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Chapter 2

Existence analysis

2.1 Introduction
In this thesis we are interested in of stationary, spatially periodic pulse solutions to the class
of reaction-diffusion systems (1.10), where we assume that the interaction terms satisfy (S1).
Such solutions are constant in time and they are periodic and symmetric in space. In ad-
dition, the v-components exhibit spatially localized pulses, whereas the u-components are
non-localized. We refer to Figure 1 for a plot of the pulse profile in the case m = n = 1.

In this chapter we focus on the construction of such solutions. Finding stationary solutions
to (1.10) is equivalent to solving the singularly perturbed ordinary differential equation,

D1ux = εp,

px = εH1(u, v, ε) + H2(u, v),
D2vx = q,

qx = G(u, v, ε),

(u, p, v, q) ∈ R2(m+n), (2.1)

which is R-reversible, where R : R2(m+n) → R2(m+n) is the reflection in the space p = q = 0.
Taking the limit ε → 0 in properly scaled versions of (2.1) yields slow and fast reduced
systems. By piecing together orbit segments of these reduced systems in such a way that they
form a closed loop, one obtains a so-called singular periodic orbit. Although this singular
periodic orbit is not an actual solution to (2.1), one can prove that (under certain conditions)
an actual periodic solution to (2.1) arises from the singular one, provided ε > 0 is sufficiently
small.

In this chapter we perform a slow-fast decomposition of (2.1) and construct a singular periodic
orbit from the slow and fast reduced systems. Next, we use geometric singular perturbation
theory [34, 54, 57] to study the dynamics of system (2.1) in the neighborhood of the singular
orbit. Then, we have the ingredients to prove the existence of an actual periodic pulse solution
to (2.1) in the vicinity of the singular one. The R-reversibility of system (2.1) plays an essential
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2.2. THE SINGULAR LIMIT 26

role in the proof. Therefore, both the periodic pulse solution and its singular limit naturally
respect the R-reversibility of system (2.1). Since the stability analysis in Chapter 5 relies
crucially on how the periodic pulse solutions are approximated by the singular limit structure,
we provide detailed (pointwise) estimates along with the existence result. Finally, we apply
the existence result to an explicit slowly nonlinear toy model.

2.2 The singular limit

2.2.1 Slow-fast decomposition
We perform a slow-fast decomposition of the singularly perturbed equation (2.1). Fast and
slow reduced systems arise by taking the limit ε → 0 in properly scaled versions of (2.1).
First, if set ε = 0 in (2.1), then the dynamics is given by the fast reduced system,

ux = 0,
px = H2(u, v),

D2vx = q,

qx = G(u, v, 0),

(u, p, v, q) ∈ R2(m+n), (2.2)

System (2.2) is governed by the family of 2n-dimensional systems,

D2vx = q,

qx = G(u, v, 0),
(v, q) ∈ R2n, (2.3)

parameterised over u ∈ U. Note that (2.3) is R f -reversible, where R f : R2n → R2n is the
reflection in the space q = 0. Moreover, we observe that the slow manifold,

M := {(u, p, 0, 0) : u ∈ U, p ∈ Rm},

consists entirely of equilibria of (2.2) by assumption (S1). When ε > 0, the manifold M
consists no longer of equilibria, but remains invariant for the dynamics of (2.1). The flow
restricted toM is of order O(ε). In the spatial scale x̌ = εx, the dynamics of (2.1) onM is to
leading order governed by the slow reduced system,

D1ux̌ = p,

px̌ = H1(u, 0, 0),
(u, p) ∈ R2m. (2.4)

Note that system (2.4) is Rs-reversible, where Rs : R2m → R2m is the reflection in the space
p = 0.

Although the fast and slow reduced systems (2.2) and (2.4) are simpler, lower-dimensional sys-
tems, enough information can be obtained from them to determine the leading-order dynamics
of the full system (2.1) close to the slow manifoldM for 0 < ε � 1 – see §2.3.
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2.2.2 Construction of the singular periodic pulse
In this section we construct a singular periodic orbit by concatenating solutions of the fast and
slow reduced systems (2.2) and (2.4) in such a way that they form a closed loop. The singular
orbit consist of a pulse satisfying the fast reduced system (2.2) and a segment on the invariant
slow manifoldM, satisfying the slow reduced system (2.4). We emphasize that such a singular
orbit is not a solution to (2.1). However, when the singular orbit satisfies certain conditions,
we will prove that an actual periodic pulse solution lies in the vicinity of the singular one,
provided ε > 0 is sufficiently small – see §2.4.

The first ingredient for constructing the singular periodic orbit is the existence of a pulse
solution in the fast reduced system (2.2). This is ensured by the following assumption.

(E1) Existence of a pulse solution to the fast reduced system
There exists u� ∈ U such that system (2.3) has for u = u� a solution ψh(x, u�) =

(vh(x, u�), qh(x, u�)) homoclinic to the hyperbolic saddle 0. The stable manifold W s
u� (0)

intersects the space ker(I − R f ) transversely in the point ψh(0, u�).

