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Chapter 1

Introduction

Pattern formation is observed in dynamical processes within various scientific disciplines,
including chemistry, biology, neurophysiology, optics and ecology. Reaction-diffusion systems
exhibit a large variety of patterns and have attracted much interest as a (simplified) model
describing these dynamical processes. For instance, reaction-diffusion systems have been
employed to model the propagation of nerve impulses through axons [45], the formation of
spots and stripes on animal skin [78], the development of vegetation patterns [63] and the
dynamics of flame fronts arising in combustion theory [127].

Turing laid the foundation for reaction-diffusion systems as a prototype model for pattern
formation. In [112] he showed that in linear reaction-diffusion systems patterns emerge from
a uniform initial condition if two components diffuse at (very) different rates. Later Gierer and
Meinhardt extended this to the semi-linear regime [40] – see also [61]. Nowadays, singularly
perturbed, semi-linear reaction-diffusion systems on the line of the form,

ut = D1ux̌x̌ − H(u, v, ε),

vt = ε2D2vx̌x̌ −G(u, v, ε),
u(x̌, t) ∈ Rm, v(x̌, t) ∈ Rn, (1.1)

where 0 < ε � 1 is asymptotically small and D1,2 are non-negative diagonal matrices, serve
as a paradigmatic class for the study of patterns. Complex patterns often consist of simpler
building blocks such as pulses, fronts, periodic wave trains and wave packets that are stationary
or propagate with a constant speed – see Figure 1.1. Mathematical understanding of these
elementary patterns is essential to gain fundamental insights into the more complex patterns.

Many analytical methods have been developed to construct (elementary) pattern solutions
to (1.1) and to study the naturally associated issue of their dynamic stability. All of these meth-
ods exploit the presence of the small parameter ε, which induces a reduction of complexity in
both the existence and stability analyses.
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(a) Front (b) Pulse (c) Wave train (d) Wave packet

Figure 1.1: Elementary patterns

1.1 Existence of patterns

Solutions to (1.1) that are stationary or travel with a constant speed, can be written as ϕ(x̌, t) =

Q(ε−1 x̌ + ct), where Q : R→ Rm+n is the wave profile and c ∈ R is the wave speed (which is
possibly 0). Finding such traveling-wave solutions is equivalent to finding bounded solutions
to the ordinary differential equation,

uξ = εp,

D1 pξ = ε (cεp + H(u, v, ε)) ,
vξ = q,

D2qξ = cq + G(u, v, ε),

(u, p, v, q) ∈ R2(m+n), (1.2)

where ξ = ε−1 x̌ + ct. Clearly, a heteroclinic or homoclinic connection in (1.2) gives rise to a
(traveling) front or pulse solution to (1.1). Similarly, a periodic orbit in (1.2) yields a periodic
wave train solution to (1.1).

There are various approaches to construct solutions to singularly perturbed problems of
the form (1.2). We mention the classical technique of rigorous matched asymptotic expan-
sions [31, 68, 71] and the method via nonstandard analysis [20]. In this thesis we adopt a
geometric point of view, which originates in the work of Fenichel [34]. Using geometric
singular perturbation theory [34, 54, 57], solutions to (1.2) can be constructed in the following
way. First, slow and fast reduced systems are established by taking the limit ε→ 0 in properly
scaled versions of (1.2). Then, one obtains a so-called singular orbit, by piecing together orbit
segments of these reduced systems – see Figure 1.2. Finally, one proves that an actual solution
to (1.2) lies in the vicinity of the singular one, provided ε > 0 is sufficiently small. In this last
step exchange lemmas [55, 57, 59, 102] or blow-up techniques [66, 67] can be employed to
control the dynamics in a neighborhood of the singular orbit.

Paradigmatic examples for the construction of traveling-wave solutions are the FitzHugh-
Nagumo equations [35, 79] for nerve propagation, the Gierer-Meinhardt system [40, 80] in
morphogenesis and the Gray-Scott model [43] for autocatalytic reactions. Using geometric
singular perturbation theory, traveling pulses [11, 52] and periodic wave trains [110] have
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been constructed in the FitzHugh-Nagumo equations. Similarly, stationary (multi-)pulse
patterns [21, 25, 26, 76] have been obtained in the Gray-Scott and Gierer-Meinhardt models.
Yet, the geometric construction of solutions to (1.2) can be performed in a general setting
without restricting to one of the aforementioned prototype models. For instance, in [110] one
proves the existence of a periodic orbit in (1.2) under the assumption that a singular periodic
orbit exists and the slow and fast reduced systems satisfy certain transversality conditions.

