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Chapter 3

Non-perturbative
emergence of non-Fermi
liquid behaviour in d = 2
quantum critical metals

3.1 Introduction

A complete classification of infrared universality classes for phases of quan-
tum matter at finite density is an open problem in condensed matter the-
ory. Experimentally, a number of fermionic states of matter that exhibit
breakdown of the quasiparticle Fermi-liquid paradigm [7] are known to ex-
ist, e.g. the strange metallic phase of unconventional superconductors [8]
or the non-Fermi liquid phase of graphene [9, 10]. Theoretically, however,
they are not understood. These phases are strongly interacting and this
prevents the use of most conventional approaches that rely on perturba-
tion theory.

One important scenario which is widely believed to cause the partial
destruction of Fermi surfaces and substantial change of transport prop-
erties of the electronic state in high-Tc compounds [11], heavy fermion
systems [12], and Mott insulators [13, 14] is the interaction of electronic
quasiparticles with gapless bosons. The underlying physics is the prox-
imity of a quantum critical point and these bosons are the protected
emergent gapless collective degrees of freedom [15, 5, 11]. The nature
of the fermion-boson interaction is determined by the precise details of
the quantum critical point — ferromagnetic [17] or antiferromagnetic [18]
spin density waves, Kondo impurities [19], etc; see [6] for a review.

Qualitatively the simplest model that should already capture the non-
trivial physics is the theory of spinless fermions at finite density interacting
with a massless scalar through a straightforward Yukawa coupling. The
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action of this theory is:

S =

ˆ
dxdydτ

[
ψ†
(
−∂τ +

∇2

2m + µ

)
ψ+

1
2 (∂τφ)

2 +
1
2 (∇φ)2 + λφψ†ψ

]
.

(3.1)

This model is believed to describe the Ising-nematic transition (see e.g.
[11, 20]), observed for example in Y Ba2Cu3Oy, There, the meaning of
the boson is the fluctuating order parameter related to the C4 → C2
symmetry breaking of the electronic correlations. In the ordered phase
the mass square of the boson is positive M2 > 0, while in the disordered
phase M2 < 0. For non-zero mass we obtain a regular Fermi-liquid at low
frequency. By choosing M = 0 we tune our theory to criticality where we
expect non-Fermi liquid behavior. The model is also closely related to the
theory of fermionic spinon excitations in a spin density wave minimally
coupled to U(1); at low energies only the transverse component of the
gauge field survives and acts as the scalar above (see e.g. [24]).

Eq. (3.1) and related models of finite density fermions coupled to
critical bosons were first studied in detail by Hertz [15] and Millis [5],
but their results do not apply in 2+1 dimensions. For d = 2 the coup-
ling λ is relevant [11], and can drive the system to a qualitatively new
groundstate. This novel non-Fermi liquid groundstate is out of range of
perturbation theory, and the fermion sign problem prevents us from using
efficient numerical techniques.

Our work continues on a recent revival of interest in determining this
groundstate. The crucial physics that is thought to control the non-Fermi
liquid behavior is the Landau damping: the quantum fermion-loop correc-
tions to the boson two-point correlation function/self-energy. By extend-
ing the model to an arbitrary number of fermions Nf and bosons Nb, one
can enhance this physics in a limit where the number of fermion flavors Nf

is much larger than the number of bosonic degrees of freedom (Nf � Nb);
it is easily seen at the one loop level that this enhances the “Landau-
damping” diagram in Fig. 3.1(b) compared to the self-energy Fig. 3.1(a).
In this Nf � Nb regime the problem of a Fermi surface coupled to the
Ising nematic and spin density wave order parameters has been considered
in [20, 21] and an extensive perturbative renormalization group analysis
has been performed up to three loops (higher order effects are investigated
in [22, 23]). However, as pointed out in these papers and [24], in the (vec-
tor) large Nf expansion one still needs to sum infinitely many diagrams.
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(a) (b)

Figure 3.1. One loop corrections to fermion (a) and boson (b) self-energies due
to Yukawa interaction. For a gapless boson (b) is the one loop contribution to
Landau damping: this contribution to the self-energy can dominate in the IR.
This term (b) is clearly proportional to the number of fermions Nf in contrast to
the one-loop correction to the fermion self-energy (a). In the limit Nf � Nb the
boson self-energy/Landau damping therefore dominates, whereas it is suppressed
in the opposite limit Nf � Nb.

(A well-defined expansion can be obtained by introducing an arbitrary dy-
namical critical exponent for the boson, zb, as an extra control parameter
[25].)

Here, however, we show that Landau damping is not essential to ob-
tain exotic non-Fermi liquid physics in the IR. We will study correlation
functions of the theory in the opposite limit Nf → 0; Nb = 1. This so-
called quenched limit discards all fermion loop contributions. As Nf � Nb

it shares common ground with recent matrix large N expansions of this
model where the boson is taken to transform in the adjoint of an SU(N)
and the fermions in the fundamental, see e.g. the studies [26–29], but the
strict quenched limit is more comprehensive. In the matrix large N limit
where Nf = N and Nb = N2 with N � 1, not only the diagrams with
fermion loops but also diagrams with crossed boson lines are suppressed
(Fig. 3.2), whereas these are kept in the quenched approximation. By
inspection of the associated momentum integral it is clear, however, that
crossed boson corrections are important contributions to the IR physics.
The IR of the quenched theory will therefore be different from the large
N matrix limit and perhaps closer to that of the full theory.

