eigenspace of the asymptotic matrix,

A f ,∞ := lim
x→±∞

A f (x) =

(
0 D−1

2
∂vG(u0, 0, 0) 0

)
. (5.58)

The space of exponentially localized solutions to (3.15) is spanned by κh(x) = ∂xψh(x, u0) =

(∂xvh(x, u0), ∂xqh(x, u0)). Similarly, the adjoint (3.19) has a non-trivial, exponentially localized
solution ψad(x) = (ψad,1(x), ψad,2(x)), which is unique up to scalar multiples and satisfies∫ ∞

−∞

ψad,2(x)∗∂xvh(x, u0)dx , 0, ‖ψad(y)‖ ≤ Ce−µr |y|, y ∈ R.

Moreover, we have the decomposition,

C2n = Yu ⊕ Y s ⊕ Yc ⊕ Y⊥, (5.59)

with Yc = Sp(κh(0)), Y⊥ = Sp(ψad(0)) and

P f ,+(0)[C2n] = Y s ⊕ Yc, P f ,−(0)[C2n] = Y s ⊕ Y⊥,

ker(P f ,+(0)) = Yu ⊕ Y⊥, ker(P f ,−(0)) = Yu ⊕ Yc.
(5.60)

The spaces Yu ⊕ Y s, Y⊥ and Yc are pairwise orthogonal and the decomposition (5.59) respects
the reversible symmetry:

R f κh(0) = −κh(0), R fψad(0) = ψad(0), R f [Y s] = Yu. (5.61)

Proof. Since (3.15) coincides with the fast eigenvalue problem (3.6) at λ = 0, Proposition 5.2
provides exponential dichotomies for (3.15) on [0,∞) and (−∞, 0] with constants Cr, µr > 0
and rank n projections P f ,±(x). By (2.6) it holds∥∥∥A f (x) −A f ,∞

∥∥∥ ≤ Ke−µh |x|, x ∈ R,

for some K > 0. Hence, Lemma 4.6 yields estimate (5.57). In addition, by Proposition 5.2, the
space of exponentially localized solutions to (3.15) is one-dimensional, because 0 is a simple



5.3. THE CRITICAL SPECTRAL CURVE 118

root of E f ,0. Since κh(x) is a non-trivial, exponentially localized solution to (3.15) by (E1), we
deduce Yc := Sp(κh(0)) = P f ,+(0)[C2n] ∩ ker(P f ,−(0)).

Define Y s to be the (n − 1)-dimensional orthogonal complement of Yc in P f ,+(0)[C2n]. Any
solution ϕ(x) to (3.15) with initial condition ϕ(0) ∈ Y s decays exponentially to 0 as x→ ∞. In
addition, since system (3.15) is R f -reversible at x = 0, the solution R fϕ(−x) to (3.15) decays
exponentially to 0 as x → −∞. Therefore, Yu := R f [Y s] is contained in ker(P f ,−(0)). Since
R f is self-adjoint and R f [κh(0)] = −κh(0), the n-dimensional space ker(P f ,−(0)) arises as the
orthogonal sum of Yc and Yu.

Because the kernel of the operator L0 of Fredholm index 0 is one-dimensional by Corol-
lary 5.4, the adjoint L∗0 has a one-dimensional kernel too. In addition, since equation (3.15)
has exponential dichotomies on both half-lines, the same holds for its adjoint (3.19). So, there
exists a non-trivial, exponentially localized solution ψad(x) to (3.19), which is unique up to
scalar multiples. The pointwise inner product of ψad(x) with any solution ϕ(x) to (3.15) is
constant in x. Thus, the pointwise inner product of ψad(x) with solutions ϕ(x) to (3.15) that are
decaying to 0 as x→ ±∞ must equal 0. Hence, the spaces Y s ⊕ Yu, Yc and Y⊥ := Sp(ψad(0))
must be pairwise orthogonal. Since we have the decomposition (5.59), we may without loss
of generality assume by Lemma 4.5 that P f ,−(0)[C2n] = Y s ⊕ Y⊥ and ker(P f ,+(0)) = Yu ⊕ Y⊥.

Finally, R fψad(−x) is also an exponentially localized solution to (3.19). This implies R fψad(0) =

αψad(0) for some α ∈ σ(R f ) = {±1}. On the other hand, since the operator pencil λ 7→ Lλ has
algebraic multiplicity 1 at λ = 0 by Corollary 5.4, the generalized eigenvalue problem,

L0ϕ = ∂λL0κh,

has no bounded solutions. Hence, the Fredholm alternative in [86, Lemma 4.2] implies

0 ,
∫ ∞

−∞

ψad(x)∗∂λL0κh(x)dx =

∫ ∞

−∞

ψad,2(x)∗∂xvh(x, u0)dx.

Therefore, ψad,2(x) cannot be even, because ∂xvh(x, u0) is an odd function of x. Hence, ψad,2(x)
is odd and we establish R fψad(0) = ψad(0). �

The reduced eigenvalue problem (5.56) is governed by the fast variational equation (3.15).
More precisely, the evolution operator of (5.56) can be expressed in terms of the evolution
operator of (3.15) via variation of constants formulas. Thus, the solution κh(x) = ∂xψh(x, u0)
to (3.15) yields the non-trivial, exponentially localized solution,

ϕh(x) :=
( ∫ x
∞
A2(z)κh(z)dz
κh(x)

)
=


0

H2(u0, vh(x, u0))
∂xvh(x, u0)
∂xqh(x, u0)

 = ∂xφh(x, u0), (5.62)

to (5.56). Moreover, since the matrix function Kin(x) := (∂uψh(x, u0) | 0) solves the inhomo-
geneous problem,

Xx = A f (x)X +A3(x), X ∈ Mat2n×2m(C),
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we obtain a family of solutions,

Φin(x) :=
(

I +
∫ x

0 [A2(z)Kin(z) +A1(z)] dz
Kin(x)

)
. (5.63)

to (5.56). By (S1) and (2.6) there exists a constant C > 0 such that∥∥∥∥∥∥Φin(±x) −
(

Υ±∞
0

)∥∥∥∥∥∥ ≤ Ce−µh x, x ≥ 0, (5.64)

with

Υ±∞ :=
(

I 0
±∂uJ(u0) I

)
∈ Mat2m×2m(C),

where J : Uh → R is defined in (2.5).

We show that the exponential dichotomies of (3.15), established in Proposition 5.21, yield
exponential trichotomies for (5.56) with projections converging to the spectral projections of
the asymptotic matrix,

A∞ := lim
x→±∞

A0(x) =

(
0 A2,∞
0 A f ,∞

)
, A2,∞ =

(
0 0

∂vH2(u0, 0, 0) 0

)
, (5.65)

whereA f ,∞ is defined in (5.58).

Proposition 5.22. Suppose 0 is a simple root of E f ,0. System (5.56) admits exponential
trichotomies on [0,∞) and (−∞, 0] with constants C, µr > 0 and projections Pu,s,c

± (x) satisfying∥∥∥Pu,s,c
± (±x) − Pu,s,c

∥∥∥ ≤ Ce−min{µr ,µh}x/2, x ≥ 0, (5.66)

where µh > 0 is as in (2.6), µr > 0 is as in Lemma 5.1 and Pu,Ps and Pc are the spectral
projections onto the unstable, stable and neutral eigenspace of the asymptotic matrix A∞,
respectively. Moreover, it holds

Pu
−(0) =

 0
∫ 0
−∞
A2(x)Φu

f ,−(x, 0)dx
0 I − P f ,−(0)

 , Pu
+(0) =

(
0 0∫ ∞

0 Φu
f ,+(0, x)A3(x)dx I − P f ,+(0)

)
,

Ps
+(0) =

 0
∫ 0
∞
A2(x)Φs

f ,+(x, 0)dx
0 P f ,+(0)

 , Ps
−(0) =

(
0 0∫ −∞

0 Φs
f ,−(0, x)A3(x)dx P f ,−(0)

)
,

(5.67)

where Φ
u,s
f ,±(x, y) denotes the (un)stable evolution operator of the fast variational equa-

tion (3.15) under the exponential dichotomies, established in Proposition 5.21, with projections
P f ,±(x). Finally, we have the decompositions,

ker(Pu
+(0)) = Ps

+(0)[C2(m+n)] ⊕ Φin(0)[C2m],

ker(Ps
−(0)) = Pu

−(0)[C2(m+n)] ⊕ Φin(0)[C2m],
(5.68)
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where Φin is defined in (5.63), and

Ps
+(0)[C2(m+n)] = Ps

+(0)[Z s] ⊕ Sp(ϕh(0)), Z s := {(0, b) : b ∈ Y s},

Pu
−(0)[C2(m+n)] = Pu

−(0)[Zu] ⊕ Sp(ϕh(0)), Zu := {(0, b) : b ∈ Yu}.
(5.69)

where Yu,s are as in Proposition 5.21 and ϕh is defined in (5.62).

Proof. In the following, we denote by C > 0 a constant.

The evolution Φ0(x, y) of (5.56) can be expressed in terms of the evolution Φ f (x, y) of (3.15)
as follows

Φ0(x, y) =

 I +
∫ x

y

[
A2(z)

∫ z
y Φ f (z,w)A3(w)dw +A1(z)

]
dz

∫ x
y A2(z)Φ f (z, y)dz∫ x

y Φ f (x, z)A3(z)dz Φ f (x, y)

 .
(5.70)

By Proposition 5.21 equation (3.15) admits exponential dichotomies on [0,∞) and (−∞, 0]
with constants C, µr > 0 and rank n projections P f ,±(x) satisfying∥∥∥P f ,±(±x) − P f

∥∥∥ ≤ Ce−min{µr ,µh}x, x ≥ 0, (5.71)

where P f is the spectral projection onto the stable eigenspace ofA f ,∞, defined in (5.58). We
construct an explicit exponential trichotomy for (5.56) on (−∞, 0] using the matrix functions,

A(x) :=
∫ x

−∞

A2(z)Φu
f ,−(z, x)dx, B(x) :=

∫ 0

x
Φu

f ,−(x, z)A3(z)dz,

E(x) :=
∫ x

0
A2(z)Φs

f ,−(z, x)dx, D(x) :=
∫ −∞

x
Φs

f ,−(x, z)A3(z)dz.

