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Chapter 4

Prerequisites for the spectral stability
analysis

In the spectral stability analysis in Chapter 5 we encounter linear ODEs, some of which depend
on a small parameter ε > 0 or on a spectral parameter λ ∈ C. In this chapter we collect the
necessary techniques to control such systems.

4.1 A Grönwall type estimate for linear systems
In the spectral stability analysis of solutions to singularly perturbed equations one often
needs to compare a linear system with its perturbation. Our analysis requires the following
approximation result for linear systems, which follows from a direct application of Grönwall’s
inequality.

Lemma 4.1. [87, Lemma 1] Let n ∈ Z>0, a, b ∈ R with a < b and A, B ∈ C([a, b],Matn×n(C)).
Suppose there are constants K, µ > 0 such that the evolution operator T1(x, y) of system,

ϕx = A(x)ϕ, ϕ ∈ Cn, (4.1)

satisfies

‖T1(x, y)‖ ≤ Keµ|x−y|, x, y ∈ [a, b]. (4.2)

Denote by T2(x, y) the evolution operator of system,

ϕx = B(x)ϕ, ϕ ∈ Cn. (4.3)

It holds

‖T1(x, y) − T2(x, y)‖ ≤ K
∫ b

a
‖A(z) − B(z)‖dz exp

(
µ(b − a) + K

∫ b

a
‖A(z) − B(z)‖dz

)
,

for x, y ∈ [a, b].
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Remark 4.2. If M > 0 is such that M ≥ sup{‖A(x)‖ : x ∈ [a, b]}, then (4.2) is satisfied for
µ = M and K = 1 by Grönwall’s inequality. �

4.2 Asymptotically constant systems

The eigenvalue problems arising in our spectral stability analysis are non-autonomous linear
systems of the form,

ϕx = A(x, λ)ϕ, ϕ ∈ Cn, (4.4)

depending analytically on a spectral parameter λ. Often we are looking for the eigenvalues
λ ∈ C for which (4.4) admits a non-trivial bounded (or exponentially localized) solution.
Therefore, we are interested in the asymptotic behavior of solutions to (4.4).

Linearizing about pulse type solutions leads to eigenvalue problems (4.4) that have an asymp-
totically constant coefficient matrix. In such systems the asymptotics of solutions is dictated
by the behavior of the constant coefficient system at ±∞ – see also Proposition 4.7. The
following result concerns the construction of a unique solution with the highest decay rate to
an asymptotically constant system.

Proposition 4.3. [90, Proposition 1.2] Let n ∈ Z>0,Ω ⊂ C open and A ∈ C([0,∞) ×
Ω,Matn×n(C)) such that A(x, ·) is analytic on Ω for each x ≥ 0. Suppose that there exists
µ,K > 0 and A∞ : Ω→ Matn×n(C) analytic such that

‖A(x, λ) − A∞(λ)‖ ≤ Ke−µx, x ≥ 0, λ ∈ Ω. (4.5)

Furthermore, suppose that the eigenvalue µ(λ) of A∞(λ) of smallest real part is simple for all
λ ∈ Ω. Denote by v(λ) an analytic eigenvector of A∞ corresponding to µ(λ). For any compact
subset Ωb ⊂ Ω, there exists C > 0, independent of λ, and a unique solution y(x, λ) to (4.4)
satisfying ∥∥∥e−µ(λ)xy(x, λ) − v(λ)

∥∥∥ ≤ Ce−µx, x ≥ 0, λ ∈ Ωb.

The solution y(x, ·) is analytic on the interior of Ωb for each x ≥ 0.

4.3 Exponential dichotomies

Exponential dichotomies enable us to track solutions in linear systems by separating the
solution space in solutions that either decay exponentially in forward time or else in backward
time. Moreover, their associated projections inherit analytic dependence of the problem on a
spectral parameter λ. Therefore, they provide a natural framework [98] to capture the linear
dynamics of eigenvalue problems of the form (4.4) arising in our spectral stability analysis.
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Definition 4.4. Let n ∈ Z>0, J ⊂ R an interval and A ∈ C(J,Matn×n(C)). Denote by T (x, y) the
evolution operator of (4.1). Equation (4.1) has an exponential dichotomy on J with constants
K, µ > 0 and projections P(x) : Cn → Cn if for all x, y ∈ J it holds

• P(x)T (x, y) = T (x, y)P(y);

• ‖T (x, y)P(y)‖ ≤ Ke−µ(x−y) for x ≥ y;

• ‖T (x, y)(I − P(y))‖ ≤ Ke−µ(y−x) for y ≥ x.

Let P(x) be the family of projections associated with an exponential dichotomy on J. For each
x, y ∈ J, we denote by T s(x, y) = T (x, y)P(y) and T u(x, y) = T (x, y)(I − P(y)) the stable and
unstable evolution of system (4.1), leaving the projection P(y) implicit.

Below we give a short overview of the properties of exponential dichotomies that we need
for our spectral stability analysis. For an extensive introduction on dichotomies the reader is
referred to [14, 96]. A generalization of the concept of exponential dichotomies is the notion
of exponential separation, which is treated in [85]. In particular, one can define exponential
trichotomies to capture linear systems that exhibit centre behavior in addition to exponential
decay in forward and backward time – see §4.4.

4.3.1 Dichotomy projections
Exponential dichotomies on an interval J ⊂ R are in general not unique. If J = [0,∞), then the
range of the dichotomy projection corresponds to the space of solutions decaying in forward
time and is therefore uniquely determined, whereas its kernel can be any complement.

Lemma 4.5. [96, Lemma 1.2(ii)] Let n ∈ Z>0 and A ∈ C([0,∞),Matn×n(C)). Suppose
equation (4.1) admits an exponential dichotomy on [0,∞) with projections P(x). If Y ⊂ Cn

satisfies Y ⊕ P(0)[Cn] = Cn, then (4.1) admits an exponential dichotomy on [0,∞) with
projections Q(x), where Q(0) is the projection on P(0)[Cn] along Y.

