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Chapter 3

Stability results

3.1 Introduction
In this chapter we present the outcomes of our spectral stability analysis performed in Chap-
ter 5. We assume that conditions (S1), (S2), (E1) and (E2) hold true. Then, Theorem 2.3
provides a reversibly symmetric, 2Lε-periodic pulse solution φp,ε(x) to (2.1). This yields a
stationary, periodic pulse solution φ̂p,ε(x) = (up,ε(x), vp,ε(x)) to system (1.10). We denote by
φ̌p,ε(x̌) the corresponding solution to the rescaled system (1.9). The stability of φ̌p,ε is deter-
mined by the spectrum of the linearization Lε of (1.9) about φ̌p,ε. The (critical) spectrum of
the periodic differential operator Lε is a union of curves parameterized over the unit circle S 1

by Floquet theory. Due to translational invariance one of these curves is attached to the origin.
The spectral curves can be located by tracing the zeros of the analytic Evans function [38].

When the spectrum of Lε is confined to the left half-plane and bounded away from the
imaginary axis, except for a quadratic tangency at the origin, it is known [58, 101, 104] that the
periodic pulse φ̌p,ε is nonlinear diffusively stable as solution to (1.9). Verifying such spectral
conditions is in general very hard, especially for multi-component systems. However, as men-
tioned in the introduction in Chapter 1, the presence of the small parameter ε in (1.9) provides
a mechanism to reduce complexity. In the singular limit the Evans function corresponding to
the full problem decomposes as a product of a slow and a fast Evans function. The analytic
fast and meromorphic slow Evans function are defined in terms of simpler, lower-dimensional
eigenvalue problems. The spectrum of Lε can be approximated by the roots of the fast and
slow Evans functions. This approximation mechanism provides asymptotic control over the
spectrum. However, the critical spectral curve attached to origin shrinks to the origin in the
singular limit. Thus, our approximation result is unable to determine the spectral geometry
about the origin and asymptotic spectral control is insufficient to establish nonlinear stability.
Therefore, we complement our analysis with an expansion of this critical spectral curve.
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3.2. LINEARIZING ABOUT THE PERIODIC PULSE SOLUTION 42

We start this chapter by linearizing (1.9) about φ̌p,ε and characterizing the spectrum of the
linearization Lε via Floquet-Bloch decomposition. Then, we provide conditions on the
spectrum of Lε yielding nonlinear stability. Subsequently, we introduce the analytic Evans
function and reformulate the spectral stability conditions in terms of this function. Next, we
state our two main spectral approximation results: the slow-fast decomposition of the Evans
function in the singular limit and the expansion of the critical spectral curve. These two results
then lead to explicit criteria yielding stability and instability of the periodic pulse solution φ̌p,ε
in terms of simpler, lower-dimensional eigenvalue problems. Finally, we further simplify these
criteria in the case n = 1 or m = 1 and we illustrate our results by explicit calculations in the
slowly nonlinear toy problem (2.27).

3.2 Linearizing about the periodic pulse solution

We linearize system (1.9) about φ̌p,ε and obtain the periodic differential operator Lε on
Cub(R,Rm+n) with domain C2

ub(R,Rm+n) given by

Lεψ = Dεψx̌x̌ − Bεψ,

with

Dε :=
(

D1 0
0 ε2D2

)
,

and

Bε(x̌) :=
(
∂uH1(φ̌p,ε, ε) + ε−1∂uH2(φ̌p,ε) ∂vH1(φ̌p,ε, ε) + ε−1∂vH2(φ̌p,ε)

∂uG(φ̌p,ε, ε) ∂vG(φ̌p,ε, ε)

)
, (3.1)

where we suppress the x̌-dependence of φ̌p,ε. Here, Ck
ub(R,Rm+n) denotes the Banach space

of k times continuously differentiable functions, with derivatives up to order k bounded and
uniformly continuous. It is endowed with the supremum norm,

‖ f ‖ =

k∑
i=0

∥∥∥(∂x̌)i f
∥∥∥
∞
.

Note that Lε is closed, densely defined and sectorial by [72, Corollary 3.1.9.ii] and [44,
Theorem 1.3.2].

3.2.1 Floquet-Bloch decomposition
By Theorem 2.3, Lε is a 2`ε-periodic differential operator, where `ε := εLε → `0 as ε → 0
with `0 > 0 defined in (E2). Therefore, Floquet-Bloch decomposition [38] of Lε yields
a family of closed and densely defined operators Lν,ε on L2

per([0, 2`ε],C
m+n) with domain

H2
per([0, 2`ε],C

m+n) given by

Lν,εψ = Dε

(
∂x̌ −

iν
2`ε

)2

ψ − Bεψ, ν ∈ [−π, π],
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where L2
per([0, 2`ε],C

m+n) is the space of L2-integrable functions that are 2`ε-periodic and
H2

per([0, 2`ε],C
m+n) is the subspace of L2

per([0, 2`ε],C
m+n) of functions that have weak deriva-

tives up to order 2. By the Rellich compactness theorem the space H2
per([0, 2`ε],C

m+n) is
compactly embedded in L2

per([0, 2`ε],C
m+n). Therefore, Lν,ε has compact resolvent. Conse-

quently, its spectrum is discrete and consists entirely of eigenvalues. The spectrum of Lε is
given by the union,

σ(Lε) =
⋃

ν∈[−π,π]

σ(Lν,ε). (3.2)

Indeed, if λ ∈ σ(Lν,ε) is an eigenvalue and ϕ ∈ H2
per([0, 2`ε],C

m+n) denotes the corresponding
eigenfunction, then the natural extension of ϕ(x̌)e−iνx̌/(2`ε) to R yields an eigenfunction of
Lε. Conversely, given λ ∈ σ(Lε), there exists by Floquet theory a γ ∈ S 1 and a corre-
sponding eigenfunction ψ ∈ C2

ub(R,Cm+n) satisfying ψ(x̌) = γψ(x̌ + 2`ε) for all x̌ ∈ R. The
restriction of ψ(x̌)eiνx̌/(2`ε) to [0, 2`ε] is the eigenfunction of Lν,ε, where eiν = γ. The spectral
decomposition (3.2) gives rise to the following definition.

Definition 3.1. Let ν ∈ [−π, π] and γ = eiν ∈ S 1. A point λ ∈ σ(Lν,ε) is called a γ-eigenvalue
of Lε. The algebraic multiplicity of λ as an eigenvalue of Lν,ε is the algebraic γ-multiplicity
of λ.

3.3 Nonlinear stability by linear approximation
In this section we collect nonlinear (in)stability results from the literature. More precisely, we
present conditions on the spectrum of the linearization Lε of (1.9) about φ̌p,ε yielding some
form of nonlinear stability or instability.

3.3.1 Spectral conditions yielding nonlinear stability
By translational invariance, 0 is always a 1-eigenvalue of Lε. Indeed, the restriction of
the derivative φ̌′p,ε(x̌) to [0, 2`ε] is contained in the kernel of L0,ε. If we assume that 0 has
algebraic 1-multiplicity 1, then there exists by the implicit function theorem a spectral curve
λε : Uε → C, where Uε ⊂ [−π, π] is a neighborhood of 0, such that λε(0) = 0 and λε(ν) is a
eiν-eigenvalue for ν ∈ Uε. By assuming that this critical spectral curve touches the origin in
a quadratic tangency and the rest of the spectrum is confined to the left half-plane, bounded
away from the imaginary axis, we establish some form of nonlinear stability. This leads to the
following definition.

Definition 3.2. The periodic pulse solution φ̌p,ε to (1.9) is spectrally stable if 0 is a simple
eigenvalue of L0,ε and there exists ς > 0, possibly dependent on ε, such that

Re(λε(ν)) ≤ −ςν2, ν ∈ Uε,

σ(Lε) \ λε[Uε] ⊂ {λ ∈ C : Re(λ) < −ς} .
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Spectral stability of φ̌p,ε implies nonlinear diffusive stability of φ̌p,ε with respect to localized
perturbations. In addition, an initial displacement of the periodic pulse can be tracked for large
times.

Theorem 3.3. [101, Theorem 1] Suppose φ̌p,ε is spectrally stable. Take b ∈ (0, 1
2 ). There are

δ,C > 0, possibly dependent on ε, such that the following holds. The solution φ̌(x, t) to (1.9)
with initial condition,

φ̌(x̌, 0) = φ̌p,ε(x̌ + θ0(x̌)) + v0(x̌),

with v0 ∈ H2(R,Rm+n) and θ0 ∈ H3(R,R) satisfying ‖θ0ρ‖H3 , ‖v0ρ‖H2 ≤ δ with ρ(x̌) = (1 +

x̌2)3/2, exists for all times t ≥ 0 and can be written as

φ̌(x̌, t) = φ̌p,ε(x̌ + θ(x̌, t)) + v(x̌, t), t > 0,

where θ : R × (0,∞) → R and v : R × (0,∞) → Rm+n. There exists a constant θlim ∈ R such
that

sup
x̌∈R

[|θ(x̌, t) − θlimG(x̌, t)| + ‖v(x̌, t)‖] ≤ C(1 + t)−1+b, t > 0,

where G is the Gaussian,

G(x̌, t) =
1

√
4απ(1 + t)

e−x̌2/(4α(1+t)),

with α := −λ′′ε (0). In particular, we have

sup
x̌∈R

∥∥∥φ̌(x̌, t) − φ̌p,ε (x̌ + θlimG(x̌, t))
∥∥∥ ≤ C(1 + t)−1+b, t > 0.

The above result is to be compared with [104, Theorem 1.1]. Here, the class of allowed pertur-
bations is larger, i.e. one requires v0ρ̃ ∈ H1/2+b(R,Rm+n) with ρ̃(x̌) = 1 + x̌2. However, in [104]
one obtains a weaker decay bound of the form supx̌∈R ‖v(x̌, t)‖ ≤ C(1+t)−1/2. Moreover, in [58]
pointwise nonlinear estimates are obtained with respect to perturbations v0 ∈ H2(R,Rm+n)
satisfying ‖v0(x̌)‖ ≤ E0e−x̌2/M or ‖v0(x̌)‖ ≤ E0(1 + |x̌|)−r for some M > 1, r > 2 and E0 > 0.
The decay rates obtained in [58] are comparable to those in Theorem 3.3, yet they are more
specific, since they depend pointwise on x̌. Finally, we emphasize that both in [58] and [104]
one does not consider an initial displacement in time in contrast to Theorem 3.3.

