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Chapter 4

The Green’s function of a
d = 2 quantum critical metal
at large kF and small Nf

4.1 Introduction

The robustness of Landau’s Fermi liquid theory relies on the protected
gapless nature of quasiparticle excitations around the Fermi surface. Wilso-
nian effective field theory then guarantees that these protected excitations
determine the macroscopic features of the theory in generic circumstances
[2, 3]. Aside from ordering instabilities, there is a poignant exception to
this general rule. These are special situations where the quasiparticle ex-
citations interact with other protected gapless states. This is notably so
near a symmetry breaking quantum critical point. The associated Gold-
stone modes should also contribute to the macroscopic physics. In d ≥ 3
dimensions this interaction between Fermi surface excitations and gap-
less bosons is marginal/irrelevant and quantum critical metals can be
addressed in perturbation theory as first discussed by Hertz and Millis
[15, 5, 6, 16]. In 2+1 dimensions, however, the interaction is relevant and
the theory is presumed to flow to a new interacting fixed point [51–53, 16].
This unknown fixed point has been offered as a putative explanation of
exotic physics in layered electronic materials such as the Ising-nematic
transition. As a consequence, the deciphering of this fixed point theory is
one of the major open problems in theoretical condensed matter physics.

In this chapter we show that the fermionic and bosonic spectrum of
the most elementary d = 2 quantum critical metal can be computed for
small Nf in the limit that kF → ∞ is the largest scale in the problem
(but the combination NfkF is arbitrary). This strong forward scattering
limit provides controlled insights into the properties of the postulated
strongly interacting fixed point theory. All the results here refer to the
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most elementary quantum critical metal. This is a set of Nf free spinless
fermions at finite density interacting with a free massless (Goldstone)
scalar through a simple Yukawa coupling. Its action reads (in Euclidean
time)

S =

ˆ
dxdydτ

[
ψ†j

(
−∂τ +

∇2

2m + µ

)
ψj +

1
2 (∂τφ)

2 +
1
2 (∇φ)2 + λφψ†jψ

j

]
,

(4.1)

where j = 1 . . . Nf sums over the Nf flavors of fermions and µ =
k2
F

2m .
We will assume a spherical Fermi surface to start and consider excitations
with momentum close to the Fermi momentum (as in [43]). In other words
we often approximate the fermion action with

S =

ˆ
dxdydτ

[
ψ†j

(
−∂τ +

∇2

2m + µ

)
ψj + . . .

]

=

ˆ Λk

−Λk

(kF + k)dkdθ
(2π)2 dτ

[
ψ†j

(
−∂τ −

kF
m
· k+ k2

2m

)
ψj + . . .

]

=

ˆ Λk

−Λk

(kF )dkdθ
(2π)2 dτ

[
ψ†j

(
−∂τ −

kF
m
· k
)
ψj + . . .

]
(4.2)

with k ≡
∣∣∣~k∣∣∣− kF the momentum measured from the Fermi surface, and

Λk � kF in accordance with our assumption that kF is the largest scale.
Note that this is subtly different from the so-called patch model where one
splits the Fermi surface into subregions. We will still include the angle-
dependence and the quadratic term at crucial points. Ignoring the angle
dependence would ignore the leading correction to the boson propagator
at low frequencies. This so-called Landau damping contribution becomes
strong in the IR and the angle dependence can no longer be neglected (see
e.g. [16]). The strong forward scattering limit kF → ∞ we consider here
takes the leading Landau damping contribution into account.

The two features that allow us to compute the fermionic and bosonic
spectrum at small Nf and large kF (with NfkF fixed) are:

1. Our earlier finding [48] that in the limit NfkF → 0 (which we will
refer to as Nf → 0 for simplicity) — which self-consistently sup-
presses Landau damping and is closely related to the strong forward
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scattering limit [49] — the exact fermion retarded Green’s function
of this model is given by an exponentially “dressed” free Green’s
function

GR,Nf→0(r, t) = GR,free(r, t)eI(r,t) (4.3)

with the exponent I(r, t) a closed function in terms of the free boson
and fermion Green’s function. Due to this simple dressed expression
the retarded Green’s function and therefore the fermionic spectrum
of this model can be determined exactly in the limit Nf → 0. The
retarded Green’s function in momentum space reads

GR,Nf→0(ω, k) = 1
ω− kv + λ2

4π
√

1−v2σ(ω, k) , (4.4)

where σ is the solution of the equation

λ2

4π
√

1− v2
(sinh(σ)− σ cosh(σ)) + vω− k− cosh(σ)(ω− kv + iε) = 0,

(4.5)

with k the distance from the Fermi surface, v = kF/m is the Fermi
velocity, and ε → 0+ is an iε prescription that selects the correct
root. This quenched Nf → 0 limit ought to reliably capture the
physics in the non-perturbative regime ω < λ2 but still above the
Landau damping scale ω > ωLD ≡

√
λ2NfkF . This regime already

describes interesting singular fixed point behavior: the spectrum
exhibits non-Fermi liquid scaling behavior with multiple Fermi sur-
faces [48]. Eq. (4.4) is obtained by solving the non-linear defining
equation for the fermionic Green’s function directly. Formally this
solution can also be obtained by summing up all diagrams without
fermion loops (including the crossed-diagrams). The Nf → 0 limit
means that the boson propagator is not corrected by loops.

2. If one inspects the infinite series of corrections to the boson pro-
pogator diagram by diagram, one can show that for fermions with
a linearized dispersion (strong forward scattering or equivalently
kF → ∞) there is a cancellation among diagrams beyond one-loop
[49]. In this limit the bosonic sector is therefore perturbatively de-
termined, at small Nf (but arbitrary value of NfkF ) even for finite
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Figure 4.1. We are considering spherical surface and assume that the Fermi
momentum kF is the largest scale. The fermions have a cutoff in momentum
space kF � Λk

.

coupling. To put it another way, in the limit kF → ∞ the one-
loop RPA approximation to the boson propagator becomes exact,
and all bosonic higher order correlation functions vanish. The lat-
ter specifically means that the bosonic action remains quadratic and
as a result one can deduce an expression of the form Eq.(4.3) with
the free boson propagator replaced by the RPA summed one-loop
expression.

The strong forward scattering limit has been related to an effective
simplification of the fermion number Ward-identity. We review in Section
4.2 why this simplified Ward identity renders the system solvable. Using
the simplified Ward-identity one can deduce a set of non-linear Schwinger-
Dyson equations for the fermion and boson two-point functions alone.
The vertex function drops out. As a check we recover the real space
formula for the non-perturbative in λ, Nf → 0 fermion propagator (in
the kF → ∞ limit) we derived in our earlier paper via path integral
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methods [48]. In Section 4.3 we show that the one-loop result of the boson
propagator is exact in the limit kF → ∞, that higher order moments of
the boson vanish, and that this also follows from the large kF non-linear
Schwinger-Dyson equations. In Section 4.4 we then show that this implies
that the non-perturbative fermion propagator is given by a generalization
of the quenched result where the effect of the one-loop corrected boson
propagator is taken into account. With these preliminaries in hand we
use the bulk of Section 4.4 to solve the non-linear large kF equation for
the fermion spectral function for small Nf —- analytically in real space
and numerically in momentum space. In Section 4.5 we collect our results
for the 2+1 dimensional quantum critical metal. We conclude with an
outlook in Section 4.6.

4.2 A closed system of Schwinger-Dyson equa-
tions and large kF Ward identities for the el-
ementary quantum critical metal

The Schwinger-Dyson equations of a field theory are in general an infinite
set of coupled integral equations that together determine the correlations
functions exactly. Here we review that using the Ward identity associated
with the U (1) symmetry ψ → ψ exp(iα) the integral equations describing
the relation between the fermionic Green’s function G and the bosonic
Green’s function GB form a closed system in the limit kF →∞.

The Schwinger-Dyson equation which describes the fermionic propa-
gator reads

G(K) = G0(K) + λG0(K)G(K)

ˆ
dQGB(Q)G(K −Q)Γ(K,K −Q),

(4.6)

where Q and K are shorthand notation for the collection of momentum
and euclidean frequency variables Q = (iq0, ~q) , dQ = dq0d2~q

(2π)3 ; Γ(K,K−Q)
is the 1PI 3-point vertex and

G0 (K) =
1

ik0 − 1
2m

(
~k2 − k2

F

) (4.7)

is the free fermion propagator. For completeness we give its derivation in
Appendix 4.A.
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The analogous boson Schwinger-Dyson equation1

GB(Q) = GB,0(Q)− λNfGB,0(Q)GB(Q)

ˆ
dKG(K)G(K −Q)Γ(K,K −Q)

(4.8)

can be recast in terms of the boson polarization (self-energy) Π ≡ G−1
B −

G−1
B,0.

Π (Q) = λNf

ˆ
dKG (K +Q/2)G(K −Q/2)Γ(K +Q/2,K −Q/2),

(4.9)

with

GB,0 =
1

q2
0 + ~q2 . (4.10)

the free boson propagator. This polarization term captures the non-trivial
physics of Landau damping.