Clearly, A, B,D and E are bounded on (−∞, 0]. We consider their asymptotic behavior.
By (2.6) and (S1), it holds

‖A1(x)‖, ‖A2(x) −A2,∞‖, ‖A3(x)‖, ‖A f (x) −A f ,∞‖ ≤ Ce−µh |x|. x ∈ R, (5.72)

By writing B(x) as a sum of two integrals over the intervals (x, x/2) and (x/2, 0) and estimating
both integrals independently using (5.72) and the exponential dichotomy of (3.15), we deduce
that B(x) converges exponentially to 0 as x → −∞ with rate min{µr, µh}/2. Since A f ,∞ is
hyperbolic by Lemma 5.1, the matrixA f (x) is by (5.72) invertible for x < 0 sufficiently small.
Thus, for x � 0 we may write

A(x) =

∫ x

−∞

A2(z)A f (z)−1∂zΦ
u
f ,−(z, x)dz.

Combining the latter with (5.71) and (5.72), leads, via integration by parts, to the approxima-
tions,

‖B(x)‖,
∥∥∥A(x) −A2,∞A

−1
f ,∞(I − P f )

∥∥∥ ≤ Ce−min{µr ,µh}x/2, x ≤ 0. (5.73)
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Similarly, we derive

‖D(x)‖,
∥∥∥E(x) −A2,∞A

−1
f ,∞P f

∥∥∥ ≤ Ce−min{µr ,µh}x/2, x ≤ 0. (5.74)

We define candidate trichotomy projections,

Pu
−(x) :=

(
A(x)B(x) A(x)

B(x) I − P f ,−(x)

)
, Ps

−(x) :=
(

E(x)D(x) E(x)
D(x) P f ,−(x)

)
, x ≤ 0,

and we calculate using (5.70)

Pu
−(x)Φ0(x, y) =

(
A(x)Φu

f ,−(x, y)B(y) A(x)Φu
f ,−(x, y)

Φu
f ,−(x, y)B(y) Φu

f ,−(x, y)

)
= Φ0(x, y)Pu

−(y),

Ps
−(y)Φ0(y, x) =

(
E(y)Φs

f ,−(y, x)D(x) E(y)Φs
f ,−(y, x)

Φs
f ,−(y, x)D(x) Φs

f ,−(y, x)

)
= Φ0(y, x)Ps

−(x),

x ≤ y ≤ 0.

Since A, B,D and E are bounded on (−∞, 0], the above calculations imply∥∥∥Pu
−(x)Φ0(x, y)

∥∥∥ , ∥∥∥Ps
−(y)Φ0(y, x)

∥∥∥ ≤ Ce−µr(y−x), x ≤ y ≤ 0.

Define Pc
−(x) := I − Ps

−(x) − Pu
−(x) for x ≤ 0. Observe that

Pc
−(x)Φ0(x, y) =

(
E1(x, y) E2(x, y)
E3(x, y) 0

)
= Φ0(x, y)Pc

−(y), x, y ≤ 0,

where the matrices,

E1(x, y) := I +

∫ x

y
A1(z)dz +

∫ −∞

y
A2(z)

∫ z

y
Φu

f ,−(z,w)A3(w)dwdz

+

∫ −∞

x
A2(z)

∫ 0

z
Φu

f ,−(z,w)A3(w)dwdz +

∫ 0

y
A2(z)

∫ z

y
Φs

f ,−(z,w)A3(w)dwdz

+

∫ 0

x
A2(z)

∫ −∞

z
Φs

f ,−(z,w)A3(w)dwdz,

E2(x, y) :=
∫ −∞

y
A2(z)Φu

f ,−(z, y)dz +

∫ 0

y
A2(z)Φs

f ,−(z, y)dz,

E3(x, y) :=
∫ x

0
Φu

f ,−(x, z)A3(z)dz +

∫ x

−∞

Φs
f ,−(x, z)A3(z)dz.

are bounded on (−∞, 0] × (−∞, 0] by (5.72). Therefore, the projections Pu,s,c
− (x) define an

exponential trichotomy for equation (5.56) on (−∞, 0]. The spectral projections Pu,s,c on the
unstable, stable and neutral eigenspace of the asymptotic matrixA∞ are given by

Pu =

(
0 A2,∞A

−1
f ,∞(I − P f )

0 I − P f

)
, Ps =

(
0 A2,∞A

−1
f ,∞P f

0 P f

)
, Pc =

(
I −A2,∞A

−1
f ,∞

0 0

)
,

(5.75)
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Thus, the approximations (5.71), (5.73) and (5.74) yield ‖Pu,s,c
− (x)−Pu,s,c‖ ≤ Cemin{µr ,µh}x/2 for

x ≤ 0. Thus, we have obtained the desired exponential trichotomy for (5.56) on (−∞, 0]. The
construction of the exponential trichotomy for (5.56) on [0,∞) is analogous.

Finally, we establish the decompositions (5.68) and (5.69). The upper (2m × 2m)-block
of Φin(0) is lower-triangular and has determinant 1. Therefore, the columns of Φin(x) consti-
tute 2m linearly independent solutions to (5.56), which are bounded, but not exponentially
localized by (5.64). On the other hand, Pu,s

± (0) has rank n, since P f ,±(0) is a rank n projection.
This yields the decomposition (5.68). Furthermore, it holds Ps

+(0)[C2(m+n)] = Ps
+(0)[{(0, b) :

b ∈ P f ,+(0)[C2n]}]. Since we have P f ,+(0)[C2n] = Y s ⊕ Yc with Yc = Sp(κh(0)) by Proposi-
tion 5.21, the decomposition of Ps

+(0)[C2(m+n)] in (5.69) follows. Analogously, we obtain the
decomposition of Pu

−(0)[C2(m+n)] in (5.69). �

As mentioned in §5.3.1, our goal is to construct a piecewise continuous solution ϕν,ε(x, λ)
to the full eigenvalue problem (3.3), which has a jump at x = 0 only. The solution ϕν,ε(x, λ)
arises by matching solutions to (3.3), which are defined on the three intervals I±f ,ε and Is,ε,
given by (5.53) and (5.54). We match these solutions in such a way that the jump at 0 is
confined to the one-dimensional space spannend by (0, ψad(0)), where ψad(x) is the solution
to the adjoint variational equation (3.15), established in Proposition 5.21. Thus, we need the
following lemma.

Lemma 5.23. Suppose 0 is a simple root of E f ,0. Let Y s,Yu,Yc and Y⊥ be as in Proposi-
tion 5.21. Denote by Qc the projection on Yc along Y s ⊕ Yu ⊕ Y⊥, by Qs the projection on Y s

along Yu ⊕ Yc ⊕ Y⊥ and by Qu the projection on Yu along Y s ⊕ Yc ⊕ Y⊥. The projections,

Qc :=
(

0 0
0 Qc

)
, Q̂c :=

 I −
∫ 0
−∞
A2(x)Φ f (x, 0)dxQu −

∫ 0
∞
A2(x)Φ f (x, 0)dx(Qs + Qc)

0 0

 ,
Qs :=

(
0 0

Qs
∫ −∞

0 Φ f (0, x)A3(x)dx Qs

)
, Qu :=

(
0 0

Qu
∫ ∞

0 Φ f (0, x)A3(x)dx Qu

)
,

(5.76)

are well-defined and it holds

Z⊥ = ker(Qc) ∩ ker(Q̂c) ∩ ker(Qs) ∩ ker(Qu), Z⊥ := {(0, b) : b ∈ Y⊥}. (5.77)

Moreover, we have

QcΦin(0) = 0, Qcϕh(0) =

(
0

κh(0)

)
, Q̂c

(
0 0
0 I − R f

)
= 0, Q̂cΦin(0) =

(
I
0

)
,

Q̂c =

 I −
∫ 0
−∞
A2(x)Φ f (x, 0)dx(Qu + Qc) −

∫ 0
∞
A2(x)Φ f (x, 0)dxQs

0 0

 , (5.78)

where ϕh and Φin are defined in (5.62) and (5.63), respectively, and κh(x) = ∂xψh(x, u0).
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Proof. The integrals in (5.76) converge by (5.60). Thus, the projections in (5.76) are
well-defined. Furthermore, the homoclinic solution ψh(x, u0) to (2.3) at u = u0 satisfies
R fψh(x, u0) = ψh(−x, u0) for any x ∈ R by (E1). Taking derivatives yields

R f κh(0) = −κh(0), R f κin(0) = κin(0), (5.79)

where κin(x) = ∂uψh(x, u0). Consequently, any column of κin(0) lies in the orthogonal comple-
ment of Yc = Sp(κh(0)), which is given by Y s ⊕ Yu ⊕ Y⊥ by Proposition 5.21. Hence, we have
Qcκin(0) = 0 and the first two identities in (5.78) follow.

The fast variational equation (3.15) is R f -reversible at x = 0 by (E1). Thus, by (5.61) it
holds Φ f (−x, 0)Qu = R f Φ f (x, 0)QsR f and Φ f (−x, 0)Qc = R f Φ f (x, 0)QcR f for any x ≥ 0.
Combining the latter with (5.79) leads to the other three identities in (5.78), where we use that
A2(x)R f = A2(x) andA2(x) = A2(−x) holds for any x ∈ R by (E1).

Using (5.60) we immediately establish Z⊥ ⊂ ker(Qc)∩ker(Q̂c)∩ker(Qs)∩ker(Qu). Conversely,
assume (a, b) ∈ ker(Qc) ∩ ker(Q̂c) ∩ ker(Qs) ∩ ker(Qu) with a ∈ C2m and b ∈ C2n. Then, it
holds

Qcb = 0, a =

∫ 0

−∞

A2(x)Φ f (x, 0)dxQub +

∫ 0

∞

A2(x)Φ f (x, 0)dx(Qs + Qc)b,

Qsb = −Qs
∫ −∞

0
Φ f (0, x)A3(x)adx, Qub = −Qu

∫ ∞

0
Φ f (0, x)A3(x)adx.