As mentioned in the introduction of this chapter, verifying spectral stability is in general
very hard. The main outcome of our spectral analysis is explicit conditions in terms of simpler,
lower-dimensional eigenvalue problems that yield spectral stability of φ̌p,ε – see §3.7. This
reduction of complexity is achieved by a slow-fast decomposition of the Evans function in
the singular limit and an expansion of the critical spectral curve λε(ν) – see §3.5 and §3.6,
respectively.
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3.3.2 Spectral conditions yielding nonlinear instability

Spectrum of Lε in the right half-plane yields nonlinear instability of the periodic pulse φ̌p,ε
against localized and non-localized perturbations.

Definition 3.4. The periodic pulse solution φ̌p,ε to (1.9) is spectrally unstable if there exists
λ ∈ σ(Lε) with Re(λ) > 0.

Theorem 3.5. [75, Section 4] Let X = H2(R,Rm+n) or X = C2
ub(R,Rm+n). Suppose the

periodic pulse solution φ̌p,ε to (1.9) is spectrally unstable. Then, there exists δ > 0 and a
sequence of solutions φ̌n(x̌, t), n ∈ Z>0 to (1.9) satisfying φ̌n(·, 0) − φ̌p,ε ∈ X such that∥∥∥φ̌n(·, 0) − φ̌p,ε

∥∥∥
X → 0 as n→ ∞,

but for all n ∈ Z>0 there exists tn > 0 such that∥∥∥φ̌n(·, tn) − φ̌p,ε
∥∥∥

X ≥ δ, in the case X = H2(R,Rm+n),

inf
θ∈R

∥∥∥φ̌n(·, tn) − φ̌p,ε(· + θ)
∥∥∥

X ≥ δ, in the case X = C2
ub(R,Rm+n).

We emphasize that in the case of non-localized perturbations, it is important to measure the
distance from the perturbation to the family of all translates of the solution rather than to the
solution itself. Indeed, any translate φ̌p,ε(· + θ) corresponds to a non-localized perturbation.
Yet, such a translate is a solution to (1.9) itself. Thus, φ̌p,ε is never stable against translation of
the profile. We stress that the θ-terms in Theorem 3.3 account for translation of the profile.

Using the outcomes of our spectral analysis, we obtain explicit conditions in terms of simpler,
lower-dimensional systems yielding spectral instability – see §3.7. In particular, in the case
n = 1 or m = 1, we can test for instability by calculating the signs of a number of explicit
integral expressions – see §3.8.

3.4 The Evans function
In this section we introduce the Evans function as a tool to locate the spectrum of the lineariza-
tion Lε. Recall from §3.2.1 that a point λ ∈ C is in the spectrum of Lε if and only if there
exists ψ ∈ C2

ub(R,Cm+n) such that Lεψ = λψ. The latter equation can be rewritten as an ODE
in the ‘small’ spatial scale x = ε−1 x̌ as follows

ϕx = Aε(x, λ)ϕ, ϕ = (u, p, v, q) ∈ C2(m+n), (3.3)

with coefficient matrix,

Aε(x, λ) :=
(
A11,ε(x, λ) A12,ε(x)
A21,ε(x) A22,ε(x, λ)

)
,
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where the blocks are given by

A11,ε(x, λ) :=
(

0 εD−1
1

ε
(
∂uH1(φ̂p,ε(x), ε) + λ

)
+ ∂uH2(φ̂p,ε(x)) 0

)
,

A12,ε(x) :=
(

0 0
ε∂vH1(φ̂p,ε(x), ε) + ∂vH2(φ̂p,ε(x)) 0

)
,

A21,ε(x) :=
(

0 0
∂uG(φ̂p,ε(x), ε) 0

)
,

A22,ε(x, λ) :=
(

0 D−1
2

∂vG(φ̂p,ε(x), ε) + λ 0

)
,

(3.4)

and φ̂p,ε(x) = (up,ε(x), vp,ε(x)) is the 2Lε-periodic pulse solution to (1.10). We will refer to (3.3)
as the full eigenvalue problem. By Floquet Theory bounded solutions to (3.3) must satisfy
ϕ(−Lε) = γϕ(Lε) for some γ ∈ S 1. This fact leads to the definition of the Evans function.

Definition 3.6. Denote by Tε(x, z, λ) the evolution operator of system (3.3). The Evans
function Eε : C × C→ C is given by

Eε(λ, γ) := det(Tε(0,−Lε, λ) − γTε(0, Lε, λ)).

Proposition 3.7. The Evans function has the following properties:

1. The Evans function is analytic in both λ and γ;

2. We have λ ∈ σ(Lε) if and only if there exists γ ∈ S 1 such that Eε(λ, γ) = 0. In that case,
λ is a γ-eigenvalue and its algebraic γ-multiplicity is equal to the multiplicity of λ as a
root of Eε(·, γ);

3. It holds Eε(λ, γ) = Eε(λ, γ) for λ, γ ∈ C. Thus, the spectrum σ(Lε) is invariant under
complex conjugation;

4. We have Eε(λ, γ) = Eε(λ, γ)γ2(m+n) for λ ∈ C and γ ∈ S 1. Thus, λ is a γ-eigenvalue if
and only if it is a γ-eigenvalue.

Proof. The first two properties are established in [38]. Since (3.3) is a real-valued problem
for λ ∈ R, the third property follows by the reflection principle. Finally, since φp,ε is reversibly
symmetric by Theorem 2.3, the eigenvalue problem (3.3) is R-reversible at x = 0, i.e. it holds
RTε(x, y, λ)R = Tε(−x,−y, λ) for x, y ∈ R. This yields the fourth property. �

Proposition 3.7 shows that the spectrum σ(Lε) is an at most countable union of curves, each of
which is covered twice by the unit circle S 1. The endpoints of the curves are ±1-eigenvalues.
Proposition 3.7 and the implicit function theorem yield the following reformulation of the
concept ‘spectral stability’ introduced in §3.3.
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Corollary 3.8. The periodic pulse solution φ̌p,ε to (1.9) is spectrally stable if and only if

i. Eε(λ, γ) , 0 for all γ ∈ S 1 and λ ∈ C \ {0} with Re(λ) ≥ 0;

ii. Eε(0, γ) , 0 for all γ ∈ S 1 \ {1};

iii. ∂λEε(0, 1)∂γγEε(0, 1) < 0.

3.5 The Evans function in the singular limit

In this section we present one of the main outcomes of our spectral stability analysis. We
obtain an explicit reduced Evans function E0(λ, γ), whose zeros, for γ restricted to S 1, ap-
proximate the zeros of the Evans function Eε(λ, γ), provided that ε > 0 is sufficiently small,
yielding asymptotic control over the spectrum. The reduced Evans function is defined in
terms of three simpler, lower-dimensional eigenvalue problems. Therefore, the verification
of the first spectral stability condition in Corollary 3.8 simplifies to a calculation of the roots
of the reduced Evans function, which does not require understanding of the full eigenvalue
problem (3.3), but rather of three simpler, lower-dimensional eigenvalue problems. Thus,
when proving spectral stability, understanding of the full eigenvalue problem (3.3) is only
necessary for λ close to the origin. The results of this local analysis are presented in §3.6.

This section is structured as follows. First, we define the reduced Evans function in terms
of three eigenvalue problems, which are obtained by a slow-fast decomposition of the full
eigenvalue problem (3.3). Then, we state our main result concerning the approximation of
the zeros of Eε by the ones of E0. Finally, using this approximation result, we simplify the
verification of the first spectral stability condition in Corollary 3.8.

3.5.1 The reduced Evans function
The reduced Evans function E0 is only defined on half-planes CΛ of the following form.

Notation 3.9. For every Λ < 0 we denote by CΛ the open half-plane,

CΛ := {λ ∈ C : Re(λ) > Λ}.

The reduced Evans function E0 : CΛ × C→ C is defined as the product,

E0(λ, γ) = (−γ)nE f ,0(λ)Es,0(λ, γ). (3.5)

Here, the analytic map E f ,0 : CΛ → C is called the fast Evans function. It is associated with
the homogeneous fast eigenvalue problem,

ϕx = A22,0(x, u0, λ)ϕ, ϕ ∈ C2n, (3.6)
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with

A22,0(x, u, λ) :=
(

0 D−1
2

∂vG(u, vh(x, u), 0) + λ 0

)
, u ∈ Uh.

Recall that Uh, vh(x, u), u0 = us(0) and us(x̌) are defined in (E1) and (E2). System (3.6) arises
as an eigenvalue problem, when linearizing vt = D2vxx −G(u0, v, 0) about the standing pulse
solution vh(x, u0). Indeed, equation (3.6) is equivalent to L fϕ = λϕ, where L f : L2(R,Rn)→
L2(R,Rn) is the closed, densely defined and sectorial operator – see [72, Theorem 3.1.3]
and [44, Theorem 1.3.2] – with domain H2(R,Rn) given by

L f v = D2vxx − ∂vG(u0, vh(·, u0), 0)v. (3.7)

We establish the existence of the fast Evans function.

Proposition 3.10. There exists Λ < 0 and an analytic map E f ,0 : CΛ → C, which has a zero
if and only if (3.6) admits a non-trivial, exponentially localized solution. In particular, the
multiplicity of a root λ ∈ CΛ of E f ,0 coincides with the algebraic multiplicity of λ as an
eigenvalue of the sectorial operator L f , defined in (3.7).

The slow Evans function Es,0 : [CΛ \ E
−1
f ,0(0)] × C → C is determined by two eigenvalue

problems. The first is the inhomogeneous fast eigenvalue problem,

∂xX = A22,0(x, u, λ)X +A21,0(x, u), X ∈ Mat2n×2m(C), (3.8)

with

A21,0(x, u) :=
(

0 0
∂uG(u, vh(x, u), 0) 0

)
, u ∈ Uh.