Figure 1.2: A singular periodic orbit consisting of slow orbit segments on two invariant
manifolds (blue) and fast heteroclinic transitions (red).

1.2 Stability of patterns

The stability of solutions to (1.1) is in many cases determined by the spectral properties of
the linearization of (1.1) about the solution. Yet, it is often difficult – especially in multi-
component systems – to obtain the required spectral information to decide upon stability.
As in the existence problem (1.2), the presence of the small parameter ε yields a reduction
of complexity. Various methods have been developed to capture the underlying structure
that facilitates this reduction – see Remark 1.1. The majority of these methods are built on
the complex-analytic Evans function [1, 5, 33, 38], which vanishes precisely on the critical
spectrum. Thus, to decide upon stability, it is sufficient to locate the roots of the Evans function.
It was first observed by Alexander, Gardner and Jones [1] in the context of traveling pulses in
the FitzHugh-Nagumo equations that the Evans function Eε factorizes into a slow and a fast
component,

Eε = Es,ε · E f ,ε, (1.3)

in accordance with the scale separation in (1.1). The factors Es,ε and E f ,ε correspond to
lower-dimensional, slow and fast eigenvalue problems associated with the linearization. Al-
though the geometric arguments behind the decomposition in [1] are very general, they need
to be based on an analytical result that indeed controls the relevant slow and fast eigenvalue
problems in projective space. In subsequent work, Gardner and Jones [37] validated the
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geometric argument of [1], and thus the factorization (1.3), in the context of traveling fronts in
a predator-prey model. They tracked the slow and fast eigenvalue problems analytically via
the so-called elephant trunk lemma. Further technical adaptations of the elephant trunk lemma
to stability problems associated with localized structures in the Gray-Scott and Fabry-Pérot
model have been carried out in [22] and [95], respectively, whereas its extension to periodic
wave trains in the FitzHugh-Nagumo equations can be found in [32]. Nowadays, it is widely
accepted that the elephant trunk procedure can be mimicked – or better: adapted – for a large
class of systems of the form (1.1). However, for every application one should in principle go
through one of the extensive proofs developed in the setting of the aforementioned specific
systems to check whether technicalities still hold true.

By tracking the fast eigenvalue problem through the elephant trunk procedure, it is pos-
sible to derive an explicit analytic fast Evans function E f ,0 whose zeros approximate those
of E f ,ε. Moreover, an explicit, but meromorphic, slow Evans function Es,0 can be obtained
via the so-called NonLocal Eigenvalue Problem (NLEP) approach, which was established by
Doelman, Gardner and Kaper in [22] in the context of stationary pulse solutions in the Gray-
Scott model. Thus, a combination of the elephant trunk procedure and the NLEP approach
yields an analytic reduced Evans function,

E0 = Es,0 · E f ,0, (1.4)

whose factors Es,0 and E f ,0 can be derived explicitly through slow and fast reduced eigen-
value problems. These reduced eigenvalue problems are lower-dimensional and arise by
taking the limit ε → 0 in properly scaled versions of the full eigenvalue problem. Winding
number arguments imply that the roots of the Evans function Eε are approximated by the
ones of the reduced Evans function E0 – see Figure 1.3. The NLEP approach and thus the
validation of the decomposition (1.3) and its explicit reduction (1.4), was further developed
in the context of localized pulses, fronts or periodic solutions in certain classes of 2- or
3-component reaction-diffusion systems in [21, 23, 30, 114, 116, 120]. It should be remarked
that in neither of these papers the elephant trunk procedure is carried out in full analytical detail.

Hence, using the elephant trunk and NLEP procedures, the spectrum of the linearization
is approximated by the zeros of the reduced Evans function E0, which is defined in terms

Figure 1.3: Spectral approximation using winding number arguments: the roots of E0 approxi-
mate those of Eε.
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of lower-dimensional, reduced eigenvalue problems. Thus, locating the roots of E0 yields
asymptotic control over the spectrum. In some cases asymptotic spectral control is sufficient
to decide upon stability, however the situation is often delicate about the origin – note that the
origin must be part of the spectrum due to translational invariance (obtained by shifting the
profile in space) – and a local higher-order analysis is required to prove stability. We elaborate
on the latter.