We derive that a is strictly lower-triangular implying A3(x)a = 0 for any x ∈ R. Hence, it
holds Qu,s,cb = 0 yielding b ∈ Y⊥ and a = 0. We conclude (a, b) ∈ Z⊥. �

5.3.3 A reduced eigenvalue problem along the slow manifold
Along the slow manifold, the v-components of the periodic pulse solution φp,ε(x) are exponen-
tially small and the u-components are approximated by us(εx) – see Theorem 2.3. Hence, by
assumption (S1), the lower-left blockA21,ε(x) in the full eigenvalue problem (3.3) is exponen-
tially small, whereas the upper-left blockA11,ε(x, λ) is approximated by εAs(εx), whereAs

is the coefficient matrix of the slow variational equation (2.7). Thus, along the slow manifold,
we arrive at the reduced eigenvalue problem,

ϕx = A∗,ε(x, λ)ϕ, ϕ = (u, p, v, q) ∈ C2(m+n), (5.80)

with

A∗,ε(x, λ) :=
(
εAs(εx) A12,ε(x)

0 A22,ε(x, λ)

)
.

Due to its upper-triangular block structure, the dynamics in system (5.80) is governed by the
blocks on the diagonal via the variation of constants formula. The lower-right blockA22,ε(x, λ)
has slowly varying coefficients and is pointwise hyperbolic along the slow manifold. Hence,
on the interval Is,ε, defined in (5.53), system (5.15) admits an exponential dichotomy, which
yields an exponential trichotomy for the reduced eigenvalue problem (5.80).
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Proposition 5.24. Provided ς, ε > 0 are sufficiently small, system (5.80) has for every λ ∈
B(0, ς) an exponential trichotomy on Is,ε with constants C, µs > 0, independent of ε and λ, and
projections Pu,s,c

∗,ε (x, λ). We have µs = 1
2µr, where µr > 0 is as in Lemma 5.1. The projections

Pu,s,c
∗,ε (x, ·) are analytic on B(0, ς) for each x ∈ Is,ε and satisfy∥∥∥Pu,s,c

∗,ε (Ξε, λ) − Pu,s,c
∥∥∥ , ∥∥∥Pu,s,c

∗,ε (2Lε − Ξε, λ) − Pu,s,c
∥∥∥ ≤ C

(
ε| log(ε)| + |λ|

)
, (5.81)

where Ξε is as in (5.53) and Pu,Ps and Pc are the spectral projections onto the unstable,
stable and neutral eigenspace of the asymptotic matrixA∞, defined in (5.65).

Proof. In the following, we denote by C > 0 a constant, which is independent of ε and λ.

We start by establishing an exponential dichotomy for the subsystem (5.15) of the reduced
eigenvalue problem (5.80). We define

Jα,ε := [Ξε/α, 2Lε − Ξε/α] , α ≥ 0.

First, by Theorem 2.3 it holds

‖u′p,ε(x)‖ = ε
∥∥∥D−1

1 pp,ε(x)
∥∥∥ ≤ Cε, ‖v′p,ε(x)‖ = ‖D−1

2 qp,ε(x)‖ ≤ Cε2, x ∈ J4,ε,

which implies ∥∥∥∂xA22,ε(x, λ)
∥∥∥ ≤ Cε, x ∈ J4,ε, λ ∈ B(0, ς).

Second, by Theorem 2.3 we have∥∥∥φ̂p,ε(x) − (up,ε(x), 0)
∥∥∥ ≤ Cε2, x ∈ J4,ε,

which implies ∥∥∥A22,ε(x, λ) − A(up,ε(x), λ)
∥∥∥ ≤ Cε, x ∈ J4,ε, λ ∈ B(0, ς), (5.82)

where A(u, λ) is defined in (5.1). By Theorem 2.3 and Lemma 5.1, the matrix A(up,ε(x), λ) is,
provided ε > 0 is sufficiently small, hyperbolic for each x ∈ J4,ε and λ ∈ B(0, ς) with spectral
gap larger than µr = 2µs. So, by (5.82), the same holds for A22,ε(x, λ), provided ε > 0 is
sufficiently small. Third,A22,ε is bounded on J4,ε×B(0, ς) by an ε-independent constant using
Theorem 2.3. Combining these three items with Proposition 4.8 yields, provided ε > 0 is
sufficiently small, an exponential dichotomy for system (5.15) on J2,ε with constants C, µs > 0
and projections Π f ,ε(x, λ). The projections Π f ,ε(x, ·) are analytic on B(0, ς) for each x ∈ J2,ε
and satisfy ∥∥∥Π f ,ε(x, λ) − Qε(x, λ)

∥∥∥ ≤ Cε, x ∈ J2,ε, λ ∈ B(0, ς), (5.83)

where Qε(x, λ) is the spectral projection onto the stable eigenspace ofA22,ε(x, λ). On the other
hand, by Theorem 2.3 and estimate (2.6) we have∥∥∥φ̂p,ε(Ξε) − (u0, 0)

∥∥∥ ≤ Cε| log(ε)|,
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yielding ∥∥∥A22,ε(Ξε, λ) −A f ,∞

∥∥∥ ≤ C
(
ε| log(ε)| + |λ|

)
, λ ∈ B(0, ς),

whereA f ,∞ is given by (5.58). Thus, the same bound holds true for the spectral projections
associated withA22,ε(Ξε, λ) andA f ,∞. Combining the latter with (5.83) yields∥∥∥Π f ,ε(Ξε, λ) − P f

∥∥∥ ≤ C
(
ε| log(ε)| + |λ|

)
, λ ∈ B(0, ς), (5.84)

where P f is the spectral projection onto the stable eigenspace ofA f ,∞.

The next step is to express the evolution T∗,ε(x, y, λ) of the upper-triangular block system (5.80)
in terms of the evolution T f ,ε(x, y, λ) of (5.15) and the evolution Φs(x̌, y̌) of the slow variational
equation (2.7). Thus, via the variation of constants formula we obtain

T∗,ε(x, y, λ) =

(
Φs(εx, εy)

∫ x
y Φs(εx, εz)A12,ε(z)T f ,ε(z, y, λ)dz

0 T f ,ε(x, y, λ)

)
. (5.85)

We define candidate trichotomy projections,

Ps
∗,ε(x, λ) :=

 0
∫ x

2Lε− 1
2 Ξε

Φs(εx, εz)A12,ε(z)T s
f ,ε(z, x, λ)dz

0 Π f ,ε(x, λ)

 ,
Pu
∗,ε(x, λ) :=

 0
∫ x

1
2 Ξε

Φs(εx, εz)A12,ε(z)T u
f ,ε(z, x, λ)dz

0 I − Π f ,ε(x, λ)

 ,
Pc
∗,ε(x, λ) := I − Ps

∗,ε(x, λ) − Pu
∗,ε(x, λ),

x ∈ Is,ε, λ ∈ B(0, ς),

where T u,s
f ,ε (x, y, λ) denotes the (un)stable evolution under the exponential dichotomy of (5.15)

on J2,ε. The projections Pu,s,c
∗,ε (x, ·) are analytic on B(0, ς) for each x ∈ Is,ε, because the

projections Π f ,ε(x, λ) and the evolution T f ,ε(x, y, λ) are analytic in λ using [60, Lemma 2.1.4].
On the other hand, lemma 4.1 it yields

‖Φs(εx, εz)‖ ≤ C, x, y ∈ J2,ε, (5.86)

because it holds |εLε − `0| ≤ Cε by Theorem 2.3. Using (5.85) we calculate for x, y ∈ Is,ε and
λ ∈ B(0, ς)

Ps
∗,ε(x, λ)T∗,ε(x, y, λ) :=

 0
∫ x

2Lε− 1
2 Ξε

Φs(εx, εz)A12,ε(z)T s
f ,ε(z, y, λ)dz

0 T s
f ,ε(x, y, λ)


= T∗,ε(x, y, λ)Ps

∗,ε(y, λ),

Pu
∗,ε(y, λ)T∗,ε(y, x, λ) :=

 0
∫ y

1
2 Ξε

Φs(εy, εz)A12,ε(z)T u
f ,ε(z, x, λ)dz

0 T u
f ,ε(y, x, λ)


= T∗,ε(y, x, λ)Pu

∗,ε(x, λ),

x ≥ y,
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and

Pc
∗,ε(x, λ)T∗,ε(x, y, λ) :=

(
Φs(εx, εy) Eε(x, y, λ)

0 0

)
= T∗,ε(x, y, λ)Pc

∗,ε(y, λ), (5.87)

Eε(x, y, λ) := −
∫ y

2Lε− 1
2 Ξε

Φs(εx, εz)A12,ε(z)T s
f ,ε(z, y, λ)dz

−

∫ y

1
2 Ξε

Φs(εx, εz)A12,ε(z)T u
f ,ε(z, y, λ)dz.

Using estimate (5.86) and the fact thatA12,ε is ε-uniformly bounded on J2,ε by Theorem 2.3,
the above calculations imply for x, y ∈ Is,ε and λ ∈ B(0, ς)∥∥∥Ps

∗,ε(x, λ)T∗,ε(x, y, λ)
∥∥∥ , ∥∥∥Pu

∗,ε(y, λ)T∗,ε(y, x, λ)
∥∥∥ ≤ Ce−µs(x−y), x ≥ y,

and ∥∥∥Pc
∗,ε(x, λ)T∗,ε(x, y, λ)

∥∥∥ ≤ C.

Therefore, the projections Pu,s,c
∗,ε (x) define an exponential trichotomy for equation (5.80) on Is,ε.

Finally, we establish the approximations (5.81). Define J̃ε :=
[

1
2 Ξε,

3
2 Ξε

]
. First, by Lemma 4.1

it holds

‖Φs(εx, εy) − I‖ ≤ Cε| log(ε)|, x ∈ J̃ε, (5.88)

Second, by Theorem 2.3 and estimate (2.6) we have∥∥∥φ̂p,ε(x) − (u0, 0)
∥∥∥ ≤ Cε| log(ε)|, x, y ∈ J̃ε,

yielding for x ∈ J̃ε and λ ∈ B(0, ς)∥∥∥A12,ε(x) −A2,∞
∥∥∥ ≤ Cε| log(ε)|,

∥∥∥A22,ε(x, λ) −A f ,∞

∥∥∥ ≤ C
(
ε| log(ε)| + |λ|

)
, (5.89)

whereA2,∞ is defined in (5.65). SinceA f ,∞ is hyperbolic by Lemma 5.1, the matrixA22,ε(x, λ)
is by (5.89) invertible for each x ∈ J̃ε and λ ∈ B(0, ς), provided ε, ς > 0 are sufficiently small.
Thus, for λ ∈ B(0, ς) we may write∫ Ξε

1
2 Ξε

Φs(εΞε, εz)A12,ε(z)T u
f ,ε(z,Ξε, λ)dz

=

∫ Ξε

1
2 Ξε

Φs(εΞε, εz)A12,ε(z)A22,ε(z, λ)−1∂zT f ,ε(z,Ξε, λ)dz
(
I − Π f ,ε(Ξε, λ)

)
.