Physically the quenched approximation we study here means the fol-
lowing: as pointed out in [29] there is a distinct energy scale where Landau
damping becomes important. This is the scale where the fermion one-loop
correction proportional to Nf becomes comparable to the leading boson
dispersion — this happens at ELD ∼

√
λ2NfkF (see the end of section

3.2.1). By considering small Nf we are suppressing this scale and we are
zooming in on the energy regime directly above the Landau damping scale
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(a) (b) (c)︸ ︷︷ ︸
matrix large N︸ ︷︷ ︸

quenched approx.︸ ︷︷ ︸
exact self-energy

Same diagrams in double line notation:

Figure 3.2. The two-loop contributions to the fermion self-energy in theory
in Eq. (4.2). The quenched limit where Nf → 0 only suppresses the fermion
loop contribution Fig. (a), whereas matrix large N limits, where the boson is
a N ×N matrix φ j

i and the fermion a N -component vector ψi also suppress
crossed diagrams of type (b). This is evident in double line notation of the same
Feynman diagrams where the fermion is written as a single line (it has one index)
and the matrix-valued boson as two lines (it has two indices). Indices have to
match at interactions; each closed loop therefore corresponds to a sum over this
index and gives a weight N to the diagram. We then see that the crossed diagram
has no loops and is thus sub-dominant in N to other diagrams at the same order
in the coupling constant.
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ELD (see Fig. 3.3).1
The quenched approximation has an additional benefit. Under the as-

sumption that that the cut-off of the boson is much smaller than the Fermi
momentum (kF � ΛUV), the small Nf limit also allows us to consistently
focus on a small local patch (see Fig. 3.3) around the Fermi surface where
the fermionic excitations disperse linearly. The reason the curvature ef-
fects are negligible and the global structure of the Fermi surface becomes
irrelevant, is that their influence on the IR physics is also through Lan-
dau damping. If the Landau damping is not negligible, one does have
to either work with the full Fermi surface (i.e. in [26–29] for the case of
spherical Fermi surface) or at least consider the antipodal patch since the
dominant contribution is coming from there [20, 21]. Specifically, as we
discuss below, Landau damping depends both on the Fermi-surface curva-
ture κ ∼ 1

kF
and Nf as Nf/κ. After the quenched approximation Nf → 0

for fixed κ, we may subsequently take κ small as well.
The remarkable fact is that with these approximations the fermion

Green’s function can be determined exactly (directly in d = 2 spatial
dimensions). We achieve this by solving the differential equation for the
Green’s function in a background scalar field and then evaluating the
bosonic path integral. Similar functional techniques have been used in
high energy physics, for example in the study of high temperature QED
plasma [30], lattice QCD [31] or for solving the so-called Bloch-Nordsieck
model (which is QED in the quenched approximation) [32–34, 31, 35]. In
condensed matter context, the fact that the fermion spectral function is
exactly solvable in these limits was also observed for finite density fermions
coupled to a transverse gauge field by Khveshchenko and Stamp [36] and
independently by Ioffe, Lidsky, Altshuler and Millis [37, 38], though the
latter solve the model by bosonization.

At the technical level, the reason the spectral function can be solved
exactly in the quenched limit is that propagators of linearly dispersing
fermions (the local patch approximation) obey special identities. These
allow a rewriting of the loop expansion in such a way that it can be
resummed completely, or rather that it can be recast as the solution to
a tractable differential equation. We show this in section 3.2. Note, that
our method does not rely on renormalization group techniques. When we
are to define an RG flow, we have to choose a proper decimation scheme.

1There are other ways to suppress the Landau damping physics, e.g. by considering
large (UV) Fermi velocity, but we will not be considering these cases here.
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ELD ⇠
q

�2NfkF

~ quenched approximation

UV scale

Fermi scale

⇤UV

kF

~ Landau damped

Monday, June 27, 16

Figure 3.3. Left: The energy scales relevant to 2+1 dim. finite density fermions
coupled to a massless boson. We assume the theory is already truncated at a UV
cut-off ΛUV lower than the Fermi scale kF . The quenched Nf → 0 limit focuses
in on the intermediate energy regime right above the scale ELD ∼

√
λ2NfkF

where Landau damping becomes important.
Right: A small patch of the Fermi surface. In a small region near the Fermi
level the surface curvature is negligible. Fermionic excitations can acquire both
orthogonal kx and tangent ky momenta, but the latter does not contribute to the
kinetic energy of the excitation. In the Nf → 0 limit each patch decouples from
other parts of the Fermi surface.

In relativistic field theories, it is natural to define the cut-off in a way that
maintains the Lorentz invariance, while for the non-relativistic model of
critical metals the choice of the cut-off is ambiguous, see e.g. [26].

These exact results in quenched approximation then allow us to estab-
lish that the IR fermion physics, even in the absence of Landau damping,
is already that of a non-Fermi liquid. Specifically we show in section 3.3
that:

• The naive free Fermi surface breaks apart into three. A thin ex-
ternal shell of it splits apart from the rest, and we effectively have
three nested singular surfaces (see Fig. 3.4). This immediately fol-
lows from the fact that in a region around the original (free) Fermi
level the dispersion of fermion changes sign, dω

dkx
< 0. This can be

interpreted as a topological instability of the Fermi surface [22], as
the dispersion curve must cross the Fermi energy two more times
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Figure 3.4. The emergent Fermi surface structure at low energy in the 2+1
dimensional quenched planar patch quantum critical metal. Due to the inter-
actions the naive single Fermi surface is topologically unstable. The excita-
tions around the Fermi surfaces are not well-defined quasiparticles, instead they
have a continuous spectrum corresponding to a Green’s function of the type
G(ω, k) ∼ (ω − vk)−η with scaling dimensions η. The different values of η at
each of the emergent singular surfaces are mentioned.

to connect to the free UV theory. Luttinger’s theorem nevertheless
continues to hold.

• The Fermi-liquid quasiparticle pole is destroyed by the interaction
with the critical boson. Instead the spectrum is singular everywhere
on the dispersion curve. Specifically near the three Fermi surfaces
the singular Green’s function takes a scaling form with different scal-
ing dimensions. Around the original Fermi momentum the Green’s
function behaves as G(ω, kx) ∼ (ω+ ckx)−1/3, where c is the disper-
sion velocity of the boson; around the two split-off Fermi surfaces
behaves as G(ω, k) ∼ (ω− v∗kx)−1/2 with v∗ an emergent dispersion
velocity 0 < v∗ < vF .