Usually the system of Schwinger-Dyson equations does not close be-
cause the equation for the three-point vertex Γ contains higher point ver-
tices Γ(n). For finite kF the same is true in the model of the elementary
quantum critical metal. However, the fermion number symmetry implies
a Ward identity between G and Γ. At finite kF this identity also includes
other components Γi of the fermion number current. What has been noted
for this and similar theories is that for large kF the current components
are proportional to Γ (see e.g. [38, 49, 56]) and the Ward identity collapses
to

Γ (P ,Q) = λ
G−1 (P )−G−1 (Q)

i(p0 − q0)−
(
~p2

2m −
~q2

2m

) + . . . . (4.11)

We have modified the result obtained there slightly by terms that also
vanish as kF →∞ such that at lowest order Γ = λ+ . . . as it should.

Using the large kF form of the Ward identity (4.11), where we drop
the . . . terms, the Schwinger-Dyson equations (4.6) and (4.9) become a

1The extra minus sign is from the fermion loop.
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closed set of equations for GB and G

G (K) = G0 (K) +

λ2G0 (K)

ˆ
dQGB (Q)

G (K −Q)−G (K)

iq0 + v ~q2

2kF − v|~q| cos θ− v k
kF
|~q| cos θ

,

(4.12)

Π (Q) = λ2Nf

ˆ
dK G (K −Q/2)−G (K +Q/2)

iq0 − v|~q| cos θ− v k
kF
|~q| cos θ

, (4.13)

which should become exact in the limit kF → 0. Here θ is the angle
between ~k (measured from the origin) and ~q.

Note that the large kF limit of the Ward identity is crucial to derive
this closed set. Therefore, we will drop the subleading terms from the
denominators such as k/kF and ~q2/kF . The solutions to this closed set of
integral equations determine the two-point functions at large kF and hence
the spectrum of the elementary quantum critical metal. We now proceed
to study and solve this closed set of equations in the limit kF →∞.

4.2.1 The kF →∞ limit of the Schwinger-Dyson equations
and the fermion two-point function: formal connec-
tion with the quenched result

Let us study the consequences of the large kF limit of the fermion SD-
equation (4.12). In this approximation it can be written as

G (k0, k)
G0 (k0, k)

= 1 + λ2
ˆ dq0dqx

(2π)2 K (q0, qx) [G (k0 − q0, k− qx)−G (k0, k)] ,

(4.14)

with the kernel

K (q0, qx) =
ˆ dqy

2π
GB (Q)

iq0 − vqx
(4.15)

where qx = |~q| cos θ, qy = |~q| sin θ, i.e. we have aligned the ~q-integral with
the external momentum ~k. In the arguments of the full Green’s function
G(k0, k) in Eq. (4.14) we have used the fact that because of spherical
symmetry G(k0, k) can only depend on the distance to the Fermi surface
k = |~k| − kF . In addition, for the spatial argument of G (K −Q) we
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have used that |~k − ~q| − kF ≈ k − qx +O
(
~q2/kF

)
. The same argument

applied to the free fermion propagator G0 = 1
iq0−vqx + . . . shows that the

denominator in the definition of the kernel in Eq.(4.15) becomes equivalent
to G0. In other words

K(q0, qx) = G0(q0, qx)
ˆ dqy

2π GB(Q) (4.16)

Note that using the notation G0(q0, qx) in the definition of the kernel is
somewhat formal. Of course as we mentioned the fermion Green’s function
is spherically symmetric. To analyze Eq.(4.14) we assume that parity re-
mains unbroken and GB (Q) = GB (−Q) holds non-perturbatively. Then
the term

´ dq0dqx
(2π)2 K (q0, qx)G (k0, k) vanishes. We can then solve this in-

tegral equation by converting to a differential equation. For this we note
that the remaining term on the right-hand side of Eq.(4.14) is a convo-
lution of K and G, therefore it is advantegeous to write the equation in
position space. In position space the term G−1

0 (k0, k) = ik0 − vk on the
left-hand side turns into a differential operator. The position space version
of equation (4.14) is

(∂τ − iv∂r)G (τ , r) = δ2(τ , r) + λ2K (τ , r)G (τ , r) . (4.17)

where we have used the Fourier transform convention

G(τ , r) =
ˆ dk0dk

(2π)2 G (k0, k) exp (−ik0τ + ik · r) , (4.18)

The solution to Eq. (4.17) can be found by using the ansatz G (τ , r) =
G0 (τ , r) exp (I(τ , r)) with the exponent I(τ , r) satisfying

(∂τ − iv∂r) I(τ , r) = λ2K (τ , r) , (4.19)

with the boundary condition I(0, 0) = 0.
Since G0(τ , r) is the Green’s function of the differential operator in

Eq. (4.19), the solution for I(τ , r) is formally given by

I(τ , r) = λ2
ˆ

dr′dτ ′ [G0 (τ − τ ′, r− r′)−G0 (−τ ′,−r′)]K (τ ′, r′) .

(4.20)

By transforming G0(τ , r) and K(τ , r) back to momentum space we arrive
at the expression for the exponent

I (τ , r) = λ2
ˆ dk0dkdky

(2π)3 G2
0 (k0, k)GB (k0, k, ky) [cos (ik0τ − ikr)− 1] .

(4.21)
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We have used the fact that G2
0 (K)GB (K) is symmetric in K.

We now see the drastic simplification that occurs in the limit kF →
∞. The solution to the exact fermion Green’s function in this limit only
depends on the exact boson Green’s function GB(K). Once the latter is
known, the fermion Green’s function G follows and it in turn determines
the exact 1PI three-point vertex Γ.

We noted this exponential form of the fully non-perturbative solution
already in the previous chapter [48] that discussed the elementary quan-
tum critical metal in the quenched limit Nf → 0 (see also [36]). In that
limit Nf → 0, the polarization Π vanishes and the exact boson propaga-
tor GB(K) in Eq. (4.21) can be replaced by the free one GB,0(K). The
explicit expression for the exponent I(τ , r) and thus the non-perturbative
fermion two-point function is then formally known, up to the remaining
momentum integrals. These have been evaluated for the quenched Nf → 0
case in [48] with the interesting result that even in the absence of correc-
tions to the boson propagator — the absence of Landau damping — the
system already resembles that of a non-trivial fixed point. We now pro-
ceed by considering the finite Nf polarization corrections in I(τ , r). Of
course we do so in the same limit kF →∞.

4.3 The kF → ∞ limit of the Schwinger-Dyson
equations and the exact boson two-point func-
tion

We now turn to the study of the boson two-point function. Diagrammatic
studies in perturbation theory have shown that the theory simplifies in
the limit kF → ∞ [49]. In particular, as we shall derive below in section
4.3.3, all n-point scalar correlation functions with n > 2 vanish. As a
corollary the 1PI boson 2-point function is only corrected at one-loop.
This suggests that the solution to the Schwinger-Dyson equations should
be more readily obtainable in this limit as well.

We show in this section that the large kF approximation has such an
important simplifying consequence for the bosonic equation. The impor-
tant physics we refer to is the physics of Landau damping — fermionic
corrections to the boson propagator — discussed in the introduction. In
this elemementary quantum critical metal, where the boson has no self-
interactions, this physics is contained in the polarization Π = G−1

B −G
−1
B,0.
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Generically the calculation of the polarization Π corresponds to sum-
ming up infinitely many diagrams as the Schwinger-Dyson equation (4.13)
contains the exact fermion propagator G. However, in the limit kF →∞
only the one-loop contribution Π1 survives (for small Nf at least). The
realization that in this strong forward scattering limit many diagrams van-
ish and only the boson two-point function gets corrected is not new; it has
been noted earlier in e.g. [49]. We independently rederive it here. First,
however, we will give the one-loop result. Based on that one can give a
proof why all higher order corrections vanish.

4.3.1 Polarization/Landau damping contribution at one-
loop

The kF →∞ one-loop contribution to the polarization that captures the
leading order physics of Landau damping is obtained by substituting the
kF → ∞ limit of the free fermion propagator G0(k0, k) = 1

ik0−vk + . . .
into the Schwinger-Dyson equation (4.13) and also taking kF →∞ in the
remaining terms. The result is

Π1 (Q) = λ2NfkF

ˆ dk0dkdθ
(2π)2

1
(ik0 − vk) (i (k0 + q0)− v (k+ |~q| cos θ))

.

(4.22)

The result of these integrals is finite but depends on the order of integra-
tion. The difference is a constant C

Π1 (Q) =
λ2kFNf

v

 |q0|√
q2

0 + v2~q2
+C

 . (4.23)

As pointed out for instance for the 3+1 dimensional quantum critical
metal in [29], the way to think about this ordering ambiguity is that one
should strictly speaking first regularize the theory and introduce a one-
loop counterterm. This counterterm has a finite ambiguity that needs to
be fixed by a renormalization condition. Even though the loop momentum
integral happens to be finite in this case, the finite counterterm ambiguity
remains. The correct renormalization condition is the choice C = 0. This
choice corresponds to the case when the boson is tuned to criticality since
a non-zero C would mean the presence of an effective mass generated by
quantum effects.
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A more physical way to think of the ordering ambiguity is as the
relation between the frequency (Λ0) and momentum (Λk) cutoff. We will
assume that Λk � Λ0 — which means that we evaluate the k integral first
and then the frequency k0 integral. In this case C = 0 directly follows.