Combining the latter with (5.84), (5.88) and (5.89), leads, via integration by parts, to the
approximation,∥∥∥∥∥∥

∫ Ξε

1
2 Ξε

Φs(εΞε, εz)A12,ε(z)T u
f ,ε(z,Ξε, λ)dz −A2,∞A

−1
f ,∞(I − P f )

∥∥∥∥∥∥ ≤ C
(
ε| log(ε)| + |λ|

)
,

(5.90)
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for λ ∈ B(0, ς), where we use µr = 2µs. Similarly, we derive∥∥∥∥∥∥
∫ Ξε

3
2 Ξε

Φs(εΞε, εz)A12,ε(z)T s
f ,ε(z,Ξε, λ)dz −A2,∞A

−1
f ,∞P f

∥∥∥∥∥∥ ≤ C
(
ε| log(ε)| + |λ|

)
, (5.91)

for λ ∈ B(0, ς). On the other hand, (5.86) yields∥∥∥∥∥∥∥
∫ 3

2 Ξε

2Lε− 1
2 Ξε

Φs(εΞε, εz)A12,ε(z)T s
f ,ε(z,Ξε, λ)dz

∥∥∥∥∥∥∥ ≤ Cε, λ ∈ B(0, ς). (5.92)

The spectral projections Pu,s,c on the unstable, stable and neutral eigenspace of the asymptotic
matrix A∞ are given by (5.75). Thus, the approximations (5.84), (5.90), (5.91) and (5.92)
yield ‖Pu,s,c

∗,ε (Ξε, λ) − Pu,s,c‖ ≤ C(ε| log(ε)| + |λ|) for λ ∈ B(0, ς). The other estimate in (5.81)
follows analogously. �

5.3.4 Construction of a piecewise continuous eigenfunction
Let Sδ, Dη,ε and Ξε be as in (3.21), (5.52) and (5.53), respectively. In this section we
establish for any λ ∈ Dη,ε and ν ∈ Sδ a piecewise continuous solution ϕν,ε(x, λ) to the full
eigenvalue problem (3.3) on the interval [−Ξε, 2Lε − Ξε], which has a jump only at x = 0
and satisfies ϕν,ε(−Ξε, λ) = eiνϕν,ε(2Lε − Ξε, λ). The construction of ϕν,ε is based on Lin’s
method [10, 70, 100].

Theorem 5.25. Suppose 0 is a simple root of E f ,0. Take δ > 0. Provided η, ε > 0 are
sufficiently small, there exists for every λ ∈ Dη,ε and ν ∈ Sδ a piecewise continuous solution
ϕν,ε(x, λ) to the full eigenvalue problem (3.3) on [−Ξε, 2Lε − Ξε], which has a jump only at
x = 0, satisfies

ϕν,ε(−Ξε, λ) = eiνϕν,ε(2Lε − Ξε, λ),

and enjoys the estimates,∥∥∥ϕν,ε(x, λ) − ϕh(x)
∥∥∥ ≤ C| log(ε)|

(
ε| log(ε)| + |λ|

)
, x ∈ [−Ξε, 2Lε − Ξε], (5.93)∥∥∥ϕν,ε(x, λ) − φ′p,ε(x) + εΦin(x)B(ν)

∥∥∥ ≤ C| log(ε)|
(
ε2| log(ε)|3 + |λ|

)
, x ∈

[
−

Ξε

2 ,
Ξε

2

]
, (5.94)

where B(ν), ϕh and Φin are defined in (3.20), (5.62) and (5.63), respectively, and C > 0 is a
constant independent of ε, λ and ν. In addition, for any ν ∈ Sδ there exists a unique λ-value
λ̃ε(ν) ∈ Dη,ε for which the jump of ϕν,ε(·, λ) vanishes.

Proof. In the following, we denote by C > 0 a constant, which is independent of ε, λ and ν.

Let I f ,ε = I+
f ,ε ∪ I−f ,ε and Is,ε be as in (5.53) and (5.54). Our approach is to regard the

full eigenvalue problem (3.3) as a perturbation of the reduced eigenvalue problems (5.56)
and (5.80) on the intervals I f ,ε and Is,ε, respectively. Propositions 5.22 and 5.24 yield expo-
nential trichotomies for (5.56) and (5.80). For λ ∈ Dη,ε, this leads to variation of constants
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formulas for solutions to (3.3) on the three intervals Is,ε and I±f ,ε. We match these solutions
at the endpoints 0,±Ξε and 2Lε − Ξε of the intervals Is,ε and I±f ,ε using the estimates (5.66)
and (5.81) on the trichotomy projections and identity (5.77). Thus, we obtain for any λ ∈ Dη,ε

and ν ∈ Sδ a piecewise continuous solution ϕν,ε(x, λ) to (3.3) on I f ,ε ∪ Is,ε, which has a jump
only at x = 0 and satisfies ϕν,ε(−Ξε, λ) = eiνϕν,ε(2Lε − Ξε, λ). For each λ ∈ Dη,ε and ν ∈ Sδ
the jump

Jν,ε(λ) := lim
x↓0

ϕν,ε(x, λ) − lim
x↑0

ϕν,ε(x, λ), (5.95)

is contained in the one-dimensional space Z⊥, defined in (5.77). Pairing the jump with the
solution ψad(x) to the adjoint (3.19), established in Proposition 5.21, leads to an (analytic)
equation in λ and ν, which has a unique solution λ̃ε(ν) ∈ Dη,ε.

The variation of constants formulas provide leading-order expressions for ϕν,ε(x, λ) on the three
intervals I±f ,ε and Is,ε. Finally, since the derivative φ′p,ε(x) is a solution to (3.3) at λ = 0, we can
write φ′p,ε(x) in terms of similar variation of constants formulas on I±f ,ε yielding leading-order
approximation for ϕν,ε(x, λ) − φ′p,ε(x).

Thus, we start by establishing expressions for solutions to the full eigenvalue problem (3.3)
along the pulse. We regard (3.3) as the perturbation,

ϕx =
(
A0(x) + B0,ε(x, λ)

)
ϕ, ϕ ∈ C2(m+n),

of the reduced eigenvalue problem (5.56). By Theorem 2.3, the perturbation matrixB0,ε(x, λ) :=
Aε(x, λ) −A0(x) is bounded by

‖B0,ε(x, λ)‖ ≤ C
(
ε| log(ε)| + |λ|

)
, x ∈ I f ,ε, λ ∈ C. (5.96)

By Proposition 5.22, system (5.56) has exponential trichotomies on [0,∞) and (−∞, 0] with
constants C, µr > 0 and projections Pu,s,c

± (x) satisfying (5.66). We denote by Φ
s,u,c
0,± (x, y)

the stable, unstable and neutral evolution operator of system (5.56) under the exponen-
tial trichotomies. For convenience, we abbreviate Φsc

0,±(x, y) = (I − Pu
±(x))Φ0(x, y) and

Φuc
0,±(x, y) = (I − Ps

±(x))Φ0(x, y).

We apply the variation of constants formula. Thus, by the decompositions (5.68) and (5.69),
any solution ϕ+

f ,ε(x, λ) to (3.3) must satisfy the following integral equation on I+
f ,ε:

ϕ+
f ,ε(x, λ) = Φu

0,+(x,Ξε)a+ + Φin(x)b+ +

∫ x

0
Φs

0,+(x, y)B0,ε(y, λ)ϕ+
f ,ε(y, λ)dy

+ ϕh(x)c+ + Φs
0,+(x, 0)d+ +

∫ x

Ξε

Φuc
0,+(x, y)B0,ε(y, λ)ϕ+

f ,ε(y, λ)dy,
(5.97)

for some a+ ∈ Pu
+(Ξε)[C2(m+n)], b+ ∈ C

2m, c+ ∈ C and d+ ∈ Z s, where Z s is defined in (5.69).
Provided η, ε > 0 are sufficiently small, there exists by (5.96) for any λ ∈ Dη,ε a unique
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solution ϕ+
f ,ε(x, λ) to (5.97) on I+

f ,ε using the contraction mapping principle. Note that ϕ+
f ,ε(x, λ)

is linear in (a+, b+, c+, d+) and satisfies the bound,

sup
x∈I+

f ,ε

‖ϕ+
f ,ε(x, λ)‖ ≤ C (‖a+‖ + ‖b+‖ + |c+| + ‖d+‖) , λ ∈ Dη,ε, (5.98)

by estimate (5.96), taking η, ε > 0 smaller if necessary. Similarly, by (5.68) and (5.69), any
solution ϕ−f ,ε(x, λ) to (3.3) must satisfy the following integral equation on I−f ,ε:

ϕ−f ,ε(x, λ) = Φs
0,−(x,−Ξε)a− + Φin(x)b− +

∫ x

0
Φu

0,−(x, y)B0,ε(y, λ)ϕ−f ,ε(y, λ)dy

+ ϕh(x)c− + Φu
0,−(x, 0)d− +

∫ x

−Ξε

Φsc
0,−(x, y)B0,ε(y, λ)ϕ−f ,ε(y, λ)dy,

(5.99)

for some a− ∈ Ps
−(−Ξε)[C2(m+n)], b− ∈ C2m, c− ∈ C and d− ∈ Zu, where Zu is defined in (5.69).

There exists for any λ ∈ Dη,ε a unique solution ϕ−f ,ε(x, λ) to (5.99) on I−f ,ε, which is linear in
(a−, b−, c−, d−) and satisfies the bound,

sup
x∈I−f ,ε

‖ϕ−f ,ε(x, λ)‖ ≤ C (‖a−‖ + ‖b−‖ + |c−| + ‖d−‖) , λ ∈ Dη,ε, (5.100)

taking η, ε > 0 smaller if necessary.