Remark 2.1. In the terminology of [118] homoclinics that lies in the transverse intersection
of W s

u� (0) and ker(I − R f ) are called elementary. In particular, any non-degenerate homoclinic
solution is elementary by [118, Lemma 4]. We emphasize that in the case n = 1 any homoclinic
solution to (2.3) is elementary. �

Since transverse intersections are robust under perturbations, assumption (E1) implies the
existence of an open neighborhood Uh ⊂ U of u� such that for every u ∈ Uh there exists a
solution ψh(x, u) to (2.3), which is homoclinic to the hyperbolic saddle 0, such that W s

u(0) t
ker(I − R f ) = {ψh(0, u)}. The homoclinics ψh(x, u) yield solutions,

φh(x, u) :=
(
u,

∫ x

0
H2(u, vh(z, u))dz, vh(x, u), qh(x, u)

)
, u ∈ Uh,

to the fast reduced system (2.2), which are homoclinic toM. The homoclinics φh(x, u) take off

and touch down on the points limx→±∞ φh(x, u) ∈ M. We define the mapping J : Uh → R
m by

J(u) =

∫ ∞

0
H2(u, vh(z, u))dz. (2.5)

The m-dimensional graphs T± := {(u,±J(u)) : u ∈ Uh} onM are the so-called take-off and
touch-down manifolds. Since 0 is a hyperbolic saddle in (2.3), there exists constants C, µh > 0
such that

‖φh(±x, u) − (u,±J(u), 0, 0)‖ ≤ Ce−µh x, x ≥ 0, u ∈ Uh. (2.6)

The manifolds T± allow us to piece the pulse solutions φh to solutions that lie inM in order
to obtain a singular periodic orbit – see Figure 2.1. Therefore, we shift our attention to
the slow reduced system (2.4). Recall that (2.4) is Rs-reversible. In addition, since (2.3) is
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R f -reversible, it holds Rs[T+] = T−. Therefore, to establish a connection between the take-off

and touch-down manifolds T±, it is sufficient to find a solution to (2.4) that starts on the
touch-down manifold T+ and crosses ker(I − Rs) at some point. This is the content of our next
assumption.

(E2) Existence of connecting orbit in slow reduced system
There exists a solution ψs(x̌) = (us(x̌), ps(x̌)) to system (2.4) with initial condition
ψs(0) ∈ T+ and ψs(`0) ∈ ker(I − Rs) for some `0 > 0. Moreover, let Φs(x̌, y̌) be the
evolution operator of the associated variational equation,

ϕx̌ = As(x̌)ϕ, ϕ ∈ R2m, (2.7)

with

As(x̌) :=
(

0 D−1
1

∂uH1(us(x̌), 0, 0) 0

)
.

Denote u0 := us(0), H1(u0, 0, 0) = (h1, . . . , hm) and for i, j ∈ {1, . . . ,m} by Ai j the
(m × m)-submatrix of

Φs(`0, 0)
(

I
∂uJ(u0)

)
,

containing rows {i,m + 1, . . . , 2m} \ {m + j}. There exists i∗ ∈ {1, . . . ,m} such that
m∑

j=1

(−1) jh j det(Ai∗ j) , 0. (2.8)

By concatenating the orbits of ψs and φh, we obtain the singular periodic pulse,

φp,0 := {(ψs(x̌), 0) : x̌ ∈ (0, 2`0)} ∪ {φh(x, u0) : x ∈ R} ⊂ R2(m+n), (2.9)

consisting of a pulse satisfying the fast reduced system (2.2) and an orbit segment on the
slow manifold. We emphasize that φp,0 is C1, except at the two corners (u0,±J(u0), 0, 0) =

(us(0),±ps(0), 0, 0). Eventually, our goal is to construct a periodic pulse solution to (2.1)
in the vicinity of the singular orbit (2.9), provided 0 < ε � 1. Therefore, we need some
robustness of the structure (2.9) under perturbations. Robustness of the pulse φh is ensured
by the transversality condition in (E1). The orbit ψs in the slow system (2.4) persists by
regular perturbation arguments on the finite interval [0, 2`0]. Lastly, to ensure persistence of
the connections between (ψs(x̌), 0) and ψh(x, u0) at the two corners, we impose the technical
condition (2.8) in assumption (E2). For m = 1 the condition (2.8) is equivalent to the
transversality condition,

∂uJ(u0)D−1
1 J(u0) − H1(u0, 0, 0) , 0, (2.10)

of the touch-down curve T+ and the solution ψs at ψs(0) = (u0,J(u0)) (and of T− and ψs
at ψs(2`0) = Rsψs(0)) – see Figure 2.1. In the case m > 1, the technical condition (2.8)
is employed to generate a ‘good’ set of initial conditions in ker(I − Rs). This set becomes
under the forward flow of the slow reduced system (2.4) an m-dimensional manifold, which
contains the solution ψs and intersect T− transversally. We emphasize that (2.10) is a necessary
condition for (2.8) to hold true for any m ≥ 1 – see identity (2.19) in the proof of Theorem 2.3.
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u−→

↑p

J (u)

−J (u)

Figure 2.1: Orthogonal projection of three singular periodic orbits on the slow manifoldM in
the case m = n = 1.