The matrix system (3.8) describes the dynamics in the limit ε → 0 of the full eigenvalue
problem (3.3). The second is the slow eigenvalue problem,

D1ux̌ = p,

px̌ = (∂uH1(us(x̌), 0, 0) + λ) u,
(u, p) ∈ C2m. (3.9)

which arises as an eigenvalue problem when linearizing system ut = D1ux̌x̌ − H1(u, 0, 0) about
the stationary solution us(x̌) in L2

per([0, 2`0]). Let Λ < 0 be as in Proposition 3.10. The slow
Evans function Es,0 : [CΛ \ E

−1
f ,0(0)] × C→ C is defined by

Es,0(λ, γ) = det (Υ(u0, λ)Ts(2`0, 0, λ) − γI) , (3.10)

where `0 > 0 is as in (E2), Ts(x̌, y̌, λ) is the evolution operator of the slow eigenvalue
problem (3.9) and Υ(u, λ) is given by

Υ(u, λ) =

(
I 0

G(u, λ) I

)
,

G(u, λ) =

∫ ∞

−∞

[∂uH2(u, vh(x, u)) + ∂vH2(u, vh(x, u))Vin(x, u, λ)] dx,
u ∈ Uh, (3.11)
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whereVin(x, u, λ) denotes the upper-left (n×m)-block of the unique matrix solutionXin(x, u, λ)
to the inhomogeneous fast eigenvalue problem (3.8). We collect some properties of the slow
Evans functions Es,0.

Proposition 3.11. The slow Evans function Es,0 : [CΛ \ E
−1
f ,0(0)] × C→ C is well-defined and

enjoys the following properties:

1. Es,0 is analytic on its domain;

2. Es,0(·, γ) is meromorphic on CΛ for each γ ∈ C in such a way that the reduced Evans
function E0 is analytic on its domain;

3. Es,0(λ, ·) is a polynomial of degree 2m and it holds Es,0(λ, γ) = γ2mEs,0(λ, γ) for each
λ ∈ CΛ \ E

−1
f ,0(0) and γ ∈ S 1;

4. The set of roots, ⋃
γ∈S 1

{λ ∈ CΛ : Es,0(λ, γ) = 0},

is bounded.

The analytic reduced Evans function is defined as the product (3.5) of the meromorphic slow
Evans function and the analytic fast Evans function. Thus, when determining the zeros of
E0(·, γ) one should be aware of the possibility of zero-pole cancelation at all points in E−1

f ,0(0).
The next proposition focuses on this issue.

Proposition 3.12. Let λ� be a simple zero of E f ,0. Then, λ� is also a zero of E0(·, γ) for any
γ ∈ S 1 if it holds ∫ ∞

−∞

∂vH2(u0, vh(z, u0))ϕλ�,1(z)dz = 0, (3.12)

where ϕλ� (x) = (ϕλ�,1(x), ϕλ�,2(x)) is a non-trivial, exponentially localized solution to (3.6) at
λ = λ�, or ∫ ∞

−∞

ψλ�,2(z)∗∂uG(u0, vh(z, u0), 0)dz = 0, (3.13)

where ψλ�(x) = (ψλ�,1(x), ψλ�,2(x)) denotes a non-trivial, exponentially localized solution to
the adjoint equation,

ϕx = −A22,0(x, u0, λ)∗ϕ, ϕ ∈ C2n, (3.14)

of (3.6) at λ = λ�.
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The orthogonality relations (3.12) and (3.13) imply that there is no zero-pole cancelation.
However, the converse is not true as pointed out in §3.8.4. One can show that the integrals in
the right hand sides of (3.12) and (3.13) appear as one of multiple factors in the principal part
of the Laurent expansion of Es,0(·, γ). Although it is possible to write down the singular part
of the Laurent series of Es,0(·, γ) explicitly at a zero λ ∈ E−1

f ,0(0), we decide to postpone this
to §5.1.2 for the benefit of exposition, since the involved expressions are rather complex (except
in the case m = 1 – see Proposition 3.28). Eventually, these principal parts provide a tool to
determine precisely whether zero-pole cancelation occurs or not. Therefore, Proposition 3.12
is weaker – but better digestible – than the statements in §5.1.2.

Remark 3.13. Note that the fast eigenvalue problem (3.6) at λ = 0 equals the variational
equation,

ϕx = A f (x)ϕ, ϕ ∈ C2n, (3.15)

about the homoclinic solution ψh(x, u0) to (2.3) at u = u0 with

A f (x) :=
(

0 D−1
2

∂vG(u0, vh(x, u0), 0) 0

)
, u ∈ Uh.

Therefore, the derivative of the homoclinic solution ∂xψh(x, u0) is a non-trivial, exponentially
localized solution to (3.6) at λ = 0. Thus, it holds E f ,0(0) = 0 by Proposition 3.10. Now
assume 0 is a simple root of E f ,0. Since, we have∫ ∞

−∞

∂vH2(u0, vh(x, u0))∂xvh(x, u0)dx = 0,

there occurs no zero-pole cancelation at λ = 0 by Proposition 3.12. We infer E0(0, γ) = 0 for
each γ ∈ S 1. The latter corresponds to the existence of the critical spectral curve attached to
the origin – see §3.5.3. �

The proof of Propositions 3.10, 3.11 and 3.12 are provided in §5.1.

3.5.2 The spectral approximation result
We state our main result concerning the approximation of the zeros of Eε by the ones of E0.

Theorem 3.14. Let Λ < 0 be as in Proposition 3.10. Take a simple closed curve Γ in CΛ \ N0,
where

N0 :=
⋃
γ∈S 1

{λ ∈ CΛ : E0(λ, γ) = 0} .

Then, for ε > 0 sufficiently small, the number of roots (counting multiplicity) of E0(·, γ) and
Eε(·, γ) interior to Γ coincides for any γ ∈ S 1.
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E−1
f (0)

Γ2

Γ1

C

⋃
γ∈S1 Es(·, γ)−1(0)

(a) Spectrum in the limit ε → 0 with disjoint
contours Γ1 and Γ2.

Γ2

Γ1

C

σ(Lε)

σ(Lε)

(b) The true spectrum remains in the interior of
Γ1 and Γ2 for ε > 0 sufficiently small.

Figure 3.1: Approximation of the spectrum σ(Lε).

Combining Proposition 3.7 with Theorem 3.14 yields that the number of γ-eigenvalues
(counting algebraic γ-multiplicity) of Lε interior to Γ equals the number of roots (counting
multiplicity) of E0(·, γ) for any γ ∈ S 1. In particular, Theorem 3.14 shows that the spectrum
σ(Lε) ∩ CΛ converges to a subset of N0 in the limit ε → 0. Indeed, choose contours close
enough to and disjoint from the connected components of N0, with, say, Hausdorff distance
δ. This results in an εδ > 0 such that, if ε ∈ (0, εδ), then σ(Lε) ∩ CΛ is contained in a
δ-neighborhood of N0.

To see that the singular limit of σ(Lε) in fact equals N0, we need the following general-
ization of Theorem 3.14.

Theorem 3.15. Let Λ < 0 be as in Proposition 3.10. Let S ⊂ S 1 be a closed subset. Take a
simple closed curve Γ in CΛ \ NS , where

NS :=
⋃
γ∈S

{λ ∈ CΛ : E0(λ, γ) = 0}. (3.16)

Then, for ε > 0 sufficiently small, the number of roots (including multiplicity) of E0(·, γ) and
Eε(·, γ) interior to Γ coincides for any γ ∈ S 1.

Theorem 3.15 allows us, by taking S = {γ} for some γ ∈ S 1, to follow individual γ-eigenvalues
as they converge to the roots of E0(·, γ) as ε→ 0 or, equivalently, to establish the convergence
of the spectrum σ(Lν,ε) to the discrete set {λ ∈ C : E0(λ, eiν) = 0}.

The proof of Theorem 3.15 is provided in §5.2.
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3.5.3 Consequences of the spectral approximation result
The results in §3.5.2 imply that we can approximate the roots of the Evans function, which
is defined in terms of the 2(m + n)-dimensional full eigenvalue problem (3.3), by the roots
of the reduced Evans function, which is defined in terms of the 2n- and 2m-dimensional,
ε-independent, eigenvalue problems (3.6), (3.8) and (3.9). Therefore, this approximation
result leads to a reduction in complexity, when verifying the first spectral stability condition in
Corollary 3.8.

However, asymptotic spectral control through the reduced Evans function is insufficient
to establish spectral stability, since the critical spectral curve attached to the origin shrinks
to the origin as ε→ 0. Hence, we cannot determine whether the critical curve lies in the left
half-plane and touches the origin in a quadratic tangency – see the second and third condition
in Corollary 3.8. Yet, using the approximation results from §3.5.2, we can isolate the critical
spectral curve from the rest of the spectrum. All in all, we obtain the following result.

Corollary 3.16. Suppose the following conditions are met:

i. 0 is a simple zero of E f ,0;

ii. Es,0(0, γ) , 0 for each γ ∈ S 1;

iii. E0(λ, γ) , 0 for each γ ∈ S 1 and λ ∈ C \ {0} with Re(λ) ≥ 0.

Then, there exists σ0, ε0 > 0 such that for each ε ∈ (0, ε0) there exists a 2π-periodic, analytic
map λε : R→ R with the following properties:

1. σ(Lε) ∩ {λ ∈ C : Re(λ) > −σ0} = λε[R];

2. λε(ν) = λε(−ν) is a simple zero of Eε(·, e±iν) for each ν ∈ [0, π];

3. λε(0), λ′ε(0), λ′ε(π) = 0;

4. λε(ν) converges to 0 as ε→ 0 for each ν ∈ R.

In particular, the periodic pulse solution φ̌p,ε to (1.9) is spectrally stable if there exists ς > 0,
possibly dependent on ε, such that λε(ν) ≤ −ςν2 holds for all ν ∈ [0, π].

Proof. Since Es,0(·, γ) has no pole at λ = 0 by Remark 3.13, we deduce that 0 is a simple root
of E0(·, γ) for each γ ∈ S 1. In addition, the set N0, defined in Theorem 3.14, is bounded by
Propositions 3.10 and 3.11. So, there exists σ0 > 0 such that, if E0(λ, γ) = 0 is satisfied for
some γ ∈ S 1 and λ ∈ CΛ\{0}, then we have Re(λ) < −σ0. Let δ ∈ (0, σ0). Theorem 3.14 yields
εδ > 0 such that for each ε ∈ (0, εδ) and ν ∈ R there exists precisely one (simple) root λε(ν) of
Eε(·, eiν) in B(0, δ). Thus, λε defines a 2π-periodic function from R to C satisfying λε(ν)→ 0
as ε→ 0 for each ν ∈ R. Since Eε is analytic in both of its arguments by Proposition 3.7 and
the root λε(ν) is simple, it follows by the implicit function theorem that λε : R→ C is analytic.