The spectrum of the linearization is made up of point spectrum, consisting of isolated eigen-
values of finite multiplicity, and its complement, the essential spectrum – see [98]. Suppose
the essential spectrum is confined to the open left half-plane and E0 has no zeros in the closed
right half-plane except a simple root at 0. Then, the aforementioned spectral approximation
result implies that 0 is an isolated, simple eigenvalue and that the rest of the spectrum lies in
the open left half-plane, which yields nonlinear stability of the underlying pattern [44]. This
situation occurs for instance in [3, 37, 47].

However, one is often less fortunate. For example, in the stability analyses [10, 53, 126]
of traveling pulses in the FitzHugh-Nagumo equations, 0 is a double root of the reduced Evans
function E0, while the essential spectrum is confined to the open left half-plane. Consequently,
there are two eigenvalues close to the origin. One of these eigenvalues resides at the origin
due to translational invariance, while the position of the other eigenvalue with respect to

(a) Point spectrum associated with fast pulses in the FitzHugh-Nagumo equations

(b) Essential spectrum attached to the origin associated with periodic structures

Figure 1.4: Asymptotic spectral control is insufficient to determine the spectral configuration
about the origin.
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the imaginary axis is decisive for stability. Yet, asymptotic spectral control is insufficient to
determine its location – see Figure 1.4a. The situation becomes even more problematic in the
case of periodic patterns [32, 114]. Then, the spectrum is composed of curves parameterized
over the unit circle S 1 due to Floquet theory [38]. Consequently, all spectrum is essential
and one needs to characterize an entire curve of eigenvalues – the so-called linear dispersion
relation – which is attached to the origin and shrinks to the origin in the limit ε→ 0. Again,
asymptotic spectral control is insufficient to ascertain the location of the curve with respect
to the imaginary axis – see Figure 1.4b. We elaborate on the various ways that have been
developed to overcome these difficulties.

For traveling pulses in the FitzHugh-Nagumo equations, we discuss two approaches to obtain
leading-order control over the location of the critical eigenvalue. In [53, 126] one proves
that the derivative of the Evans function Eε at 0 is positive, which follows from geometric
properties of the pulse profile in the limit ε → 0. Then, a parity argument implies that
the critical eigenvalue is real and negative, which yields nonlinear stability. In [10] one
constructs using Lin’s method [70, 97, 118] a piecewise continuous eigenfunction of the
linearization for each prospective eigenvalue λ near the origin. The eigenfunction admits
exactly two jumps that occur in the middle of the front and the back of the pulse profile –
see Figure 1.5. Finding eigenvalues reduces to identifying values of λ for which these jumps
vanish. Melnikov theory provides leading-order expressions for these jumps that can be solved
for λ, which yields that the critical eigenvalue lies in the open left half-plane. An advantage
of this method over the one in [53, 126] is that one obtains leading-order expressions for
the eigenvalues near the origin rather than only their signs. Therefore, it applies more gen-
erally to situations where there are more than two eigenvalues near the origin – see Remark 1.3.

In the stability analyses [32, 114] of periodic structures in the FitzHugh-Nagumo and Gierer-
Meinhardt models, an entire curve of eigenvalues is attached to the origin, which shrinks to the
origin in the limit ε→ 0. As in [10] – but with slightly different methods – one proceeds by

Figure 1.5: A piecewise continuous eigenfunction ϕε,λ with jumps occurring in the middle of
the front and the back of the fast pulse to the FitzHugh-Nagumo equations.
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constructing eigenfunctions corresponding to potential eigenvalues near the origin. A careful
matching procedure then gives solvability conditions in terms of the eigenvalue λ, the Floquet
multiplier γ and the corresponding eigenfunction. By expanding the eigenfunction in terms
of ε, a leading-order expression for the critical spectral curve λε(γ) is derived from these
solvability conditions. Finally, by complementing the local spectral analysis about the origin
with the Evans-function analysis, stability or instability of the periodic pattern is established
depending on the system parameters.