Our next step is to obtain expressions for solutions to the full eigenvalue problem (3.3)
along the slow manifold. We regard (3.3) as the perturbation,

ϕx =
(
A∗,ε(x, λ) + B∗,ε(x, λ)

)
ϕ, ϕ ∈ C2(m+n),

of the reduced eigenvalue problem (5.80). By Theorem 2.3 it holds

‖up,ε(x) − us(εx)‖ ≤ Cε, ‖vp,ε(x)‖ ≤ Cε2, x ∈ Is,ε.

Therefore, by (S1) the perturbation matrix B∗,ε(x, λ) := Aε(x, λ) −A∗,ε(x, λ) is bounded by∥∥∥B∗,ε(x, λ)
∥∥∥ ≤ Cε (ε + |λ|) , x ∈ Is,ε, λ ∈ C. (5.101)

By Proposition 5.24 system (5.80) admits for every λ ∈ Dη,ε an exponential trichotomy on Is,ε

with constants C, µs > 0, independent of ε and λ, and projections Pu,s,c
∗,ε (x, λ) satisfying (5.81).

We denote by T s,u,c
∗,ε (x, y, λ) the stable, unstable and neutral evolution operator of system (5.80)

under the exponential trichotomy.

We apply the variation of constants formula. Thus, any solution ϕs,ε(x, λ) to (3.3) must
satisfy the following integral equation on Is,ε:

ϕs,ε(x, λ) = T s
∗,ε(x,Ξε, λ) f + T c

∗,ε(x,Ξε, λ)h +

∫ x

Ξε

T sc
∗,ε(x, y, λ)B∗,ε(y, λ)ϕs,ε(y, λ)dy

+ T u
∗,ε(x, 2Lε − Ξε, λ)g +

∫ x

2Lε−Ξε

T u
∗,ε(x, y, λ)B∗,ε(y, λ)ϕs,ε(y, λ)dy,

(5.102)
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for some f ∈ Ps
∗,ε(Ξε)[C2(m+n)], g ∈ Pu

∗,ε(2Lε−Ξε)[C2(m+n)] and h ∈ Pc
∗,ε(Ξε)[C2(m+n)]. Provided

η, ε > 0 are sufficiently small, there exists by (5.101) for any λ ∈ Dη,ε a unique solution
ϕs,ε(x, λ) to (5.102) on Is,ε using the contraction mapping principle. The solution ϕs,ε(x, λ) is
linear in ( f , g, h) and enjoys the bound,

sup
x∈Is,ε

‖ϕs,ε(x, λ)‖ ≤ C (‖ f ‖ + ‖g‖ + ‖h‖) , λ ∈ Dη,ε, (5.103)

using estimate (5.101) and the fact that |εLε − `0| ≤ Cε by Theorem 2.3.

Now, we match the solutions ϕ±f ,ε(x, λ) and ϕs,ε(x, λ), given by (5.97), (5.99) and (5.102),
at the endpoints x = ±Ξε and x = 2Lε − Ξε of the intervals Is,ε and I±f ,ε. Applying the
projection Ps

∗,ε(Ξε, λ) to the difference ϕ+
f ,ε(Ξε, λ) − ϕs,ε(Ξε, λ) yields the matching condition,

f = H1
ε,λ(a+, b+, c+, d+),

‖H1
ε,λ(a+, b+, c+, d+)‖ ≤ C

(
ε| log(ε)| + |λ|

)
(‖a+‖ + ‖b+‖ + |c+| + ‖d+‖) ,

λ ∈ Dη,ε, (5.104)

where we use (5.66), (5.68), (5.81), (5.96) and (5.98) to obtain the bound on the linear map
H1

ε,λ. Similarly, applying Pu
∗,ε(Ξε, λ) to ϕ+

f ,ε(Ξε, λ)−ϕs,ε(Ξε, λ) yields for λ ∈ Dη,ε the matching
condition,

a+ = H2
ε,λ(a+, b+, c+, d+, f , g, h),

‖H2
ε,λ(a+, b+, c+, d+, f , g, h)‖ ≤ C

[
ε (ε + |λ|) (‖ f ‖ + ‖g‖ + ‖h‖)

+( ε| log(ε)| + |λ| )(‖a+‖ + ‖b+‖ + |c+| + ‖d+‖)] ,

(5.105)

where we use (5.66), (5.68), (5.81), (5.96), (5.98), (5.101), (5.103) and |εLε − `0| ≤ Cε to
obtain the bound on the linear mapH2

ε,λ. Finally, applying Pc
∗,ε(Ξε, λ) to ϕ+

f ,ε(Ξε, λ)−ϕs,ε(Ξε, λ)
yields the matching condition,

h =

(
Υ∞b+

0

)
+H3

ε,λ(a+, b+, c+, d+),

‖H3
ε,λ(a+, b+, c+, d+)‖ ≤

(
ε| log(ε)| + |λ|

)
(‖a+‖ + ‖b+‖ + |c+| + ‖d+‖) ,

λ ∈ Dη,ε, (5.106)

where we use (5.64), (5.66), (5.81), (5.96) and (5.98) to obtain the bound on the linear map
H3

ε,λ. Note that H1,2,3
ε,λ are analytic in λ, because the perturbations matrices B0,ε(x, λ) and

B∗,ε(x, λ), the projections Pu,s,c
∗,ε (x, λ) and the evolution T∗,ε(x, y, λ) are analytic in λ by Propo-

sition 5.24 and [60, Lemma 2.1.4].

Take ν ∈ Sδ. We obtain the following matching conditions for any λ ∈ Dη,ε by applying the
projections Pu,s,c

∗,ε (2Lε − Ξε, λ) to the difference ϕs,ε(2Lε − Ξε, λ) − eiνϕ−f ,ε(−Ξε, λ):

g = H4
ε,λ(a−, b−, c−, d−),

‖H4
ε,λ(a−, b−, c−, d−)‖ ≤ C

(
ε| log(ε)| + |λ|

)
(‖a−‖ + ‖b−‖ + |c−| + ‖d−‖) ,

(5.107)



131 CHAPTER 5. SPECTRAL STABILITY ANALYSIS

a− = H5
ε,λ(a−, b−, c−, d−, f , g, h),

‖H5
ε,λ(a−, b−, c−, d−, f , g, h)‖ ≤ C [( ε| log(ε)| + |λ| )(‖a−‖ + ‖b−‖ + |c−| + ‖d−‖)

+ (ε + |λ|) (‖ f ‖ + ‖g‖ + ‖h‖)
]
,

(5.108)

T c
∗,ε(2Lε − Ξε,Ξε, λ)h = eiν

(
Υ−∞b−

0

)
+H6

ε,λ(a−, b−, c−, d−, f , g, h),

‖H6
ε,λ(a−, b−, c−, d−, f , g, h)‖ ≤ C

[(
ε| log(ε)| + |λ|

)
(‖a−‖ + ‖b−‖ + |c−| + ‖d−‖)

+ (ε + |λ|) (‖ f ‖ + ‖g‖ + ‖h‖)
]
,

(5.109)

where we use (5.64), (5.66), (5.68), (5.81), (5.96), (5.100), (5.101), (5.103) and |εLε−`0| ≤ Cε
to obtain the bounds on the linear mapsH4,5,6

ε,λ , which are analytic in λ. We introduce the short-
hand notation a = (a+, a−), b = (b+, b−), c = (c+, c−) and d = (d+, d−). Substituting (5.106)
into (5.109) yields a linear mapH7

ε,λ, which is analytic in λ, satisfying(
Φs(2`0, 0)Υ∞b+

0

)
= eiν

(
Υ−∞b−

0

)
+H7

ε,λ(a, b, c, d, f , g, h)

‖H7
ε,λ(a, b, c, d, f , g, h)‖ ≤ C

[(
ε| log(ε)| + |λ|

)
(‖a‖ + ‖b‖ + ‖c‖ + ‖d‖)

+ (ε + |λ|) (‖ f ‖ + ‖g‖ + ‖h‖)
]
,

λ ∈ Dη,ε, (5.110)

where we use (5.87), |εLε − `0| ≤ Cε and the bound,

‖Φs(εx, εy) − I‖ ≤ Cε| log(ε)|, |x − y| ≤ 2Ξε, (5.111)

which follows from Proposition 4.1. The matching conditions (5.104), (5.105), (5.106),
(5.107), (5.108) and (5.110) constitute a system of 6 linear equations in 11 variables. One
readily observes that, provided η, ε > 0 are sufficiently small, this system can be solved for
a±, f , g, h and b− yielding linear mapsH8,9

ε,λ , which are analytic in λ and satisfy

( f , g, a) = H8
ε,λ(b+, c, d),

(h, b−) =
(
Υ∞b+, e−iνΥ∞Φs(2`0, 0)Υ∞b+

)
+H9

ε,λ(b+, c, d), λ ∈ Dη,ε,

‖H
8,9
ε,λ (b−, c, d)‖ ≤ C

(
ε| log(ε)| + |λ|

)
(‖b−‖ + ‖c‖ + ‖d‖) .

(5.112)

Thus, since the projections Pu,s,c
∗,ε (x, λ) are complementary, we observe that ( f , g, h, a, b−) satis-

fies (5.112) if and only if both ϕs,ε(Ξε, λ) = ϕ+
f ,ε(Ξε, λ) and ϕs,ε(2Lε − Ξε, λ) = eiνϕ−f ,ε(−Ξε, λ)

hold true.