We conclude this chapter with a brief outlook in section 4.6.
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3.2 2+1 dimensional quantum critical metals in
the patch approximation

As stated, the theory we study is that of Nf spinless fermionic flavours at
finite density minimally coupled to a critical (relativistically dispersing)
boson in 2 + 1 dimensions. It has the Euclideanized action

S =

ˆ
dxdydτ

[
ψ†j

(
−∂τ +

∇2

2m + µ

)
ψj +

1
2 (∂τφ)

2 +
1
2 (∇φ)2 + λφψ†jψ

j

]
(3.2)

with j = 1 . . . Nf ; we will show below that the rotation back to real time
has no ambiguities. Assuming that the theory is still weakly coupled
at scales much below the Fermi momentum kF , we may make a local ap-
proximation around a patch of the Fermi surface and truncate the fermion
kinetic term to (Fig. 3.3) [11]

SP =

ˆ
dxdydτ

[
ψ†j (−∂τ + iv∂x)ψ

j+ (3.3)

+
1
2 (∂τφ)

2 +
1
2 (∂xφ)

2 +
1
2 (∂yφ)

2 + λφψ†jψ
j
]

. (3.4)

Two comments are in order. (1) Though it is very well known that the
leading “Fermi surface curvature” correction to the kinetic term Lcurv =
−κψ†j∂2

yψ
j/2+ ... is a dangerously irrelevant operator important for fermion

loops even at low energies, in the Nf → 0 limit (where there are no fermion
loops) this operator is safely irrelevant and can be consistently neglected
for physics below the scale set by 1/κ. We will show here through exact
results that the minimal theory in Eq. (4.2) already has a very non-trivial
IR. We shall comment on the relevance of Lcurv to our results below. (2)
From a Wilsonian point of view, self-interactions of the boson should also
be included. We leave the effect of this term for future investigations and
take the action SP as given from here on and study it on its own.2

2Note that, although the kinetic term is effectively (1 + 1)-dimensional, the proper-
ties of fermionic field are still strongly dependent on the dimensionality of the system,
because the fermions interact with the (d+ 1)-dimensional boson. An instructive way
to think about the fermion dynamics in dimensions parallel to the Fermi surface, is to
Fourier transform in those directions. Because the kinetic term does not depend on
these directions, the parallel momenta act as additional global quantum numbers. E.g.
in d = 2, one therefore has an infinite set of one-dimensional fermionic subsystems,
labeled by ky. The Yukawa interaction with the bosons then describes the interactions
between these many one-dimensional subsystems.
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Throughout this chapter we are mostly interested in the case where the
characteristic speed c = 1 of the critical bosonic excitations is larger than
the Fermi velocity, c > v. This need not be the case in the UV. However,
as was recently argued [27, 29], the Fermi velocity decreases substantially
under the RG flow and because in our analysis we consider energies below
a cut-off ΛUV � kf , we take this condition for granted as a starting point.

In d = 2 spatial dimensions the Yukawa coupling is relevant — λ
has scaling dimension 1/2 — and the theory will flow to a new IR fixed
point. Rather than focusing on a complete understanding of the IR of the
action Eq. (4.2), we will focus only on understanding a single correlation
function: the fermion spectral function. Coupling the fermionic fields to
external sources

Z[J , J†] =
ˆ
DψjDψ†jDφ exp

(
−SP − J†jψ

j −ψ†jJ
j
)

, (3.5)

the fermionic integral is Gaussian and can be easily evaluated yielding

Z[J ] =

ˆ
Dφ exp

(
−Sb[φ]− Sdet[φ]−

ˆ
d3zd3z′J†i (z)G

i
j [φ](z; z′)J j(z′)

)
,

(3.6)

with

Sb =

ˆ
dxdydτ

[1
2 (∂τφ)

2 +
1
2 (∂xφ)

2 +
1
2 (∂yφ)

2
]

Sdet =

ˆ
dxdydτ

[
−NfTr lnG−1[φ]

]
(3.7)

and Gij [φ](z; z′) = δijG[φ](τ ,x, y; τ ′,x′, y′) is the fermionic propagator
in presence of a background bosonic field configuration. By definition it
satisfies

(−∂τ + iv∂x + λφ(τ ,x, y))G[φ](τ ,x, y; τ ′,x′, y′) = (3.8)
= δ(τ − τ ′)δ(x− x′)δ(y− y′)

Taking functional derivatives with respect to the sources, the full fermion
Green’s function is then given by a path integral over only the bosonic
field:

〈ψ†j (z)ψ
i(0)〉exact = δijG(z, z′) = δij

´
DφG[φ](z, z′)e−Sb[φ]−Sdet[φ]´

Dφ e−Sb[φ]−Sdet[φ]
. (3.9)
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3.2.1 The Nf = 0 quenched approximation and Landau
damping

We will evaluate this integral in the quenched or Bloch-Nordsieck approxi-
mation. This is a well known ad hoc approximation in lattice gauge theory
[31] and finite temperature QED [32–35] whereby all contributions from
Sdet are ignored: one sets the one-loop (fermion) determinant to one by
hand. In our context we can make this approximation precise. Eq. (3.7)
shows that Sdet is directly proportional to Nf , whereas no other terms
are. From Eq. (3.9) it is then clear that this approximation computes
the leading contribution to the full fermion Green’s function in the limit
Nf → 0. Note that we consider the Nf limit within correlation functions
and not directly in the partition function.

Diagrammatically this means that one considers only contributions to
the full Green’s functions that do not contain fermion loops. Fermion
loop corrections to the bosonic propagator, however, encode the physics
of Landau damping. As discussed, this is important in the deep infrared
and requires treatment of the dangerously irrelevant quadratic corrections
to the kinetic term Lcurv due to Fermi surface curvature. It is its Landau
damping contribution that redirects the RG flow. This can be seen from
the one-loop “polarization” correction Π to the boson-propagator at finite
Nf .

G−1
B = G−1

B0 + Π = q2
0 − q2

x − q2
y + Π (3.10)

The form of the polarization depends on the concrete form of the Fermi
surface. In case of a spherical Fermi surface with Fermi momentum kF its
form at the one-loop level for large kF equals

Π1S (q0, qx, qy) =
(2π)2 λ2kFNf

v

 |q0|√
q2

0 + v2(q2
x + q2

y)

 . (3.11)

The Fermi surface curvature κ is inversely proportional to the Fermi
momentum κ ∼ 1/kF , therefore the polarization is controlled by the
combination Nf/κ. One immediately sees that there is an energy scale
ELD ∼

√
λ2Nf/κ where the polarization becomes of order of the lead-

ing boson dispersion, where perturbation theory must break down and
the theory changes qualitatively.3 On the other hand, as we explained
in the introduction, above this scale ELD one ought to be able to neglect

3 One may worry that at higher loop order a different scale arises. It turns out,
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these contributions to the boson propagator [29, 39]. This is therefore the
regime captured by the Nf → 0 limit. Since this Nf → 0 limit tames the
dangerous nature of irrelevant Fermi surface curvature κ, this also justi-
fies the patch approximation and linearization of the fermion dispersion
relation. In this chapter we focus on this regime; we leave the effects of
Landau damping captured by the O(Nf ) corrections for Chapter 4.