53 CHAPTER 3. STABILITY RESULTS

By Proposition 3.7 it holds

0 = Eε(λε(ν), eiν)e−2(m+n)iν = Eε(λε(ν), e−iν) = Eε(λε(ν), eiν), ν ∈ R.

Thus, by uniqueness of the root of E(·, eiν) in B(0, δ), we conclude that λε(−ν) = λε(ν) = λε(ν).
Hence, λε must be real-valued and λ′ε(0), λ′ε(π) = 0. Recall from §3.3 that 0 is always a
1-eigenvalue of Lε due to translational invariance, i.e. it holds Eε(0, 1) = 0. We derive
λε(0) = 0. The fact that E0(·, γ) has no roots in {λ ∈ C : Re(λ) > −σ0} except 0 yields by
Theorem 3.14 that Eε(·, γ) has no roots in {λ ∈ C : Re(λ) > −σ0} \ B(0, δ) for each γ ∈ S 1.
This proves σ(Lε) ∩ {λ ∈ C : Re(λ) > −σ0} = λε[R]. �

3.6 Expansion of the critical spectral curve

We present the second main outcome of our spectral stability analysis; that is, we provide an
expansion of the critical spectral curve λε : R→ R established in Corollary 3.16.

Theorem 3.17. Suppose the conditions in Corollary 3.16 are met. Then, provided ε > 0 is
sufficiently small, the critical spectral curve λε : R → R, established in Corollary 3.16, is
approximated as ∣∣∣λε(ν) − ε2λ0(ν)

∣∣∣ ≤ Cε3| log(ε)|5, (3.17)

where C > 0 is a constant independent of ε and ν and the analytic function λ0 : R → R is
defined by

λ0(ν) :=

∫ ∞
−∞

〈
∂uG(u0, vh(x, u0), 0)∗ψad,2(x)x, B(ν)

〉
dx∫ ∞

−∞

〈
ψad,2(x), ∂xvh(x, u0)

〉
dx

, (3.18)

with ψad(x) = (ψad,1(x), ψad,2(x)) a non-trivial, exponentially localized solution to the adjoint,

ϕx = −A f (x)∗ϕ, ϕ ∈ R2n. (3.19)

of the fast variational equation (3.15) and

B(ν) := D−1
1

(
0 I

)
B(ν),

B(ν) := Υ−1
0

(
D−1

1 J(u0)
H1(u0, 0, 0)

)
−

(
I − e−iνΥ0Φs(2`0, 0)Υ0

)−1
(

2D−1
1 J(u0)

0

)
,

Υ0 :=
(

I 0
∂uJ(u0) I

)
,

(3.20)

where J : Uh → R
m is defined in (2.5) and Φs(x̌, y̌) is the evolution operator of the slow

variational equation (2.7).
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Remark 3.18. The integral
∫ ∞
−∞

〈
ψad,2(x), ∂xvh(x, u0)

〉
dx in the denominator of λ0(ν) in The-

orem 3.17 arises as a solvability condition for the generalized eigenvalue problem at λ = 0
associated with the linearization of vt = D2vxx −G(u0, v, 0) about the standing pulse solution
vh(x, u0). Since 0 is a simple zero of the fast Evans function E f ,0, this integral is non-zero –
see also Proposition 5.21. �

The critical spectral curve λε(ν) arises as the solution curve to the equation Eε(λ, eiν) = 0 about
(λ, ν) = (0, 0). The equation Eε(λ, eiν) = 0 is defined in terms of the 2(m + n)-dimensional
full eigenvalue problem (3.3). The leading-order approximation λ0(ν) of the solution curve
λε(ν), established in Theorem 3.17, is defined in terms of the ε-independent, 2m-dimensional
slow variational equation (2.7) and 2n-dimensional fast variational equation (3.15). Therefore,
Theorem 3.17 yields a reduction of complexity in the local analysis of the full eigenvalue
problem (3.3) about λ = 0 simplifying the verification of the spectral stability conditions in
Corollary 3.8. Combining this with Corollary 3.16 leads to a set of spectral stability conditions
in terms of simpler, lower-dimensional systems, which we will present in §3.7.

When we have Es,0(0, eiν� ) = 0 for some ν� ∈ R, the approximation of λε(ν�) in Theorem 3.17
fails. Since it holds det

(
I − e−iνΥ0Φs(2`0, 0)Υ0

)
= Es,0(0, e−iν) = e2imνEs,0(0, eiν) = 0 by

Proposition 3.11, we observe that λ0 has a pole at ν�. Yet, for ν away from ν�, the approxima-
tion (3.18) is still valid. This leads to the following generalization of Theorem 3.17.

Theorem 3.19. Suppose 0 is a simple zero of E f ,0. Let δ > 0 and denote

N� :=
{
ν ∈ R : Es,0(0, eiν) = 0

}
, Sδ := R \

⋃
ν∈N�

(ν − δ, ν + δ). (3.21)

Then, for ε > 0 sufficiently small, there exists for any ν ∈ Sδ a unique root λε(ν) of Eε(·, eiν)
converging to 0 as ε → 0. The root λε(ν) is real-valued and satisfies (3.17), where λ0 : R \
N� → R is given by (3.18) and C > 0 is independent of ε and ν. In addition, the functions
λε : Sδ → R and λ0 are analytic, even and 2π-periodic. Finally, we have λε(0) = 0 if 0 ∈ Sδ.

The proof of Theorem 3.19 is provided in §5.3. The proof of Theorem 3.17 follows by
combining Corollary 3.16 with Theorem 3.19.

3.7 Explicit criteria for spectral stability and instability
Using the spectral approximation results in §3.5 and §3.6, we obtain explicit conditions in
terms of simpler, lower-dimensional problems yielding spectral stability of the periodic pulse
solution φ̌p,ε to (1.9). Indeed, using Theorem 3.14 we can approximate the roots of the Evans
function by the zeros of the reduced Evans function, which is defined in terms of the 2n-
and 2m-dimensional eigenvalue problems (3.6), (3.8) and (3.9). This simplifies verifying the
first spectral stability condition in Corollary 3.8. Then, using Corollary 3.16, we can isolate
the most critical part of the spectrum: the curve λε(ν) attached to the origin. Theorem 3.17
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provides a leading-order approximation of λε(ν) in terms of the 2m- and 2n-dimensional varia-
tional equations (2.7) and (3.15). This simplifies verifying the spectral stability conditions in
Corollary 3.8 for λ close to the origin.

Thus, we readily obtain the following result by combining Theorems 3.14 and 3.17 and
Corollary 3.16.

Corollary 3.20. Suppose the following conditions are met:

i. 0 is a simple zero of E f ,0;

ii. Es,0(0, γ) , 0 for each γ ∈ S 1;

iii. E0(λ, γ) , 0 for each γ ∈ S 1 and λ ∈ C \ {0} with Re(λ) ≥ 0;

iv. λ′′0 (0) < 0, λ0(π) < 0 and λ′0(ν) , 0 for each ν ∈ (0, π), where λ0 : R → R is defined
by (3.17).

Then, provided ε > 0 is sufficiently small, the periodic pulse solution φ̌p,ε to (1.9) is spectrally
stable.

Observe that, if the conditions in Corollary 3.20 are satisfied, then we obtain by Theorem 3.3
nonlinear diffusive stability of φ̌p,ε as a solution to (1.9) with α = −ε2λ′′0 (0) + O(ε3| log(ε)|5).

Regarding instability, Theorems 3.15 and 3.19 yield the following result.

Corollary 3.21. If one of the following is true:

i. There exists γ� ∈ S 1 and λ� ∈ C with Re(λ�) > 0 satisfying E0(λ�, γ�) = 0;

ii. It holds λ0(ν) > 0 for some ν ∈ R \ N�, where λ0 : R \ N� → R is given by (3.17) and
N� is defined in (3.21).

Then, provided ε > 0 is sufficiently small, the periodic pulse solution φ̌p,ε to (1.9) is spectrally
unstable.

Thus, if one of the conditions in Corollary 3.21 is satisfied, then the periodic pulse solution
φ̌p,ε is nonlinearly unstable against localized and non-localized perturbations by Theorem 3.5.

We emphasize that the conditions in Corollaries 3.20 and 3.21 can be computed with only the
singular limit (2.9) of the periodic pulse solution φ̌p,ε as input. More specifically, one needs
understanding of the (adjoint) variational equations about the solutions ψh(x, u0) and ψs(x̌) to
systems (2.3) at u = u0 and (2.4), respectively, and of the eigenvalue problems arising when
linearizing equations vt = D2vxx −G(u0, v, 0) and ut = D1ux̌x̌ −H1(u, 0, 0) about the stationary
solutions vh(x, u0) and us(x̌), respectively.
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In the case n = 1 or m = 1, the conditions for spectral stability and instability in Corol-
laries 3.20 and 3.21 can be further simplified – see §3.8. In the case n = 1, the first condition
in Corollary 3.20 is always satisfied and the third condition only has to be checked for the
slow Evans function. In the case m = 1, the second and fourth condition in Corollary 3.20 are
satisfied precisely if the signs of three explicit (integral) expressions are equal.

Remark 3.22. As mentioned in §1.4.1, weak coupling H2(u, v) ≡ 0 is allowed in our spectral
analysis. In that case, the integral terms J(u) and G(u, λ) in (2.5) and (3.11) are identically 0,
which implies that Es,0 is only determined by the slow eigenvalue problem (3.9). Therefore,
Es,0 is analytic on CΛ and zeros of E f ,0 cannot be canceled by poles of Es,0. We conclude that
the spectral stability problem fully splits into slow and fast subproblems with no interaction
between them. As a consequence, zeros of E f ,0 of positive real part yield spectral (and nonlin-
ear) instability by Proposition 3.21. In particular, in the case n = 1, the fast Evans function
E f ,0 always has a zero in the right half-plane, as we will show in Proposition 3.24.