2.3 Dynamics in the vicinity of the slow manifold

Eventually, our goal is prove that close to the singular concatenation (2.9) there exists an
actual periodic pulse solution to (2.1), provided ε > 0 is sufficiently small. The singular
orbit (2.9) consists of a pulse and an orbit segment on the slow manifoldM. Using Grönwall-
type arguments it is not difficult to track solutions to (2.1) close to the pulse φh(x, u0) on an
interval [−X, X], where X is ε-independent. However, on the slow manifoldM the dynamics
of system (2.1) is of order O(ε). Thus, to track solutions to (2.1) close to the orbit segment
{(ψs(x̌), 0) : x̌ ∈ [0, 2`0]} onM, we need approximations on an interval of length 2`0ε

−1 and
Grönwall type estimates fail. Thus, to capture the dynamics in the vicinity ofM, we need
additional arguments. First, we requireM to be normally hyperbolic.

(S2) Normal hyperbolicity
For each u ∈ U the symmetric part Re(G(u)) = 1

2

(
G(u) + G(u)T

)
of G(u) := ∂vG(u, 0, 0)

is positive definite.

The behavior of singularly perturbed equations of the form (2.1) close to an invariant, normally
hyperbolic manifold is described by Fenichel geometric singular perturbation theory [34, 54].
Fenichel theory states that the dynamics close toM is to leading order governed by the fast
and slow reduced systems (2.2) and (2.4), respectively. In this section we collect the facts
from Fenichel theory needed to prove our existence result.
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2.3.1 Fenichel fibering
LetM0 be a compact 2m-dimensional submanifold of the slow manifoldM. Fenichel the-
ory [34, Theorem 9.1] states that, the manifoldM0 perturbs, for ε > 0 sufficiently small, to a
manifoldMε, which is diffeomorphic toM0 and locally invariant for the dynamics of (2.1).
SinceM0 is itself locally invariant for the dynamics of (2.1), there exists an ε-independent
constant C > 0 such thatMε has Hausdorff distance O(e−C/ε) fromM0 – see also [19, Theo-
rem 2.1] and [121, Theorem 1].

By assumption (S2) any ψ0 ∈ M0 is a saddle-centre equilibrium for system (2.2) having
n-dimensional stable and unstable fibers Wu,s

0 (ψ0). Fenichel theory [34, Theorem 9.1] states
that, for ε > 0 sufficiently small, there exists ψε ∈ Mε such that these fibers persist as
n-dimensional manifolds Wu,s

ε (ψε) that have O(ε)-Hausdorff distance to Wu,s
0 (ψ0) within

an ε-independent neighborhood D ⊂ R2(m+n) of M0, i.e. the Hausdorff distance between
Wu,s
ε (ψε)∩D and Wu,s

0 (ψ0)∩D is O(ε). Moreover, we have the following invariance principle
called Fenichel fibering: if ψε(x) is a solution to (2.1) lying in Mε for εx ∈ [0, X], where
X > 0 is ε-independent, then the manifolds,

Pu,s
ε =

⋃
εx∈[0,X]

Wu,s
ε (ψε(x)),

are locally invariant for the dynamics of (2.1). Moreover, solutions in Ps
ε or Pu

ε converge to
Mε exponentially as x → ∞ or x → −∞, respectively. Finally, Pu,s

ε have O(ε)-Hausdorff
distance (withinD) to the manifolds,

P
u,s
0 =

⋃
x̌∈[0,X]

Wu,s
0 ((ψ0(x̌), 0)),

where ψ0 is the solution to the slow reduced system (2.4) governing the leading-order dynamics
of ψε. In particular, the stable and unstable manifolds W s

0(M0) and Wu
0 (M0) defined as the

union of the stable and unstable fibers ofM0 in (2.2) persist as locally invariant, stable and
unstable manifolds W s

ε(Mε) and Wu
ε (Mε) ofMε in (2.1).

Fenichel fibering gives a detailed description of the behavior of solutions to (2.1) converging
toMε. In essence the dynamics is an interplay of the attracting or repelling behavior induced
by the fast reduced system (2.2) and the dynamics on Mε described by the slow reduced
system (2.4).

2.3.2 Fenichel normal form
Fenichel fibering describes the dynamics of those solutions to (2.1) that converge toMε as
x→ ±∞. However, to understand the behavior of any solution close toMε it is convenient
to put system (2.1) into a canonical form in the neighborhood D ⊂ R2(m+n) ofM0, the so-
called Fenichel normal form [57, Proposition 1]. For 0 ≤ ε � 1, there exists a C1-change
of coordinates Ψε : D → R2(m+n), depending C1-smoothly on ε, in which the flow of (2.1) is



31 CHAPTER 2. EXISTENCE ANALYSIS

given by,

ax = A(a, b, c, ε)a,
bx = B(a, b, c, ε)b,
cx = εK(c, ε) + H(a, b, c, ε)(a ⊗ b),

a, b ∈ Rn, c ∈ R2m, (2.11)

where the A, B,K and H are C1 in their arguments, K maps to R2m, A and B map to the square
matrices of order n and H maps to tensors of appropriate rank. Moreover, there exists ∆ > 0
and an open and bounded set UF ⊂ R

2m such that the image Ψε(D) contains the compact box,

B :=
{
(a, b, c) : ‖a‖, ‖b‖ ≤ ∆, c ∈ UF

}
. (2.12)

In addition, there exists C, µ > 0, independent of ε, such that

Re(σ(A(a, b, c, ε))) ≤ −µ, Re(σ(B(a, b, c, ε))) ≥ µ, (2.13)

and

‖H(a, b, c, ε)(a ⊗ b)‖ ≤ C‖a‖‖b‖, (2.14)

for all (a, b, c) ∈ B and 0 ≤ ε � 1.