4.3.2 The solution to the kF → ∞ Schwinger-Dyson equa-
tion: Robustness of the one-loop result

We will now give a heuristic derivation that the one-loop result is in fact
the exact answer in the limit kF → ∞. The full polarization Schwinger-
Dyson equation (4.13) in the limit kF →∞ can be written as

Π (q0, q) = λ2kFNf

ˆ dk0dkdθ
(2π)2

G (k0 − q0/2, k)−G (k0 + q0/2, k)
iq0 − vq cos θ =

−2πi sgn q0√
q2

0 + v2q2
λ2kFNf

ˆ dk0dk
(2π)2 [G (k0 − q0/2, k)−G (k0 + q0/2, k)] ,

(4.24)

where q = |~q|. Following our discussion above that regularizing and renor-
malizing with a counterterm is the same as the prescription to perform
the momentum integral first, we may shift the momentum integral so that
in the difference both Green’s functions have the same momentum in their
argument. We are not allowed to do this subsequently again for the fre-
quency integral, since

´
dk0dkG (k0, k) = ∞. One needs to evaluate the

frequency integral with an explicit cutoff Λ0 which can be removed in the
end.

The integrand of the frequency integration:´
dk [G (k0 − q0/2, k)−G (k0 + q0/2, k)] , clearly vanishes as q0 → 0. Ex-

panding around q0 (in units of the cut-off Λ0) one has
ˆ Λ0

−Λ0

dk0

ˆ
dk [G (k0 − q0/2, k)−G (k0 + q0/2, k)]

= −q0
2

ˆ
dk0

d

dk0
[G(k0, k) +G(k0, k)] +O

(
q2

0
Λ2

0

)

= −q0

ˆ
dk [G (Λ0, k)−G (−Λ0, k)] + . . . (4.25)

Because the coupling constant of the theory is relevant we can replace the
exact, interacting fermion propagator evaluated at k0 = ±Λ0 with the
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free one G (Λ0, k) ≈ G0 (Λ0, k). Doing so we arrive to the result of (4.23).
This heuristically shows the robustness of the one-loop result. The one
caveat is the value of Π for large external momenta q0 near the cut-off.
We now show by an different method that the one-loop result is in fact
exact to all orders.

4.3.3 Multiloop cancellation

The robustness of the one-loop result in case of linear fermionic dispersion
was recognized before under the name of multiloop cancellation [49]. The
technical result is that for a theory with a simple Yukawa coupling and
linear dispersion around a Fermi surface, a symmetrized fermion loop with
more than two fermion lines vanishes. In our context the linear dispersion
is a consequence of the large kF limit. In other words all higher loop
contributions to the polarization Π should be subleading in 1/kF . This
was explicitly demonstrated at two loops in [55].

Note that there still can be diagrams which contain a subpiece which
is subleading in the above sense but the rest of the diagram renders the
whole finite. However, in this case multiple fermions running around in
the diagram. Therefore, it scales with positive power of Nf (without kF
multiplier) and it is not included in the first order small Nf result.

We will give here a short derivation of this multiloop cancellation in the
limit kF →∞. As before (below Eq. (4.15)) we may assume in this limit
that the momentum transfer at any fermion interaction is always much
smaller than the size of the initial (~k) and final momenta (~k′) which are of
the order of the Fermi momentum, i.e. |~k′ − ~k| � kF with |~k|, |~k′| ∼ kF .
The free fermion Green’s function then reflects a linear dispersion

G0(ω, k) = 1
iω− vk

(4.26)

We now Fourier transform back to real space, as multiloop cancellation is
most easily shown in this basis. The real space transform of the “linear”
free fermion propagator above is

G0 (τ , r) = − i

2π
sgn(v)
r+ ivτ

, (4.27)

where as before r is the conjugate variable to k = |~k| − kF . The essential
step in the proof is that real space Green’s function manifestly obeys the
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identity [48]

G0 (z1)G0 (z2) = G0 (z1 + z2) (G0 (z1) +G0 (z2)) (4.28)

with z ≡ r + ivτ . Consider then (the subpart of any correlation func-
tion/Feynman diagram containing) a fermion loop with n ≥ 2 vertices
along the loop connected to indistinguishable scalars (i.e. no derivative
interactions and all interactions are symmetrized). The corresponding
algebraic expression in a real space basis will then contain the expression

F (z1, ..., zn) =
∑

(i1,..,in)∈Sn

G0 (zi1 − zi2)G0 (zi2 − zi3) ...G0 (zin−1 − zin)

·G0 (zin − zi1) ,
(4.29)

where Sn is the set of permutations of the numbers 1 through n. Using
the “linear dispersion” identity Eq. (4.28) and the shorthand notation
G0 (zi1 − zi2) = G12 we obtain

F (z1, ..., zn) =
∑

(i1,..,in)∈Sn

G12G23...Gn−1,1 (Gn−1,n +Gn,1) . (4.30)

Next we cyclically permute the indices from 1 to n− 1: 1→ 2, 2→ 3, ...,
n− 1→ 1 in the sum

∑
(i1,..,in)∈Sn

G12G23...Gn−1,1Gn−1,n =
∑

(i1,..,in)∈Sn

G23G34...G12G1,n. (4.31)

This gives us

F (z1, ..., zn) =
∑

(i1,..,in)∈Sn

G12G23...Gn−1,1 (G1,n +Gn,1) . (4.32)

Then since Gi,j corresponds to a (spinless) fermionic Green’s function, it
is antisymmetric Gi,j = −Gj,i, and we can conclude that F vanishes for
n ≥ 3. For n = 2 it is not possible to use the identity Eq. (4.28) since we
would need to evaluate G(0) which is infinite.
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4.4 The fermion two-point function in the limit
kF →∞ at small Nf

4.4.1 The exact fermionic two-point function in real space:
an analytical form

We have thus established that the exact boson two-point function includ-
ing Landau-damping is completely given by the Dyson-summed one-loop
expression in the limit kF → ∞, and that this one-loop polarization ar-
guably faithfully captures the low-energy physics. We can now use this ex-
act boson two-point function to determine the exact fermion two-function
from the formal solution to the large kF Ward-Schwinger-Dyson equations
(in real space)

G(τ , r) = G0(τ , r)eI(τ ,r) (4.33)

with (see Eq. (4.21))

I (τ , r) = λ2
ˆ dωdkxdky

(2π)3 G2
0 (ω, kx)GB (ω, kx, ky) [cos (ωτ − kxr)− 1] .

(4.34)

Substituting in the exact boson two-point function GB = 1/(G−1
B,0 + Π),

we thus need to calculate the integral

I(τ , r) = λ2
ˆ dωdkxdky

(2π)3
cos(τω− rkx)− 1

(iω− kxv)2
(
ω2 + k2

x + k2
y +

4π2λ2NfkF |ω|
v
√
v2(k2

x+k
2
y)+ω

2

) .

(4.35)

In this expression and the following sections we have rescaled NfkF to
(2π)2NfkF . That is where the factor 4π2 comes from.

Intermezzo — The large-NfkF limit: a comparison to previous
approaches

An often used approximation in the literature is to take the IR limit of
the boson propagator, see e.g [38, 16]. In this limit the polarisation term
will dominate over the kinetic terms, but since the rest of the integrand
in (4.35) has no ky dependence, it is necessary to keep the ky term in
the boson propagator. This simplification is expected to be better with
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increasing NfkF . We therefore refer to the simplified boson two-point
function as the large NfkF propagator

GB,NfkF→∞(ω, kx, ky) =
1

k2
y +

4π2λ2NfkF |ω|
v2|ky |

. (4.36)

This Landau-damped propagator has been used extensively, for instance
[16, 38]. In [38] this propagator was used for the type of non-perturbative
calculation we are proposing here. We discuss this here, as we will now
show that using this simplified propagator for our method has a prob-
lematic feature. In short, this propagator only captures the leading large
NfkF contribution but the non-perturbative exponential form of the exact
Green’s function sums up powers of the propagator which then are sub-
leading in NfkF . We will use therefore the full bosonic propagator which
will also enable us to compare our results with our previous quenched
calculation. Let us, however, first show explicitly the problems that arise
with the simplified propagator.