In addition, Es,0(·, 1) has a root if and only if the slow eigenvalue problem (3.9) admits
a 2`0-periodic solution. Since we have J(u0) = 0, it holds ψs(0) = (u0, 0) = ψs(2`0) by (E2).
Thus, the derivative ψ′s(x̌) is a 2`0-periodic solution to (3.9) at λ = 0. Hence, the reduced
Evans function E0(·, 1) has a double root at 0. In particular, in the case m = 1, Sturm-Liouville
theory [7, Theorems 2.4.2 and 2.5.1] implies that there exists a λ∗ > 0 such that (3.9) has a
2`0-periodic solution at λ = λ∗, because u′s(x̌) vanishes at x̌ = `0. Consequently, Es,0(·, 1) has
a zero in the right half-plane.

Consequently, if we have H2(u, v) ≡ 0, then all periodic pulse solutions φ̌p,ε to (1.9) are
spectrally unstable in the case n = 1 or m = 1. This motivates the scaling in (1.8). �

Remark 3.23. Suppose the conditions in Theorem 3.17 are met. Observe that the deriva-
tive ψ′s of the solution ψs to (2.4) is a solution to the slow variational equation (2.7). By
assumption (E2) ψs(x̌) intersects the touch-down manifold T+ at x̌ = 0 in the point (u0,J(u0)).
Therefore, we have ψ′s(0) = (D−1

1 J(u0),H1(u0, 0, 0)) and by reversible symmetry it holds
ψ′s(2`0) = Rsψ

′
s(0) = (−D−1

1 J(u0),H1(u0, 0, 0)). Thus, we deduce

Υ0Φs(2`0, 0)Υ0

(
D−1

1 J(u0)
0

)
=

(
−D−1

1 J(u0)
0

)
+ (Υ0Φs(2`0, 0) − I)

(
0
a

)
,

where a := ∂uJ(u0)D−1
1 J(u0) − H1(u0, 0, 0) ∈ Rm. Rewriting the latter equation gives

(
1 + e−iν

) (
I − e−iνΥ0Φs(2`0, 0)Υ0

)−1
(

D−1
1 J(u0)

0

)
= e−iν

(
I − e−iνΥ0Φs(2`0, 0)Υ0

)−1
(Υ0Φs(2`0, 0) − I)

(
0
a

)
+

(
D−1

1 J(u0)
0

)
,
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for ν ∈ [0, π]. Hence, we obtain the following expression for the quantity B(ν) in Theorem 3.17

B(ν) = D−1
1


(

0 I
)

1 + e−iν

(
I − e−iνΥ0Φs(2`0, 0)Υ0

)−1
(I − Υ0Φs(2`0, 0))

(
0
2I

)
− I

 a,
for ν ∈ [0, π). So, a = 0 implies λ0(ν) = 0 for any ν ∈ [0, π) by Theorem 3.17. Therefore, a
passing through zero, suggests a transition of the critical spectral curve through the imaginary
axis. This coincides with a loss of transversality: condition (2.8) in assumption (E2) fails if
a = 0 – see §2.2.2. For the case m = n = 1, we show in §6.3 that the periodic pulse solution
φ̌p,ε destabilizes through a spatial period doubling bifurcation or sideband instability as a
passes through zero. �

3.8 Stability results in lower dimensions

In §3.7 we established explicit conditions yielding spectral stability and instability in terms of
the eigenvalue problems (3.6), (3.8) and (3.9) and the variational equations (2.7) and (3.15).
In this section we interpret these results in the case n = 1 or m = 1. Then, the aforementioned
systems become 2-dimensional and we can employ techniques tailored for 2-dimensional
linear systems to further simplify the spectral (in)stability conditions in Corollaries 3.20
and 3.21.

We proceed as follows. First, we study the slow and fast Evans function and the (leading-order)
critical spectral curve λ0(ν) in the lower-dimensional setting. Subsequently, we interpret the
spectral stability conditions in Corollary 3.20 in the case n = 1 or m = 1. Finally, we present
an instability test using parity-type arguments in the regime n = m = 1.

Throughout this section we assume without loss of generality D1 = 1 in the case m = 1
and D2 = 1 in the case n = 1 – see Remark 1.5.

3.8.1 The reduced Evans function
In the case n = 1, the homogeneous fast eigenvalue problem (3.6) becomes 2-dimensional.
The ordering of the eigenvalues of (3.6), i.e. the roots of the fast Evans function, can be
understood with Sturm-Liouville theory. Thus, we obtain the following result.

Proposition 3.24. Suppose n = 1. All zeros of the fast Evans function E f ,0 : CΛ → C are real
and simple. Moreover, there is precisely one positive zero λ∗ of E f ,0. Finally, 0 is a root of E f ,0.

Proof. By [60, Theorem 2.3.3] all eigenvalues of the operator L f , defined in (3.7), are real
and simple. In addition, the eigenvalues can be enumerated in strictly decreasing order as
λN < . . . < λ0. The eigenfunction corresponding to λi, i = 0, . . . ,N has precisely i zeros.
Hence, all zeros of E f ,0 are real and simple by Proposition 3.10. Furthermore, the derivative
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∂xvh(x, u0) lies in the kernel of L f . The function ∂xvh(x, u0) has precisely one zero by (E1).
So, we derive λ1 = 0 and λ0 > 0. �

In the case m = 1, the slow eigenvalue problem (3.9) becomes 2-dimensional. Since the
solution ψs(x̌) to (2.4) crosses the reversible symmetry line ker(I − Rs) at x̌ = `0 by assump-
tion (E2), it holds ψs(x̌) = ψs(2`0 − x̌) for each x̌ ∈ [0, 2`0]. Thus, system (3.9) is Rs-reversible
at x̌ = `0, i.e. if ϕ(x̌, λ) is a solution to (3.9), then so is x̌ 7→ Rsϕ(2`0 − x̌, λ). Hence, there
exists non-trivial solutions u+(x̌, λ) and u−(x̌, λ) to

ux̌x̌ =

(
∂H1

∂u
(us(x̌), 0, 0) + λ

)
u, u ∈ R, (3.22)

which are symmetric and antisymmetric about `0, respectively. In particular, at λ = 0 the
derivative u′s(x̌) is an antisymmetric solution about `0 to (3.22). A symmetric solution to (3.22)
at λ = 0 can now be found using Rofe-Beketov’s formula [7, Chapter 1.9]. This leads to the
following result.

Proposition 3.25. Suppose m = 1. Let u+(x̌, λ) and u−(x̌, λ) be solutions to (3.22), which are
symmetric and antisymmetric about `0, respectively, and have Wronskian 1. The slow Evans
function Es,0 : [CΛ \ E

−1
f ,0(0)] × C→ C is given by

Es,0(λ, γ) = γ2 − t(λ)γ + 1,

where t : CΛ \ E
−1
f ,0(0)→ C is the analytic function given by

t(λ) := Tr(Υ(u0, λ)Ts(2`0, 0, λ))

= 2
[

d
dx̌

[u+(x̌, λ)u−(x̌, λ)](0) − G(u0, λ)u+(0, λ)u−(0, λ)
]
,

(3.23)

with Ts(x̌, y̌, λ), Υ(u, λ) and G(u, λ) defined in §3.5.1. In particular, we find

t(0) = −2 (1 + 2ab) ,

where

a := J ′(u0)J(u0) − H1(u0, 0, 0),

b := J(u0)
∫ `0

0

(∂uH1(us(x̌), 0, 0) + 1)[(u′s(x̌))2 − (H1(us(x̌), 0, 0))2]
[(u′s(x̌))2 + (H1(us(x̌), 0, 0))2]2 dx̌

+
H1(u0, 0, 0)

(J(u0))2 + (H1(u0, 0, 0))2 .

(3.24)

Finally, λ ∈ CΛ \ E
−1
f ,0(0) is a γ-eigenvalue for some γ ∈ S 1 if and only if it holds t(λ) ∈ [−2, 2].

In that case, we have 2Re(γ) = t(λ).
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Proof. The formula (3.23) follows readily by expanding Es,0(λ, γ) as a quadratic polynomial
in γ and expressing Ts(2`0, 0, λ) in terms of symmetric and antisymmetric solutions.

Calculating t(0) is more elaborate. First, note that the derivative u′s(x) is a solution to (3.22)
at λ = 0, which is antisymmetric about `0. By Rofe-Beketov’s formula [7, Chapter 1.9] a
symmetric solution about `0 to (3.22) at λ = 0 is given by

z(x̌) := u′s(x̌)
∫ `0

x̌

(∂uH1(us(y̌), 0, 0) + 1)[(u′s(y̌))2 − (H1(us(y̌), 0, 0))2]
[(u′s(y̌))2 + (H1(us(y̌), 0, 0))2]2 dy̌

+
H1(us(x̌), 0, 0)

(u′s(x̌))2 + (H1(us(x̌), 0, 0))2 .

(3.25)

Note that the Wronskian of z and u′s has value 1. Second, the matrix function (∂uψh(x, u0) | 0)
is a solution to the fast inhomogeneous problem (3.8) at λ = 0 and u = u0. This implies
2J ′(u0) = G(u0, 0). Putting these two items into (3.23), yields t(0) = −2 (1 + 2ab). �

In §3.8.3 we present an instability test using parity-type arguments. Therefore, we are
interested in the asymptotic behavior of the trace map t(λ).

Lemma 3.26. Let m = 1. Consider the map t : CΛ \ E
−1
f ,0(0)→ C, defined in (3.23). We have

limλ→∞ t(λ) = ∞.