In the local Fenichel coordinates Mε correspond to the space a = b = 0 and the local
stable and unstable manifolds Wu,s

ε (Mε) ∩D ofMε correspond to the spaces b = 0 and a = 0,
respectively. Since system (2.1) is R-reversible, R maps Wu

ε (Mε) onto W s
ε(Mε) and vice versa.

Hence, ker(I − R) ∩D corresponds to the space a = b. Finally, system

cx̌ = K(c, 0), c ∈ R2m, (2.15)

is equivalent to the slow reduced system (2.4).

In the canonical form (2.11) the dynamics of (2.1) is decomposed in an attracting a-direction,
a repelling b-direction and a slowly evolving c-direction.

2.3.3 The Exchange lemma
Through the Fenichel normal form (2.11) one observes that (2.1) exhibits attracting, repelling
and slow dynamics. Exchange lemmas [55, 57, 59, 102] provide a way to capture this combi-
nation of dynamics.

As mentioned before, we need to track solutions close to the orbit segment on the slow
manifold of the singular concatenation (2.9) in order to prove our main existence result. For
this reason we need the following exchange lemma, which is (naturally) stated in Fenichel
coordinates.
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Lemma 2.2. [102, Theorem 2.3] Let a∗ ∈ Rn with ‖a∗‖ < ∆ and let c0(x̌) be a solution
to (2.15) such that c0(x̌) ∈ UF for x̌ ∈ [0, X] with X > 0. Let Zε for 0 ≤ ε � 1 be a
submanifold of R2(m+n) of dimension n + l, where 0 ≤ l ≤ 2m − 1, satisfying the assertions:

i. Z = {(a, b, c, ε) : (a, b, c) ∈ Zε} is itself a manifold;

ii. Z0 meets the space b = 0 transversally at the point (a∗, 0, c0(0)).

Denote by Pε, 0 ≤ ε � 1 the orthogonal projection of the l-dimensional manifold Zε ∩

{(a, 0, c) : a ∈ Rn, c ∈ UF} on the space a = b = 0. We require in addition:

iii. P0 is an l-dimensional manifold and the flow of (2.15) is not tangent to P0 at c0(0).

Denote byZ∗ε and P∗ε the (n + l + 1)- and (l + 1)-dimensional manifolds obtained by flowing
initial conditions onZε and Pε forward in (2.11). Then, there exists a (n + l + 1)-dimensional
submanifoldZ1,ε ofZ∗ε and an ε-independent neighborhood U1 ⊂ UF of c0(X) such that the
Hausdorff distance betweenZ1,ε and the (n + l + 1)-dimensional manifold,

{(0, b, c) : b ∈ Rn, c ∈ P∗ε ∩ U1} ⊂ Wu
ε (Mε),

is O(e−C/ε), where C > 0 is independent of ε. Moreover, trajectories crossingZ1,ε remain in
the box B – see (2.12) – during their excursion fromZε toZ1,ε.

2.4 Main existence result
In this section, we prove that close to the singular concatenation (2.9) there exists an actual
periodic pulse solution to (2.1), provided ε > 0 is sufficiently small.

It is a well-known principle that close to a singular periodic orbit, constructed by piecing
together orbit segments of the fast and slow reduced systems in such a way that they form a
closed loop, one can find an actual periodic orbit, provided ε > 0 is sufficiently small. In [110]
this is proved for a large class of slow-fast systems. However, an essential condition for the
result in [110] is that the slow components are constant in the fast reduced system. In our case
the slow p-components are non-constant along orbits in (2.2). Therefore, the result in [110] is
not applicable.

To our knowledge there is no existence result in the literature focusing on periodic solu-
tions in the large class of singularly perturbed systems (2.1) beyond the type of slow-fast
systems considered in [110]. However, for the Gierer-Meinhardt equations – see Remark 2.7 –
the existence of stationary, spatially periodic pulse solutions is proved in [25]. We emphasize
that the framework in [25] differs fundamentally from ours due to a difference in scaling in the
p-components and the fact that the u, p, v- and q-components are scalar. In Remark 2.5 we
elaborate in more detail on the scaling in the p-components.
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We prove the existence of periodic pulse solutions close to (2.9) in the class of systems (2.1) by
adapting and extending the techniques in [25, 110] – see Remark 2.4. The proof of our result
exploits the fact that every orbit that crosses the space ker(I − R) twice, must be a closed loop.
Therefore, our approach is to start with a ‘good’ set of initial conditions inZ ⊂ ker(I − R) and
track these conditions under the forward flow of (2.1) with the aid of the Exchange Lemma 2.2.
We show that the tracked trajectories remain close to the singular orbit (2.9). In particular, we
establish that the union of trajectories starting inZ intersects ker(I − R) transversally in some
point Pε, which lies close to φh(0, u0). The desired periodic solution is the one that crosses Pε.