An autonomous linear system ϕx = A0ϕ, where A0 ∈ Matn×n(C) is hyperbolic, admits an
exponential dichotomy on R. The associated dichotomy projection is given by the spectral
projection onto the stable eigenspace of A0. If a non-autonomous linear system (4.1), which
admits an exponential dichotomy on [0,∞), converges to a hyperbolic system as x→ ∞, then
the dichotomy projections converge to the associated spectral projection.

Lemma 4.6. [86, Lemma 3.4] Let n ∈ Z>0 and A ∈ C([0,∞),Matn×n(C)). Suppose equa-
tion (4.1) admits an exponential dichotomy on [0,∞) with constants K, µ > 0 and projections
P(x). In addition, suppose there exists a hyperbolic matrix A0 ∈ Matn×n(C) with spectral gap
larger than µ such that

‖A0‖ ≤ K, ‖A(x) − A0‖ ≤ Ke−µx, x ≥ 0.
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Then, there exists a constant C > 0, depending on n, µ and K only, such that

‖P(x) − P0‖ ≤ Ce−µx, x ≥ 0,

where P0 is the spectral projection onto the stable eigenspace of A0.

4.3.2 Sufficient criteria for exponential dichotomies
As mentioned before, an autonomous linear system ϕx = A0ϕ, where A0 ∈ Matn×n(C) is hyper-
bolic, admits an exponential dichotomy on R. This result can be extended to non-autonomous
systems (4.1) in at least two ways. First, if the coefficient matrix A(x) converges to a hyper-
bolic matrix A±∞ as x→ ±∞, then exponential dichotomies for (4.1) on the half-lines [0,∞)
and (−∞, 0] can be constructed from the exponential dichotomies of the asymptotic systems
ϕx = A±∞ϕ. Second, if A(x) is slowly varying and pointwise hyperbolic, then system (4.1)
admits an exponential dichotomy.

In our spectral stability analysis, we use these two results to obtain exponential dichotomies
for eigenvalue problems of the form (4.4). We emphasize that both constructions respect ana-
lyticity in the spectral parameter λ. We start with the first result that focusses on asymptotically
hyperbolic systems.

Proposition 4.7. [86, Lemma 3.4], [99, Theorem 1] Let n ∈ Z>0, Ω ⊂ C open and A ∈
C([0,∞) × Ω,Matn×n(C)) such that A(x, ·) is analytic on Ω for each x ≥ 0. Suppose that there
exists constants µ,K, α > 0 and an analytic map A∞ : Ω→ Matn×n(C) such that

i. Identity (4.5) is satisfied for each x ≥ 0 and λ ∈ Ω;

ii. For any λ ∈ Ω the matrix A∞(λ) is hyperbolic with spectral gap larger than α.

System (4.4) admits for any λ ∈ Ω an exponential dichotomy on [0,∞) with constants C(λ), α >
0 and projections P(x, λ), whose rank equals the dimension of the stable eigenspace of A∞(λ).
The projections P(x, ·) are analytic on Ω for each x ≥ 0. Moreover, the map λ 7→ C(λ) is
continuous.

For hyperbolic, constant coefficient systems ϕx = A0(λ)ϕ the dichotomy projections equal the
spectral projections onto the stable eigenspace of A0(λ). Clearly, this spectral projection inher-
its analyticity from A0. This can be extended to non-autonomous systems of the form (4.4): if
A(x, λ) varies slowly and is pointwise hyperbolic, then (4.1) admits an exponential dichotomy
that has analytic projections close to the spectral projections onto the stable eigenspace of
A(x, λ).

The latter result is proved in [10, Proposition 6.5] in the setting of the FitzHugh-Nagumo
system. In addition, in [14, Proposition 6.1] the result is proved for general systems of the
form (4.1). However, the result in [14] lacks the desired closeness estimates on the dichotomy
projections and analytic dependence on parameters is not shown. Therefore, we provide a
proof of these two facts along the lines of [10, Proposition 6.5].
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Proposition 4.8. Let n ∈ Z>0, a, b ∈ R with b− a > 2 and Ω ⊂ C open. Denote X = [a, b]×Ω

and let A ∈ C1(X,Matn×n(C)). Assume that A(x, ·) is analytic on Ω for each x ∈ [a, b] and that
there exists constants α > 0 and M > 1 such that:

i. For each (x, λ) ∈ X the matrix A(x, λ) is hyperbolic with spectral gap larger than α;

ii. The matrix function A is bounded by M on X.

There exists δ > 0, depending only on α and M, such that, if we have

sup
(x,λ)∈X

‖∂xA(x, λ)‖ ≤ δ,

then (4.4) has an exponential dichotomy on [a + 1, b−1] for any λ ∈ Ω with constants C, µ > 0
and projections P(x, λ) such that P(x, ·) is analytic on Ω for each x ∈ [a + 1, b−1]. In addition,
we have µ = 1

2α and C depends only on M, α and n. Finally, for any (y, λ) ∈ [a + 1, b− 1]×Ω

we have the estimate,

‖P(y, λ) − P(y, λ)‖ ≤ C sup
(x,λ)∈X

‖∂xA(x, λ)‖ , (4.6)

where P(x, λ) is the spectral projection onto the stable eigenspace of A(x, λ).

Proof. In the following, we denote by C > 0 a constant depending only on M, n and α.

Our approach is to extend system (4.4) to the whole real line, such that it varies only on
the finite interval [a, b]. We establish an exponential dichotomy for this extended system
using [14, Proposition 6.1]. The range or kernel of the dichotomy projections must be analytic
for x ∈ R \ [a, b] by analyticity of the spectral projections. These analyticity properties
can be interpolated to the interval [a, b]. Finally, to prove the closeness estimate (4.6), we
approximate the stable evolution operator of system (4.4) by P(x, λ) exp(A(x, λ)(x − y)), using
that the derivative of A(x, λ) is small.

We introduce a smooth partition of unity χi : R→ [0, 1], i = 1, 2, 3 satisfying

3∑
i=1

χi(x) = 1, |χ′2(x)| ≤ 2, x ∈ R,

supp(χ1) ⊂ (−∞, a + 1), supp(χ2) ⊂ (a, b), supp(χ3) ⊂ (b − 1,∞).