The remarkable fact is that in this regime Gfull(z; z′) can be deter-
mined exactly, as we will now show. This is because the fermion two-point
function in the presence of a background field G[φ](z; z′) depends on the
background bosonic field exponentially. The overall path integral over φ
therefore remains Gaussian even in presence of the Yukawa interaction.
This gives us qualitatively new insight in the physics right above ELD.

3.2.2 The exact fermion Green’s function

First, we determine the fermion Green’s function in the presence of an
external boson field G[φ]. Rather then working in momentum space, it will
be much more convenient to work in position space. Note that because the
background scalar field φ(τ ,x, y) can be arbitrary, the fermionic Green’s
function G [φ] is not translationally symmetric. However, translational
invariance will be restored after evaluating the path integral over φ.

Rewriting the background dependent Green’s function as

G[φ] (τ1,x1, y1; τ2,x2, y2) =

G̃0 (τ1 − τ2,x1 − x2, y1 − y2) exp (−λV [φ] (τ1,x1, y1; τ2,x2, y2)) ,
(3.12)

with G̃0 the translationally invariant free Green’s function in real space

G̃0(τ ,x, y) = − i

2π
sgn(v)
x+ ivτ

δ(y) ≡ G0(τ ,x)δ(y), (3.13)

it is readily seen that the solution to the defining Eq. (3.8) is given by

V [φ] (τ1,x1, y1; τ2,x2, y2) =

ˆ
dxdydτ

[
G̃0 (τ1 − τ ,x1 − x, y1 − y)

−G̃0 (τ2 − τ ,x2 − x, y2 − y)
]
φ(τ ,x, y), (3.14)

however, that at higher order, contributions to Π are subleading in kF compared to the
one-loop result. This is because for linearized fermion dispersion (κ→ 0) the properly
symmetrized closed fermion loops with more than two fermion lines vanishes [54]. In
this chapter where we take the Nf/κ→ 0 limit we therefore use the unmodified boson
propagator GB0.
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To be more precise, we need to ensure that the background dependent
Green’s function (3.12) satisfies proper boundary conditions as well. We
did so by considering the problem at finite temperature and volume and
taking explicitly the continuum limit. The compact analog of (3.12) has to
satisfy antiperiodic boundary condition along the imaginary time direction
and periodic boundary condition along the spatial direction. This can be
achieved by taking the periodic free fermion Green’s function (G̃P0 ) in the
exponent Eq. 3.14 and the antiperiodic one (G̃AP0 ) in Eq. 3.12. In the
continuum limit, however, their functional forms are indistinguishable,
and we denote them with the same symbol (G̃0).

The insight is that the only dependence on φ in the background de-
pendent Green’s function is in the exponential factor V [φ] and that this
dependence is linear. In combination with the quenched Nf → 0 limit, the
path-integral over φ Eq. (3.9) needed to obtain the full Green’s function
is therefore Gaussian, and we can straightforwardly evaluate this to (3.9)
to obtain

G (τ1,x1, y1; 0) = G0 (τ1,x1) δ(y1) exp [I(τ1,x1; 0)] (3.15)

with

I(τ1,x1; 0) = λ2

2

ˆ
dxdτdx′dτ ′M (τ1 − τ ,x1 − x;−τ ,−x)· (3.16)

·GB(τ − τ ′,x− x′, 0)M(τ1 − τ ′,x1 − x′;−τ ,−x), (3.17)

where

M(τ1,x1; τ2,x2) = G0(τ1,x1)−G0(τ2,x2) , (3.18)

and GB(τ − τ ′,x− x′, y− y′) = GB(τ ,x, y; τ ′,x′, y′) equal to the transla-
tionally invariant free boson propagator defined by(

∂2
τ +∇2

)
GB(τ ,x, y; τ ′,x′, y′) = −δ(τ − τ ′)δ(x− x′)δ(y− y′) . (3.19)

Eq. (3.15) is a remarkable result. In the Nf → 0 quenched approxi-
mation the full fermion Green’s function still consists of a complicated set
of Feynman diagrams that are normally not resummable. In particular
at the two-loop level there are rainbow diagrams (Fig. 3.2(c)) and vertex-
corrections of self-energies (Fig. 3.2(b)) that do not readily combine to a
summable series. The reason why in this Nf → 0 planar patch theory
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we can do so, is the existence of the following multiplicative identity of
fermion propagators in the planar limit where the dynamics is effectively
1+1 dimensional.

G0(τ1,x1)G0(τ2,x2) = G0(τ1 + τ2,x1 + x2) (G0(τ1,x1) +G0(τ2,x2))
(3.20)

This identity follows directly from trivial equality

(G0(τ1,x1))
−1 + (G0(τ2,x2))

−1 = (G0(τ1 + τ2,x1 + x2))
−1, (3.21)

and has many corollary multiplicative identities for products of n > 2
planar fermion propagators. The usual perturbative series and the exact
result Eq. (3.15) may seem different but their equality can be proven to all
orders. We do so in Appendix 3.A, thereby unambiguously establishing
that this is the exact fermion two-point function in the planar theory in
the quenched approximation.

3.3 The physics of the planar quenched quantum
critical metal

We now show that this all order result for the fermion Green’s function,
albeit in the quenched Nf → 0 approximation, describes very special
physics. In this approximation the fermionic excitations constitute a con-
tinuous spectrum of excitations with power-law tails analogous to a criti-
cal theory; in particular, there are no distinct quasiparticle excitations.
Importantly, in the low energy limit this continuous spectrum centers at
three distinct momenta with different exponents for the power-law fall-off.