Proof. In the following, we denote by C > 0 a constant, which is independent of λ. Consider
system,

ux̌ =
√
λp,

px̌ =

(
1
√
λ

∂H1

∂u
(us(x̌), 0, 0) +

√
λ

)
u,

(u, p) ∈ C2, (3.26)

with evolution Ts1(x̌, y̌, λ). Denote by Ts2(x̌, y̌, λ) the evolution operator of the autonomous
system,

ux̌ =
√
λp,

px̌ =
√
λu,

(u, p) ∈ C2. (3.27)

Proposition 4.1 yields

‖Ts1(2`0, 0, λ) − Ts2(2`0, 0, λ)‖ ≤
C
√
λ

e2
√
λ`0 , λ > 0. (3.28)

On the other hand, the slow eigenvalue problem (3.9) is equivalent to system (3.26) upon
performing a coordinate change. Indeed, it holds

CλTs1(2`0, 0, λ)C−1
λ = Ts(2`0, 0, λ), Cλ :=

(
1 0
0
√
λ

)
, λ > 0. (3.29)
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We refer to Proposition 5.5 for the fact that, for λ > 0 sufficiently large, the solutionXin(·, u0, λ)
to the inhomogeneous fast eigenvalue problem (3.8) at u = u0 is exponentially localized with
λ-independent decay rates. Hence, G(u0, λ) remains bounded as λ → ∞. Thus, t(λ) is for
λ > 0 sufficiently large approximated as∥∥∥∥∥∥t(λ) − tr

 1 0
G(u0,λ)
√
λ

1

Ts2(2`0, 0, λ)
∥∥∥∥∥∥ ≤ C

√
λ

e2
√
λ`0 ,

by (3.28) and (3.29). The latter yields∥∥∥∥t(λ) − e2
√
λ`0

∥∥∥∥ ≤ C
√
λ

e2
√
λ`0 ,

for λ > 0 sufficiently large, where we use explicit expressions for the evolution Ts2(x̌, y̌, λ) of
system (3.27). We conclude t(λ)→ ∞ as λ→ ∞. �

Example 3.27. In [114] the spectral stability of spatially periodic pulse patterns is studied,
where (1.10) is the generalized Gierer-Meinhardt equation (2.26). Thus, the slow eigenvalue
problem (3.9) corresponds to the autonomous system ux̌x̌ = (µ + λ)u. The condition t(λ) ∈
[−2, 2] in Proposition 3.25 simplifies in that case to

2 cosh(2`0
√
µ + λ) +

G(u0, λ) sinh(2`0
√
µ + λ)

√
µ + λ

∈ [−2, 2],

where G(u, λ) is defined in (3.11) and
√
· denotes the principal square root. Although derived

with a different method, this result agrees with [114, Theorem 1.1.I]. �

As mentioned in §3.5.1, it is possible to obtain explicit expressions of the principal part of the
Laurent series of Es,0(·, γ) at a zero λ ∈ E−1

f ,0(0). Because of their complexity the expansions are
treated separately in §5.1.2. However, in the case m = 1, the expressions simplify significantly.
Therefore, it is worthwhile to devote a separate proposition to this case.

Proposition 3.28. Suppose m = 1. Let λ� be a simple zero of E f ,0. The singular part of the
Laurent expansion at λ = λ� of the map t : CΛ \ E

−1
f ,0(0)→ C, defined in Proposition 3.25, is

given by

u(2`0, λ�)
λ − λ�

∫ ∞

−∞

∂vH2(u0, vh(x, u0))vλ� (x)dx
∫ ∞

−∞

ṽλ� (x)∗
∂G
∂u

(u0, vh(x, u0), 0)dx,

where u(x̌, λ�) is the solution to (3.22) at λ = λ� having initial values u(0) = 0, u′(0) = 1.
Moreover, vλ� is an exponentially localized solution to

D2vxx = (∂vG(u0, vh(x, u0), 0) + λ�) v, v ∈ Cn, (3.30)

and ṽλ� (x) is an exponentially localized solution to the adjoint problem,

D2vxx =
(
∂vG(u0, vh(x, u0), 0)∗ + λ�

)
v, v ∈ Cn,
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such that ∫ ∞

−∞

ṽλ,�(x)∗vλ,�(x)dx = 1.

Proof. The statement is proven in a more general setting in Proposition 5.9. �

3.8.2 The critical spectral curve
In the case m = 1, the leading-order approximation (3.18) of the critical spectral curve
simplifies. Indeed, the slow variational equation (2.7) becomes 2-dimensional. So, besides
the derivative ψ′s(x̌), a second, linearly independent solution to (2.7) can be found using
Rofe-Beketov’s formula. This leads to the following result.

Proposition 3.29. Let m = 1. Suppose that 0 is a simple zero of E f ,0. Then, the analytic map
λ0 : R \ N� → R, defined in Theorem 3.19, is given by

λ0(ν) = aw
cos(ν) − 1

1 + cos(ν) + 2ab
, (3.31)

where a, b are defined in (3.24) and w is given by

w := −

∫ ∞
−∞

∂G
∂u (u0, vh(x, u0), 0)∗ψad,2(x)xdx∫ ∞
−∞

ψad,2(x)∗∂xvh(x, u0)dx
, (3.32)

with ψad(x) = (ψad,1(x), ψad,2(x)) a non-trivial, exponentially localized solution to (3.19). In
the case n = 1, the expression for w simplifies to

w = −

∫ ∞
−∞

∂G
∂u (u0, vh(x, u0), 0)∂xvh(x, u0)xdx∫ ∞

−∞
(∂xvh(x, u0))2 dx

. (3.33)

Proof. As in the proof of Proposition 3.25 we observe that, at λ = 0, the derivative u′s(x̌) is
a solution to (3.22), which is antisymmetric about `0, and z(x̌), given by (3.25), is a solution
to (3.22), which is symmetric about `0. In addition, the Wronskian of z(x̌) and u′s(x̌) equals 1.
Expressing the evolution Φs(2`0, 0) of (2.7) in terms of ψ′s(0) and (z(0), z′(0)), simplifies the
expression for B(ν) in (3.20) to

B(ν) = −

[
a −

(
0 1

) (
I − e−iνΥ0Φs(2`0, 0)Υ0

)−1
(

2J(u0)
0

)]
,

= −

[
a −

4a(1 + ab)e−iν

Es,0(0, e−iν)

]
where we use b = z(0), det

(
I − e−iνΥ0Φs(2`0, 0)Υ0

)
= e2iνEs,0(0, eiν) , 0 and ψs(0) =

(u0,J(u0)) by (E2). By Proposition 3.25 it holds eiνEs,0(0, e−iν) = 2(cos(ν) + 1 + 2ab).
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Substituting this into the above expression for B(ν) leads to the desired formula (3.31) for
λ0(ν) = −wB(ν). Finally, in the case n = 1, we observe that (−∂xqh(x, u0), ∂xvh(x, u0)) is a
solution to equation (3.19) yielding (3.33). This concludes the proof. �

Remark 3.30. Let m = 1. Proposition 3.29 indicates that the geometry of the critical spectral
curve attached to the origin is to leading order determined by the expressions a, b and w. In
addition, the value of the slow Evans function Es,0(λ, γ) at λ = 0 is fixed by a and b using
Proposition 3.25. Thus, a, b and w determine the spectral configuration about the origin and
play an important role in destabilization processes – see §6.3. We elaborate on the geometric
interpretation of these quantities.

As mentioned in §2.2.2, the quantity a measures the transversality between the touch-down
curve T+ and the solution ψs to (2.4) at ψs(0) = (u0,J(u0)) and, by symmetry, between the
take-off curve T− and ψs at ψs(2`0) = Rsψs(0) – see Figure 3.2. If a = 0, then ψs(x̌) is tangent
to the touch-down curve at x̌ = 0.

The quantity b depends on the dynamics in the slow reduced system (2.4) only. Since ψs(`0) is
contained in ker(I −Rs) by assumption (E2), the vector ψ� = (H1(us(`0), 0, 0)−1, 0) is a normal
to the tangent space of the curve ψs(x̌) at x̌ = `0 such that det(ψ� | ψ′s(`0)) = 1. Tracking the
tangent space along the flow of (2.4) to x̌ = x̌0, the vector ψ� becomes Φs(x̌0, `0)ψ�. Since
system (2.7) is Rs-reversible at x̌ = `0, the first component z(x̌) of the solution Φs(x̌, `0)ψ�
to (2.7) is symmetric at x̌ = `0. Hence, z(0) equals the quantity b.

Observe that z(x̌) has precisely one root between two consecutive zeros of u′s(x̌), since the
derivative of u′s(x̌)/z(x̌) never vanishes between these two zeros of u′s. Therefore, given that
the orbit of ψs in the slow reduced system (2.4) crosses the line p = 0 at u = u± with u− < u+,
there is precisely one initial value u0 = us(0) ∈ (u−, u+) for which b = 0 – see Figure 3.2.

The quantity w occurs in [92], where one derives asymptotic interaction laws for quasi-
stationary pulse solutions to models of the form (1.9). More precisely, one establishes in [92]
an ODE, which describes the (leading-order) evolution of the pulse locations over time, as-
suming existence and smoothness of the quasi-stationary pulse pattern. The pulse locations of
our stationary, periodic pulse φ̌p,ε(x̌) to (1.9) correspond naturally to an equilibrium of this
ODE. The quantity w occurs as a factor in the linearization of the ODE about this equilibrium
– see [92, Section 6.2.1]. Thus, the sign of w corresponds to the character of the equilibrium.
Loosely speaking, w measures the stability of φ̌p,ε(x̌) against perturbations of the pulse loca-
tions. This relates to the fact that vanishing of w corresponds to a transition of the critical
spectral curve through the imaginary axis – see §6.3. �

3.8.3 Criteria for spectral stability and instability

The results in §3.8.1 and §3.8.2 lead to the following simplification of the spectral stability
conditions in Corollary 3.20 in the lower-dimensional setting.



63 CHAPTER 3. STABILITY RESULTS

Corollary 3.31. Suppose m = 1 and the following conditions are met:

i. 0 is a simple zero of E f ,0;

ii. E0(λ, γ) , 0 for all γ ∈ S 1 and λ ∈ C \ {0} with Re(λ) ≥ 0;

iii. The quantities a, b and w, defined in (3.24) and (3.32), have the same (non-zero) sign.

Then, provided ε > 0 is sufficiently small, the periodic pulse solution φ̌p,ε to (1.9) is spectrally
stable.