In the large NfkF limit the integral I(τ , r) to be evaluated simplifies
to

INfkF→∞ = λ2
ˆ dωdkxdky

(2π)3
cos(τω− xkx)− 1

(iω− kxv)2
(
k2
y +

4π2λ2NfkF |ω|
v2|ky |

) . (4.37)

After evaluating the kx integral:

INfkF→∞ = −λ2
ˆ dωdky

(2π)3
πk2

y|r|e
−|ω|

( |r|
v
+i sgn(r)τ

)
4π2λ2NfkF |ωky|+ k4

yv
2 . (4.38)

The ky integral can be performed next to yield

INfkF→∞ = −λ2
ˆ

dω (2π)
−5/3 |r| e−|ω|

( |r|
v
+i sgn(r)τ

)
3
√

3v4/3(λ2NfkF |ω|)1/3 . (4.39)

The primitive function to this ω integral is the upper incomplete gamma
function, with argument 2/3. Evaluating this incomplete gamma func-
tion in the appropriate limits and substituting the final expression for

I
NfkF→∞

(τ , r) into the expression for the fermion two-point function gives
us:

Gf
NfkF→∞

(τ , r) = 1
2π(ir− vτ ) exp

(
− |r|
l1/3
0 (|r|+ iv sgn(r)τ )2/3

)
(4.40)
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where the length scale l0 is given by

l1/3
0 =

3
√

3(2π)5/3v2/3(NfkF )
1/3

2Γ
(

2
3

)
λ4/3

. (4.41)

This result has been found earlier in [37] (see also [49]). It is much
more instructive to study, however, the momentum space version of the
propagator. The Fourier transform of the real space Green’s function

Gf
NfkF→∞

(ω, k) =
ˆ

dτdr ei(ωτ−kr)

2π(ir− vτ ) exp
(
− |r|
l1/3
0 (|r|+ iv sgn(r)τ )2/3

)
(4.42)

is tricky, but remarkably can be done exactly. We do so in appendix 4.B.
The result is

Gf
NfkF→∞

(ω, k) = 1
iω− kv

cos
(

ω

vl1/2
0 (ω/v+ ik)3/2

)

+
6
√

3iΓ
(

1
3

)
ω2/3

8πl1/3
0 v5/3(ω/v+ ik)2 1F2

(
1; 5

6, 4
3;− ω2

4l0v2(ω/v+ ik)3

)
+

+
3
√

3iΓ
(
−1

3

)
ω4/3

8πl2/3
0 v7/3(ω/v+ ik)3 1F2

(
1; 7

6, 5
3;− ω2

4l0v2(ω/v+ ik)3

)
.

(4.43)

This expression has been compared with numerics to verify its correctness;
see Fig. 4.2.

Recall that Eq. (4.43) is the Green’s function in Euclidean signature.
Continuing to the imaginary line, ω = −iωR, this becomes the proper
retarded Greens function, GR(ωR, k), and from this we can obtain the
spectral function A(ωR, k) = −2Im GR(ωR, k). As it encodes the ex-
citation spectrum, the spectral function ought to be a positive function
that moreover equals 2π when integrated over all energies ωR, for any
momentum k. This large NfkF spectral function contains an oscillating
singularity at ωR = vk. We are free to move the contour into complex
ωR-plane by deforming ωR → ωR + iΩ where Ω is positive but otherwise
arbitrary. Upon doing this it is easy to numerically verify that indeed the
integral over ωR gives 2π. However, if we look at the behaviour close to
the essential singularity the function oscillates rapidly and does not stay
positive as one approaches the singularity; see Fig. 4.3. This reflects that
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Figure 4.2. Real and imaginary parts of the self energy obtained using the large-
NfkF Landau-damped propagator. This plot shows the agreement between the
numerics and the analytical solution, verifying that both solutions are correct.
Notice the difference in magnitude between the real and imaginary part. The
agreement of the real parts shows that the numerical procedure has a very small
relative error. All plots are for the k,ω = λ2 slice with v = 1.
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the large NfkF approximation done in this way is not consistent. Even
though the approximation for the exponent I(τ , r) ≡ Ĩ(τ ,r)

(NfkF )1/3 is valid to
leading order in 1/(NfkF ), this is not systematic after exponentiation to
obtain the fermion two-point function

Gf
NfkF→∞

(τ , r) = 1
2π(ir− vτ ) exp

(
Ĩ(τ , r)

(NfkF )1/3 +O
( 1
(NfkF )2/3

))
.

(4.44)

Reexpanding the exponent one immediately sees that keeping only the
leading term in I(τ , r) mixes at higher order with the subleading terms
at lower order in 1/NfkF

Gf
NfkF→∞

(τ ,x) = 1
2π(ir− vτ )

(
1 + Ĩ(τ , r)

(NfkF )1/3 +O
( 1
(NfkF )2/3

)
+

1
2

(
Ĩ(τ , r)

(NfkF )1/3 + . . .

)2
)

.

(4.45)

Nevertheless, we will see that in the IR Gf
NfkF→∞

(with a small modifica-

tion) capture the physics very well.

Exact large kF fermion two-point function; v = 1

To get the general NfkF answer we return to the full integral Eq.(4.35)
needed to determine the real space fermion two-point function. Solving
this in general is difficult, and to simplify mildly we consider the special
case v = 1. In our previous studies of the quenched NfkF = 0 limit we
saw that this case is actually not very special. In fact, nothing abruptly
happens as v → 1, except that the quenched NfkF = 0 solution can be
written in closed form for this value of v = 1. Nor for the case of large
NfkF is the choice v = 1 in any way special. As can be seen above in
Eq. (4.40) for large NfkF all v are equivalent up to a rescaling of τ versus
r and a rescaling of the single length scale l0. We may therefore expect
that for a finite Nf , the physics of 0 < v < 1 is qualitatively the same as
the (not-so-) special case v = 1.
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Figure 4.3. Exact fermion spectral function based on the large-NfkF approxi-
mation for the exact boson propagator. Notice that the function is not positive
everywhere. Here k = λ2, v = 1 and NfkF = λ2.

After setting v = 1 and changing to spherical coordinates we have

I =

ˆ
dr̃dφdθe2iφ

cos
(
r̃ sin(θ)(τ sin(φ)− r cos(φ))

)
− 1

8π3 sin(θ)2
(
NfkFπ2| sin(φ)|+ λ−2r̃2/ sin(θ)

) .

(4.46)

Performing the r̃ integral gives us

I = λ

ˆ
dφdθe2iφ e−2πλ|τ sin(φ)−r cos(φ)|

√
NfkF | sin(φ)| sin(θ)3 − 1

32π3
√
NfkF | sin(φ)| sin(θ)3

. (4.47)

Note that if the signs of both τ and r are flipped, then this is invariant.
Changing the sign of only τ , and simultaneously making the change of
variable φ→ −φ, then the (real) fraction is invariant but the exponent in
the prefactor changes sign. Thus, I goes to I∗ as the sign of either τ or r
is changed. Without loss of generality, we can assume that both of them
are positive from now on. We further see that the integrand is invariant
under φ → φ+ π, so we may limit the range of φ to (0,π) by doubling
the value of integrand. Similarly we limit θ to (0,π/2) and multiply by
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another factor of 2. We then make the changes of variables:

φ = tan−1(s) + π/2
θ = sin−1(u2/3)

(4.48)

with s ∈ R and u is integrated over the range (0, 1). For convenience we
introduce the function

z(s) =
π

2λ
√
NfkF |sr+ τ |(1 + s2)−3/4 (4.49)

Now the two remaining integrals can be written as

I = λ

ˆ
dsdu (e−4uz(s) − 1)(s− i)

12π3(s+ i)(1 + s2)3/4u4/3
√
NfkF (1− u4/3)

(4.50)

After expanding the exponential we can perform the u integral term by
term. We are left with

I = λ

ˆ
ds
∞∑
n=1

4n−2(1 + s2)1/4(−z(s))n

π5/2n!
√
NfkF (i+ s)2

Γ
(

3n−1
4

)
Γ
(

3n+1
4

) (4.51)

This can be resummed into a sum of generalized hypergeometric functions,
but this is not useful at this stage. Instead we once again integrate term
by term. Collecting the prefactors and introducing the constant a = τ/r,
the n-th term can be written as

I =
∞∑
n=1

cn

ˆ
ds (s− i)2|s+ a|n(1 + s2)−(7+3n)/4 (4.52)

This can be written as

I =
∞∑
n=1

cn

ˆ
dsdw (s− i)2|s+ a|n e−w(s2+1)w3(1+n)/4

(3(1 + n)/4)! (4.53)

where w is integrated on (0,∞). After splitting the integral at s = −a
to get rid of the absolute value we can calculate the s integrals in terms
of confluent hypergeometric functions 1F1(a, b; z). Adding the two halves

148



s < −a and s > −a of the integral we have

I =
∞∑
n=1

cn

ˆ
dw

Γ
(

1+n
2

)
e−(1+a2)w

2(3(1 + n)/4)!

2w(i+ a)2
1F1

(2 + n

2 , 1
2; a2w

)

+ (2 + n) 1F1

(4 + n

2 , 1
2; a2w

)
− 4aw(2 + n)(i+ a) 1F1

(4 + n

2 , 3
2; a2w

).