To exhibit this exotic physics from the exact Nf → 0 Green’s function
(3.15), we substitute the explicit form of the boson and fermion Green’s
functions and Fourier transform the internal integrals. For the exponent
I(τ ,x; 0) we then have:

I(τ ,x; 0) = λ2

8π3

ˆ
dωdkxdky

cos(ωτ − kxx)− 1
(iω− vkx)2(ω2 + k2

x + k2
y)

(3.22)
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This integral can be done analytically to obtain (for v2 6= 1)

I(τ ,x; 0) = λ2

8π(1− v2)

 (τ − ivx)√
1− v2

log

τ − ivx+
√
(1− v2) (τ2 + x2)

τ − ivx−
√
(1− v2) (τ2 + x2)


−2
√
τ2 + x2

;

(3.23)

for v2 = 1 one obtains

Iv2=1(τ ,x; 0) = λ2 (τ + i sgn(v)x)2

12π
√
τ2 + x2

. (3.24)

This gives us the all order Nf → 0 Green’s function in real space.

Analytically continuing in τ for 0 < v < 1 yields the retarded Green’s
function. The physics follows from Fourier transforming this real time
Green’s function to momentum space; this is described in Appendix 3.C.
The resulting retarded Green’s function in momentum space is given by

GR(ω, kx) =
1

ω− kxv+ λ2

4π
√

1−v2σ(ω, kx)
, (3.25)

where σ(ω, kx) is the root, within 0 < Im(σ) < iπ, of the equation

λ2

4π
√

1− v2
(sinh(σ)− σ cosh(σ)) + vω− kx − cosh(σ)(ω− kxv+ iε) = 0

(3.26)
A small positive parameter ε is introduced to identify the correct root
when it otherwise would be on the real axis, which is the case for

(kx + ω)

(
λ2 sinh

(
4π
√

1− v2(vkx − ω)
λ2

)
+ 4π

√
1− v2(vω− kx)

)
≥ 0.

(3.27)
Note that the center-combination vω − kx is correct; we are working in
units in which the boson-dispersion velocity c = 1. The units can be made
correct by restoring c.

Expression (4.4) together with (3.26) is the main technical result of the
chapter. We can now extract the insights into the spectrum of fermionic
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Figure 3.5. Fermionic spectral function for v = 0.5. It is identically zero in the
white region.

excitations around the ground state of the planar quenched metal. Fig.
3.5 plots the spectral function A(ω, kx) = −2ImGR(ω, kx) as a function
of the dimensionless combinations ω/λ2, kx/λ2, as λ is the only scale in
the problem. We immediately note that there is an obvious continuous
peak, corresponding to a clear excitation in the spectrum. This excitation
has the properties that:

• The dispersion relation is S-shaped in the infrared near kx = 0,
and now has three intersections with ω = 0. A truncation of the
theory to very low energies would therefore indicate three distinct
Fermi surfaces. Similar topological Fermi surface instabilities due
to electron interaction have been found e.g. in [40]. Curiously the
dispersion is nearly identical to the one-loop result.

• As has been demonstrated before by means of a perturbative renor-
malization group analysis [27], we see the speed of fermions v de-
creases as we go from high to low frequency/momentum. The dis-
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Figure 3.6. The dispersion relation (the zeros of G−1) for different v in the
interacting theory (solid line) and the free theory (dashed)

tinct S-shaped curve is outside of the regime of perturbation theory,
however. With the exact result we see that the emergent Fermi-
velocity at the innermost (kx = −k∗x < 0) and the outermost (kx =
k∗x > 0) Fermi surfaces is non-universal, but positive and depends
on the UV fermionic velocity v. These Fermi-surfaces are therefore
particle-like.
However, the reverse of direction due to the S-shape shows that the
Fermi velocity at the emergent Fermi-surface at the original Fermi-
momentum kx = 0 is now in the opposite direction and the surface
is therefore hole-like. Moreover, the value of the emergent Fermi-
velocity at kx = 0 is universal: it equals the boson-velocity vF = −1
at k = 0 (near the middle Fermi surface), independent of the UV
fermionic velocity v (Fig. 3.6). A way to perceive what happens is
that the hole-like excitations at kx = 0 become tied to the critical
boson which completely dominates the dynamics.

• The three emergent Fermi surfaces are symmetric around kx = 0;
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the hole-like one is at kx = 0 and as follows from Eq. (4.4) and
(3.26) the two particle-like ones are symmetrically arranged at ±k∗x.
The precise value of k∗x depends on the initial fermi velocity v. In the
planar approximation where the Fermi surface is infinite in extent,
this guarantees that Luttinger’s theorem holds: the original Fermi
surface (the region −∞ < kx < 0) has the same volume as the
emergent two regions enclosed by Fermi surfaces (−∞ < kx < −k∗x
and 0 < kx < k∗x).

• The spectral function, A(ω, kx) = −2ImGR(ω, kx), is identically
zero for the range of ω and kx whenever σ(ω, kx) is exactly real.
This is whenever Inequality (3.27) is satisfied. Such a large range of
zero-weight may seem to violate unitarity. As a consistency check,
however, it can be demonstrated that the Green’s function satisfies
the sum rule for all v (Appendix 3.D)

∞̂

−∞

dωA(ω, kx) = 2π, ∀kx (3.28)

• Importantly, the weight of the spectral function is infinite at all
points of the dispersion relation. Substituting the implicit dispersion
relation σ = 4π

√
1−v2

λ2 (ω − vkx) into the constraint Eq. (3.26), one
can verify this explicitly. The spectrum is therefore a continuum,
and not discrete. The excitation spectrum therefore resembles that
of a scale-invariant critical theory, rather than that of interacting
particles.

• Focusing on the low-energy regime, i.e. a narrow band in the spec-
tral function around ω = 0, we can determine the spectral weight
analytically around the three different Fermi-surfaces — the three
different crossings of the dispersion relation with ω = 0. Expanding
Eq. (3.26) around (ω, kx) = (0, 0) the retarded Greens’s function
behaves as

GR (ω, kx) = Cλ−4/3 |ω+ kx|−1/3 , (3.29)

with C = (1 + v)1/3 4π
(12π)1/3

[
i
√

3
2 −

1
2 sgn (ω+ k)

]
, whereas near the

outer Fermi surfaces (ω, kx) = (0,±k∗x) we have

GR (ω, kx) ∼ λ−1 (v∗kx − ω)−1/2 . (3.30)
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In each case the IR ω ' 0 spectral function thus has a clear power-
law behavior with a branch-cut singularity, but it has a different
exponent depending on the Fermi surface. Furthermore, at the kx =
0 Fermi surface the spectral function is symmetric around ω, while
in the other two it is zero for negative (positive) frequencies. This
is clearly visible in Fig. 3.5.