The equation,

ϕx = A(x, λ)ϕ, ϕ ∈ Cn, (4.7)

with

A(x, λ) := χ1(x)A(a, λ) + χ2(x)A(x, λ) + χ3(x)A(b, λ),
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coincides with (4.4) on [a + 1, b − 1]. We calculate

∂xA(x, λ) =


χ2(x)∂xA(x, λ), x ∈ (a + 1, b − 1),
χ′2(x)(A(x, λ) − A(a, λ)) + χ2(x)∂xA(x, λ), x ∈ [a, a + 1],
χ′2(x)(A(x, λ) − A(b, λ)) + χ2(x)∂xA(x, λ), x ∈ [b − 1, b],
0, otherwise.

First, we have ‖∂xA(x, λ)‖ ≤ 3δ for each (x, λ) ∈ R×Ω by the mean value theorem. Second, by
the spectral estimates in [83] the Hausdorff distance between the spectra of A(a, λ) andA(x, λ)
is smaller than Cδ1/n for each (x, λ) ∈ (−∞, a + 1] × Ω. Similarly, the Hausdorff distance
between the spectra of A(b, λ) andA(x, λ) is smaller than Cδ1/n for every (x, λ) ∈ [b−1,∞)×Ω.
Hence, for δ > 0 sufficiently small, the matrixA(x, λ) is hyperbolic for each (x, λ) ∈ R ×Ω

with spectral gap larger than 1
2α. Third,A is bounded by M on R × Ω. Combining these three

items with [14, Proposition 6.1] implies that system (4.7) admits, provided δ > 0 is sufficiently
small, an exponential dichotomy on R with constants C, µ > 0 with µ = 1

2α and projections
P(x, λ).

The next step is to prove that the projections P(x, ·) are analytic in Ω for each x ∈ R. Any
solution to the constant coefficient system ψx = A(a, λ)ψ that converges to 0 as x → −∞
must be in the kernel of the spectral projection P(a, λ) onto the stable eigenspace of A(a, λ).
Hence, it holds ker(P(a, λ)) = ker(P(a, λ)) by construction of (4.7). Moreover, the spectral
projection P(a, ·) is analytic on Ω, since A(a, ·) is analytic on Ω. Thus, ker(P(a, λ)) and
similarly P(b, λ)[Cn] must be analytic subspaces – see [42, Chapter 18] – in λ ∈ Ω. Denote by
T (x, y, λ) the evolution operator of (4.7), which is by [60, Lemma 2.1.4] analytic in λ ∈ Ω for
each x, y ∈ R. We conclude that both ker(P(a, λ)) and P(a, λ)[Cn] = T (a, b, λ)P(b, λ)[Cn] are
analytic subspaces in λ ∈ Ω. Therefore, the projection P(a, ·) (and thus any projection P(x, ·),
x ∈ R) is analytic in Ω.

Finally, we prove that the projections P(x, λ) can be approximated by the spectral pro-
jections P(x, λ) onto the stable eigenspace of A(x, λ) for any (x, λ) ∈ R × Ω. Define
δ∗ := sup{‖∂xA(x, λ)‖ : (x, λ) ∈ X} > 0. Take z ∈ R and v ∈ P(z, λ)[Cn]. Observe that

ϕ̂(x, λ) := P(x, λ)eP(x,λ)A(x,λ)(x−z)v, (x, λ) ∈ R ×Ω,

satisfies the inhomogeneous equation,

ϕx = A(x, λ)ϕ + g(x, λ),

with

g(x, λ) := eP(x,λ)A(x,λ)(x−z) [∂x (P(x, λ)A(x, λ)) (x − z) + ∂xP(x, λ)] v.

By uniformity of the bound on the spectral gap ofA, there exists a contour Γ ⊂ C, depending
only on M, α and n, containing precisely those eigenvalues ofA(x, λ) of negative real part for



77 CHAPTER 4. PREREQUISITES FOR THE SPECTRAL STABILITY ANALYSIS

all (x, λ) ∈ R ×Ω. Thus, we have

P(x, λ) =
1

2πi

∮
Γ

(w −A(x, λ))−1dw, (x, λ) ∈ R ×Ω. (4.8)

By [41, Corollary 1.2.4] the norm of the resolvent (w −A(x, λ))−1 can be bounded in terms
of M, n and the distance d(w, σ(A(x, λ))). Hence, choosing the contour Γ appropriately, we
observe

sup
(x,λ)∈R×Ω

‖P(x, λ)‖ ≤ C. (4.9)

Since P(x, λ) is the projection onto the stable eigenspace of A(x, λ) and A is uniformly
bounded by M on R×Ω and has a uniform spectral gap larger than µ = 1

2α on R×Ω, we have
by [41, Theorem 1.2.1] the bound,

sup
λ∈Ω

∥∥∥eP(x,λ)A(x,λ)(x−z)
∥∥∥ ≤ Ce−µ(x−z), x ≥ z. (4.10)

Differentiating identity (4.8) yields

∂xP(x, λ) =
1

2πi

∮
Γ

(w −A(x, λ))−1∂xA(x, λ)(w −A(x, λ))−1dw,

for each (x, λ) ∈ R × Ω. Since the norm of the resolvent (w − A(x, λ))−1 can be bounded
in terms of M, n and d(w, σ(A(x, λ))), we observe that sup(x,λ)∈R×Ω ‖∂xP(x, λ)‖ ≤ Cδ∗. Thus,
combining the latter with (4.9) and (4.10) yields

sup
λ∈Ω

‖g(x, λ)‖ ≤ Cδ∗‖v‖, x ≥ z. (4.11)

Take ξ = z − log(δ∗)µ−1 ≥ z. By the variation of constants formula there exists w ∈ C3 such
that

ϕ̂(x, λ) = T (x, ξ, λ)w +

∫ x

z
T s(x, y, λ)g(y, λ)dy +

∫ x

∞

T u(x, y, λ)g(y, λ)dy, (4.12)

for x ≥ z and λ ∈ Ω. Evaluating (4.12) at x = ξ, while using (4.9), (4.10) and (4.11),
we derive ‖w‖ ≤ Cδ∗‖v‖. Thus, applying I − P(z, λ) to (4.12) at x = z, yields the bound
‖(I − P(z, λ))v‖ ≤ Cδ∗‖v‖ for every v ∈ P(z, λ)[Cn] by (4.10) and (4.11). Similarly, one
shows that for every v ∈ ker(P(z, λ)) we have ‖P(z, λ)v‖ ≤ Cδ∗‖v‖. Thus, we obtain for any
(z, λ) ∈ R ×Ω

‖[P − P](z, λ)‖ ≤ ‖[(I − P)P](z, λ)‖ + ‖[P(I − P)](z, λ)‖ ≤ Cδ∗.