(4.54)

It may look like we have just exchanged the s-integral for the w-integral,
but by writing the hypergeometric functions in series form,

I =
∞∑
n=1

cn

ˆ
dw

∞∑
m=0

22m−1a2me−(1+a2)ww
n−3

4 +mΓ
(

1+n
2 +m

)
Γ
(

7+3n
4

)
Γ
(

2 + 2m
) ·

· (n(1 + 2m− 4a(i+ a)w) + (1 + 2m)(1 + 2m− 2(1 + a2)w)) ,
(4.55)

the w integral can now be performed. The result is

I =
∞∑

n=1,m=0
cn

(a+ i)4m−1a2m (a2 + 1
)− 1

4 (4m+n+5) Γ
(
m+ n+1

4

)
Γ
(
m+ n+1

2

)
Γ(2m+ 2)Γ

(
7+3n

4

) ·

·
(
a
(
2m− 6mn− 2n2 − n+ 1

)
− i(2m+ 1)(n+ 1)

)
(4.56)

The sum over m can be expressed in terms of the ordinary hypergeometric
function, 2F1(a1, a2; b; z):

I =
∞∑
n=1

cn
(n+ 1)

(
a2 + 1

)−n4− 1
4 Γ
(
n+1

4

)
Γ
(
n+1

2

)
24(a− i)2(a+ i)Γ

(
3n
4 + 7

4

) ·

·

a2(n+ 1)(−3an+ a− i(n+ 1)) 2F1

n+ 3
2 , n+ 5

4 ; 5
2; a2

a2 + 1

+

− 6
(
a2 + 1

)
(a(2n− 1) + i) 2F1

(
n+ 1

4 , n+ 1
2 ; 3

2; a2

a2 + 1

)
(4.57)
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The space-time dependence in this expression is implicit in a = τ/r and
with additional r-dependence in the coefficients cn The result above is the
value for both τ and r positive. Using the known symmetries presented
above the solution can be extended to all values of τ and r by appropriate
absolute value signs. Then changing variables to

τ = R cos(Φ)

r = R sin(Φ)
(4.58)

we have

I =
λf (Rλ

√
NfkF , Φ)√

NfkF
(4.59)

with the function f(R̃, Φ) given by

f(R̃, Φ) =
∞∑
n=1

fnR̃
n

fn =
πn−2eiΦ(−1)nΓ

(
n+1

4

)
|sin(Φ)|

1+3n
2

72(3n− 1)Γ
(
n
2 + 1

)
Γ
(

1+3n
4

) ·

·

 2F1

(
n+ 3

2 , n+ 5
4 ; 5

2; cos2(Φ)

)
(n+ 1)·

· cos2(Φ)((1− 3n) cos(Φ)− i(n+ 1) sin(Φ))

+ 2F1

(
n+ 1

4 , n+ 1
2 ; 3

2; cos2(Φ)

)
6((1− 2n) cos(Φ)− i sin(Φ))


(4.60)

This exact infinite series expression for the exponent I(r,φ) gives us the
exact fermion two-point function in real (Euclidean) space (time). We
have not been able to find a closed form expression for this final series.
Note that fn ∼ 1/n! for large n, and the series therefore converges rapidly.
Moreover, numerically the hypergeometric functions are readily evaluated
to arbitrary precision (e.g. with Mathematica), and therefore the value of
f can be robustly evaluated to any required precision.

As a check on this result, we can compare it to the exact result in the
quenched NfkF = 0 limit in [48], where the exact answer was found in
a different way. In the limit where NfkF → 0 we see that only the first
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term of this series gives a contribution and the expression for the exponent
collapses to

lim
Nf→0

I(R, Φ) = λ2f1R = λ2 e
2iΦ

12π R (4.61)

In Cartesian coordinates this equals

lim
Nf→0

I(τ , r) = λ2 (τ + ir)2

12π
√
τ2 + r2

(4.62)

This is the exact same expression as found in [48] for v = 1.
There is one value of the argument for which f drastically simplifies.

For r = 0 (Φ = 0,π) we have

fn(Φ = 0) =− (−2π)n−2

3Γ(n+ 2)
(4.63)

and thus

f(R̃, Φ = 0) = 1
12π2 +

e−2πR̃ − 1
24π3R̃

(4.64)

Further numerical analysis shows that the real part of f(τ , r) is maximal
for r = 0. Eq. (4.64) can be seen to give a good qualitative description.

The IR limit of the exact fermion two-point function compared
to the large-NfkF limit

Before turning to the numerical Fourier transform of the exact real space
answer, we derive the IR approximation more systematically. The expres-
sion obtained above, Eq. (4.60), is not very useful for extracting the IR
Greens function or at a large NfkF as the expression is organized in an ex-
pansion around Rλ

√
NfkF = 0. To study the limit where Rλ

√
NfkF � 1

we can go back to Eq. (4.50). With this expression we see that the expo-
nential in the integrand, e−4uz(s) with z ∼

√
NfkF |sr + τ | ∼ r̃, is gener-

ically suppressed for large R̃ = λR
√
NfkF . The exceptions are when

either sr+ τ is small, s is large, or u is small. The first two cases are also
unimportant in the R̃� 1 limit. In the first case we restrict the s integral
to a small range of order 1/R̃ around −τ/r; this contribution therefore
becomes more and more negligible in the limit R̃� 1. In the second case
we will have a remaining large denominator in s outside the exponent that
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also suppresses the overall integral. Thus for large R̃, the only appreciable
contribution of the exponential term to the integral in I(τ , r) arises when
u is small. To use this, we first write the integral as

IIR = IIR,exp + IIR,−1, (4.65)

with

IIR,exp(τ , r) = λ

ˆ ∞
−∞

ds s− i
12π3(s+ i)(1 + s2)3/4√NfkF

·

·
(ˆ 1

0
du e−4uz(s)

u4/3
√

1− u4/3
−
ˆ ∞

0
du 1
u4/3

)
'

λ

ˆ ∞
−∞

ds s− i
12π3(s+ i)(1 + s2)3/4√NfkF

(ˆ 1

0
due−4uz(s)

u4/3 −
ˆ ∞

0
du 1
u4/3

)
(4.66)

and

IIR,−1(τ , r) = λ

ˆ ∞
−∞

ds (s− i)
12π3(s+ i)(1 + s2)3/4√NfkF

·

·
(ˆ ∞

0
du 1
u4/3 +

ˆ 1

0
du −1
u4/3
√

1− u4/3

)

We have added and subtracted an extra term to each to ensure convergence
of each of the separate terms. Since the important contribution to IIR,exp
is from the small u region we can extend its range from (0,1) to (0,∞).
This way, the integrals can then be done

Iexp =

ˆ ∞
−∞

ds −λ4/3 |sr+ τ |1/3

22/333/2π5/3(NfkF )1/3(s+ i)2Γ
(

4
3

)
= −

Γ
(

2
3

)
λ4/3 |r|1/3

22/333/2π5/3(NfkF )1/3
(
1 + iτ

r

)2/3 , (4.67)

IIR,−1 =

ˆ ∞
−∞

ds λ(s− i)
12π3(s+ i)(1 + s2)3/4√NfkF

·

·

 ˆ ∞
0

du
( 1
u4/3 −

θ(1− u)
u4/3
√

1− u4/3

) =
λ

12π2√NfkF
(4.68)
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In total we have for large R̃:

I = −
Γ
(

2
3

)
λ4/3 |r|

22/333/2π5/3(NfkF )1/3 (|r|+ i sgn(r)τ )2/3 +
λ

12π2√NfkF
+

+O(λ2/3(NfkF )
−4/6r−1/3)

(4.69)

We see that the leading order term in R is the same as was obtained from
the large NfkF approximation of the exponent. The first subleading term
is just a constant. This is good news because we already have the Fourier
transform of this expression. This result is valid for length scales larger
than 1/λ

√
NfkF with a bounded error of the order R−1/3. This readily

seen. Defining this approximation as GIR, i.e.

GIR = G0 exp

− Γ
(

2
3

)
λ4/3 |r|

22/333/2π5/3(NfkF )1/3 (|r|+ i sgn(r)τ )2/3 +

+
λ

12π2√NfkF

)
, (4.70)

the error of this approximation follows from:

∆GIR = G−GIR = GIR
(
exp

(
O(R̃−1/3)

)
− 1

)
(4.71)

Since the exponential in GIR is bounded we have that ∆GIR = O(R−4/3).
After Fourier transforming this translates to an error of order O(k−2/3).

4.4.2 The exact fermion two-point function in momentum
space: Numerical method

We now turn to the evaluation of the Fourier transformation. As our exact
answer is in the form of an infinite sum, this is not feasible analytically.
We therefore resort to a straightforward numerical Fourier analysis.

To do so we first numerically determine the real space value of the
exact Green’s functions. To do so accurately, several observations are
relevant

• The coefficients fn in the infinite sum for I(τ , r) decay factorially in
n so once n is of order R̃, convergence is very rapid.
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• The hypergeometric functions for each n are costly to compute with
high precision, but with the above choice of polar coordinates the
arguments of the hypergeometric functions are independent of R and
NfkF . We therefore numerically evaluate the series over a grid in R̃
and Φ. We can then reuse the hypergeometric function evaluations
many times and greatly decrease computing time.