Interestingly, in all three cases the power-law scaling conforms with a
uniform scaling of energy and momentum corresponding to ground-
state with a dynamical critical exponent zf = 1 (consistent with
[26, 29]). This is in contrast to the expectation that the 2+1 di-
mensional quantum critical metal has a zf 6= 1 groundstate [11].
However, the role of Landau damping and Fermi surface curvature
is crucial in this expectation, and both are ignored in the planar
Nf = 0 approximation here.

All these insights are non-perturbative. This can be readily shown
by comparing our exact result to the one-loop perturbative answer (Fig.
3.7 and Fig. 3.8). The one-loop result is only a good approximation in
the UV, far away from the continuous set of excitations, i.e. the dimen-
sionful Yukawa coupling λ2 � |ω − vkx|. Perturbation theory therefore
fails to capture any of the distinct non-Fermi liquid phenomenology of
IR of the planar quenched model (with the exception of the shape of the
dispersion-curve). Despite the fact that this is not the true IR of the full
theory, where Landau damping must also be taken into account, for en-
ergies and temperatures slightly above ELD the full physics will resemble
this quenched critical non-Fermi-liquid result.

For completeness we can also compute the density of states and the
occupation number as a function of momentum. The former gives (see
Appendix 3.D)

N(ω) =

ˆ
dkx

A(ω, kx)
2π =

1
v

[
1 + θ(λ2 cosh−1 (v−1)−√1− v2

4π(1− v2)3/2 − |ω|)
]

.

(3.31)

The occupation number can be obtained from the spectral function by
using the formula

nkx =

ˆ 0

−∞
dωA(ω, kx)

2π (3.32)
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Figure 3.7. The real and the imaginary part of the Green’s function at the
middle Fermi surface (kx = 0, v = 0.5) as a function of ω (solid line), compared
with the corresponding one-loop result (dashed)
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Figure 3.8. The real and the imaginary part Green’s function at the outer
Fermi surface (kx = k∗x ≈ 0.4λ2, v = 0.5) as a function of ω (solid line), and
the one-loop truncated result (dashed). The spectral weight of the one-loop
approximation is concentrated to a δ-function whereas the spectral weight of the
full result is spread in the power-law singularity.
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This evaluates to (Appendix 3.D)

nkx =
1
π

arg
[

cosh(σ(ω = 0, kx/λ2, v))− v
v cosh−1(v)−

√
1− v2(i− 4π(1− v2)kx/λ2)

]
, (3.33)

where σ(ω, kx) is defined by (3.26). It is plotted in Fig. 3.9. We can see
the effect of the multiple Fermi surfaces as discontinuities in the deriva-
tive of the occupation number, even though the occupation number itself
is continuous. This is another way to see that the fermionic excitation
spectrum is that of a non-Fermi liquid. (Note that in the singular case of
vanishing UV Fermi velocity v = 0, the occupation number has different
asymptotics as kx → ±∞ than for any small but non-zero v. For v 6= 0
the occupation number approaches nkx = 1 at kx = −∞ and nkx = 0 at
kx =∞, as it should.)
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3.4 Conclusions

In this chapter we have shown that in the quenched Nf → 0 limit the
fermion Green’s function in a 2+1 dimensional quantum critical metal
can be determined exactly. The quenched limit neuters the dangerous
nature of dimensionally irrelevant Fermi surface corrections and allows us
to truncate to a linear dispersion relation for the fermions. This reduction
to an effective one-dimensional system allows an explicit solution to the
fermion Green’s function in the presence of a background scalar field. The
quenched Nf → 0 limit further allows us to compute the full background
scalar field path-integral when coupled minimally to the fermion.

Even though the quenched limit discards the physics of Landau damp-
ing, our result shows that the resulting physics is already very non-trivial.
There are three distinct low-energy excitations as opposed to the excita-
tions around a single Fermi surface of the free theory. Most importantly,
the sharp excitations of the free theory broaden into a power-law singu-
larity of the spectral function of the form G ∼ (ω− ε(kx))−η, with either
η = 1/2 or η = 1/3. The groundstate is a non-Fermi-liquid.

Beyond the quenched limit and including Nf corrections, i.e. fermion
loops, Landau damping effects become important. These effects will show
up below some energy scale ELD set by both Nf and the Fermi surface
curvature κ. Our model breaks down below this scale, but it is expected
to describe the physics above ELD. What our results show is that, qual-
itatively, the physics is that of a non-Fermi-liquid both above ELD and
below ELD [38], but in detail it will differ.

In order to access IR physics below ELD, the corrections in the Fermi
surface curvature and the number of fermionic flavours must be treated
systematically, but a (possible) shortcut deserves to be mentioned. Our
analytic determination of the exact fermionic Green’s analytically hinged
on the free fermion dispersion being linear, but the approach taken in this
chapter does not put any restrictions on the allowed form of the bosonic
propagator. This opens up the possibility to implement the Landau-
damping effects phenomenologically, just by modifying the background
bosonic Green’s function, and staying within the Gaussian approxima-
tion. This is the approach taken by Khveshchenko and Stamp [36] and
Altshuler, Lidsky, Ioffe and Millis [37, 38]. Comparing to vector large Nf

approaches [20, 21], it is not clear that this is sufficient to reliably capture
the IR. The Landau damping is not the only important effect. Interac-
tions of the boson field with itself beyond the Gaussian approximation
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must also be taken into account, e.g. our model needs to be enhanced by
a φ4 interaction to describe the Ising-nematic critical point [39].

The interesting question will be which non-Fermi liquid features are
retained and which change. The dynamical critical exponent zf below the
Landau damping scale is likely different from 1. Also, the splitting of the
Fermi surface seems to be a subtle phenomenon, and whether it remains
stable upon including fermionic loop corrections or going beyond the local
patch approximation requires a careful investigation. On the other hand,
the destruction of the quasi-particle poles and the fact that the spectrum
is singular along the full dispersion curve is expected to be a robust effect
that resembles that of a critical state. This is thought to be enhanced by
the Landau damping.

3.A Comparison with perturbation theory

We can expand (3.15) in the coupling constant. Although at first sight
this expansion seems different from the usual perturbative expansion, we
will show that in the case of zero fermi surface curvature they match at
any order if we do not include fermion loops.