Since (4.7) coincides with (4.4) on [a + 1, b − 1], we have established the desired exponential
dichotomy of (4.1). �
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4.3.3 Extending and pasting exponential dichotomies
Once one puts a linear system in the framework of exponential dichotomies, a great technical
toolbox becomes available. First, there are several constructions available to extend the interval
of the dichotomy. Second, if an equation admits exponential dichotomies on two neighboring
intervals, then these dichotomies can be glued together. Third, exponential dichotomies persist
under small perturbations of the equation.

In our spectral stability analysis we need to establish exponential dichotomies for eigen-
value problems that have a complicated structure. The aforementioned techniques enable us to
built exponential dichotomies for these problems from exponential dichotomies of simpler
subproblems. In this section, we treat extending and pasting of exponential dichotomies.
In the next section, we consider the persistence of exponential dichotomies against small
disturbances.

Every exponential dichotomy can be extended for finite time using Grönwall type estimates.

Lemma 4.9. [14, p. 13] Let n ∈ Z>0, J2 ⊂ J1 ⊂ R intervals and A ∈ C(J1,Matn×n(C)).
Suppose equation (4.1) admits an exponential dichotomy on J2 with constants K, µ > 0 and
projections P2(x). In addition, suppose the length of J1 \ J2 is finite. Take M > 0 such that
M ≥ sup{‖A(x)‖ : x ∈ J1 \ J2}.

Then, system (4.1) has an exponential dichotomy on J1 with constants C, µ > 0 and pro-
jections P1(x). The constant C depends on K, µ,M and the length of J1 \ J2 only. Moreover,
we have P1(x) = P2(x) for all x ∈ J2.

In the case that the equation is periodic, an exponential dichotomy on a sufficiently large
interval can be extended to the whole line.

Lemma 4.10. [87, Theorem 1] Let n ∈ Z>0, T > 0 and A ∈ C(R,Matn×n(C)). Suppose that A
is T-periodic and that equation (4.1) has an exponential dichotomy on an interval J of length
2T with constants K, α > 0. Let M ≥ sup{‖A(x)‖ : x ∈ R} and h := α−1(sinh−1(4) + log(K)).

If T > 0 is so large that T ≥ 2h, then equation (4.1) has an exponential dichotomy on
R with constants C, µ > 0. We have µ = h−1 log 3 and C depends only on M,K and α.

Exponential dichotomies on two neighboring intervals can be pasted together as long as their
spaces of exponential decaying solutions in forward and backward time are complementary.

Lemma 4.11. Let n ∈ Z>0, J ⊂ R an interval and A ∈ C(J,Matn×n(C)). Let J1, J2 be two
intervals such that their union equals J and max J1 = b = min J2 for some b ∈ R. Suppose
equation (4.1) has exponential dichotomies on both J1 and J2 with constants K, µ > 0 and
projections P1(x), x ∈ J1 and P2(x), x ∈ J2, respectively.
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If Eu := ker(P1(b)) and E s := P2(b)[Cn] are complementary, then (4.1) has an exponential
dichotomy on J with constants K1, µ > 0. Here, K1 depends only on K and ‖P‖, where P is the
projection on E s along Eu.

Proof. Let X(x) be the fundamental matrix of (4.1) satisfying X(b) = I. Define P(x) =

X(x)PX(x)−1 for x ∈ J, where P is the projection on E s along Eu. Observe that P = P(b) has
the same range as P2(b) and the same kernel as P1(b). Now, the exposition in [14, pp. 16-17]
shows that (4.1) has exponential dichotomies on J1 and on J2 with constants K1, µ > 0 and
projections P(x) for x ∈ J1 and x ∈ J2, respectively. We have K1 = K + K2‖P‖ + K3. To
conclude the proof we need to show that the dichotomy estimates remain true on the union
J = J1 ∪ J2. Indeed, take x ∈ J2 and y ∈ J1. We estimate

‖T (x, y)P(y)‖ ≤ ‖T (x, b)P2(b)‖‖P‖‖P1(b)T (b, y)‖ ≤ K2‖P‖e−µ(x−y),

where we use P2(b)P = P and PP1(b) = P. Similarly, one estimates ‖T (y, x)(I − P(x))‖ ≤
K2‖P‖e−µ(x−y) for x ∈ J2 and y ∈ J1. �

4.3.4 Roughness of exponential dichotomies
Exponential dichotomies are particularly useful to study the spectral properties of perturbed
differential equations, since they are robust against small disturbances. This property is often
referred to as roughness. The following result concerns roughness of exponential dichotomies
on arbitrary intervals.

Proposition 4.12. [14, Proposition 5.1] Let n ∈ Z>0. Take an interval J ⊂ R and A ∈
C(J,Matn×n(C)) such that (4.1) has an exponential dichotomy on J with constants K, α > 0
and projections P(x). Then, for any 0 < ε < α, there exists δ > 0 depending only on K, α and
ε such that if B ∈ C(J,Matn×n(C)) satisfies

sup
x∈J
‖A(x) − B(x)‖ ≤ δ,

then equation (4.3) has an exponential dichotomy on J with constants C, µ > 0 and projections
Q(x), where µ = α − ε and C depends on K only. Moreover, for all x ∈ J we have

‖P(x) − Q(x)‖ ≤
Cδ
α
.