Remark 1.1. The concept of the Evans function as a method to determine the spectrum
associated with a solution to a system of singularly perturbed reaction-diffusion equations
on the line was introduced in [33] and was established as a general and powerful approach
in [1, 37, 38, 53]. Core aspects of the NLEP approach have been developed independently
in [50, 123]. The SLEP (= Singular Limit Eigenvalue Problem) method [81, 82] is an
alternative method that has been linked to the Evans function approach in [49]. In [21], the
relation between the Evans function, the NLEP method and the SLEP method is discussed. �

Remark 1.2. It is a general phenomenon that the presence of essential spectrum about the
origin is an issue in the stability analysis of periodic structures. Besides the above-mentioned
methods for singularly perturbed reaction-diffusion systems of the form (1.1), let us mention
that for periodic waves of conservation laws, Whitham’s modulation equations [51, 107]
provide an accurate description of the spectral configuration about the origin. Moreover, for
periodic wave trains to general reaction-diffusion systems one can compute [28] the derivative
λ′′∗ (0) of the critical curve λ∗(γ) attached to the origin in terms of derivatives of the wave train
and the corresponding solution to the adjoint eigenvalue problem. Yet, knowing (the sign of)
λ′′∗ (0) is insufficient to control the entire spectral curve λ∗ : S 1 → C. �

Remark 1.3. In [50, 64, 122] the stability of multi-pulse solutions to the Gierer-Meinhardt,
Gray-Scott and Schnakenberg models is investigated using formal asymptotic expansions. The
formal analysis yields the existence of multiple eigenvalues close to the origin and provides
leading-order expressions for these eigenvalues. We expect that the above-mentioned approach
in [10] using Lin’s method could be employed to establish the existence and position of these
eigenvalues rigorously. Let us emphasize that, for general semilinear parabolic equations, the
stability of multi-pulse solutions bifurcating from a stable primary pulse has already been
determined successfully in [97] using Lin’s method. �

1.3 Extension beyond prototype models: slow nonlinearity

The aforementioned spectral methods, including the elephant trunk and NLEP procedures,
have been developed in the context of specific (prototype) models, such as the Gray-Scott,
Gierer-Meinhardt and FitzHugh-Nagumo equations. These models are of slowly linear nature,
in the sense that the dynamics of the slow u-components in between localized fast pulses or
fronts are driven by linear equations. Thus, the slow reduced system arising in the existence
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analysis is linear and the slow eigenvalue problem in the stability analysis is autonomous. In
the context of the periodic pulse solution shown in Figure 1, slow linearity entails that the
dynamics of (1.1) in the rest state v = 0 is linear, i.e. the coupling term H(u, 0, ε) in (1.1)
is linear. In recent work [30, 120] an NLEP approach has been carried out for homoclinic
pulse solutions to a general class of slowly nonlinear, 2-component systems of the form (1.1).
Earlier, the stability of fronts was studied in a specific slowly nonlinear model in [23].

The introduction of a slow nonlinearity in (1.1) yields more than just additional technicalities.
For instance, it is shown in [119] that, unlike known classical slowly linear examples such as
the Gray-Scott and Gierer-Meinhardt models, Hopf bifurcations for homoclinic pulses can be
supercritical. Such a bifurcation could even be the first step in a sequence of further bifurca-
tions leading to complex (amplitude) dynamics of a standing solitary pulse – as observed in
the simulations in [120].

The slow linearity plays a crucial role in the analysis of the Evans function and its decomposi-
tion and reduction. In fact, it is essential for an application of the elephant trunk procedure that
the eigenvalue problem is to leading order linear near the boundaries of the spatial domain – as
is the case for homoclinic and periodic pulse solutions to the slowly linear Gierer-Meinhardt
model in [21, 114]. Although the models in [23, 30, 120] are slowly nonlinear, the elephant
trunk procedure is still applicable, because eventually the dynamics becomes linear due to the
homoclinic or heteroclinic nature of the patterns. However, the eigenvalue problem associated
with periodic solutions to slowly nonlinear models is non-autonomous over the entire domain,
thus obstructing an application of the elephant trunk lemma. This brings us to the main goal of
this thesis: extending the spectral analysis of periodic structures in reaction-diffusion systems
of the form (1.1) beyond the slowly linear regime.