Our next step is to match the solutions ϕ±f ,ε(x, λ), given by (5.97) and (5.99), at x = 0
such that the jump ϕ+

f ,ε(0, λ) − ϕ−f ,ε(0, λ) is confined to the one-dimensional space Z⊥, which is
defined in (5.77). First, we apply the projections Qu,s, given by (5.76). By (5.60) and (5.67) it
holds

QsPs
−(0) = Qs, QsPu

+(0) = 0,
(
I − QsPs

+(0)
)

[Z s] = 0. (5.113)
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Applying the projectionQs to the difference ϕ+
f ,ε(0, λ)−ϕ−f ,ε(0, λ) yields the matching condition,

d+ = H10
ε,λ(a, b, c, d),

‖H10
ε,λ(a, b, c, d)‖ ≤ C| log(ε)|

(
ε| log(ε)| + |λ|

)
(‖a‖ + ‖b‖ + ‖c‖ + ‖d‖) ,

λ ∈ Dη,ε, (5.114)

where we use (5.68), (5.69), (5.96), (5.98), (5.100) and (5.113) to obtain the bound on the
linear map H10

ε,λ, which is analytic in λ. Similarly, applying Qu to ϕ+
f ,ε(0, λ) − ϕ−f ,ε(0, λ), we

establish a linear mapH11
ε,λ, which is analytic in λ, satisfying

d− = H11
ε,λ(a, b, c, d),

‖H11
ε,λ(a, b, c, d)‖ ≤ C| log(ε)|

(
ε| log(ε)| + |λ|

)
(‖a‖ + ‖b‖ + ‖c‖ + ‖d‖) ,

λ ∈ Dη,ε, (5.115)

Next, we apply the projections Qc and Q̂c, given by (5.76). By (5.60) and (5.67) it holds

QcPu
−(0) = Qc = QcPs

+(0), Q̂cPsc
− (0) = Q̂c = Q̂cPuc

+ (0). (5.116)

Applying Qc to the difference ϕ+
f ,ε(0, λ) − ϕ−f ,ε(0, λ) yields the matching condition,

c+ = c−, (5.117)

where we use (5.78) and (5.116). Finally, applying Q̂c to ϕ+
f ,ε(0, λ) − ϕ−f ,ε(0, λ) yields for

λ ∈ Dη,ε the matching condition,(
b+ − b−

0

)
=

∫ 0

−Ξε

Q̂cΦ0(0, y)B0,ε(y, λ)ϕh(y)c−dy +H12
ε,λ(a, b, c, d)

−

∫ 0

Ξε

Q̂cΦ0(0, y)B0,ε(y, λ)ϕh(y)c+dy,

‖H12
ε,λ(a, b, c, d)‖ ≤ C| log(ε)|

(
ε| log(ε)| + |λ|

)
[(‖a‖ + ‖b‖ + ‖d‖)

+| log(ε)|
(
ε| log(ε)| + |λ|

)
‖c‖

]
,

λ ∈ Dη,ε, (5.118)

where we use (5.78), (5.96), (5.98), (5.100) and (5.116) to obtain the bound on the linear map
H12

ε,λ, which is analytic in λ.

We wish to approximate the integral expressions in (5.118). Therefore, we split the per-
turbation B0,ε(y, λ) in an ε-dependent and λ-dependent part, i.e. it holds∥∥∥B0,ε(y, λ) − B0,ε(y, 0) − λB∗

∥∥∥ ≤ Cε|λ|, y ∈ I f ,ε, λ ∈ C, (5.119)

with

B∗ :=
(

0 0
0 B∗

)
∈ Mat2(n+m)×2(n+m)(C), B∗ :=

(
0 0
I 0

)
∈ Mat2n×2n(C).
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First, we approximate the λ-dependent part of the integrals in (5.118). Recall that sys-
tem (3.15) is R f -reversible at x = 0 by (E1). Thus, the evolution Φ f (x, y) of (3.15) satisfies
R f Φ f (x, y)R f = Φ f (−x,−y) for any x, y ∈ R. Hence, using (5.70) we calculate

Φ0(0, x)B∗ϕh(x) =

 ∫ 0
x A2(y)Φ f (y, x)B∗κh(x)dy

Φ f (0, x)B∗κh(x)

 =

 − ∫ 0
−xA2(y)Φ f (y,−x)B∗κh(−x)dy

R f Φ f (0,−x)B∗κh(−x)


=

(
−I 0
0 R f

)
Φ0(0,−x)B∗ϕh(−x),

where we use that R f B∗ = −B∗R f ,A2(x)R f = A2(x), R f κh(x) = −κh(−x) andA2(x) = A2(−x)
holds true for any x ∈ R by (E1). Combining the latter identity with (5.78) yields

Q̂c
[∫ 0

−Ξε

Φ0(0, y)B∗ϕh(y)dy −
∫ 0

Ξε

Φ0(0, y)B∗ϕh(y)dy
]

= 0. (5.120)

Next, we approximate the ε-dependent part of the integrals in (5.118). This can be done by
using that the derivative φ′p,ε(x) is a solution to (3.3) at λ = 0. Thus, φ′p,ε(x) satisfies the integral
equation (5.97) on I+

f ,ε at λ = 0, i.e. we have for x ∈ I+
f ,ε

φ′p,ε(x) = Φu
0,+(x,Ξε)ap,+ + Φin(x)bp,+ +

∫ x

0
Φs

0,+(x, y)B0,ε(y, 0)φ′p,ε(y)dy

+ ϕh(x)cp,+ + Φs
0,+(x, 0)dp,+ +

∫ x

Ξε

Φuc
0,+(x, y)B0,ε(y, 0)φ′p,ε(y)dy,

(5.121)

for some constants ap,+ ∈ Pu
+(Ξε)[C2(m+n)], bp,+ ∈ C

2m, cp,+ ∈ C and dp,+ ∈ Z s, where we
suppress their ε-dependence for notational convenience. Similarly, it holds for x ∈ I−f ,ε

φ′p,ε(x) = Φs
0,−(x,−Ξε)ap,− + Φin(x)bp,− +

∫ x

0
Φu

0,−(x, y)B0,ε(y, 0)φ′p,ε(y)dy

+ ϕh(x)cp,− + Φu
0,−(x, 0)dp,− +

∫ x

−Ξε

Φsc
0,−(x, y)B0,ε(y, 0)φ′p,ε(y)dy,

(5.122)

for some ap,− ∈ Ps
−(−Ξε)[C2(m+n)], bp,− ∈ C

2m, cp,− ∈ C and dp,− ∈ Zu. By applying suitable
projections, we obtain leading-order approximations for the constants ap,±, bp,±, cp,± and dp,±.
This leads to the desired approximations for the integrals in (5.118).

First, Theorem 2.3 and (S1) yield∥∥∥∥∥∥∥∥∥∥∥φ
′
p,ε(±Ξε) − ε


±D−1

1 J(u0)
H1(u0, 0, 0)

0
0


∥∥∥∥∥∥∥∥∥∥∥ ≤ Cε2| log(ε)|, (5.123)

where we use that φp,ε solves the differential equation (2.1). By applying the projections
Pu

+(Ξε) and Pc
+(Ξε) to (5.121) at x = Ξε, we derive via (5.68) and (5.69)

ap,+ = Pu
+(Ξε)φ′p,ε(Ξε), Pc

+(Ξε)Φin(Ξε)bp,+ = Pc
+(Ξε)φ′p,ε(Ξε).
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Similarly, we apply Ps
−(−Ξε) and Pc

−(−Ξε) to (5.122) at x = −Ξε yielding

ap,− = Ps
−(−Ξε)φ′p,ε(−Ξε), Pc

−(−Ξε)Φin(−Ξε)bp,− = Pc
−(−Ξε)φ′p,ε(−Ξε).

Combining the latter two identities with (5.64), (5.66), (5.75) and (5.123) gives

‖ap,±‖ ≤ Cε,

∥∥∥∥∥∥bp,± − εΥ∓∞

(
±D−1

1 J(u0)
H1(u0, 0, 0)

)∥∥∥∥∥∥ ≤ Cε2| log(ε)|. (5.124)

Recall that we have ϕh(x) = ∂xφh(x, u0). Thus, by Theorem 2.3 it holds∥∥∥φ′p,ε(x) − ϕh(x)
∥∥∥ ≤ Cε| log(ε)|, x ∈ I f ,ε, (5.125)

where we use that φp,ε and φh solve (2.1) and (2.2), respectively. Next, we apply Qc to (5.121)
and (5.122) at x = 0, yielding

cp,+ =

〈(
0

κh(0)

)
, φ′p,ε(0)

〉
‖κh(0)‖2

= cp,−,
∣∣∣cp,± − 1

∣∣∣ ≤ Cε, (5.126)

by (5.78), (5.116) and (5.125). Finally, applying Q̂c to (5.121) and (5.122) at x = 0, gives the
identity,(

bp,+ − bp,−
0

)
= Q̂c

[
Φs

0,−(0,−Ξε)ap,− +

∫ 0

−Ξε

Φ0(0, y)B0,ε(y, 0)φ′p,ε(y)dy

− Φu
0,+(0,Ξε)ap,+ −

∫ 0

Ξε

Φ0(0, y)B0,ε(y, 0)φ′p,ε(y)dy
]
,

by (5.78) and (5.116). Using (5.96), (5.124) and (5.125), we approximate both sides of the
latter identity, yielding∥∥∥∥∥∥∥∥∥∥∥Q̂

c
[∫ 0

−Ξε

Φ0(0, y)B0,ε(y, 0)ϕh(y)dy −
∫ 0

Ξε

Φ0(0, y)B0,ε(y, 0)ϕh(y)dy
]
− ε


2D−1

1 J(u0)
0
0
0


∥∥∥∥∥∥∥∥∥∥∥

≤ Cε2| log(ε)|2, (5.127)

which gives together with (5.119) and (5.120) the desired leading-order expressions of the
integrals in (5.118).

Thus, the matching conditions (5.112), (5.114), (5.115), (5.117) and (5.118) constitute a
system of 10 linear equations in 11 variables. Provided η, ε > 0 are sufficiently small, this
system can be solved for a, b, c−, d, f , g, h yielding analytic linear mapsH13

ε,λ,H
14
ε,λ andH15

ε,λ
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for λ ∈ Dη,ε satisfying

(a, d, f , g, h) = H13
ε,λ(c+),

c− = c+,

b+ = 2ε
(
I − e−iνΥ∞Φs(2`0, 0)Υ∞

)−1
(

D−1
1 J(u0)

0

)
c+ +H14

ε,λ(c+),

b− = 2ε
(
eiνΥ−∞Φs(0, 2`0)Υ−∞ − I

)−1
(

D−1
1 J(u0)

0

)
c+ +H15

ε,λ(c+),

‖H13
ε,λ(c+)‖ ≤ C| log(ε)|

(
ε| log(ε)| + |λ|

)
|c+|,

‖H
14,15
ε,λ (c+)‖ ≤ C| log(ε)|2

(
ε| log(ε)| + |λ|

)2
|c+|,

(5.128)

where we use (5.119), (5.120), (5.127) and the fact that det(I − e−iνΥ∞Φs(2`0, 0)Υ∞) =

e2imνEs,0(0, eiν) and det(eiνΥ−∞Φs(0, 2`0)Υ−∞ − I) = Es,0(0, eiν) are bounded away from 0 by a
ν-independent constant.