Proposition 4.12 establishes an exponential dichotomy for any perturbation of an equation
admitting an exponential dichotomy. The constructed dichotomy projections are close to the
dichotomy projections of the unperturbed equation. The next result shows that the reverse is
also true: if two equations that are close to each other admit exponential dichotomies, then the
‘gap’ between the ranges and the kernels of the dichotomy projections can be estimated.

Lemma 4.13. Let n ∈ Z>0, a, b ∈ R with a < b and A, B ∈ C([a, b],Matn×n(C)). Suppose
equations (4.1) and (4.3) have exponential dichotomies on [a, b] with constants K1,2, µ1,2 > 0
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and projections P1,2(x). Denote by T1,2(x, y) the evolution operators of systems (4.1) and (4.3).
Let δ ≥ 0 such that

‖T1(a, b) − T2(a, b)‖ ≤ δ.

Then, for every v ∈ E s
1(a) = P1(a)[Cn], there exists w ∈ E s

2(a) = P2(a)[Cn] such that

‖v − w‖ ≤ (δ + K2e−µ2(b−a))K1e−µ1(b−a)‖v‖. (4.13)

Similarly, for every v ∈ Eu
1(b) = ker(P1(b)), there exists w ∈ Eu

2(b) = ker(P2(b)) such
that (4.13) holds true.

Proof. Let v ∈ E s
1(a) and consider w = T2(a, b)P2(b)T1(b, a)v ∈ E s

2(a). We estimate

‖w − v‖ ≤ [‖T2(a, b) − T1(a, b)‖ + ‖T2(a, b)(I − P2(b))‖] ‖T1(b, a)v‖

≤ (δ + K2e−µ2(b−a))K1e−µ1(b−a)‖v‖.

The other statement is proven in an analogous way. �

In our spectral stability analysis we are interested in non-trivial bounded solutions to eigenvalue
problems of the form (4.4). If the eigenvalue problem has an exponential dichotomy on R,
then it admits no non-trivial bounded solutions. It is possible to achieve persistence against
perturbations of the latter fact under milder conditions than those stated in Proposition 4.12.

Proposition 4.14. [88, Theorem 1] Let n ∈ Z>0 and A, B ∈ C(R,Matn×n(C)). Suppose A is
bounded on R and system (4.1) has an exponential dichotomy on R with constants K, µ > 0.
Denote by T1,2(x, y) the evolution operators of systems (4.1) and (4.3), respectively. If there
exists τ ≥ µ−1(sinh−1(4) + log(K)) such that for all x, y ∈ R with |x − y| ≤ 2τ we have

‖T1(x, y) − T2(x, y)‖ < 1,

then (4.3) admits no non-trivial bounded solutions.

4.3.5 Inhomogeneous problems
In our spectral stability analysis inhomogeneous problems arise when decomposing compli-
cated eigenvalue problems into a simpler principal part and a remainder. If the associated
homogeneous problem admits an exponential dichotomy on R, then the splitting of exponential
growth and decay induces a splitting of the integrals in the variation of constants formula
leading to a characterisation of the unique bounded solution to the inhomogeneous problem.

This above characterisation allows us to compare bounded solutions to an inhomogeneous
problem and its perturbation on the whole real line, whereas with Grönwall type arguments,
one only obtain sharp estimates on finite intervals. This is the content of the following result.
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Proposition 4.15. Let n ∈ Z>0, f , g ∈ C(R,Cn) bounded and A, B ∈ C(R,Matn×n(C)). Sup-
pose equation (4.1) has an exponential dichotomy on R with constants K, µ > 0. Then the
inhomogeneous problem,

ωx = A(x)ω + f (x), ω ∈ Cn, (4.14)

has a unique bounded solution ϕ(x). Furthermore, if A and B are bounded and a, b ∈ R with
a < b, then, for any bounded solution ψ(x) to the inhomogeneous problem,

ωx = B(x)ω + g(x), ω ∈ Cn, (4.15)

we estimate for x ∈ [a, b],

‖ϕ(x) − ψ(x)‖ ≤
K
µ

(
e−µ(x−a) + e−µ(b−x)

)
(‖ψ‖‖A − B‖ + ‖ f − g‖)

+
2K
µ

(
‖ψ‖ sup

z∈[a,b]
‖A(z) − B(z)‖ + sup

z∈[a,b]
‖ f (z) − g(z)‖

)
.

(4.16)

Proof. Denote by T (x, y) the evolution operator of system (4.1). By [14, Proposition 8.2]
system (4.14) has a unique bounded solution given by

ϕ(x) =

∫ x

−∞

T s(x, z) f (z)dz +

∫ x

∞

T u(x, z) f (z)dz, x ∈ R.

Now, let A and B be bounded and ψ a bounded solution to (4.15). Note that w : R → Cn

defined by w(x) = ϕ(x) − ψ(x) is a bounded solution to the inhomogeneous equation,

wx = A(x)w + h(x),

where the inhomogeneity h : R → Cn given by h(x) = (A(x) − B(x))ψ(x) + f (x) − g(x) is
bounded on R. By applying [14, Proposition 8.2] once again we deduce that w(x) is given by

w(x) =

∫ x

−∞

T s(x, z)h(z)dz +

∫ x

∞

T u(x, z)h(z)dz, x ∈ R. (4.17)

Now, let a, b ∈ R with a < b. Estimate (4.16) for x ∈ [a, b] is achieved by splitting both
integrals in expression (4.17) into two parts. The first integral is split in integrals over
(−∞, a) and over (a, x). Similarly, the second integral is split in integrals over (x, b) and
over (b,∞). This yields four integrals, which can be estimated separately in order to obtain
estimate (4.16). �

4.4 Exponential trichotomies
In Chapter 2 we proved the existence of stationary, spatially periodic pulse solutions to (1.10)
by separating attracting, repelling and slowly evolving dynamics in the existence problem (2.1).