1.4 Contents of this thesis

In this thesis we study stationary, spatially periodic pulse solutions to singularly perturbed
reaction-diffusion systems of the form (1.1), allowing for general dimensions n,m ≥ 1 and a
large class of nonlinearities H and G – see §1.4.1 for the precise details. The solutions under
consideration are spatially symmetric and exhibit exponentially localized pulses in the fast
v-components, but admit non-localized behavior in the slow u-components – see Figure 1.
In other words, they are in semi-strong interaction [24] (of second order [92]). Our class
of equations includes the Gierer-Meinhardt system. Thus, on the one hand, we extend the
existence and stability analyses [25, 114] for periodic pulse solutions in the Gierer-Meinhardt
equations to the slowly nonlinear and multi-dimensional regime. On the other hand, our work
can be considered as the extension from homoclinic to periodic structures within the general,
slowly nonlinear class of systems in [30].

However, this thesis is not a straightforward extension of [30, 114], since there is – as outlined
in §1.3 – no obvious adaptation of the elephant trunk lemma for spatially periodic patterns in
slowly nonlinear systems. Therefore, we present a generalized analytic alternative to both the
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elephant trunk and NLEP procedures to establish the validity of both the decomposition (1.3)
of the Evans function and its singular limit structure (1.4). This analytic method is based
on the Riccati transformation [12, 13]. This transformation, which satisfies a matrix Riccati
equation, diagonalizes the associated eigenvalue problem and thus explicitly separates fast
from slow dynamics. The separation yields the factorization of the Evans function (1.3) and
provides a framework for the passage to the singular limit (1.4). We emphasize that our
factorization procedure applies beyond the current setting of periodic pulse solutions and is
therefore interesting in its own right – see Remark 1.4.

Thus, using the analytic factorization method, we obtain a reduced Evans function E0, whose
roots approximate the spectrum and whose factors E f ,0 and Es,0 are defined in terms of explicit,
lower-dimensional reduced eigenvalue problems. Thus, we obtain asymptotic control over the
spectrum. However, as mentioned in §1.2, there is a second challenge: asymptotic spectral
control is insufficient to decide upon stability, since there is a curve of essential spectrum which
shrinks to the origin in the limit ε→ 0. Therefore, we need to complement our Evans-function
analysis with a local analysis about the origin in order to obtain leading-order control over this
critical spectral curve.

Our analysis of the critical spectral curve is based on [10, 100]. Recall from §1.2 that
the stability of (fast) traveling pulses in the FitzHugh-Nagumo equations is decided by the
location of a nontrivial eigenvalue near the origin. The method adopted in [10] yields a leading-
order expression of this critical eigenvalue in terms of the small parameter ε. Furthermore,
in [100] the spectral configuration about the origin is determined for periodic wave trains that
accompany homoclinic pulse solutions to general reaction-diffusion systems. An expansion of
the critical spectral curve is provided in terms of the period. The situations in [10] and [100]
do not directly translate to our situation, since we consider periodics that do not lie in the
vicinity of a homoclinic.

Nevertheless, we adopt a similar approach: using Lin’s method we obtain a piecewise continu-
ous eigenfunction of the linearization for any potential eigenvalue λ near the origin. In contrast
to [100], we do not use the homoclinic limit structure as a framework for the construction of
the eigenfunction; instead the singular limit structure serves as a backbone like in [10]. On the
other hand, as in [100], Floquet theory yields boundary conditions for the eigenfunction on a
single periodicity interval, whereas one requires in [10] that the eigenfunction is exponentially
localized on the real line. The construction of the piecewise continuous eigenfunction yields a
Lyapunov-Schmidt type reduction procedure: finding the critical spectral curve attached to
the origin reduces to equating the jumps to zero. The Fredholm alternative allows us to find
expressions for these jumps that can then be solved. Eventually, we obtain a leading-order
expression for the critical spectral curve in terms of lower-dimensional, variational equations
about the orbit segments that constitute the pulse profile in the limit ε→ 0.

Thus, we gain both asymptotic control over the spectrum through the reduced Evans function
and leading-order control over the critical spectral curve. This leads to explicit criteria yielding
stability and instability of the periodic pulse solution in terms of simpler, lower-dimensional
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problems. These conditions can be interpreted in more simple cases in which either n = 1,
m = 1, or both n = m = 1. In the latter case, we directly recover the expressions obtained in the
stability analysis [114] of spatially periodic pulse patterns in the Gierer-Meinhardt equation.
The outcome of our spectral analysis shows that the Gierer-Meinhardt setting represents a
very special case. The restriction to this specific system obscures the underlying general
structure of the reduced Evans function and the critical spectral curve in terms of simpler,
lower-dimensional problems. On the other hand, the restriction of (1.1) to a more general,
slowly nonlinear, 2-component model as in [30] yields a (relatively) simple instability criterion
in terms of the signs of a number of explicit expressions that can be computed with only an
asymptotic approximation of the underlying pattern as input. Thereby, we extend a similar
result of [30] on homoclinic pulses to periodic structures.