Theorem 2.3. Assume (S1), (S2), (E1) and (E2) hold true. Then, there exists constants
C, µ0, ε0 > 0 such that for each ε ∈ (0, ε0) there exists a solution φp,ε(x) to (2.1) satisfying the
following assertions:

1. Periodicity
φp,ε is 2Lε-periodic, where |εLε − `0| ≤ Cε.

2. Reversibility
We have φp,ε(x) = Rφp,ε(−x) for x ∈ R.

3. Singular limit
Define for θ ≥ µ−1

0 the quantity Ξθ(ε) := −θ log(ε). The solution φp,ε approximates the
pulse as, ∥∥∥φp,ε(x) − φh(x, u0)

∥∥∥ ≤ CεΞθ(ε), x ∈ [−Ξθ(ε),Ξθ(ε)], (2.16)

and it approximates the orbit segment on the slow manifold as,∥∥∥φp,ε(x) − (ψs(εx), 0)
∥∥∥ ≤ Cε, x ∈ [Ξθ(ε), 2Lε − Ξθ(ε)]. (2.17)

4. Exponential convergence to slow manifold
We have the estimate,

d(φp,ε(x),M) ≤ Ce−µ0 min{x,2Lε−x}. (2.18)

Proof. In the following, we denote by C > 0 a constant, which is independent of ε.

We start with constructing a good manifold of initial conditions in ker(I − R). Denote
by ei, i ∈ 1, . . . ,m the unit basis of Rm. Let U be the (m × (m − 1))-matrix with column
vectors e1, . . . , ei∗−1, ei∗+1, . . . , em, where i∗ is as in (E2). Consider the (m + n− 1)-dimensional
manifold,

Z := {(us(`0) + u, 0, v, 0) : u ∈ U[Rm−1], v ∈ Rn} ⊂ ker(I − R).

The intersection ofZ andM equals,

P0 := {(us(`0) + u, 0) : u ∈ U[Rm−1]} ⊂ ker(I − Rs).
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By assumption (E2) P0 becomes under the forward flow of the slow reduced system (2.4)
an m-dimensional manifold P∗0, which intersects T− = Rs[T+] transversely at ψs(2`0) =

Rsψs(0) = (u0,−J(u0)). Indeed, we have by condition (2.8)

0 , det
(

Φs(`0, 0)
[

I
∂uJ(u0)

]
0 U

H1(us(`0), 0, 0) 0

)
= det

(
I D−1

1 J(u0)
∂uJ(u0) H1(u0, 0, 0) Φs(0, `0)

[
U

0

] )
(2.19)

= det
(

H1(u0, 0, 0) − ∂uJ(u0)D−1
1 J(u0)

[
−∂uJ(u0) I

]
Φs(0, `0)

[
U

0

] )
where we use that Φs(0, `0) induces an isomorphism between the tangent spaces of P∗0 at ψs(`0)
and at ψs(0) and that the determinant of Φs(0, `0) equals 1.

Eventually, our goal is to show that the (m + n)-dimensional manifoldZ∗ε obtained by flowing
initial conditions onZ forward in (2.1) intersects the (m + n)-dimensional manifold ker(I − R)
transversally within R2(m+n) close to the point φh(0, u0). The unique intersection point then
yields a periodic solution.

To describe the dynamics on Z∗ε close to M, we apply Fenichel theory – see §2.3. We
choose a compact submanifold M0 of M that contains the projection of the singular or-
bit (2.9) onM, i.e. letM0 be a compact 2m-dimensional submanifold ofM such thatM0
serves as a neighborhood of the orbit segment {ψs(x̌) : x̌ ∈ [0, 2`0]} and of the projection
{(u0,

∫ x
0 H2(u0, vh(z, u0))dz) : x ∈ R} of the pulse φh(x, u0) onM.

By assumption (S2) M0 is normally hyperbolic. So, according to Fenichel theory, M0
perturbs, for ε > 0 sufficiently small, to a manifoldMε, which is diffeomorphic toM0 and
locally invariant for the dynamics of (2.1). In addition,Mε has Hausdorff distance O(e−C/ε) to
M0.

To track solutions on Z∗ε we apply the Exchange Lemma 2.2. By switching to Fenichel
coordinates in the neighborhoodD ofM0 – see §2.3.2 – it is readily seen thatZ ⊂ ker(I − R)
intersects the local stable manifold W s

0(M0) ∩ D of M0 in the fast reduced system (2.2)
transversally at (ψs(`0), 0). Moreover, the slow reduced flow (2.4) onM0 is not tangent to P0
at ψs(`0) by (2.19). We conclude that the conditions for the Exchange Lemma 2.2 are satisfied.

Denote by Pε ⊂ Mε the (m− 1)-dimensional manifold, whereZ and the local stable manifold
W s
ε(Mε) ∩ D meet transversally. Moreover, let P∗ε ⊂ Mε be the m-dimensional manifold

obtained by flowing initial conditions on Pε forward in (2.1). Finally, we denote by

Yε :=
⋃
ϕ∈P∗ε

Wu
ε (ϕ) ⊂ Wu

ε (Mε),

the union of unstable fibers in (2.1) with base points in P∗ε ⊂ Mε. Note that Yε is locally
invariant in (2.1) by Fenichel fibering – see §2.3.1. By the Exchange Lemma, there exists an
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(m + n)-dimensional submanifoldZ1,ε ofZ∗ε and an ε-independent neighborhoodD1 ⊂ D of
(ψs(2`0), 0) such that the Hausdorff distance betweenD1 ∩Yε andZ1,ε is O(e−C/ε). Moreover,
trajectories crossingZ1,ε remain inD during the excursion fromZ toZ1,ε.