• The real space polar grid will be limited to a finite size. The IR ex-
pansion from Eq. (4.70) can be used instead of the exact series for
large enough R

√
NfkF . To do so, we have to ensure an overlapping

regime of validity. It turns out that a rather large value of r
√
NfkF

is necessary to obtain numerical agreement between these two ex-
pansions, i.e. one needs to evaluate a comparably large number of
terms in the expansion. For the results presented in this chapter
it has been necessary to compute coefficients up to order 16 000 in
R
√
NfkF , for many different angles Φ. The function is bounded for

large τ and r but each term grows quickly. This means that there
are large cancellations between the terms that in the end give us a
small value. We therefore need to calculate these coefficients to very
high precision in evaluating the polynomial. For these high precision
calculations, we have used the Gnu Multiprecision Library.

• On this polar grid we computed the exact answer for R̃ < R̃0 ≈ 1000
and used cubic interpolation for intermediate values. For larger R̃
we use the asymptotic expansion in Eq. (4.70).

• Finally we represent the function values using normal 128 bit com-
plex numbers.

We then use a standard discrete numerical Fourier transform (DFT)
to obtain the momentum space two-point function from this numeric pre-
scription for G(R, Φ). Sampling G(R, Φ) at a finite number of discrete
points, the size of the sampling grid will introduce an IR cut-off at the
largest scales we sample and a UV-cut off set by the smallest spacing be-
tween points. These errors in the final result can be minimized by using the
known asymptotic values analytically. Rather than Fourier transforming
G(τ , r) as a whole, we Fourier transform Gdiff(τ , r) = G(τ , r)−GIR(τ , r)
instead. Since both these functions approach the free propagator in the
UV, the Fourier transform of its difference will decay faster for large ω
and k. This greatly reduces the UV artefacts inherent in a discrete fourier
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transform (DFT). These two functions also approach each other for large
τ and x. In fact, with the numerical method we use to approximate f
described above, they will be identical for R̃0 <

√
NfkF (τ2 + r2). This

means that we only need to sample the DFT within that area. With a
DFT we will always get some of the UV tails of the function giving fold-
ing aliasing artefacts. Now our function decays rapidly so one could do a
DFT to very high frequencies and discard the high frequency part. This
unfortunately takes up a lot of memory so we have gone with a more CPU
intensive but memory friendly approach. We instead first perform a con-
volution with a Gaussian kernel, perform the DFT, keep the lowest 1/3
of the frequencies and then divide by the Fourier transform of the kernel
used. This gives us a good numeric value for Gdiff(ω, k). To this we add
our analytic expression for GIR(ω, k).

4.5 The physics of 2+1 quantum critical metals
at large kF

With the exact analytical real space expression and numerical momentum
space expression for the full non-perturbative fermion Green’s function,
we can now start to discuss the physics of the elementaray quantum crit-
ical metal in the limit of large kF and small Nf . Let us emphasize right
away that all our results are in Euclidean space. Although we suspect that
a good Lorentzian continuation with a well-defined and consistent spec-
tral function exists of the Euclidean momentum space Green’s function,
this function is not easily obtainable from our numerical Euclidean result.
We leave this for future work. The Euclidean signature Green’s function
does not visually encode the spectrum directly, but for very low ener-
gies/frequencies the Euclidean and the Lorentzian expressions are nearly
identical, and we can extract much of the IR physics already from the
Euclidean correlation function.

In Figure 4.4 we show density plots of the imaginary part of G(ω, k)
for different values of NfkF as well as cross-sections at fixed low ω. For
the formal limit NfkF = 0 we detect three singularities near ω = 0 corre-
sponding with the three Fermi surfaces found in Lorentzian signature in
our earlier work [48]. However, for any appreciable value of the dimen-
sionless ratio NfkF/λ2 one only sees a single singularity. As the plots for
G(ω, k) at low frequency show, its shape approaches that of the strongly
Landau-damped RPA result as one increases NfkF/λ2, though for low
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Figure 4.4. (A) Density plots of the imaginary part of the exact (Euclidean)
fermion Green’s function G(ω, k) for various values of NfkF . In the quenched
limit NfkF = 0 the three Fermi surface singularities are visible. For any ap-
preciable finite NfkF the Euclidean Green’s function behaves as a single Fermi
surface non-Fermi liquid. (B) Real and imaginary parts of G(ω, k) for very small
ω = 0.01λ2.

NfkF it is still distinguishably different.
This result is in contradistinction to what happens to the bosons.

When the bosons are not affected in the IR, i.e. the quenched limit,
it is evident that the fermions are greatly affected by the boson: there is a
topological Fermi surface transition and the low-energy spectrum behaves
as critical excitations [48]. However, once we increase NfkF , the bosonic
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excitations are rapidly dominated in the IR by Landau damping but we
now see that this reduces the corrections to the fermions. As NfkF is
increased, the deep IR fermion two-point function approaches more and
more that of the RPA result with self-energy Σ ∼ iω2/3.

We can illustrate this more clearly by studying the self-energy of the
fermion Σ(ω, k) = G(ω, k)−1 −G0(ω, k)−1. It is shown that the naive
large Nf RPA result (dotted lines) does agree at ω = 0, k = 0 and the
leading ω dependence of the imaginary part is captured. The leading k
dependence are not captured by RPA. On the other hand, our improved
approximation for the low energy regime GIR (dashed lines) captures these
higher order terms in the low energy expansion of G very well.

We can calculate the occupation number and check whether it is con-
sistent with the non-Fermi liquid nature of the Green’s function. For
a Fermi liquid there is a discontinuity in the zero-temperature momen-
tum distribution function nk =

´ 0
−∞ dωRA(ωR, k)/2π with A(ωR, k) the

spectral function. As the spectral function is the imaginary part of the
retarded Green’s functions and the latter is analytic in the upper half
plane of ωR we can move this contour to Euclidean ω and use the fact
that G approaches G0 in the UV to calculate the momentum distribution
function from our Euclidean results. In detail

nk = −
ˆ 0

−∞
dωRImGR(ωR, k)

π
= Im

[ˆ Λ

0
dωiG(ω, k)

π
+

ˆ
C

dziG(z, k)
π

]
;

(4.72)
the first integral can be done with the numerics developed in the preceding
section. The contour C goes from iΛ to −∞ and for large enough Λ this
is in the UV and can well be approximated by the free propagator. The
resulting momentum distribution n(k) is shown in Figure 4.6. Within our
numerical resolution, these curves are continuous as opposed to a Fermi
liquid. This is of course expected; the continuity reflects the absence of a
clear pole in the IR expansions in the preceding subsection. Note also that
as NfkF is lowered, the finite NfkF curves approach the quenched result
for |k| > k∗ where k∗ is the point of the discontinuity of the derivative of
the quenched occupation number. At k∗ the (derivative) of the quenched
momentum distribution number does have a discontinuity (reflecting the
branch cut found in [48]).

Our result highlights how various approximations that have been made
in the past hang together. In units of the bare coupling λ the kF → ∞
theory is characterized by two parameters ω/λ2 and Nf — the latter al-
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Figure 4.5. Real and imaginary parts of the fermion self-energy for (A) ω =
0.01λ2 and for (B) k = 0.01λ2. Dashed lines show the GIR-approximation; dotted
lines show the RPA result.
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Figure 4.6. Momentum distribution function. The two plots show the same
function for different ranges. The error bars of the lower figure show an estimate
of the error due to using the free Green’s function close to the UV. The error-bars
are exaggerated by a factor 100.

ways appears in the combination NfkF/λ2, and as we explained in section
4.4 we considered this finite even when kF/λ2 →∞. For very large ω/λ2

one can use perturbation theory in λ to understand the theory. This is
the perturbation around the UV-fixed point of a free fermion plus a free
boson.

For small ω/λ2 and small NfkF/λ2 the quenched result we obtained
earlier [48] captures the right physics. As the momentum occupation
number n(k) indicates, its precise regime of applicability depends discon-
tinuously on the momentum k/λ2. The discontinuity is surprising, but it
can be explained analytically as an order of limits ambiguity. Although
it is hard to capture the deep IR region for very small NfkF in the full
numerics we suspect that in the ω-k plane there is a region where the
limit NfkF → 0 and ω, k → 0 do not commute. We show an indication of
this in appendix 4.C. Physically this is the scale where Landau damping
becomes important.

For small ω/λ2 the IR approximation presented here captures the
physics independently of the value of NfkF/λ2. For large NfkF/λ2 the
spectrum it predicts closely approximates the known result [38], but im-
proves on it for larger frequencies. We have presented a pictorial overview
of how the various approximations are related in Fig.4.7.
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Sunday, September 25, 16Figure 4.7. A sketch of the regimes of applicability of various approximations
to the exact fermion Green’s function of the elementary quantum critical metal.

4.6 Conclusion

We have presented a non-perturbative answer for the (Euclidean) fermion
and boson two-point functions of the elementary quantum critical metal in
the limit of large kF and small Nf . This non-perturbative answer follows
from tracing of the role of the Fermi momentum in the Schwinger-Dyson
equations and the fermion number Ward identity. In the limit of large
kF they form a closed set on the boson and fermion two-point functions
with the subtle point that the leading one-loop contribution to the boson
two-point function (formally divergent as kF →∞) needs to be kept. We
have presented an analytic expression for the direct IR limit of the Green’s
functions.