The analytical grip on the spectrum provides insights into destabilization mechanisms of
periodic pulse solutions to (1.1). Depending on which one of the aforementioned stability
criteria fails, we can identify the type of instability occurring. We establish that generic
(primary) instabilities must be of sideband, Hopf or period doubling type, whereas in general
reaction-diffusion systems also Turing and fold instabilities are robust for symmetric, spatially
periodic patterns [93].

Destabilization mechanisms become rather complex when periodic patterns approach a ho-
moclinic limit. While increasing the wavelength, the character of destabilization alternates
between two kinds of Hopf instabilities. This phenomenon is called the Hopf dance [27, 115].
It has been analytically established in (slowly linear) Gierer-Meinhardt models in [27] and
recovered by numerical methods in the generalized Klausmeier-Gray-Scott model [27, 115].
Both the Hopf dance as well as the belly dance [27] – an associated higher order phenomenon
– can be analyzed in the general, slowly nonlinear setting of (1.1) by the methods developed
here. In addition, we establish an explicit sign criterion to determine whether the homoclinic
pulse solution is the last or the first ‘periodic’ solution to destabilize.

Finally, we comment on the existence of stationary, periodic pulse patterns to (1.1). Our
construction of these solutions relies on geometric singular perturbation theory – see §1.1.
First, we establish a singular periodic orbit by piecing together orbit segments of slow and
fast reduced systems in such a way that they form a closed loop. Then, we prove that an
actual periodic orbit lies in the vicinity of the singular one, provided ε > 0 is sufficiently small.
The construction respects the symmetry x̌ 7→ −x̌ of system (1.1). Consequently, the periodic
pulse solution is spatially symmetric. The existence result is a significant extension of simi-
lar results in the literature that only consider 2-component, Gierer-Meinhardt type models [25].

As a final remark, let us mention that we illustrate our existence and stability results by
explicit calculations in a slowly nonlinear toy model.

Remark 1.4. The analytic factorization procedure of the Evans function can be outlined in a
way that neither depends on the specific structure of the system nor on the specific patterns
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under consideration. We require that the eigenvalue problem associated with the linearization
of (1.1) about the pattern can be written in block-matrix form,(

ϕx

ψx

)
=

( √
εA11,ε(x, λ)

√
εA12,ε(x, λ)

A21,ε(x, λ) A22,ε(x, λ)

) (
ϕ
ψ

)
, (1.5)

in the rescaled spatial variable x = ε−1 x̌. Consider the reduced eigenvalue problem,

ψx = A22,0(x, λ)ψ, (1.6)

in which A22,0(x, λ) represents the singular limit of A22,ε(x, λ). Equation (1.6) admits an
exponential dichotomy [14, 96] on R as long as the associated differential operator,

Lλψ = ψx − A22,0(·, λ)ψ,

is invertible – see also [98]. Since exponential dichotomies are robust against small perturba-
tions, the exponential dichotomy of (1.6) on R carries over to the perturbed problem,

ψx = A22,ε(x, λ)ψ, (1.7)

for 0 < ε � 1. This exponential dichotomy on R of (1.7) allows us to successfully diagonalize
the eigenvalue problem (1.5) with the Riccati transformation yielding the factorization (1.3) of
the Evans function. In the last step, we approximate the two blocks, in which (1.5) diagonal-
izes, by their singular limits yielding (1.4). As a consequence, the roots of the Evans function
can be approximated by the roots of the reduced Evans function E0.