Moreover, in the case n = 1, conditions i. and ii. above are satisfied if and only c+ = 0,
with

c± := lim
R→∞

∫ 2π

0

∣∣∣∣∣∣ 1
2πi

∮
Γ±R

∂λEs,0(λ, eiν)
Es,0(λ, eiν)

dλ + 1

∣∣∣∣∣∣ dν
= lim

R→∞

∫ 2π

0

∣∣∣∣∣∣ 1
2πi

∮
Γ±R

t′(λ)
t(λ) + 2 cos(ν)

dλ + 1

∣∣∣∣∣∣ dν,
(3.34)

where Γ±R is the (counter-clockwise) contour in the complex plane consisting of the circle
segment {z ∈ C : |z ± R−1| = R,Re(z) ≥ ∓R−1} and the line joining the points iR ∓ R−1 and
−iR ∓ R−1.

Proof. Since we have ab > 0, it holds Es,0(0, γ) , 0 for each γ ∈ S 1 by Proposition 3.25.
Thus, the first three conditions in Corollary 3.20 are satisfied. Moreover, by Proposition 3.29
we have

λ0(π) = −
w

b
, λ′′0 (0) = −

aw

2 + 2ab
, λ′0(ν) = −

2a(1 + ab)w sin(ν)
(1 + 2ab + cos(ν))2 , (3.35)

with ν ∈ R. Since a, b and w are non-zero and have the same sign, the fourth condition in
Corollary 3.20 is also satisfied. We conclude that φ̌p,ε is spectrally stable.

In the case n = 1, 0 is a simple zero of E f ,0 and E f ,0 has only one (simple) zero λ∗ of
positive real part by Proposition 3.24. Thus, by Proposition 3.11 the conditions i. and ii. are
satisfied if and only if Es,0(λ, γ) has precisely one pole of order 1 at λ = λ∗ and no zeros in the
closed right half-plane for each γ ∈ S 1. Using the argument principle and Proposition 3.25 the
latter is the case if and only if c+ = 0. �

Thus, in the case m = n = 1, we can establish spectral stability by evaluating four expressions
a, b,w and c+. Even if these four expressions cannot be determined exactly, one can prove
spectral stability using rigorously verified computing. To estimate the errors one needs explicit
bounds on the solutions ψh(x, u) and ψs(x̌) to (2.3) at u = u0 and (2.4) that constitute the
singular limit (2.9) and on the functions H1,H2,G.

On the other hand, the lower-dimensional setting allows us to test for instability using parity-
type arguments.
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Corollary 3.32. Let m = n = 1. If one of the following is true:

i. We have c− , 0, where c− is defined in (3.34);

ii. The quantities a, b and w, defined in (3.24) and (3.32), are non-zero and have different
signs;

iii. We have J(u0) = 0;

iv. It holds i ≤ 0 with

i := u(2`0, λ∗)
∫ ∞

−∞

∂H2

∂v
(u0, vh(x, u0))vλ∗ (x)dx

∫ ∞

−∞

∂G
∂u

(u0, vh(x, u0), 0)vλ∗ (x)dx,

(3.36)

where λ∗ > 0 is as in Proposition 3.24, u(x̌, λ) is the solution to (3.22) with initial values
u(0) = 0, u′(0) = 1 and vλ∗ is a normalized, exponentially localized solution (having
L2-norm 1) to (3.30) at λ� = λ∗.

Then, provided ε > 0 is sufficiently small, the periodic pulse solution φ̌p,ε to (1.9) is spectrally
unstable.

Proof. First, 0 is a simple zero of E f ,0 and E f ,0 has only one (simple) zero λ∗ of positive real
part by Proposition 3.24. Thus, if c− , 0, then there exists by the argument principle a γ ∈ S 1,
such that either Es,0(·, γ) has no pole at λ∗ or it has a zero λ0 ∈ C with Re(λ0) > 0. Thus,
it holds either E0(λ∗, γ) = 0 or E0(λ0, γ) = 0, which implies by Corollary 3.21 that φ̌p,ε is
spectrally unstable.

Next, suppose the non-zero quantities a, b and w have different signs and 1 + ab > 0. Then,
the calculations (3.35) show that there exists ν ∈ R such that λ0(ν) > 0. By Corollary 3.21 φ̌p,ε
is spectrally unstable.

Now suppose 1 + ab ≤ 0 and i > 0. Then, we have t(0) = −2 (1 + 2ab) ≥ 2 by Proposi-
tion 3.25. On the other hand, the quantity i corresponds to the singular part of the Laurent
expansion of t(λ) at λ = λ∗ by Proposition 3.28. Thus, if we have i > 0, there exists by the
intermediate value theorem a λ0 ∈ (0, λ∗) such that t(λ0) = 2. Hence, Proposition 3.25 yields
E0(λ0, 1) = 0. Therefore, φ̌p,ε is spectrally unstable by Corollary 3.21.

Suppose i ≤ 0. In the case i = 0 we have E0(λ∗, γ) = 0 for any γ ∈ S 1 by Proposition 3.28.
On the other hand, it is shown in Lemma 3.26 that t(λ) tends to infinity as λ→ ∞. Therefore,
the intermediate value theorem implies that, if i < 0, then there exists λ0 ∈ (λ∗,∞) such that
t(λ0) = 2. Hence, by Propositions 3.25 and Corollary 3.21 φ̌p,ε is spectrally unstable if i ≤ 0.

Finally, in the case J(u0) = 0, it follows ab = −1 by a direct calculation. Hence, φ̌p,ε
is spectrally unstable by the analysis in the previous three paragraphs. �
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Figure 3.2: Depicted are five orbits of the slow reduced system (2.4) (in purple). The touch-
down curve T+ intersects these orbits transversally at ψi, i = 1, . . . , 6. The green dashed line
corresponds to the initial values such that b = 0. We have b > 0 at ψ1, ψ2, ψ3 and ψ5 and
b < 0 at ψ4 and ψ6. The red line corresponds to initial values with w = 0. We have w > 0
at ψ1, ψ2, ψ3 and ψ4 and w < 0 at ψ5 and ψ6. Finally, we have a < 0 at ψ1, ψ3 and ψ6 and
a > 0 at ψ2, ψ4 and ψ5. The periodic pulse solutions touching-down at ψ1, ψ3, ψ4 and ψ5
are spectrally unstable by Corollary 3.32. The solutions touching down at ψ2 and ψ6 are
potentially spectrally stable.

We stress that the value of a, b, J(u0) and w depends only on the initial value u0 = us(0) of
the solution ψs to the slow reduced system (2.4) and can directly be read off from the phase
plane of (2.4) – see Figure 3.2.

Remark 3.33. If the periodic pulse φ̌p,ε approaches a homoclinic limit, then the verification of
the conditions in Corollaries 3.31 and 3.32 simplifies significantly – see §6.4.6. In particular,
we can test for spectral (in)stability by approximating the quantities a, b, c−, i and w in the
long-wavelength limit. �

Example 3.34. In [114] the spectral stability of stationary, spatially periodic pulse solutions
is studied in the generalized Gierer-Meinhardt equation (2.26). The slow variational equa-
tion (2.7) corresponds in this setting to the autonomous equation ux̌x̌ = µu. The v-component
of the homoclinic solution ψh(x, u0) to system (2.3) at u = u0 is given by

vh(x, u0) = u
−

α2
β2−1

0 wh(x), wh(x) :=
(
β2 + 1

2
sech2

(
(β2 − 1) x

2

)) 1
β2−1

.

Thus, using integration by parts, we calculate the quantities a, b and w in Proposition 3.29,

a = J(u0)J ′(u0) − µu0, b =
cosh2

(
`0
√
µ
)

4µu0
, w = −

α2
∫ ∞
−∞

wh(x)β2+1dx

u0 (β2 + 1)
∫ ∞
−∞

(
w′h(x)

)2
dx
,
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where J : (0,∞)→ R is given by

J(u) =
uα1−

α2β1
β2−1

2

∫ ∞

−∞

wh(x)β1 dx. (3.37)

It holds bw > 0, since we have β1,2 > 1, α2 < 0 and µ > 0. In addition, the signs of aw and ab
are equal to the sign of

a

u0
=

(
α1 −

α2β1

β2 − 1

) (
u
α1−

α2β1
β2−1 −1

0

∫ ∞

−∞

wh(x)β1 dx
)2

− µ.

Thus, the sign of a

u0
determines whether condition iii. in Corollary 3.31 is satisfied. The

quantity a

u0
measures the transversality between the touch-down curve T+ and the solution ψs –

see Remark 3.30.

One can verify that the leading-order expression (3.31) of the critical spectral curve coincides
with the one in [114] derived with a different method – see §1.2. �

3.8.4 A closer look at zero-pole cancelation
Proposition 3.28 shows that for m = 1 the slow Evans function Es,0(·, γ) has a removable singu-
larity at a simple zero λ� of E f ,0 if and only if one of the identities (3.12), (3.13) holds true or
there exists a non-trivial solution to (3.22) at λ = λ� with boundary values u(0) = 0 = u(2`0).
The set of λ� ∈ C for which (3.12) or (3.13) holds true will in general be discrete, since
the involved expressions are analytic in λ�. Moreover, [128, Theorem 4.3.1-6] shows that
this is also the case for the set of λ� ∈ CΛ for which the boundary value problem (3.22),
u(0) = 0 = u(2`0) admits a non-trivial solution. Hence, zero-pole cancelation is a robust
phenomenon in the absence of additional structure (such as the translational invariance at
λ = 0 mentioned in Remark 3.13).

Being robust, zero-pole cancelation can still fail in one-parameter families. Suppose equa-
tion (1.9) depends on a real parameter µ and E f ,0 has a simple zero λ� with Re(λ�) > 0,
independent of µ. Denote by i(µ) the singular part of the Laurent expansion at λ = λ� of tµ(λ)
– see Propositions 3.25 and 3.28. Assume there is a value µ∗ ∈ R such that i(µ∗) = 0 and
∂µi(µ∗) , 0. Then, for any γ ∈ S 1, E0,µ∗ (λ�, γ) = 0 and E0,µ(λ�, γ) , 0 for any µ , µ∗ close to
µ∗.

The transition of µ through a point µ∗ may seem like a blue sky catastrophe, which makes the
pulse solution φ̌p,ε ‘suddenly’ spectrally unstable. However, such a transition from cancelation
to non-cancelation is caused by unstable spectrum moving through the point λ�. This can be
seen by noting that the there exists a neighborhood N ⊂ R of λ� such that tµ(N) covers the
whole real line as µ approaches µ∗ – see Figure 3.3. In particular, tµ(N) covers the interval
[−2, 2] as µ→ µ∗. Thus, by Proposition 3.25 there is a branch of unstable spectrum moving
through the point λ�. We remark that the orientation of the spectral curve changes in this
proces – see Figure 3.3.