We aim to show that the (m + n)-dimensional manifold Yε intersects ker(I − R) transver-
sally. Then, by the above closeness estimate the same holds for the (m + n)-dimensional
manifold Z∗1,ε ⊂ Z

∗
ε obtained by flowing Z1,ε forward in (2.1). Therefore, we determine

the singular limit Y0 of Yε. First, recall that P∗0 intersects T− transversely at ψs(2`0). Sec-
ond, the unstable manifold Wu

0 (M0) ofM0 in (2.2) intersects ker(I − R) transversely in an
m-dimensional manifold S0 := {φh(0, u) : u ∈ Uh} by assumption (E1). The α-limit set of S0
equals the touch-down manifold T− inM. We now put these two items together and conclude
that the (m + n)-dimensional union,

Y0 :=
⋃
ϕ∈P∗0

Wu
0 (ϕ) ⊂ Wu

0 (M0),

of unstable fibers in (2.2) with base points in P∗0 intersects the (m + n)-dimensional manifold
ker(I − R) transversally in the point φh(0, u0).

By Fenichel fibering – see §2.3.1 – the manifolds Yε and Y0 have Hausdorff distance O(ε) in
a neighborhood of the intersection point φh(0, u0). Therefore, provided ε > 0 is sufficiently
small, Yε intersects ker(I − R) transversally in some point Ph,ε, which lies O(ε)-close to
φh(0, u0). Denote by φh,ε(x) the solution to (2.1) with initial condition φh,ε(0) = Ph,ε.

Since φh(x, u0) converges to (ψs(2`0), 0) ∈ M as x → −∞, there exists x0 > 0 such that
φh(−x0, u0) is contained in the neighborhoodD1 ⊂ D of (ψs(2`0), 0). Hence, since φh,ε(0) is
O(ε)-close to φh(0, u0) and x0 is independent of ε, one derives via Grönwall type estimates
that φh,ε(−x0) is contained in D1 ∩ Yε. Recall that the outcome of the Exchange Lemma is
thatYε has Hausdorff distance O(e−C/ε) fromZ1,ε in the neighborhoodD1 of φh,ε(−x0). Thus,
using x0 is ε-independent, we infer, again via Grönwall type estimates, that the Hausdorff
distance between Yε and Z∗1,ε is O(e−C/ε) in a neighborhood of φh,ε(0). Therefore, Z∗1,ε
intersects ker(I − R) transversally in some point Pp,ε, which is O(ε)-close to φh(0, u0). The so-
lution φp,ε(x) to (2.1) with initial condition φp,ε(0) = Pp,ε is the desired periodic orbit. Indeed,
φp,ε(x) crosses ker(I−R) at x = 0 and at some point x = −Lε < 0, since φp,ε is contained inZ∗ε.

All that remains to show is the four assertions in the theorem statement. The second as-
sertion is immediate, since φp,ε(0) ∈ ker(I − R). The other assertions require more work.

We start by estimating φp,ε with the pulse solution φh to the fast reduced system (2.2). Since
φp,ε(0) is O(ε)-close to φh(0, u0), we approximate∥∥∥φp,ε(x) − φh(x, u0)

∥∥∥ ≤ Cε, x ∈ [−x0, 0]. (2.20)

Next, we obtain decay estimates of φp,ε(x) to the slow manifold. Without loss of generality
we may assume φp,ε(x) is inD for x ∈ [−Lε,−x0]. Thus, we may express φp,ε(x) in Fenichel
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coordinates as φ̃p,ε(x) = (ap,ε(x), bp,ε(x), cp,ε(x)) = Ψε(φp,ε(x)) for x ∈ [−Lε, x0] – see §2.3.2.
By [57, Corollary 1] the estimates (2.13) yield a µ0 > 0, independent of ε, such that

‖ap,ε(x)‖ ≤ Ce−µ0Lε , ‖bp,ε(x)‖ ≤ Ceµ0(x+x0), x ∈ [−Lε,−x0]. (2.21)

We prove the fourth assertion. First,Mε corresponds to the space a = b = 0 in (2.11). Second,
Mε has Hausdorff distance O(e−C/ε) toM0 ⊂ M. Third, the coordinate transform Ψε is C1.
Combining these items with estimate (2.21) yields the fourth assertion.

We prove the third assertion. We express the pulse solution φh to the fast reduced sys-
tem (2.2) in Fenichel coordinates as φ̃h(x) = Ψ0(φh(x, u0)) for x ≤ −x0. Observe that φ̃h(x)
satisfies (2.11) for ε = 0 and lies in the unstable space a = 0. Consequently, we can
write φ̃h(x) = (0, bh(x), c0), where c0 is a constant in UF and bh(x) satisfies the equation
bx = B(0, b, c0, 0)b, where B is as in (2.11). Clearly, bh(x) converges exponentially to 0 as
x→ −∞. By estimate (2.20) and C1-smoothness of Ψε in ε, it holds∥∥∥φ̃p,ε(−x0) − φ̃h(−x0)

∥∥∥ ≤ Cε. (2.22)