Recall that ( f , g, h, a, b−) satisfy (5.112) if and only if both ϕs,ε(Ξε, λ) = ϕ+
f ,ε(Ξε, λ) and

ϕs,ε(2Lε − Ξε, λ) = eiνϕ−f ,ε(−Ξε, λ) hold true. Moreover, by identity (5.77), (a, b, c, d) sat-
isfy (5.114), (5.115), (5.117) and (5.118) if and only if the jump ϕ+

f ,ε(0, λ) − ϕ−f ,ε(0, λ) lies in
Z⊥. Thus, take c+ := cp,+ and define quantities a±, b±, c−, d±, f , g and h through (5.128), where
we suppress their ε-, λ- and ν-dependence for notational convenience. Then, (5.97), (5.99)
and (5.102) define for any λ ∈ Dη,ε and ν ∈ Sδ a piecewise continuous solution ϕν,ε(x, λ)
to (3.3) on I f ,ε∪ Is,ε, which has a jump only at x = 0 in the space Z⊥ and satisfies ϕν,ε(−Ξε, λ) =

eiνϕν,ε(2Lε − Ξε, λ).

Now, estimate (5.93) follows readily by approximating the coefficients (a, b, c, d, f , g, h) in
the variation of constants formulations (5.97), (5.99) and (5.102) of the solution ϕν,ε(x, λ)
using (5.96), (5.98), (5.100), (5.101), (5.103), (5.126) and (5.128).

Next, we show that for any ν ∈ Sδ the jump Jν,ε(λ), defined in (5.95), of ϕν,ε(x, λ) at x = 0
vanishes for a unique λ-value in Dη,ε. Fix ν ∈ Sδ. The jump Jν,ε(λ) can be expressed as
the difference of the two variation of constants formulas (5.97) and (5.99) at x = 0 with
coefficients a±, b±, c± and d± defined through (5.128) and c+ = cp,+ . We observe that Jν,ε is
analytic on Dη,ε, because the perturbation B0,ε(x, λ) and the linear mapsH13

ε,λ,H
14
ε,λ andH15

ε,λ

are analytic in λ. For any λ ∈ Dη,ε the jump is approximated by∥∥∥∥∥∥Jν,ε(λ) − d+ + d− − λ
∫ 0

∞

Φuc
0,+(0, y)B∗ϕh(y)dy − λ

∫ 0

−∞

Φsc
0,−(0, y)B∗ϕh(y)dy

∥∥∥∥∥∥
≤ C| log(ε)|2

(
ε + |λ|

(
ε| log(ε)| + |λ|

))
,

(5.129)

using (5.93), (5.96), (5.119) and (5.128). By Proposition 5.21 we have ψad(0) ∈ ker(P f ,+(0)∗)∩
P f ,−(0)∗[C2n]. Therefore, it holds

Z⊥ ⊂ ker(Ps
+(0)∗) ∩ ker(Pu

−(0)∗), (5.130)
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by (5.67). The jump Jν,ε(λ) ∈ Z⊥ of ϕν,ε(x, λ) at x = 0 vanishes if and only if〈(
0

ψad(0)

)
, Jν,ε(λ)

〉
= 0. (5.131)

With the aid of (5.130) we calculate〈(
0

ψad(0)

)
,

∫ 0

∞

Φuc
0,+(0, y)B∗ϕh(y)dy −

∫ 0

−∞

Φsc
0,−(0, y)B∗ϕh(y)dy

〉
= −

∫ ∞

−∞

〈
ψad,2(x), ∂xvh(x, u0)

〉
dx.

Combining the latter with (5.129) yields∥∥∥∥∥∥
〈(

0
ψad(0)

)
, Jν,ε(λ)

〉
+ λ

∫ ∞

−∞

〈
ψad,2(x), ∂xvh(x, u0)

〉
dx

∥∥∥∥∥∥
≤ C| log(ε)|2

(
ε + |λ|

(
ε| log(ε)| + |λ|

))
,

λ ∈ Dη,ε,

since d+ ∈ Z s and d− ∈ Zu are in the orthogonal complement of Z⊥ by Proposition 5.21.
Hence, because the λ- and ε-independent integral

∫ ∞
−∞

〈
ψad,2(x), ∂xvh(x, u0)

〉
dx is non-zero

by Proposition 5.21 and the jump Jν,ε is analytic on Dη,ε, Rouché’s Theorem implies that
equation (5.131) has, provided η, ε > 0 are sufficiently small, a unique solution λ̃ε(ν) ∈ Dη,ε.

Our last step is to prove estimate (5.94). Fix ν ∈ Sδ. First, we establish the a priori bound,∥∥∥ϕν,ε(x, λ) − φ′p,ε(x)
∥∥∥ ≤ C

(
ε| log(ε)| + |λ|

)
, x ∈ I f ,ε, λ ∈ Dη,ε, (5.132)

using (5.93) and (5.125). By subtracting (5.121) from (5.97) and (5.122) from (5.99), we
obtain variation of constants formulas for ϕν,ε(x, λ) − φ′p,ε(x) on I+

f ,ε and I−f ,ε, respectively. Our
approach is to obtain leading-order expressions for the coefficients a±−ap,±, b±−bp,±, c±−cp,±
and d± − dp,± in these variation of constants formulas. By (5.124), (5.126) and (5.128) it holds

c± − cp,± = 0,∥∥∥a± − ap,±
∥∥∥ ≤ C| log(ε)|

(
ε| log(ε)| + |λ|

)
,∥∥∥b± − bp,± + B(ν)

∥∥∥ ≤ C| log(ε)|2
(
ε| log(ε)| + |λ|

)2 ,

λ ∈ Dη,ε, (5.133)

where B(ν) is defined in (3.20). Estimating d± − dp,± is more elaborate. Note that the jump
Jν,ε(λ) ∈ Z⊥ lies in the kernels of Qu and Qs by (5.77). Thus, to estimate d+ − dp,+, we apply
the projection Qs to

Jν,ε(λ) = lim
x↓0

(
ϕν,ε(x, λ) − φ′p,ε(x)

)
− lim

x↑0

(
ϕν,ε(x, λ) − φ′p,ε(x)

)
, λ ∈ Dη,ε,
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yielding

d+ − dp,+ =

∫ 0

−Ξε

Φs
0,−(0, y)

[
B0,ε(y, λ)ϕν,ε(y, λ) − B0,ε(y, 0)φ′p,ε(y)

]
dy

− Qs
∫ 0

Ξε

Φc
0,+(0, y)

[
B0,ε(y, λ)ϕν,ε(y, λ) − B0,ε(y, 0)φ′p,ε(y)

]
dy

+ Φs
0,−(0,−Ξε)(a− − ap,−),

by (5.68), (5.113) and (5.133). Therefore, (5.93), (5.96), (5.119), (5.132) and (5.133) imply∥∥∥d+ − dp,+
∥∥∥ ≤ C| log(ε)|

(
ε2| log(ε)|2 + |λ|

)
, λ ∈ Dη,ε. (5.134)

Subtracting (5.121) from (5.97) gives for each λ ∈ Dη,ε a variation of constants formula for
ϕν,ε(x, λ) − φ′p,ε(x) on I+

f ,ε:

ϕν,ε(x, λ) − φ′p,ε(x) = Φu
0,+(x,Ξε)(a+ − ap,+) + Φin(x)(b+ − bp,+) + Φs

0,+(x, 0)(d+ − dp,+)

+

∫ x

0
Φs

0,+(x, y)
[
B0,ε(y, λ)ϕν,ε(y, λ) − B0,ε(y, 0)φ′p,ε(y)

]
dy

+

∫ x

Ξε

Φuc
0,+(x, y)

[
B0,ε(y, λ)ϕν,ε(y, λ) − B0,ε(y, 0)φ′p,ε(y)

]
dy,

where we use c+ = cp,+. Applying (5.93), (5.96), (5.119), (5.132), (5.133) and (5.134) to the
latter identity yields the approximation (5.94) on [0,Ξε/2]. The proof of (5.94) on [−Ξε/2, 0]
is analogous. �

Remark 5.26. The proof of Theorem 5.25 provides a Lyapunov-Schmidt type reduction pro-
cedure. Finding a bounded solution to the full eigenvalue problem (3.3) amounts to inverting
the operatorLε−λ defined in §3.2. By constructing the piecewise continuous solution ϕν,ε(x, λ)
to (3.3) via Lin’s method, we invert a certain part of Lε − λ and we obtain a one-dimensional
reduced equation (5.131) describing the remaining unsolved part.

Thus, solving (5.131) for λ yields the desired simple eigenvalue λε(ν) of Lε about the origin.
A leading-order expression of λε(ν) can be obtained by calculating the leading order of the
ε- and λ-dependent parts of (5.131). Alternatively, we use the key identity (5.51) to derive a
leading-order expression for λε(ν) – see §5.3.5. �

5.3.5 Conclusion
In this section we provide the proof of Theorem 3.19. Let Sδ, Dη,ε and Ξε be as in (3.21), (5.52)
and (5.53), respectively. In Theorem 5.25 we constructed for any λ ∈ Dη,ε and ν ∈ Sδ a
piecewise continuous solution ϕν,ε(x, λ) to the full eigenvalue problem (3.3) on the interval
[−Ξε, 2Lε − Ξε] which has a jump only at x = 0. In addition, we obtained leading-order
expressions for ϕν,ε(x, λ) and ϕν,ε(x, λ) − φ′p,ε(x).
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Moreover, we proved in Theorem 5.25 that for any ν ∈ Sδ there is a unique λ-value λ̃ε(ν) ∈ Dη,ε

for which the jump of ϕν,ε(x, λ) vanishes. As mentioned in §5.3.1 this λ-value coincides with
the unique root λε(ν) of the Evans function Eε(·, eiν) about the origin. We extend the continuous
solution ϕν,ε(x, λ̃ε(ν)) to the whole real line via (5.55). In §5.3.1 we derived an identity (5.51)
for λε(ν) in terms of this extended solution ϕ̌ν,ε to (3.3). Plugging the leading-order expressions
for ϕ̌ν,ε(x) and ϕ̌ν,ε(x) − φ′p,ε(x) into (5.51) yields the desired approximation (3.17) of λε(ν).

Proof of Theorem 3.19. In the following, we denote by C > 0 a constant, which is indepen-
dent of ε and ν.

In §5.3.1 we established a ς > 0 such that, provided ε > 0 is sufficiently small, there
exists for any ν ∈ Sδ a unique (real) root λε(ν) ∈ B(0, ς) of Eε(·, eiν). We showed that the
function λε : Sδ → R is analytic, even and 2π-periodic and satisfies λε(0) = 0 whenever 0 ∈ Sδ.

Fix ν ∈ Sδ. Consider the solution ϕν,ε(x, λ̃ε(ν)) to the full eigenvalue problem (3.3), es-
tablished in Theorem 5.25, and define ϕ̌ν,ε by (5.55). Clearly, ϕ̌ν,ε is a solution to (3.3) on the
whole real line. In §5.3.1 we showed that it holds λε(ν) = λ̃ε(ν) and that the key identity (5.51)
is satisfied for ϕ̌ν,ε(x) = (ũν,ε(x), p̃ν,ε(x), ṽν,ε(x), q̃ν,ε(x)). To obtain a leading-order expression
for λε(ν) we approximate the integrals in (5.51) using Theorem 5.25.

First, Theorem 2.3 and estimate (5.93) imply that ϕ̌ν,ε and φp,ε are bounded on R by a constant
independent of ε and ν. On the other hand, the solution ψad(x) = (ψad,1(x), ψad,2(x)) to the
adjoint equation (3.19) satisfies

‖ψad(x)‖ ≤ Ce−µr |x|, x ∈ R,

by Proposition 5.21. Thus, using estimate (5.93) we approximate∥∥∥∥∥∫ ∞

−∞

ψad,2(x)∗ṽν,ε(x)dx −
∫ ∞

−∞

ψad,2(x)∗∂xvh(x, u0)dx
∥∥∥∥∥ ≤ C| log(ε)|

(
ε| log(ε)| + |λν(ε)|

)
,

(5.135)

In addition, by estimate (5.94) and Theorem 2.3 we have∥∥∥∥∥∫ ∞

−∞

ψad,2(x)∗
(
∂vG(φ̂p,ε(x), ε) − ∂vG(u0, vh(x, u0), 0)

) (
ṽν,ε(x) − v′p,ε(x)

)
dx

∥∥∥∥∥
≤ Cε| log(ε)|2

(
ε2| log(ε)|3 + |λε(ν)|

) (5.136)

where we use that ψad,2(x) is odd by Proposition 5.21, φ̂p,ε(x) is even by Theorem 2.3, vh(x, u0)
is even by (E1) and the v-components of Φin(x)B(ν) are even by (E1). Integration by parts
gives ∫ ∞

−∞

ψad,2(x)∗∂uG(φ̂p,ε(x), ε)
(
ũν,ε(x) − u′p,ε(x)

)
dx

= −ε

∫ ∞

−∞

∫ x

−∞

ψad,2(y)∗∂uG(φ̂p,ε(y), ε)D−1
1

(
p̃ν,ε(x) − p′p,ε(x)

)
dydx,
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since ψad,2(x) is odd and φ̂p,ε(x) is even. Applying estimate (5.94) and Theorem 2.3 to the
latter yields∥∥∥∥∥∫ ∞

−∞

ψad,2(x)∗∂uG(φ̂p,ε(x), ε)
(
ũν,ε(x) − u′p,ε(x)

)
dx

−ε2
∫ ∞

−∞

∫ x

−∞

ψad,2(y)∗∂uG(u0, vh(y, u0), 0)dydxB(ν)
∥∥∥∥∥

≤ Cε| log(ε)|
(
ε2| log(ε)|3 + |λν(ε)|

)
,

(5.137)

with B(ν) defined in (3.20), where we use ψad,2(x) is odd, vh(x, u0) is even and the p-component
of (I − Φin(x))B(ν) is odd by (E1). Finally, since the integral

∫ ∞
−∞

ψad,2(x)∗∂xvh(x, u0)dx is
non-zero by Proposition 5.21, the key identity (5.51) in combination with the estimates (5.135),
(5.136) and (5.137) gives∥∥∥∥∥∥∥λε(ν) + ε2

∫ ∞
−∞

∫ x
−∞

ψad,2(y)∗∂uG(u0, vh(y, u0), 0)dydxB(ν)∫ ∞
−∞

ψad,2(x)∗∂xvh(x, u0)dx

∥∥∥∥∥∥∥
≤ Cε3| log(ε)|5.

The latter yields the leading-order expression (3.17) of λε(ν) by switching the order of integra-
tion in the numerator using that ψad,2 is odd and vh(x, u0) is even. �

Remark 5.27. In the proof of Theorem 3.19 we have obtained for any ν ∈ Sδ an eigenfunction,

ψν,ε(x̌) :=
(

ũν,ε(ε−1 x̌)
ṽν,ε(ε−1 x̌)

)
eiνx̌/2`ε ∈ H2

per([0, 2`ε],C
m+n),

corresponding to the eigenvalue λε(ν) of the operator Lν,ε defined in §3.2.1. The approxima-
tions in Theorem 5.25 and its proof provide leading-order control over this eigenfunction.
We observe that ψν,ε(x̌) is approximated by (0, ∂xvh(ε−1 x̌, u0)) along the pulse. The derivative
∂xvh(x, u0) corresponds to the translational eigenfunction at λ = 0 of the linearization of
vt = D2vxx −G(u0, v, 0) about the standing pulse solution vh(x, u0). Thus, along the pulse, the
leading-order dynamics of the eigenfunction ψν,ε is independent of ν. On the other hand, along
the slow manifold, i.e. for εx̌ ∈ Is,ε, ψν,ε(x̌) is approximated by the u-components of

2εeiνx̌/2`εΦs(x̌, 0)Υ0

(
I − e−iνΥ0Φs(2`0, 0)Υ0

)−1
(

D−1
1 J(u0)

0

)
,

by (5.87), (5.101), (5.102), (5.103), (5.111), (5.112) and (5.128), where J is given by (2.5),
Φs(x̌, y̌) is the evolution (2.7) and Υ0 is defined in (3.20). Thus, along the slow manifold,
the leading-order dynamics of the eigenfunction ψν,ε is dictated by the slow variational
equation (2.7) and the value of ν. �
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5.3.6 Discussion

Our approach to expanding the critical spectral curve relies on Lin’s method. As mentioned
in the introduction in Chapter 1 a similar approach is employed in [10, 100] to determine the
spectral geometry about the origin. In this section we compare the analyses in [10, 100] with
ours.

In [100] one considers 2L-periodic wave trains to general reaction-diffusion systems that
converge to a homoclinic pulse solution in the long-wavelength limit L→ ∞. An expansion
of the critical spectral curve is obtained in terms of the period L. It is assumed that the
translational eigenvalue at the origin corresponding to the limiting homoclinic pulse is simple.
Therefore, the variational equation about the homoclinic pulse has exponential dichotomies
on both half-lines such that the spaces of solutions decaying as x→ ∞ and x→ −∞ have a
one-dimensional intersection. Thus, one obtains a decomposition (5.59) of the solution space
as exhibited by our fast variational equation (3.15).

The variational equation about the limiting homoclinic serves as the backbone for the con-
struction of solutions to the eigenvalue problem associated with the periodic wave train. Using
Lin’s method a piecewise continuous eigenfunction ϕν(x) is constructed on [−L, L] for any
ν ∈ R that has a jump at 0 and satisfies ϕ(L) = eiνϕ(−L). The exponential dichotomies of the
variational equation about the homoclinic control the dynamics of the eigenvalue problem on
the growing interval [−L, L]. The jump at 0 depends on the spectral parameter λ, the period L
and the Floquet exponent ν, because the eigenvalue problem is a (λ, L−1)-perturbation of the
homoclinic variational equation. Using Melnikov theory the jump can be equated to 0 yielding
an expansion of the critical spectral curve in terms of e−L.

In our work there are two systems that serve as the backbone for the construction of so-
lutions to the full eigenvalue problem (3.3): the reduced eigenvalue problems (5.56) and (5.80)
which describe the leading-order dynamics along the fast pulse and along the slow manifold.
In contrast to [100], the reduced eigenvalue problems admit exponential trichotomies in ac-
cordance with the slow-fast structure of the eigenvalue problem (3.3). Moreover, the full
eigenvalue problem (3.3) is a (λ, ε)-perturbation of the reduced eigenvalue problems. As a
result, the jump of the obtained piecewise continuous eigenfunction in our work depends on ε,
λ and ν. The center dynamics captured by the exponential trichotomies prevents the critical
curve from being exponentially small in terms of the period as in [100]; instead the curve
scales with ε2.

In [10] the location of a critical eigenvalue near the origin is determined in the context
of fast traveling pulses (with oscillatory tails) in the FitzHugh-Nagumo equations. Again,
Lin’s method is employed to obtain a leading-order expression for this critical eigenvalue in
terms of the small parameter ε. Similar to our work, the slow-fast structure yields a framework
for the construction of a piecewise continuous eigenfunction to the associated eigenvalue
problem. This framework consists of four (reduced) eigenvalue problems arising along the fast
front and back and along the orbit segments on the slow manifolds which together constitute
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the pulse profile in the limit ε → 0. However, in contrast to our work, it is sufficient to
distinguish between center-stable dynamics and unstable dynamics in the eigenvalue problem.
Thus, the introduction of an exponential weight yields exponential dichotomies for the reduced
eigenvalue problems.

Lin’s method then yields a piecewise continuous eigenfunction that has two ε- and λ-dependent
jumps in the middle of the front and the back. Thus, Lyapunov-Schmidt reduction leads to
a quadratic equation in λ rather than a linear one as in [100] and our work. One root of the
quadratic corresponds to the translational eigenvalue sitting at the origin. The second root
corresponds to the critical, non-trivial eigenvalue that scales with ε in the monotone case,
while the scaling in the oscillatory case is ε2/3.

In the aforementioned spectral analyses, the fine structure of the spectrum about the ori-
gin is decisive for stability, but not detectable in the relevant asymptotic limit. In these cases
Lin’s method proves to be a powerful tool to determine how the spectrum locally perturbs
from the asymptotic limit. Therefore, we expect that Lin’s method can be applied to a wide
range of spectral perturbation problems – see also Remark 1.3.