It would be enlightening to have our results in Lorentzian signature
(as in the quenced limit); at the technical level this is an obvious next
step. At the physics level, an obvious next step is to explore the model
without relying on the smallness of Nf and the kF →∞ limit. Since this
necessarily involves higher-point boson correlations, the role of the self-
interactions of the boson needs to be considered. These are also revelant
in the IR and may therefore give rise to qualitatively very different physics
than found here.
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4.A Derivation of the Schwinger-Dyson equations
and the Ward Identity

The Schwinger-Dyson equation for the fermion two-point function can be
derived from its defining equation in the presence of a background field
φ(x). (

−∂τ +
∇2

2m + µ+ λφ(x)

)
G[φ](x, y) = δ3(x− y) (4.73)

Here x = {τ , x} etc. In the full theory φ(x) is a dynamical field and
performing the path-integral one obtains

1
Zφ(J)

ˆ
Dφ

[
(−∂τ +

∇2

2m + µ+ λφ)G[φ](x, y)− δ3(x− y)
]

e−
´
[ 1

2 (∂τφ)
2+ 1

2 (∇φ)
2−Jφ] =

(
−∂τ +

∇2

2m + µ+ λ
∂

∂J

)
GJ (x, y)− δ3(x− y) = 0

(4.74)

with GJ (x, y) the exact fermion two-point function in the presence of
a scalar source J(x) and Zφ(J) being the partition function of a free

scalar. The functional derivative ∂

∂J(x)
of the two-point function can be

computed using the identity that the two-point function is the inverse of
double derivative of the 1PI action Γ[φc,ψc,ψ†c ] = lnZ(J , Jψ)− φcJ − ...
with respect to the conjugate fields ψc(y), ψ†c(x)

∂

∂J(u)
GJ (x, y) = ∂

∂J(u)

(
∂2Γ

∂ψc(y)∂ψ
†
c(x)

)−1

(4.75)

Also for the scalar, the 1PI action depends on the classical Legendre con-
jugate field φc(x) rather than the source J(x). Using the chain rule, one
has

∂

∂J(u)
GJ (x, y) =

ˆ
d3z

∂φc(z)

∂J(u)

∂

∂φc(z)

(
∂2Γ

∂ψc(y)∂ψ
†
c(x)

)−1

= −
ˆ
d3z1d

3z2d
3z3

∂φc(z1)

∂J(u)

(
∂2Γ

∂ψc(y)∂ψ
†
c(z2)

)−1

·

·
(

∂3Γ

∂φc(z1)∂ψc(z2)∂ψ
†
c(z3)

)(
∂2Γ

∂ψc(z3)∂ψ
†
c(x)

)−1

. (4.76)
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From its definition the conjugate field φc(z) = ∂ lnZ
∂J(z) , we see that ∂φc(z)

∂J(u)

equals the scalar two-point function in the presence of a source J .

∂φc(z)

∂J(u)
=

∂2 lnZ
∂J(u)∂J(z)

= GB,J (z,u) (4.77)

Substituting these relations into Eq. (4.76) and the result into (4.74)
together with the relation between the double derivative of the 1PI action
and the Green’s function one obtains

0 = −δ3(x− y) +
(
−∂τ +

∇2

2m + µ

)
G(x, y)−

λGB(x, z)G(y, z2)Λ(z, z2, z3)G(z3,x) (4.78)

with Λ(z, z2, z3) ≡ ∂3Γ
∂φc(z1)∂ψc(z2)∂ψ

†
c (z3)

equal to the 1PI three-point vertex
and we have set the source J = 0 at the end. Multiplying by the free
fermion Green’s function G0(x, y), the inverse of the free kinetic operator
(−∂τ + ∇2

2m + µ) and Fourier transforming we arrive at the equation (4.6)
quoted in the main text

0 = −G0(x, y) +G(x, y)−G0(x, y)λGB(x, z)G(y, z2)Γ(z, z2, z3)G(z3,x)

= −G0(K) +G(K)− λG0(K)G(K)

ˆ
dQGB(Q)Λ(K,K −Q)G(K −Q)

(4.79)

In the main text we use Γ to denote the 1PI three-point vertex, as is
conventional. By definition dQ = dq0d2q

(2π)3 .

4.B The Fourier transform of the fermion Green’s
function in the large NfkF approximation

We will now show how to perform this Fourier transform. We need to
calculate the following integral:

Gf
NfkF→∞

(ω, k) =
ˆ

dτdx ei(ωτ−kx)

2π(ix− vτ ) exp
(
− |x|
l1/3
0 (|x|+ iv sgn(x)τ )2/3

)
(4.80)
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First we note that integrand is τ -analytic in the region
{τ ∈ C : min(0, vx) < Im(τ ) < max(0, vx)}. Since the integrand nec-
essarily goes to 0 at ∞ we can thus shift the τ contour, τ → τ + ix/v.
We now have

Gf
NfkF→∞

(ω, k) = −
ˆ dτdx

2πvτ exp
(
iωτ − x

(
ik+ ω/v+

sgn(x)
l1/3
0 (iv sgn(x)τ )2/3

))
(4.81)

We have allowed ourselves to choose the order of integration, shift the
contour, and then change the order. We see that the x integral now is
trivial but only converges for

− v1/3

2l1/3
0 |τ |2/3

< Re(ω) < v1/3

2l1/3
0 |τ |2/3

(4.82)

This is fine since we know that the final result is ω-analytic in both the
right and left open half-planes. As long as we can obtain an answer valid
within open subsets of both of these sets we can analytically continue the
found solution to the whole half planes. We thus proceed assuming Re(ω)
is in this range. One can further use symmetries of our expression to relate
the left and right ω-half-planes, so to simplify matters, from now on we
additionally assume ω to be positive. Let us now consider a negative x,
we then see that the τ integral can be closed in the upper half plane and
since it is holomorphic there the result will be 0. We can thus limit the x
integrals to R+. We then have

Gf
‘NfkF→∞

(ω, k) =
ˆ

dτ eiωτ

2πvτ
−1

a+ 1
l1/3
0 (ivτ )2/3

(4.83)

where a = ik+ω/v. The integrand has a pole at (iτ )2/3 = −1/(al1/3
0 v2/3).

Now break the integral in positive and negative τ and write it as

Gf
NfkF→∞

(ω, k) = h((−i)2/3u∗0)
∗ − h((−i)2/3u0)

2πva (4.84)

where

h(u) =

ˆ ∞
0

dτ eiτ

τ + uτ1/3 ,

u0 =
ω2/3

al1/3
0 v2/3

.
(4.85)
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Usng Morera’s theorem we can prove that h is holomorphic on C/R−.
Consider any closed curve C in C/R−. We need to show that

ˆ
C

duh(u) = 0 (4.86)

We do this by rotating the contour slightly counter clockwise. For any
curve C there is clearly a small ε > 0 such that we will still not hit the
pole τ + uτ1/3 = 0.

ˆ
C

du
ˆ (1+iε)∞

0
dτ eiτ

τ + uτ1/3 , (4.87)

The piece at ∞ converges without the denominator and thus goes to 0.
Since the integral now converges absolutely we can use Fubini’s theorem
to change the orders of integration

ˆ (1+iε)∞

0
dτ
ˆ
C

du eiτ

τ + uτ1/3 = 0 (4.88)

And since also the integrand is holomorphic on a connected open set con-
taining C the proof is finished.

The function h can for 0 < arg(u) < 2π/3 be expressed as a Meijer
G-function:

h(u) =
3

8π5/2G
5,3
3,5

 0, 1
3 , 2

3
0, 0, 1

3 , 1
2 , 2

3

∣∣∣∣∣∣− u3

4

 (4.89)

The G-function has a branch cut at R− and because of that we can not
easily write h(u) in terms of it since the argument u appears cubed in
the argument of the G-function and we know that h is holomorphic on
all of C/R−. We can however express h as an analytic continuation of
the G-function past this branch cut, onto the further sheets of its Rie-
mann surface. We will write the G-function as a function with two real
arguments, first the absolute value and second the phase of its otherwise
complex argument. We will allow the phase to be any real number and
when outside the range [−π,π], we let the function be defined by its an-
alytical continuation to the corresponding sheet. We hereafter omit the
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Figure 4.8. The left image shows part of the Riemann surface of the function
h and the right image shows part of the Riemann surface of the G-function. The
part in red of the left image can be expressed as the G-function evaluated on its
first sheet, the red part of the right image. The green arrow shows how points
are mapped from one Riemann surface to the other by the mapping u 7→ −u3/4
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constant parameters of the G-function. We then have:

Gf
NfkF→∞

(ω, k) = 3
G5,3

3,5

(
|u0|3

4 ,−2π− 3 arg(u0)
)∗
−G5,3

3,5

(
|u0|3

4 ,−2π+ 3 arg(u0)
)

16π7/2va

= 3
G5,3

3,5

(
|u0|3

4 , 3 arg(u0) + 2π
)
−G5,3

3,5

(
|u0|3

4 , 3 arg(u0)− 2π
)