The λ2n term in (3.15) is

Gn(z) =
G0(z)

2nn!

( ˆ
dx′dx′′dτ ′dτ ′′ [G0 (z − z′) +G0 (z

′)]GB (z′ − z′′)

[G0 (z − z′′) +G0 (z
′′)]

)n
,

(3.34)

where z = x+ ivτ . The usual perturbative expansion result can be ob-
tained by expanding

〈ψ(z)ψ(0)† exp(λφψ†ψ)〉 (3.35)

and evaluating by Wick contraction

Gpert
n (z) =

(2n− 1)!!
(2n)!

ˆ
dx1...dx2ndτ1...dτ2nI ·GB(x1 − x2, τ1 − τ2)...·

·GB(x2n−1 − x2n, τ2n−1 − τ2n),
(3.36)

116



I =
∑

(i1,..,i2n)∈S2n

G0 (z − zi1)G0 (zi1 − zi2) ...G0 (zi2n−1 − zi2n)G0 (zi2n)

(3.37)
Here Sn is the set of permutations of the numbers 1 through n. The

factor 1/(2n!) comes from the Taylor expansion of the exponential. By
summing over the different assignments of internal points we are explicitly
counting the different contractions of the fermion fields. There are however
still (2n− 1)!! possibilities to pair the boson fields (each pairing gives rise
to the same contribution after a change of variable in the integral). Since
(2n)!/(2n− 1)!! = n! · 2n the identity which remains to be proved, once
we have used our simple form of the free fermion Green’s function, is

∑
(i1,..,im)∈Sm

1
z − zi1

1
zi1 − zi2

... 1
zim−1 − zim

1
zim

= (3.38)

=
zm−1

(z − z1) (z − z2) ... (z − zm) z1...zm
. (3.39)

We need this for m = 2n, but the statement is true for odd m as well.
The identity can be proven by induction. The m = 1 case is easily

checked and given that the equality holds for m− 1 we have

∑
(i1,..,im)∈Sm

1
z − zi1

1
zi1 − zi2

... 1
zim−1 − zim

1
zim

= (3.40)

=
1

z1...zm

m∑
k=1

1
z − zk

zm−1
k

(zk − z1) (zk − z2) ... (zk − zm)
.

where the product in the last denominator excludes (zk − zk). The right
hand side of (3.39) and (3.40) are the same since they are both meromor-
phic functions of z with the same pole locations and residues and they
both approach 0 at ∞.

3.B Calculating the real-space fermion Green’s
function

To find the real-space Euclidean fermionic Green’s function we have to
evaluate the integral (3.22). In order to do that, it is convenient to firstly
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make a coordinate transformation of the following form

ω =
xk1 + τk2√
x2 + τ2

,

kx =
xk1 − τk2√
x2 + τ2

.
(3.41)

The integral in k2 can be then explicitly evaluated, giving
ˆ

dk1dky
λ2 (τ2 + x2) (cos

(
k1
√
τ2 + x2

)
− 1

)
8π2

√
k2

1 + k2
y

(
x
(√

k2
1 + k2

y + |k1|v
)
− iτ

(
v
√
k2

1 + k2
y + |k1|

))2 .

(3.42)

Now switching to polar coordinates, k1 = k cos θ, ky = k sin θ, and per-
forming the radial integral in k we obtain

I =

ˆ 2π

0
dθ λ2|sin(θ)|

(
τ2 + x2)3/2

16π(τv+ ix+ |sin(θ)|(ivx+ τ ))2 . (3.43)

Finally, integrating over θ for v2 6= 1 we derive

I =
λ2

8π(1− v2)

 (τ + ivx)√
1− v2

log

τ + ivx+
√
(1− v2) (τ2 + x2)

τ + ivx−
√
(1− v2) (τ2 + x2)


−2
√
τ2 + x2

. (3.44)

For the specific case v2 = 1 the integration should be done indepen-
dently and gives a simpler result

I = λ2 (τ − i sgn(v)x)2

12π
√
τ2 + x2

. (3.45)

To Fourier transform the corresponding Green’s function to momen-
tum space, we will need an analytical continuation. For 0 < v < 1, (3.15)
with exponent (3.44) can be analytically continued in τ to the complex
plane with two branch-cuts along parts of the imaginary axis

GE(x, τ ) = − i

2π
sgn(v)
x+ ivτ

·

·e
λ2

8π(1−v2)

(
(τ+ivx)√

1−v2

(
iπsgn(x)+2 tanh−1

(
τ+ivx√

(1−v2)(τ2+x2)

))
−2
√
τ2+x2

)
(3.46)
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3.C Fourier transforming the fermion Green’s func-
tion

The next step is to calculate the retarded fermionic Green’s function in
momentum space. We know that the time-ordered momentum space
Green’s function of the Lorentzian signature theory, GT (ω), is related
to the Green’s function of the Euclidean theory, GE(ω), by analytical
continuation

GT (ω, kx) = GE(ω(−i+ ε), kx). (3.47)
GT (ω, kx) is analytic below the real line in the left half plane and above
the real line in the right half plane. GE(ω, kx) is the Fourier transform
in a generalized sense of (3.46). The (rather severe) divergence at infinity
has to be regularized. Since the expression we found in Appendix 3.B per-
mitted an analytic continuation to all of the first and third quadrants, we
can continuously rotate the integration contour in the Fourier transform,
τ = t(i+ δ), if additionally there is a regulator analytic in the first and
third quadrant. We thus have

GT (ω, kx) =
ˆ

dt(i+ δ)dxei(ω(−i+ε)(i+δ)t−kxx)GE(t(i+ δ),x). (3.48)

From this we see that the real-space time-ordered Green’s function is given
by analytically continuing the real-space Green’s function of the Euclidean
theory

GT (t,x) = iGE(t(i+ δ),x). (3.49)
This slightly heuristic argument of analytical continuation in real space
has been verified to give the correct Green’s function up to one loop per-
turbation theory. The retarded Green’s function is given by

GR(ω, kx) =
ˆ

dtdxei(ωt−kxx)θ(t)(GT (t,x) +G∗T (−t,−x)). (3.50)