Using estimates (2.14), (2.21) and (2.22) we obtain,

‖cp,ε(x) − c0‖ ≤

∫ −x0

x

(
ε‖K(cp,ε(y), ε)‖ +

∥∥∥H(φ̃p,ε(y), ε)(ap,ε(y) ⊗ bp,ε(y))
∥∥∥) dy

+ ‖cp,ε(−x0) − c0‖ (2.23)
≤ CεΞθ(ε),

for x ∈ [−Ξθ(ε),−x0]. The difference gε(x) = bp,ε(x) − bh(x) satisfies an inhomogeneous
equation of the form,

gx = Aε(x)g + hε(x),

where Aε(x)gε(x) = B(φ̃h(x), 0)gε(x) + (B(0, bp,ε(x), c0, 0) − B(φ̃h(x), 0))bp,ε(x) and hε(x) =

(B(φ̃p,ε(x), ε)−B(0, bp,ε(x), c0, 0))bp,ε(x). Taking x0 larger if necessary, estimates (2.13), (2.21)
and (2.23) yield Re(Aε(x)) ≤ −µ0 and ‖hε(x)‖ ≤ CεΞθ(ε) for x ∈ [−Ξθ(ε),−x0]. Therefore,
we conclude using (2.22) that,

‖bp,ε(x) − bh(x)‖ ≤ CεΞθ(ε), x ∈ [−Ξθ(ε),−x0]. (2.24)

Estimate (2.16) now follows from C1-smoothness of Ψ−1
ε in ε together with estimates (2.20),

(2.21), (2.23) and (2.24).

We prove (2.17). By (2.14) and (2.21) we have,∥∥∥H(φ̃p,ε(x))(ap,ε(x) ⊗ bp,ε(x))
∥∥∥ ≤ Ce−µ0Lε , x ∈ [−Lε,−x0].

Therefore, using Grönwall type estimates, there exists a solution (0, 0, cs,ε(x)) on the invariant
manifold Mε ⊂ {a = b = 0} satisfying ∂xc = εK(c, ε), which is O(e−µ0Lε)-close to cp,ε(x)
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for x ∈ [−Lε,−x0]. The solution cs,ε(x) is to leading order described by a solution cs,0(x̌) to
∂x̌c = K(c, 0). This results in the estimate,

‖cp,ε(x) − cs,0(εx)‖ ≤ Cε, x ∈ [−Lε,−x0]. (2.25)

Estimates (2.23) and (2.25) imply cs,0(0) = c0. On the other hand, we have Ψ0((ψs(2`0), 0)) =

limx→−∞ φ̃h(x) = (0, 0, c0). Since system ∂x̌c = K(c, 0) corresponds to the slow reduced
system (2.4), we have Ψ−1

0 ((0, 0, cs,0(x̌))) = (ψs(x̌ + 2`0), 0) for ε−1 x̌ ∈ [−Lε, 0]. Hence, by
C1-smoothness of Ψ−1

ε in ε, R-reversibility of φp,ε(x), estimates (2.21) and (2.25) and the
inequality θ ≥ µ−1

0 , we conclude estimate (2.17) holds true.

Finally, we prove the first assertion. On the one hand, we have ps(`0) = 0 and p′s(`0) =

H1(us(`0), 0, 0) , 0 by (2.19). On the other hand, it holds ‖ps(εLε)‖ ≤ Cε by (2.17).
Thus, an application of the inverse function theorem and the mean value theorem yields
|εLε − `0| ≤ Cε. �

Remark 2.4. Although the framework in [25, 110] is different, the idea to track solutions close
to the slow manifold with the aid of an appropriate exchange lemma is the same. However, in
contrast to [25, 110], we need an exchange lemma that works for systems having non-constant
slow components in the fast reduced system – see [102, Section 2.5]. Moreover, as in [25], we
exploit that system (2.1) is R-reversible. Yet, transversality arguments differ from [25], since
our class of systems admits multidimensional components. �

Remark 2.5. In principle, the existence problem could also be put in slow-fast form by
introducing p = ε−1/2D1ux instead of p = ε−1D1ux. Then the p-equation reads px =

ε3/2H1(u, v, ε) + ε1/2H2(u, v). This is done in existence analysis of periodic pulse solutions
in the Gierer-Meinhardt equations in [25]. The equation for the p-components in the slow
reduced system (2.4) would be px̌ = 0 in that case. This makes the construction of the desired
singular periodic orbit, performed in §2.2.2, impossible. Therefore, the scaling regime in (2.1)
is the most natural for our set-up. In [25] one avoids setting ε = 0 in the existence analysis
and makes a distinction between slow and ‘super-slow’ behavior. We emphasize that in the
spectral stability analysis in Chapter 5 we adopt a similar scaling regime to put the eigenvalue
problem in slow-fast form, which is required for an application of the Riccati transform – see
also Remark 1.4. �

Remark 2.6. As mentioned in §1.4.1, our model (1.9) is a reaction-diffusion system (1.1) that
allows for semi-strong interaction (1.8), with the extra condition that G vanishes at v = 0. For
general G, consider a 2n-dimensional compact submanifoldM0 of {(u, p, v, 0) : G(u, v, 0) =