67 CHAPTER 3. STABILITY RESULTS

(a) µ < µ∗ (b) µ = µ∗

(c) µ > µ∗

Figure 3.3: The trace function tµ(λ) about λ�.

Example 3.35. We provide an example where zero-pole cancelation fails. Consider the Gierer-
Meinhardt equation (2.26), where α2 , 0 and µ < 0. We emphasize that in this case the slow
reduced system (2.4) is linear of center type. This differs from the ‘standard’ Gierer-Meinhardt
setting considered in [21, 25, 50, 114, 123], where µ > 0 and the slow reduced system is linear
of saddle type.

Let u0 > 0. Note that (2.26) satisfies (S1), (S2) and (E1) with vh(x, u0) > 0 for all x ∈ R.
Take u1 < 0 such that µu2

1 = J(u0)2 + µu2
0, where J : (0,∞) → R is as in (3.37). Then,

assumption (E2) is satisfied with ψs(x̌) the solution to the Hamiltonian system (2.4) with
initial condition ψs(0) = (u0,J(u0)). Hence, Theorem 2.3 implies that, for ε > 0 sufficiently
small, there exists a 2`ε-periodic pulse solution φ̂p,ε(x) to (2.26). Moreover, it holds by the
Hamiltonian nature of system (2.4)

`ε → `0 = `0(µ) :=
π

2
+ sin−1 u0√

J(u0)2

µ
+ u2

0

, as ε→ 0.

In [114, Lemma 3.3] it is shown that λ� = 1/4(β2 + 1)2 − 1 > 0 is the positive zero of the fast
Evans function E f ,0. Note that both ∂vH2(u0, vh(x, u0)) and ∂uG(u0, vh(x, u0), 0) are strictly
negative for all x ∈ R. Moreover, the v-component of any non-trivial solution to (3.6) at
λ = λ� has no zeros by the proof of Proposition 3.24. Therefore, identities (3.12) and (3.13)
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are not satisfied. Now assume µ > λ�. The solution to (3.22) at λ = λ� with initial values
u(0) = 0, u′(0) = 1 is given by,

u(x̌, λ�) =
sin(
√
µ − λ� x̌)
√
µ − λ�

,

where
√
· denotes the principal square root. Clearly, it holds u(2`0, λ�) = 0 if and only if

µ = λ� +

(
kπ

2`0(µ)

)2

, (3.38)

for some k ∈ Z≥1. Since `0(µ) ∈ (π/2, π) for every µ > 0, equation (3.38) will have a solution
µ = µk > λ� for every k ∈ Z≥1. We conclude with the aid of Proposition 3.28 that, if µ = µk for
some k ∈ Z≥1, then Es,0(λ, γ) has a removable singularity at λ = λ� and it holds E0(λ�, γ) = 0
for any γ ∈ S 1. �

3.9 Stability in the slowly nonlinear toy problem
In this section, we derive explicit expressions for the reduced Evans function E0(λ, γ) and the
quantities a, b and w, defined in (3.24) and (3.32), in the toy problem (2.27). Then, Corollar-
ies 3.31 and 3.32 can be employed to prove spectral stability or instability of the periodic pulse
solution φ̌p,ε(x̌) constructed in §2.5.

For the toy problem (2.27), the homogeneous fast eigenvalue problem reads,

vx = q,

qx =
(
1 − 3sech2

(
1
2 x

)
+ λ

)
v,

(v, q) ∈ R2, (3.39)

where we used the expressions for vh(x, u) derived in §2.5. Let Λ = −1. The solutions to (3.39)
can be found using Legendre functions – see [120, Section 3.3]. Thus, we establish two
non-trivial solutions ϕ±(x, λ) to (3.39), whose v-components are given by

v±(x, λ) = e∓
√
λ+1x

4λ
(√
λ + 1 + 3

)
e±x +

√
λ + 1 − 3

e±x + 1

+ 15
(
e±x − 1

) (√
λ + 1 + 1

)
e±2x −

√
λ + 1 + 1

(e±x + 1)3

 ,
λ ∈ CΛ,

where
√
· denotes the principal square root. One readily observes limx→±∞ ϕ±(x, λ) = 0.

Hence, the fast Evans function E f ,0 : CΛ → C is given by the Wronskian of ϕ+(x, λ) and
ϕ−(x, λ):

E f ,0(λ) := 2λ
√
λ + 1

(
16λ2 − 8λ − 15

)
,
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and we find E f ,0 has simple roots − 3
4 , 0 and 5

4 . The inhomogeneous fast eigenvalue problem
reads

vx = q,

qx =
(
1 − 3sech2

(
1
2 x

)
+ λ

)
v + 9

4 sech4
(

1
2 x

)
f ′(u),

(v, q) ∈ R2,

where u > 0 and λ ∈ CΛ. For any λ ∈ CΛ \ E
−1
f ,0(0) its unique solution Xin(x, u, λ) can be found

using variation of constants. So, the v-componentVin(x, u, λ) of Xin(x, u, λ) reads,

Vin(x, u, λ) = f ′(u)
v+(x, λ)I(x, λ) + v−(x, λ)I(−x, λ)

E f ,0(λ)
,

I(x, λ) := −
9
4

∫ x

−∞

v−(y, λ)sech4
(

1
2 y

)
dy.

We emphasize that the integral I(x, λ) can be evaluated using hypergeometric functions. Yet,
the resulting expressions are quite lengthy, so we decide not to provide these. Using the
formula for ψs in §2.5, we state the slow eigenvalue problem,

ux̌ = p,

px̌ =
(
λ + µ cos

[
2Am

(
−k
√
µ(x̌ − c), k−2

)
+ π

])
u

=
(
λ + 2µk2sn2

[√
µ(x̌ − c), k2

])
u,

(u, p) ∈ R2, x̌ ∈ [0, 2`0], (3.40)

where λ ∈ CΛ, k ∈ (0, 1), c ∈ R with |c| < K(k)µ−1/2 and `0 = `0(k, l, c, µ) is defined in (2.31).
Here, K(k) is the Jacobi complete integral of the first kind, Am(x̌, k) denotes the Jacobi
amplitude function and sn(x̌, k) is one of the Jacobi elliptic functions. Equation (3.40) is
known as Lamé’s equation and can be solved explicitly. For λ ∈ C \ {0}, this is done by first
substituting z = sn(

√
µ(x̌− c), k2) and then applying differential Galois theory [65]. This yields

two solutions ψ±(x̌, λ; k, c, µ) to (3.40), which have u-components,

u±(x̌, λ; k, c, µ) :=

√
λ

k2µ
+ cn2

(√
µ(x̌ − c), k2

)
exp

[
±

√
λ(λ−µ+µk2)
µ(λ+k2µ) Π

(
k2µ
λ+k2µ

,−am
(√
µ(x̌ − c), k2

)
, k2

)] ,
where Π(x̌, φ, k) denotes Legendre’s incomplete elliptic integral of the third kind and cn(x̌, k)
is one of the Jacobi elliptic functions. Thus, we have obtained all ingredients to explicitly
calculate the slow Evans function Es,0 :

[
C \ E−1

f ,0(0)
]
× C→ C. Indeed, we obtain

Es,0(λ, γ) = det
(
Υ(u0, λ)X(2`0, λ)X(0, λ)−1 − γI

)
,

with u0 = u0(k, c, µ) := us(0; k, c, µ) – see equation (2.30) – and

X(x̌, λ) = X(x̌, λ; k, c, µ) :=
(
ψ+(x̌, λ; k, c, µ) ψ−(x̌, λ; k, c, µ)

)
,

Υ(u, λ) = Υ(u, λ; ν2, ν3) :=
(

I 0
G(u, λ; ν2, ν3) I

)
,

G(u, λ; ν2, ν3) := f (u)
∫ ∞

−∞

(
3ν2sech2

(
1
2 x

)
+ 27

4 ν3 f (u)sech4( 1
2 x)

)
Vin(x, u, λ)dx.
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So, by multiplying the expressions for the fast and slow Evans functions above, one obtains an
explicit reduced Evans function E0(λ, γ) = −γEs,0(λ, γ)E f ,0(λ).

Our next step is to calculate the quantities a, b and w in the toy problem (2.27). The slow
variational equation about ψs(x̌; k, c, µ) – see equation (2.30) – equals the slow eigenvalue
problem (3.40) at λ = 0. Naturally, one of the solutions to (3.40) at λ = 0 is given by the
derivative ψ1(x̌; k, c, µ) = ψ′s(x̌; k, c, µ), whose u-component reads

u1(x̌; k, c, µ) = −2k
√
µdn

(
k
√
µ(x̌ − c), k−2

)
,

where dn(x̌, k) is one of the Jacobi elliptic functions. Note that u1(x̌) is antisymmetric about `0.
A second solution ψ2(x̌; k, l, c, µ), having a symmetric u-component about `0 = `0(k, l, c, µ), is
established via Rofe-Beketov’s formula [7, Chapter 1.9]. We gauge ψ2 such that the Wronskian
of ψ2 and ψ1 equals 1. The u-component of ψ2 is given by

u2(x̌; k,l, c, µ) =
[
cn

(√
µ(x̌ − c), k2

) [
(k2 − 1)

√
µ(x̌ − c) + E

(
am

(√
µ(x̌ − c), k2

)
, k2

)]
− dn

(√
µ(x̌ − c), k2

)
sn

(√
µ(x̌ − c), k2

)
− α(k, l, µ)u1(x̌; k, c, µ)

] 1
2k(k2 − 1)µ

,

α(k, l, µ) :=
(1 − k2)(2l + 1)K(k2) − E

(
(l + 1

2 )π, k2
)

2k
√
µ

,

where E(x̌, k) is the Jacobi complete integral of the second kind. Having established the
solutions to the slow variational problem, we calculate the quantities a, b and w:

a =
72
25

f (u0)3 (5ν2 + 6ν3 f (u0)) (5ν2 + 9ν3 f (u0)) f ′(u0) − µ sin(u0),

b = u2(0; k, l, c, µ), w =
2 f ′(u0)

f (u0)
.