We stress that our factorization method applies in particular to the context [30] of homo-
clinic pulse solutions in a large class of 2-component, slowly nonlinear systems. We expect
that our method could extend the results in [30] to a multi-component setting. In addition,
let us mention that a uv-term in the v-component of (1.1) is not allowed in [30], whereas our
method can handle such terms. �

1.4.1 Setting
In this section we introduce the class of systems under consideration in this thesis. Take
m, n ∈ Z>0 and consider a general reaction-diffusion system in one space dimension with a
scale separation in the diffusion lengths (1.1). We assume that the diagonal matrices D1,2
in (1.1) are positive. Following [30], we write

H(u, v, ε) = H(u, 0, ε) + H̃2(u, v, ε),

where H̃2(u, v, ε) := H(u, v, ε) − H(u, 0, ε), so that H̃2 vanishes at v = 0. To sustain stable
localized patterns in semi-strong interaction (of second order [92]) in system (1.1), we allow
H̃2(u, v, ε) to scale with ε−1 and define

H2(u, v) := lim
ε→0

εH̃2(u, v, ε).
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Finally, we write

H(u, v, ε) = H1(u, v, ε) + ε−1H2(u, v), (1.8)

with H1(u, v, ε) := H(u, 0, ε) + [H̃2(u, v, ε) − ε−1H2(u, v)]. By construction H2(u, v) vanishes
at v = 0. We assume that H1(u, v, ε) and G(u, v, ε) are smooth functions of ε at ε = 0. Note
that we allow for the possibility that H2(u, v) ≡ 0 in the upcoming analysis. We emphasize
that, if we have in addition n = 1 or m = 1, then all patterns are unstable – see Remark 3.22.
This confirms the scalings used for classical systems as the Gray-Scott and Gierer-Meinhardt
models [21, 22, 50, 123] – see also [30]. For the benefit of our spectral analysis, we need one
extra condition on G. That is, G vanishes at v = 0. We postpone the discussion of this extra
condition to Remark 2.6. In summary, the model class we consider is of the form

ut = D1ux̌x̌ − H1(u, v, ε) − ε−1H2(u, v),

vt = ε2D2vx̌x̌ −G(u, v, ε),
u ∈ Rm, v ∈ Rn, x̌ ∈ R, (1.9)

or, in the ‘small’ spatial scale x = ε−1 x̌,

ε2ut = D1uxx − ε
2H1(u, v, ε) − εH2(u, v),

vt = D2vxx −G(u, v, ε),
u ∈ Rm, v ∈ Rn, x ∈ R, (1.10)

in which we will usually work. The aforementioned conditions read:

(S1) Conditions on the interaction and diffusion terms
There exists open, connected sets U ⊂ Rm,V ⊂ Rn and I ⊂ R with 0 ∈ V and 0 ∈ I
such that H1,G and H2 are C3 on their domains U × V × I and U × V , respectively.
Moreover, we have H2(u, 0) = 0 and G(u, 0, ε) = 0 for all u ∈ U and ε ∈ I. Finally, D1,2
are positive diagonal matrices.

Remark 1.5. If we have n = 1, we can without loss of generality assume D2 = 1 in (1.9) by
rescaling the spatial variable x̌. Similarly, in the case m = 1, we can without loss of generality
assume D1 = 1 by rescaling the parameter ε. �

1.4.2 Outline
This thesis is structured as follows. In Chapter 2 we elaborate on the existence of periodic
pulse solutions to (1.9) and we obtain fine estimates on the error between the periodic pulse
solutions and the associated singular periodic orbit. We apply the existence result to construct
periodic pulse solutions in an explicit slowly nonlinear toy model. In Chapter 3 we present
the main results of our spectral analysis: the approximation of the spectrum by the roots of
the reduced Evans function (1.4) and the expansion of the critical spectral curve. We obtain
explicit conditions in terms of simpler, lower-dimensional systems yielding stability. Moreover,
we test for instability by calculating the signs of a number of explicit expressions. Finally, we
interpret these results in the lower-dimensional regime and apply them to the slowly nonlinear
toy model. Chapter 4 contains prerequisites for our spectral analysis. In particular, we provide
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extensive background on exponential dichotomies and establish the Riccati transform, which
provides a natural framework for the factorization of the Evans function – see Remark 1.4.
In Chapter 5 we perform the actual spectral analysis and prove our main results. Chapter 6
focusses on destabilization mechanisms of periodic pulse solutions. Finally, in Chapter 7 we
elaborate on future research possibilities.

The results presented in Chapter 2 and Sections 3.5, 3.8.1 and 3.8.4 appeared earlier in
Spectra and stability of spatially periodic pulse patterns: Evans function factorization via
Riccati transformation in the SIAM Journal on Mathematical Analysis in 2016 – see [17].