4.5. THE MINIMAL OPENING BETWEEN SUBSPACES 82

Naturally, the linearization of system (1.10) about the periodic pulse has a similar structure.
Therefore, we encounter eigenvalue problems in our spectral stability analysis that exhibit fast
exponential decay in forward and backward time as well as slow ‘centre’ behavior. Exponential
trichotomies capture the dynamics in such linear systems. We employ the following definition.

Definition 4.16. Let n ∈ Z>0, J ⊂ R an interval and A ∈ C(J,Matn×n(C)). Denote by T (x, y)
the evolution operator of (4.1). Equation (4.1) has an exponential trichotomy on J with
constants K, µ > 0 and projections Pu(x), Ps(x), Pc(x) : Cn → Cn if for all x, y ∈ J it holds

• Pu(x) + Ps(x) + Pc(x) = I;

• Pu,s,c(x)T (x, y) = T (x, y)Pu,s,c(y);

• ‖T (x, y)Ps(y)‖, ‖T (y, x)Pu(x)‖ ≤ Ke−µ(x−y) for x ≥ y;

• ‖T (x, y)Pc(y)‖ ≤ K.

We often use the abbreviations T u,s,c(x, y) = T (x, y)Pu,s,c(y) leaving the associated projections
of the exponential trichotomy implicit.

If a linear system has a special structure, then exponential trichotomies can be generated
explicitly from exponential dichotomies of a subsystem. For instance, consider the upper-
triangular block system,

ϕx =

(
A(x) B(x)

0 C(x)

)
ϕ, ϕ ∈ Cm+n, (4.18)

where A, B,C are bounded matrix functions. If the invariant subsystem ψx = C(x)ψ admits an
exponential dichotomy on some interval J ⊂ R and all solutions to ωx = A(x)ω are bounded on
J, then system (4.18) has an exponential trichotomy on J. The latter fact is readily seen using
variation of constants formulas. In the spectral stability analysis we use a similar construction
to generate exponential trichotomies, see §5.3.2 and §5.3.3.

4.5 The minimal opening between subspaces
The minimal opening [42, Section 13.3] is a quantity measuring the ‘gap’ between two
subspaces.

Definition 4.17. Let n ∈ Z>0. The minimal opening between two non-trivial subspacesM
and N of Cn is given by

η(M,N) = inf{‖x − y‖ : x ∈ M, y ∈ N ,max(‖x‖, ‖y‖) = 1}.

The minimal opening has the useful property that the norm of the projection onM along N
can be bounded in terms of η(M,N). This norm estimate is essential for the application of the
“pasting” Lemma 4.11 in our spectral stability analysis.
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Proposition 4.18. Let n ∈ Z>0. The following assertions hold true.

1. If P is a non-trivial projection on Cn, then it holds

‖P‖ ≤
1

η(P[Cn], ker(P))
.

2. For non-trivial subspacesM andN of Cn it holds η(M,N) , 0 if and only ifM∩N =

{0}.

3. LetM1,2 and N1,2 be non-trivial subspaces of Cn. Suppose that there exists 0 < δ < 1
such that for each v ∈ Mi there exists a w ∈ Ni such that ‖v − w‖ ≤ δ‖v‖ for i = 1, 2.
Then, we have the estimate

η(N1,N2) ≤ η(M1,M2) + 4δ.

4. Let Ω ⊂ C be open and connected. SupposeM(λ) and N(λ) are continuous families
of subspaces on Ω, i.e. there exist continuous families of projections PM, PN : Ω →

Matn×n(C) such that PM(λ)[Cn] =M(λ) and PN (λ)[Cn] = N(λ) for λ ∈ Ω. Then, the
map λ 7→ η(M(λ),N(λ)) is also continuous on Ω.

Proof. The first two assertions are derived in [42, p. 396] and [42, Proposition 13.2.1],
respectively. For the third assertion take ε > 0. There exists v1 ∈ M1 and v2 ∈ M2 with
max(‖v1‖, ‖v2‖) = 1 such that ‖v1 − v2‖ ≤ η(M1,M2) + ε. Without loss of generality we may
assume ‖v1‖ = 1. By hypothesis there exists w1 ∈ N1 such that ‖v1 − w1‖ ≤ δ. Because we
have δ < 1, we can normalize w1 and define z1 := w1

‖w1‖
. One readily estimates ‖v1 − z1‖ ≤ 2δ.

Similarly, there exists w2 ∈ N2 such that ‖v2 − w2‖ ≤ δ. In the case ‖w2‖ > 1, take z2 := w2
‖w2‖

.
One easily verifies ‖v2 − z2‖ ≤ 2δ. In the case ‖w2‖ ≤ 1, we just take z2 := w2. Finally, we
estimate

η(N1,N2) ≤ ‖z1 − z2‖ ≤ ‖v1 − v2‖ + ‖v1 − z1‖ + ‖v2 − z2‖ ≤ η(M1,M2) + 4δ + ε.

Since ε is arbitrarily chosen, the second assertion follows. Finally, for the fourth assertion let
PM(λ) and PN (λ) be continuous families of projections on Ω with rangesM(λ) and N(λ),
respectively. With the aid of identities (13.1.4), (13.2.5) and (13.2.7) in [42] we derive for
λ0 ∈ Ω

|η(M(λ),N(λ)) − η(M(λ0),N(λ0))| ≤
√

2 (‖PM(λ) − PM(λ0)‖ + ‖PN (λ) − PN (λ0)‖) .

This shows that λ→ η(M(λ),N(λ)) is continuous on Ω. �

4.6 The Riccati transformation
As mentioned in the introduction in Chapter 1, the eigenvalue problem associated with the
linearization of system (1.10) about the periodic pulse solution can be put in the following
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slow-fast block structure,

ϕx = ε(A11(x, ε)ϕ + A12(x, ε)ψ),
ψx = A21(x, ε)ϕ + A22(x, ε)ψ,

(ϕ, ψ) ∈ Cn1+n2 , (4.19)

where 0 < ε � 1, n1, n2 ∈ Z>0 and Ai j are bounded and continuous matrix functions. The
Riccati transformation is a tool for diagonalizing linear systems of the form (4.19). This linear
non-autonomous transformation, decouples (4.19) into

χx = ε [A11(x, ε) + A12(x, ε)Uε(x)] χ,
ωx = [A22(x, ε) − εUε(x)A12(x, ε)]ω,

(χ, ω) ∈ Cn1+n2 , (4.20)

where Uε(x) is a family of matrix functions satisfying a certain matrix Riccati equation as
detailed below. Decoupling the full eigenvalue problem associated with the linearization about
the periodic pulse into lower-dimensional, fast and a slow eigenvalue problems leads to a
reduction of complexity in the spectral stability analysis. Eventually, the decoupling yields the
factorization (1.3) of the Evans function.