16π7/2va
(4.90)

In the last step we used the fact that the G-function commutes with
complex conjugation. We see that the Green’s function is given by a
certain monodromy of the G-function. It is given by the difference in its
value starting at a point u3

0/4 on the sheet above the standard one and
then analytically continuing clockwise around the origin twice to the sheet
below the standard one and there return to u3

0/4. Since we only need this
difference, we might expect this to be a, in some sense, simpler function
as would happen for e.g. monodromies of the logarithm. To see how to
simplify this we look at the definition of the G-function. It is defined as
an integral along L:

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣ z
)
=

1
2πi

ˆ
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

zs ds,

(4.91)

There are a few different options for L and which one to use depends on
the arguments. In our case L starts and ends at +∞ and circles all the
poles of Γ(bi− s) in the negative direction. Using the residue theorem we
can recast the integral to a series. We have double poles at all negative
integers and some simple poles in between. The calculation to figure out
the residues of all these single and double poles is a bit too technical to
present here but in the end the series can be written as

G5,3
3,5 (z) =

∞∑
n=0

(
anz

n + bnz
n log(z) + cnz

n+1/3 + dnz
n+1/2 + enz

n+2/3
)

(4.92)

Now we perform the monodromy term by term and a lot of these terms
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cancel out.
G5,3

3,5

(
|z|, arg(z) + 2π

)
−G5,3

3,5

(
|z|, arg(z)− 2π

)
=

∞∑
n=0

(
4πibnzn + i

√
3cnzn+1/3 − i

√
3enzn+2/3

) (4.93)

The coefficients ai contain both the harmonic numbers and the polygamma
function whereas the other coefficients are just simple products of gamma
functions. This simplification now lets us sum this series to a couple of
hypergeometric functions. Inserting the expressions for a and u0 we have

Gf
NfkF→∞

(ω, k) = 1
iω− kv

cos
(

ω

vl1/2
0 (ω/v+ ik)3/2

)

+
6
√

3iΓ
(

1
3

)
ω2/3

8πl1/3
0 v5/3(ω/v+ ik)2 1F2

(
1; 5

6, 4
3;− ω2

4l0v2(ω/v+ ik)3

)
+

+
3
√

3iΓ
(
−1

3

)
ω4/3

8πl2/3
0 v7/3(ω/v+ ik)3 1F2

(
1; 7

6, 5
3;− ω2

4l0v2(ω/v+ ik)3

)
.

(4.94)

Note that this expression is ω-holomorphic for ω in the right half plane so
our previous assumptions on ω can be relaxed as long as ω is in the right
half plane. We note from expression (4.80) that if we change sign on both
ω and k and do the changes of variables τ → −τ and x→ −x we end up
with the same integral up to an overall minus sign. We can thus get the
left half plane result using the relation

Gf
NfkF→∞

(−ω, k) = − Gf
NfkF→∞

(ω,−k). (4.95)

As mentioned in the main text, this expression has been compared with
numerics to verify that we have not made any mistakes. See Fig. 4.2.
We have also done the two integrals for the Fourier transform in the op-
posite order, first obtaining a different Meijer G-function then using the
G-function convolution theorem to do the second integral. In the end one
obtains the same monodromy of the G-function as above.

4.C The discontinuous transition from the quenched
to the Landau-damped regime

We show here why the including Landau damping finite Nf physics start-
ing from the quenched Nf → 0 result, is discontinuous in the IR. To do
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so we calculate the Green’s function by imposing the Nf → 0 limit from
the begining. We need to evaluate the Fourier transform integral:

GL (ω, k) =
ˆ ∞
−∞

dx

ˆ L

−L
dτG0 exp (I0 + iω · τ − ik · x) , (4.96)

where as before the free propagator is

G0(τ ,x) = − i

2π
1

x+ i · τ
(4.97)

and the Nf → 0 limit of the exponent of the real space Green’s function:

I0 =
(τ + i · x)2

12π
√
τ2 + x2

. (4.98)

Note however that the τ integral is divergent in this limit. Therefore
in (4.96) we have introduced a cutoff L in this direction. By looking at
the full expansion of I we can see that the natural value of L is of the
order 1/

√
Nf . For larger values of τ the asymptotic expansion describes

I better. We expect that for large enough momenta and frequencies the
asymptotic region does not contribute to the Fourier transform and there-
fore the cutoff can be removed. This naive epxectation however is only
partly true. We will shortly see that the region in the ω − k plane where
the cutoff can be removed is more complicated and asymmetric in term of
the momenta and frequency.

Let us turn now to the evaluation of (4.96). After making the coor-
dinate change τ → τ , x → u · τ one of the integral (τ) can be evaluated
analytically:

GL (ω, k) =
ˆ ∞
−∞

du (I1(u) + I2(u) + I3(u)) , (4.99)

where

I1(u) =
6 exp

(
ikLu

√
u2 + 1− iL · ω ·

√
u2 + 1− L(u−i)2

12π

)
12π(u+ i)(ku− ω) + i

√
u2 + 1u+

√
u2 + 1

, (4.100)

I2(u) =
6i exp

(
−ikLu

√
u2 + 1 + iL · ω ·

√
u2 + 1− L(u−i)2

12π

)
12iπk(u+ i)u+

√
u2 + 1u− i

√
u2 + 1 + 12π(1− iu)ω

, (4.101)
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Figure 4.9. The region of convergence. In the shaded area the L→∞ (Nf → 0)
limit is not convergent while outside this area limL→∞GL = Gquenched.

I3(u) = −
144π(ku− ω)

D(u)
, (4.102)

with

D(u) = u
(
−3 + u

(
144π2k2(u+ i) + u− 3i

))
−288π2ku(u+ i)ω+ 144π2(u+ i)ω2 + i. (4.103)

By numerically performing the single integral u we can obtain GNf→0.
Since it is easier than evaluating the Fourier transform of the true real-
space version of the Green’s function it is worth to understand how the
L→∞ (which is equivalent to Nf → 0) works. The result is depicted on
Fig. 4.9. In the shaded region (which corresponds to small k) the limit
is not well defined while outside of this region the limit is equal to the
quenched result. The numerics shows that for zero frequency, the edge of
this region is at k∗, where the Green’s function is singular.

We can qualitatively determine the line separating the convergent and
divergent region. For this we assume that when L is large one can expand
the exponent in u

I1(u) ∼ exp
[
u2
(
− 1

12π −
1
2 iω

)
L+

iu(6πk+ 1)
6π L− iLω+

L

12π +O
(
Lu̇3

)]
.

(4.104)
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We see that because of the term −L · u2/(12π), the integrand is non-zero
only in a narrow region around u = 0. For the same reason we approxi-
mate the denominator of (4.100) by replace u by zero there. With these
simplifications we arrive to a gaussian integral which can be evaluated
analytically:

ˆ ∞
−∞

I1(u)du ≈
12i
√

3π exp
(
iL(6πk2+2k+ω(−12πω+i))

12πω−2i

)
(12πω+ i)

√
L(1 + 6iπω)

. (4.105)

The real part of (4.105) is

L
3
(
ω2 − k2)π− k
36π2ω2 + 1 . (4.106)

It is clear that if this value is positive (i.e. 3
(
ω2 − k2)π− k > 0) than the

L→∞ limit is divergent. Looking at the numerical result in Fig. 4.9 we
indeed see that the boundary of the shaded region is indeed a hyperbola.
Note, however, that the exact location of this hyperbola obtained from
expanding the exponent is slightly off.

It is interesting to note that if we are in the divergent region GL is
not convergent for large L but for some intermediate values it can still get
close to the quenched result Gquenched. To quantify this let us introduce
a relative “error” function

error(L) =

∣∣∣∣∣GL −GquenchedGquenched

∣∣∣∣∣ . (4.107)

In Fig. 4.10 we shows the behavior of this function for various points in
the ω− k plane. For a point which is outside the shaded region the error
approaches zero when L is large. For ω = 1, k = 0 which is inside the
divergent region the error is oscillating but there is an interval of L where
the amplitude of this oscillation has a minimum. If the frequency is small
(ω = 0.1), this amplitude is larger and there is minimum in that.

170



20 40 60 80 100
L

0.05

0.10

0.15

0.20

0.25

0.30

error
ω/λ2=1, k/λ2=0.5

20 40 60 80 100
L

0.2

0.4

0.6

0.8

1.0

1.2

error
ω/λ2=1, k/λ2=0

20 40 60 80 100
L

0.5

1.0

1.5

2.0

2.5

error
ω/λ2=0.1, k/λ2=0

Figure 4.10. The relative difference between GL and the quenched result as
a function of L for different frequencies and momenta. Left: for a point in the
(ω, k) plane which is outside of the shaded region of Fig. 4.9 the “error” goes to
zero for large L. Middle: inside the shaded region the error is oscillating with
diverging amplitude as L goes for large values. However, for larger values of ω
there is an intermediate range of L, where the relative error is smaller than 0.3.
Therefore the quenched approximation is qualitatively correct. Right: for small
ω the amplitude of the oscillation is become large.
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