0} ⊂ U × Rm × V × Rn. By Fenichel theory [34]M0 perturbs, for ε > 0 sufficiently small, to a
locally invariant manifoldMε in (2.1). This manifoldMε is diffeomorphic toM0 and lies at
Hausdorff distance O(ε) fromM0. WhenM0 can be given as a graph over (u, p) ∈ U × Rm,
the same holds forMε. Thus, in that case one can change coordinates in (2.1) relative toMε

and we obtainMε =M0 ⊂ {(u, p, 0, 0) : u ∈ U, p ∈ Rm}. Therefore, in the existence analysis,
the condition that G vanishes at v = 0, corresponds to an a priori coordinate change in (2.1).
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However, one introduces more than additional technical difficulties in the spectral stability
analysis when G does not vanish at v = 0. Indeed, without relative coordinates, we do
not achieve estimate (2.18), which is essential in our stability analysis. However, applying
the coordinate change to equation (1.9) changes its structure fundamentally. In the new
coordinates (1.9) is not even of reaction-diffusion type. Hence, we expect that the spectral
analysis differs essentially, when G does not vanish at v = 0. This is an interesting subject of
future research, especially since it includes the possibility of localized patterns with oscillatory
tails [11, 30], but is outside the scope of this thesis. �

Remark 2.7. As mentioned in the introduction in Chapter 1 the class of equations (1.10)
includes the generalized Gierer-Meinhardt equations,

ε2ut = uxx − ε
2µu + εuα1 vβ1 ,

vt = vxx − v + uα2 vβ2 ,
(u, v) ∈ R2, x ∈ R, (2.26)

with parameters α1 ∈ R, α2 < 0, β1,2 ∈ Z>1 and µ > 0 satisfying,

(α1 − 1)(β2 − 1) − α2β1 > 0.

Indeed, it is not difficult to verify that assumptions (S1), (S2), (E1) and (E2) hold true
for (2.26). Thus, Theorem 2.3 reconfirms the existence result of periodic pulse solutions
to (2.26) proved in [25]. �

2.5 Existence in the slowly nonlinear toy problem

In this section, we explicitly construct a singular periodic orbit in the slowly nonlinear toy
problem

ε2ut = uxx − ε
2µ sin(u) − ε(ν2v2 + ν3v3),

vt = vxx − v +
v2

f (u)
,

(u, v) ∈ R2, x ∈ R, (2.27)

with µ > 0, ν2, ν3 ∈ R and f : R→ R>0 at least C3. We then evoke Theorem 2.3 to prove the
existence of an actual periodic solution close to the singular one.

For the toy problem (2.27) the fast reduced system reads,

ux = 0,

px = ν2v2 + ν3v3,

vx = q,

qx = v −
v2

f (u)
,

(u, p, v, q) ∈ R4. (2.28)



39 CHAPTER 2. EXISTENCE ANALYSIS

For any u > 0, the governing subsystem,

vx = q,

qx = v −
v2

f (u)
,

(v, q) ∈ R2. (2.29)

of (2.28) is Hamiltonian and has a hyperbolic saddle in (0, 0). By a phase-portrait analysis
one observes that (2.29) admits for any u ∈ R a homoclinic solution to (0, 0). By integrating
equation (2.29) an explicit expression for this homoclinic can be found. This results in the
pulse solution to (2.28) given by,

φh(x, u; ν2, ν3) =

(
u,

∫ x

0

(
ν2(vh(z, u))2 + ν3(vh(z, u))3

)
dz, vh(z, u), v′h(z, u)

)
,

with vh(x, u) = 3
2 f (u)sech2( 1

2 x). Consequently, the take-off and touch-down curves on the
slow manifoldM are given by,

T± = {(u,J(u; ν2, ν3)) : u ∈ (0, π)}, J(u; ν2, ν3) = 3
5 ( f (u))2 (5ν2 + 6ν3 f (u)) .

The slow reduced system,

ux̌ = p,

px̌ = µ sin(u),
(u, p) ∈ R2,

is also Hamiltonian and can be integrated. This leads to the family of bounded solutions given
by the (4K(k)µ−1/2)-periodic Jacobi-amplitude functions,

ψs(x̌; k, c, µ) = (us(x̌), u′s(x̌)), us(x̌; k, c, µ) = 2Am
(
−k
√
µ(x − c), k−2

)
+ π, (2.30)

parameterized over k ∈ (0, 1), where K(k) is the Jacobi complete integral of the first kind. The
constant c ∈ R with |c| < K(k)µ−1/2 corresponds to the initial translation on the orbit of ψs. In
addition, we take

`0 = `0(k, l, c, µ) := c +
(2l + 1)K(k)
√
µ

> 0, (2.31)

where l ∈ Z≥0 such that it holds u′s(`0; k, c, µ) = 0.

Constructing a singular periodic orbit now reduced to connecting the solution ψs with the
take-off and touch-down curves T±, i.e. finding values for µ, k, c, ν2, ν3 such that,

J(us(0; k, c, µ), ν2, ν3) = u′s(0; k, c, µ),

Such values can be easily found with a computer software programm like Mathematica. If we
have found such values, the singular periodic orbit is given by,

φp,0 = {(ψs(x̌; k, c, µ), 0) : x̌ ∈ (0, 2`0)} ∪ {φh(x, us(0; k, c, µ); ν2, ν3) : x ∈ R} ,
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One readily observes that (S1), (S2) and (E1) are satisfied. For (E2) to hold true, we require
that the transversality condition

J ′(us(0; k, c, µ), ν2, ν3)u′s(0; k, c, µ) − µ sin(us(0; k, c, µ)) , 0,

is satisfied. Now, it follows from Theorem 2.3 that an actual periodic solution to (2.27) lies in
the vicinity of the singular orbit φp,0.