Although the construction of the transformation is based on two results of Chang [12, Theorem
1] and [13, Lemma 1], the assumptions on the coefficient matrices in [13] are too restrictive.
Therefore, we need a refinement of his statements. For this reason and the fact that the
Riccati transformation lies at the core of our analytic factorization method, we present the
full construction of the transformation. Moreover, we prove that periodicity of the coefficient
matrix implies periodicity of the Riccati transform, which appears to be a new result – see
Remark 4.20.

Theorem 4.19. Let n1, n2 ∈ Z>0, ε0 ∈ R>0 and Ai j ∈ C(R × (0, ε0),Matni×n j (C)) such that Ai j

are bounded by some constant K > 0 on R × (0, ε0) for i, j = 1, 2. Suppose that

ψx = A22(x, ε)ψ, ψ ∈ Cn2 , (4.21)

admits an exponential dichotomy on R with constants K, µ > 0, independent of ε. Then, for
ε > 0 sufficiently small, there exists continuously differentiable matrix functions Uε(x) and
S ε(x) satisfying the matrix Riccati equations,

U = A22U − εUA11 − εUA12U + A21,

S = ε(A11 + A12U)S − S (A22 − εUA12) − A12,

U ∈ Matn2×n1 (C),
S ∈ Matn1×n2 (C),

(4.22)

with the following properties:

1. Uε and S ε are bounded on R by some constant, which depends on K and µ only.

2. The coordinate transform,(
ϕ
ψ

)
= Hε(x)

(
χ
ω

)
, Hε(x) :=

(
I −εS ε(x)

Uε(x) I − εUε(x)S ε(x)

)
, (4.23)

diagonalizes system (4.19) into (4.20).
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3. The unique bounded solution Ωε to the inhomogeneous matrix problem,

Ωx = A22(x, ε)Ω + A21(x, ε), Ω ∈ Matn2×n1 (R,C), (4.24)

satisfies

‖Uε(x) −Ωε(x)‖ ≤ Cε| log(ε)|, x ∈ R, (4.25)

where C > 0 is a constant depending on K and µ only.

4. Let a > 0. We have the approximation,

‖Uε(x)‖ ≤ C
 sup

y∈[x−a,x+a]

(
ε‖Uε(y)‖2 + ‖A21(y, ε)‖

)
+ e−aµ/2

 , x ∈ R, (4.26)

where C > 0 is a constant depending on K and µ only.

5. If the matrices Ai j(·, ε) are L-periodic for 1 ≤ i, j ≤ 2, then the coordinate transform Hε

is also L-periodic.

Proof. In the following, we denote by C > 0 a constant, which depends on K and µ only.

First, we set up an integral equation for Uε and prove global existence via a contraction
argument. Since Uε triangulizes the system, an integral equation for S ε can be derived from
the variation of constants formula. The first four properties of Uε and S ε follow readily
from the integral equations they satisfy. Finally, periodicity of the transform is proven by
exponential separation.

Since A11 is bounded by K on R × (0, ε0), the evolution T1,ε(x, y) of system,

ϕx = εA11(x, ε)ϕ, ϕ ∈ Cn1 ,

satisfies

‖T1,ε(x, y)‖ ≤ eKε|x−y|, x, y ∈ R. (4.27)

Denote by T2,ε(x, y) the evolution operator of system (4.21). Take ρ = 8Kµ−1‖A21‖. The ball
B(0, ρ) ⊂ Cb(R,Matn2×n1 (C)) is a metric space endowed with the supremum norm. We want to
show that the mapAε : B(0, ρ)→ B(0, ρ) given by

(AεU)(x) =

∫ x

−∞

T s
2,ε(x, y)

[
−εU(y)A12(y, ε)U(y) + A21(y, ε)

]
T1,ε(y, x)dy

−

∫ ∞

x
T u

2,ε(x, y)
[
−εU(y)A12(y, ε)U(y) + A21(y, ε)

]
T1,ε(y, x)dy,

is a well-defined contraction. If ε > 0 is sufficiently small, it holds for all U ∈ B(0, ρ)

‖AεU‖ ≤
2K

µ − εK

[
ερ2‖A12‖ + ‖A21‖

]
< ρ,
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using (4.27) and the exponential dichotomy of (4.21). Therefore,Aε is well-defined. Similarly,
provided ε > 0 is sufficiently small, we estimate for U1,U2 ∈ B(0, ρ)

‖AεU1 −AεU2‖ ≤
4εKρ‖A12‖

µ − εK
‖U1 − U2‖ < ‖U1 − U2‖.

Hence,Aε is a contraction mapping. By the Banach fixed point Theorem the integral equation
AεU = U has a unique solution Uε(x) in B(0, ρ). It is readily seen by differentiating this
integral equation that Uε satisfies the matrix Riccati equation (4.22). Moreover, Uε is bounded
on R by ρ ≤ 8K2µ−1. Since (4.21) has an exponential dichotomy on R, (4.24) admits a
unique bounded solution Ωε by Proposition 4.15. Since A11 is bounded by K, it holds by
Proposition 4.1 for |x − y| ≤ µ−1| log(ε)|

‖T1,ε(x, y) − I‖ ≤ Cε| log(ε)|. (4.28)

Using Uε(x) = (AεUε)(x) we write

Uε(x) −Ωε(x) =

∫ x

−∞

T s
2,ε(x, y)A21(y, ε)(T1,ε(x, y) − I)dy

−

∫ ∞

x
T u

2,ε(x, y)A21(y, ε)(T1,ε(x, y) − I)dy

−

∫ x

−∞

εT s
2,ε(x, y)U(y)A12(y, ε)U(y)T1,ε(y, x)dy

+

∫ ∞

x
εT u

2,ε(x, y)U(y)A12(y, ε)U(y)T1,ε(y, x)dy,

We split the interval of integration of the first two integrals in the right hand side of the latter
equation. This leads to four integrals over (−∞, x − bε), (x − bε , x), (x, x + bε) and (x + bε ,∞),
where bε := µ−1| log(ε)|. Thus, we obtain six integrals, which we estimate separately us-
ing (4.27), (4.28) and the bound on Uε . This yields the third property.