GT (t,x) is of the form t−1f1(x/t) exp(λ2tf2(x/t)). By performing a
change of variable from x to u = x/t we can perform the t integral.
For this we need a regulator exp(−εt). The integrand of the remaining
u integral has compact support, u ∈ [−1, 1]. We can perform a further
change of variables

σ = tanh−1


√
(1− v2)(1− u2)

1− uv

 . (3.51)
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This function maps [−1, v)→ R+ and (v, 1]→ R+, both bijectively. The
inverse thus has two branches that we need to integrate over, one for u < v
and one for u > v, and both integrals will be over R+. This change of
variable is consistent with the principal value integral required for the
singularity at u = v if the σ →∞ limits are performed at the same time.
The integrand obtained with this change of variable can be written as a
sum of four pieces

GR(ω, kx) =
ˆ ∞

0
dσ
[
F (σ) + F (−σ)−F (σ+ iπ)−F (−σ+ iπ)

]
, (3.52)

where F (σ) is defined as

F (σ) =
i

2π
sinh(σ)

λ2(sinh(σ)−σ cosh(σ))
4π
√

1−v2 + vω− kx − cosh(σ)(ω− kxv+ iε)
.

(3.53)
Since F (σ) is a meromorphic function and it approaches 0 as Re(σ) →
±∞, we can close the contour at ±∞ and obtain the integral as the residue
of F (σ)’s single pole in the strip 0 < Im(σ) < iπ,

GR(ω, kx) =
1

ω− kxv+ λ2

4π
√

1−v2σ(ω, kx) (3.54)

where σ(ω, kx) is the solution, within 0 < Im(σ) < iπ, of the equation

0 =
λ2

4π
√

1− v2
(sinh(σ)− σ cosh(σ)) + vω− kx − cosh(σ)(ω− vkx + iε).

(3.55)
The dispersion, ω(kx), given by the location of the singularity of

G(ω, kx) is no longer monotonic as in the free case. The singularity occurs
when the roots of (3.55) leave the real line. The dispersion can not be
found analytically in general but for the two points where dω/dkx = 0 we
have,

ω = ±λ2
√

1− v2 − cosh−1 (v−1)
4π(1− v2)3/2 ,

kx = ±λ2
√

1− v2 − v2 cosh−1 (v−1)
4πv(1− v2)3/2 .

(3.56)
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Figure 3.10. This figure shows a closed contour of integration for the sum rule
and an open contour for calculating the occupation number integral. v = .5.

3.D Integrals of the spectral function

Several important observables like the density of states or the occupation
number are defined by momentum space integrals of the spectral function
A(ω, k) = −2ImGR(ω, k). Despite the fact that we have only an implicit
expression for the Green’s function (3.54), these integrals can be relatively
easily evaluated by bringing the imaginary axis projection outside the
integral and then changing integration variable to σ. We then do not have
a closed form expression for the (now complex) contour of integration but
the integrand is greatly simplified.

For a fixed kx we have ω as a closed form function of σ. Making this
change of variable in integrals over ω gives the integrand

ˆ
C

dωA(ω, kx) = −2Im
(ˆ

σ(C)
dσ sinh(σ)
v− cosh(σ)

)
. (3.57)

The curve of integration, σ(C), is now defined through the implicit ex-
pression for σ in (3.55).
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First of all we check that the sum rule
´

dωA(ω, kx) = 2π is satisfied.
Taking the ω → ±∞ limits in (3.55) we see that σ approaches cosh−1(v)
in both limits and the curve is thus closed. See Fig. 3.10. To solve the
integral we thus just have to figure out what poles are within the contour.
It turns out that the single pole is the one at σ = cosh−1(v), which is on
the contour. This gives divergences but since the residue is real they are in
the real part and do not matter for the spectral density. The contribution
to the imaginary part is just 2πi times half the residue since the contour
is smooth at the pole. The result of the integral is then 2π as expected,
for all values of kx/λ2 and v.

The occupation number at zero temperature is given by

ρ(kx) =

ˆ 0

−∞

dω
2π A(ω, kx). (3.58)

Since this contour is not closed we find a primitive function defined along
the whole contour. The contribution from the point ω = 0 depends on
σ(ω = 0, kx, v) so we can not get a closed form expression in this case.
The contribution from ω → −∞ now depends on the direction of the limit
in the complex σ-plane since the point is only approached from one side.
Summing the contributions from the two endpoints of the integral gives

ρ(kx) =
1
π

arg
[

cosh(σ(ω = 0, kx/λ2, v))− v
v cosh−1(v)−

√
1− v2(i− 4π(1− v2)kx/λ2)

]
. (3.59)

From this we see that in the region where σ is real we actually have a
closed form expression for the occupation number.

The density of states, N(ω) =
´

dkxA(ω, kx) is similarly calculated
by changing variables to σ. For any ω there is a Kx such that σ(kx) is
real for all |kx| > Kx. The limits kx → ±∞ give σ → ± cosh−1(1/v) and
these are thus approached along the real line. Once again the integrand
has poles (residue 1/v) at these points and since we are only interested in
the imaginary part of the integral of the retarded Green’s function we will
only need to know the direction we approach these poles from. Finding a
primitive function is again trivial and in the end the result only depends
on the direction the poles are approached from. Since σ is real in the
limits, each pole is approached from either the left or the right. There are
three different cases, for

ω < −λ2 cosh−1 (v−1)−√1− v2

4π(1− v2)3/2 (3.60)
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Figure 3.11. Integration contours for calculating density of states. The inte-
grand and locations of the endpoints are independent of ω but since the integrand
has poles at the endpoints the direction of approach matters. The poles are al-
ways approached along the real axis and this figure shows the three possible
configurations. v = .5.

both poles are approached from the left. For

ω > λ2 cosh−1 (v−1)−√1− v2

4π(1− v2)3/2 (3.61)

both poles are approached from the right and for ω between these two
values the left pole is approached from the left and the right pole from the
right. See Fig. 3.11. Taking these different limits of the primitive function
gives

N(ω) =
1
v

[
1 + θ(λ2 cosh−1 (v−1)−√1− v2

4π(1− v2)3/2 − |ω|)
]

. (3.62)

The density of state takes two different values and we see that the ω
where it changes are exactly the points where there are two instead of one
solution in kx to the equation G−1(ω, kx) = 0.
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