The fourth property follows by splitting the interval of integration of the two integrals in the
right hand side of the identity Uε(x) = (AεUε)(x). We obtain four integrals over (−∞, x − a),
(x − a, x), (x, x + a) and (x + a,∞), respectively. We estimate each integral separately us-
ing (4.27) and the exponential dichotomy of (4.21). This leads to approximation (4.26).

Since A11, A12 and Uε are bounded on R × (0, ε0), the evolution T3,ε(x, y) of system,

χx = ε [A11(x, ε) + A12(x, ε)Uε(x)] χ, χ ∈ Cn1 ,

is bounded as

‖T3,ε(x, y)‖ ≤ eεC|x−y|, x, y ∈ R. (4.29)

On the other hand, equation,

ωx = (A22(x, ε) − εUε(x)A12(x, ε))ω, ω ∈ Cn2 , (4.30)
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can be seen as a perturbation of (4.21). By Proposition 4.12 it therefore possesses an exponen-
tial dichotomy on R with constants C, µ1 > 0. Denote by T4,ε(x, y) the evolution operator of
system (4.30). We define S ε(x) via the variation of constants formula,

S ε(x) = −

∫ x

−∞

T3,ε(x, y)A12(y, ε)T u
4,ε(y, x)dy +

∫ ∞

x
T3,ε(x, y)A12(y, ε)T s

4,ε(y, x)dy,

Using (4.29) and the exponential dichotomy of (4.30) we derive that S ε is bounded on R by
some constant depending on µ and K only. This proves the first property. It is easily verified
by differentiation that S ε satisfies the matrix Riccati equation (4.22). Finally, using S ε and Uε

satisfy equations (4.22), it is a straightforward calculation to see the change of variables (4.23)
transforms system (4.19) into (4.20). This proves the second property.

Only the fifth property remains to be proven. Our plan is to show that system (4.19) is
exponentially separated in the sense of [85]. Subsequently, we make use of the fact that
exponential separation preserves periodicity. Therefore, denote by Pε(x), x ∈ R the projections
corresponding to the exponential dichotomy of system (4.30) on R, established in the latter
paragraph. We define the following projections,

P1,ε =

(
0 0
0 Pε(0)

)
, P2,ε =

(
I 0
0 0

)
, P3,ε =

(
0 0
0 I − Pε(0)

)
.

Denote by Vi,ε ⊂ C
n1+n2 the range of the projection Pi,ε for i = 1, 2, 3. Let m2 be the rank of

Pε(0). Using (4.29) and the exponential dichotomy of (4.30), we conclude system that (4.20)
is, for ε > 0 sufficiently small, (m2, n1, n2 −m2)-exponentially separated with respect to the de-
composition V1,ε ⊕V2,ε ⊕V3,ε . As a result, system (4.19) is also (m2, n1, n2 −m2)-exponentially
separated with respect to the decomposition W1,ε ⊕W2,ε ⊕W3,ε , where Wi,ε is the range of the
projection Qi,ε := Hε(0)Pi,εHε(0)−1 for i = 1, 2, 3.

Now, suppose Ai j(·, ε) are L-periodic for 1 ≤ i, j ≤ 2. Let Xε(x) be the fundamental ma-
trix of system (4.19) with Xε(0) = I. Invoking [9, Corollary 4] gives that Xε(·)Q2,εXε(·)−1

is L-periodic. Denote by Tε(x, y) the evolution operator of the diagonal system (4.20). We
calculate for x ∈ R

Xε(x)Q2,εXε(x)−1 = Hε(x)Tε(x, 0)P2,εTε(0, x)Hε(x)−1 = Hε(x)P2,εHε(x)−1

=

(
I − εS ε(x)Uε(x) εS ε(x)

Uε(x) + εUε(x)S ε(x)Uε(x) εUε(x)S ε(x)

)
.

Hence, S ε ,UεS ε , S εUε and Uε + εUεS εUε are L-periodic. So, UεS εUε is also L-periodic.
Combining this with the L-periodicity of Uε + εUεS εUε , we conclude that Uε is L-periodic.
This implies that Hε is L-periodic, which concludes the proof of the fifth statement. �

Remark 4.20. The periodicity of the transform in Theorem 4.19 is a new discovery to the
author’s knowledge. It is natural to ask whether there always exists a periodic choice for a
coordinate change, which transforms a periodic system into diagonal form. However, it is



4.6. THE RICCATI TRANSFORMATION 88

shown in [84, Chapter 5] that this is not the case. It seems that the periodicity of the coordinate
change Hε is due to the special (slow-fast) structure of system (4.19). �

Remark 4.21. The (m2, n1, n2−m2)-exponential separation of (4.19) obtained in Theorem 4.19
shows that the solution space of systems of the form (4.19) can be decomposed in fast
exponentially decaying solutions in forward and backward time and solutions that vary slowly.
This type of decomposition is very similar to the one induced by an exponential trichotomy –
see §4.4. Yet, in our definition of exponential trichotomies we do not allow for exponential
growth in the centre direction. However, we emphasize that some authors do include this in
their definition of exponential trichotomies – see for instance [106]. �

Remark 4.22. The Riccati transform can be employed to diagonalize general linear equations
as pointed out in [4, Remark 4.7]. However, the Riccati solutions can become singular in finite
time. We use both the slow-fast structure of (4.19) and the exponential dichotomy of (4.21) to
achieve global boundedness of the transformation functions Uε and S ε . �


