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Chapter 1

Introduction

One of the most challenging area in theoretical physics is that of strongly
coupled many-body systems. Most of our knowledge and intuition come
from perturbative descriptions especially in quantum mechanical systems.
It is a priori rather remarkable that this seemingly limited tool can teach
us so much about nature and can describe a large number of phenomena
effectively. The modern understanding of this phenomenon is due to Wil-
son [1]. He introduced the idea of renormalization and universality which
can be thought of as a metatheory of physical laws. Its strength relies on
the fact that it is not necessary to refer closely to particular details of the
system we wish to study. Wilsonian universality tells us that even given
the unimaginably large number of possible interactions between the con-
stituents, its consequences can be put into three categories with respect
to its behavior at large distances. Most of the interactions turn out to
be irrelevant and their effects are negligible at large distances. Only for
a finite number of relevant couplings is the interaction important. In the
marginal case, the interaction is equaly important in the UV and in the
IR. Therefore, universality tells us that many systems behave perturba-
tively at low energy, despite the fact that the couplings may be large at
high energy.

There are also, however, systems (with relevant coupling), where we
do know the microscopic physics but we do not have an algorithm which
transforms a microscopic model to experimental predictions (which can
be tested and compared to the model). This happens both in high-, and
low-energy physics. The classical example is the theory of the strong force,
QCD. It is perturbative at high energy (above 300MeV ), therefore it is
possible to test the details of quark interaction in high-energy scattering
experiment. However, QCD at everyday scales (describing for example
the spectrum of mesons and baryons) is out of the range of applicability
of weak-coupling physics. We will see in this thesis that many examples
of such theories also exist in condensed matter physics. In these cases,
one knows the UV theory very well (electrons interacting with each other
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and with ions in the lattice via Coulomb interaction) but in some classes
of materials we cannot predict macroscopic measurable properties such as
conductivity or photoemission spectra in the IR regime (in which we are
mostly interested).

This calls for new approaches. In bosonic systems it is possible to use
Monte Carlo methods to calculate equilibrium quantities by considering
the discretised version of the relevant quantum field theory in hand in
imaginary time. The greatest achievements of this type of techniques is
the determination of the proton mass with 2% accuracy using a discretised
version of quantum chromodynamics [4]. It took, however, more than 20
years of research to achieve this goal and the power of a supercomputer due
to the huge computational demands of the simulation (both in terms of
CPU and memory). Even with their success, these numerical approaches
have limited range of applicability.

Achieving this precision is only possible in equilibrium and it is even
harder to simulate real time dynamics. For this, one would need to analyt-
ically continue the numerical data from imaginary to real time (from Mat-
subara frequencies to real frequencies) which would require the knowledge
of the spectrum of very large frequencies with high accuracy. A common
trick is to try to fit a physically motivated analytical expression (e.g. Pade
approximant) to the high frequency regime.

A far more fundamental problem arises in fermionic strongly coupled
system at finite density. These systems are especially hard to solve due to
the fermion sign problem [2]. It means that even in an equilibrium Monte-
Carlo simulation, the weight of each configuration is not a real, positive
number as in the bosonic case but complex which leads to oscillatory
behavior. It is in fact claimed that simulating fermionic systems is NP
hard [2, 3].

Because of these difficulties of applying numerical methods to quantum
many-body physics, investigating and improving analytical approaches is
of high importance. In Chapter 2-4 of this thesis, we will apply several
promising techniques to strongly correlated fermionic systems. To give
a background, in this chapter, we will introduce these systems together
with analytical, non-perturbative methods. Specifically, we will describe
large-N methods, conformal field theories and holography (AdS/CFT ).
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1.1 Phases of fermionic matter: Fermi and non-
Fermi liquids

1.1.1 Fermi liquids

Let us summarize first what are the most important characteristics of the
most common fermionic system for which we do have a successful descrip-
tion: the Fermi liquid. Landau’s Fermi liquid theory relies on the fact
that the interactions become weak (they are irrelevant in the Wilsonian
language) well below the scale of the Fermi momentum. This results in
an infinitely long lived spectrum of quasiparticles at the Fermi surface.
Though the values of explicit parameters (such as lifetime, quasiparticle
residue) vary among materials, the qualitative features are the same.

Both theoretically and experimentally a very relevant quantity (which
can be measured by ARPES) is the spectral function. This gives the
spectrum of excitations and is computed through the imaginary part of the
single particle Green’s function. In case of a Fermi liquid with momentum
near the Fermi surface, the form of the Green’s function is:

GR(k,ω) = Zk
ω− vF (k− kF ) + Σ(k,ω) +Gincoh(k,ω), (1.1)

with the self energy being quadratic in the frequency and temperature [17]
ΣFL(k,ω) = iCk

(
ω2 + T 2). At the Fermi surface (ω = 0), the lifetime of

the quasiparticle is infinite (at zero temperature), while for ω > 0, it stays
finite. The spectral function is given by

A(k,ω) = ImGR
2π , (1.2)

and it is plotted in Fig. 1.1 for a free Fermi gas and an interacting Fermi
liquid (at zero temperature). This quantity can be measured by inverse
photoemission experiments (ARPES) and is a valuable tool to confirm
either Fermi liquid behavior or deviation from it.

The occupation number (shown in Fig. 1.2) can be also calculated
from the spectral function

nk =

ˆ 0

−∞
dωA(k,ω). (1.3)

The quasiparticle residue Zk sets the magnitude of the discontinuity at
kF in the occupation number.
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Figure 1.1. Spectral function as a function of frequency for a fixed momentum
in the case of a a) free Fermi gas, b) interacting Fermi liquid (from [27]). The
quasiparticle nature of these states is manifest in the form of a delta-function
peak for the free Fermi gas. In case of the Fermi liquid, the peak broadens due
to the interactions.

Figure 1.2. Occupation number of a a) Fermi liquid, b) marginal Fermi liquid,
which we will introduce in Section 1.1.3 (from [27]).
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1.1.2 Conductivity of Fermi liquids

Let us study an other very relevant feature of a Fermi liquid: its resistivity.
Experiments show that the DC resistivity scales as T 2 (as in Fig. 1.4) at
low temperature (for a clean sample) when electron-electron scattering is
the dominant process. The form of the spectral function we saw in the
previous section and the temperature profile of the conductivity are not
independent. Let us see how these two important experimental quantities
are related to each other.

The frequency dependent conductivity is related to the retarded current-
current correlator (ΠR) according to the Kubo formula

σxx(ω) = − lim
~q→0

( 1
iω

ΠR
xx(ω, ~q)

)
. (1.4)

Here, the retarded quantity can be obtained from the Euclidean version
using the usual analytical continuation

ΠR(ω, ~q) = Π(iqn, ~q)|iqn→ω+iε (1.5)

where in our notation q = (iqn, ~q) indicate both frequency and momentum
dependence. As indicated we are interested in the diagonal part of the
conductivity tensor.

The diagonal part of Π is defined by

Πxx(q) = −T 〈Jx(q)Jx(−q)〉, (1.6)

with Jx(q) the momentum space current. Its form (depicted in Fig. 1.3)
can be deduced from the ψ+(x)∇ψ(x) real space expression:

Jx(q) ∼ T
∑
ikn

ˆ
ddk (2kx + qx)ψ

+(k)ψ(k+ q), (1.7)

where d is the number of space dimensions.
In general, in an interacting theory calculating (1.6) is difficult. For-

mally, there is an exact relation (Schwinger-Dyson equation) which con-
nects it with the Green’s function and three point vertex (Fig. 1.3):

Πxx(iqn, 0) = TΣikn

ˆ
ddk (2kx)2G

(
ikn + iqn,~k

)
G
(
ikn,~k

)
· (1.8)

· Γ
(
ikn + iqn, ikn;~k.~k

)
. (1.9)
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Figure 1.3. Left: Current vertex. Right: Schwinger-Dyson equation connecting
the current-current correlator with the exact Green’s function (double line) and
irreducible three-point vertex (from [46]).

We can express the retarded version of Π by ignoring the vertex corrections
(i.e. we set Γ to a constant) and using the substitution (1.5):

ΠR
xx(ω, 0) =

ˆ
ddk (2kx)2

ˆ ∞
−∞

dω1
2π

dω2
2π

f (ω1)− f (ω2)

ω1 − ω− ω2 − iε
A
(
ω1,~k

)
A
(
ω2,~k

)
,

(1.10)
where f(ω) is the Fermi-Dirac distribution. We have used the relation
between the spectral function and the (Euclidean) Green’s function

G
(
ikn,~k

)
=

ˆ ∞
−∞

dω

2π
A(ω,~k)
ikn − ω

, (1.11)

and the Matsubara sum

T
∑
ikn

1
ikn − ω

= f(ω). (1.12)

We can obtain the DC conductivity from (1.10) by evaluating one of
the frequency integral at infinitesimal ω

σDC ∼
ˆ
ddk (2kx)2 dω1

df (ω1)

dω1

(
A
(
0,~k

))2
. (1.13)

Ignoring the vertex correction is safe in case of the Fermi liquid (interaction
is irrelevant). Note, however that this approximation is questionable for
a system with relevant interactions.

One can simplify (1.13) by realizing that at low temperature, the
derivative of the Fermi-Dirac distribution is a delta-function. Further-
more, the spectral function is highly peaked around the Fermi surface and
in first approximation it only depends on k⊥, the distance between ~k and
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Figure 1.4. DC resistivity as a function of temperature in the case of a a) Fermi
liquid and b) non-Fermi liquid (from [28] and [29] respectively). The horizontal
line represents the estimated Mott-Ioffe-Regel bound.

the Fermi surface. We can therefore approximate the conductivity as

σDC ∼ kd+1
F

ˆ
dk⊥A (0, k⊥)2 . (1.14)

Using that ΣFL
(
0,~k

)
= C · iT 2 for a Fermi liquid, we arrive at the

formula

σDC ∼ kd+1
F

ˆ
dk⊥

Σ
′′2(

(vk⊥)
2 + Σ′′2

)2 = kd+1
F

ˆ
dk⊥

c · T 4(
(vk⊥)

2 + c2T 4
)2 .

(1.15)
By changing the integration variable k⊥ → T 2k⊥, we see that the tem-
perature scaling of the conductivity is σDC ∼ T 2. Strictly speaking, there
is an oversight in this computation. In a translationally invariant sys-
tem the DC conductivity is always infinite. A precise calculation that
includes weak translational symmetry breaking (by introducing a lattice
for example) gives the same answer, however.

1.1.3 Strongly correlated fermions: Non-Fermi liquids

In 1986, a remarkable discovery happened which was unexpected for most
of the physics community: the discovery of high-temperature supercon-
ductivity in cuprate systems, where the resistivity dropped to zero at 34K
[44, 43]. Soon, new compounds were found for which the critical temper-
ature was above the boiling temperature of liquid nitrogen (77K). Until
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then, the theory of superconductivity was believed to be completely de-
scribed with the BCS theory: phonon interaction mediated Cooper pairs
condense at low temperature. However, it predicts that the critical tem-
perature can not be higher than 30K. On further examination these new
types of material turned out to display a lot more unconventional features
other than its high critical temperature. A very notable surprising feature
is that at temperature above Tc the normal (not superconducting) phase
exhibits behavior which cannot be describe with Fermi liquid theory.

Many electronic materials have been discovered since which display un-
conventional behavior. What is common in these different systems is first
of all the layered structure (with CuO2-planes in the case of the cuprates).
This is believed to be the central cause of strongly coupled physics. This
also means that important features of the system are captured by models
in d = 2 spatial dimension. Secondly, these class of materials have a dis-
tinctive behavior as a function of a doping parameter x. These systems
have very rich phase diagram. A simplified version of it is shown in Fig.
1.5. For large doping we have a normal Fermi liquid phase with sharp
Fermi surface. In the other limit, for low doping the system is a Mott
insulator with antiferromagnetic properties (or other type of phase). The
most interesting regime is between these phases at intermediate doping.
For low temperature, this is the exotic superconducting phase discovered
in 1986.

The distinctive feature is that it is believed that under the supercon-
ducting dome there is a quantum critical point (QCP). The notion of a
quantum critical point is very general and is important in bosonic systems
as well. For a QCP to exist in a quantum system one needs a tunable pa-
rameter r in the Hamiltonian. This parameter can be for example an
external magnetic field, pressure or the doping fraction as we described
above in case of the cuprates. At zero temperature there can exist a criti-
cal value of this parameter rc such that the groundstate of the system for
r < rc can not be continously deformed into the groundstate for r > rc.
In other word, the system undergo a zero temperature phase transition as
one tune r. If this transition is second order at the critical point (r = rc),
all correlation function possess a scaling symmetry, i.e.

~x→ s~x, t→ szt, (1.16)

similarly to thermal phase transitions. The exponent z is called the dy-
namical critical exponent, and it tells us the different scaling between time
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and spatial variables. If z = 1, we are dealing with a relativistic system
with scaling symmetry. In that case the symmetry group is conjectured to
be always enhanced with the special conformal transformations, arriving
at a conformal field theory (CFT). We will study CFTs in more depth in
Section 1.2.2.

The quantum critical point although seems to be special just one point
in the phase diagram. However, if we consider now the system at finite
temperature, originated from the QCP the properties in a cone-like region
are still governed by the QCP. In this region therefore, the physics is
also universal. The cuprates (and also other types of strongly correlated
materials) exhibit such a cone. This region is the strange metallic phase
and it can be obtained by heating up the system near optimal doping
(see in Fig. 1.5). This is in contrast with conventional superconductors
described by BCS-theory, where the normal metallic phase is of a Landau
Fermi liquid. This is why it is believed that high Tc superconductivity is
governed by a QCP.

The strange metallic phase has linear-T resistivity (as opposed to the
T 2 resistivity of Fermi liquids) up to very high temperatures (as is depicted
in Fig. 1.4b). From this experimental fact (anomalously large resistivity
in the normal phase) alone one can conclude that non-quasiparticle type
of physics is at work. To see this, let us use the Drude formula to obtain a
resistivity bound for quasiparticle transport. In that case, the resistivity
can be expressed as a function of the scattering time τ

ρ =
m

ne2τ
, (1.17)

where n is the density of charge carriers. For a quasiparticle, τ can be
approximated by vF τ ∼ lMFP , where vF is the Fermi velocity and lMFP

is the mean free path. The resistivity is therefore inversely proportional
to the mean free path:

ρ ∼ kF
ne2 ·

1
lMFP

<
kF
ne2 ·

1
a

. (1.18)

However, the mean free path cannot be smaller than the lattice spacing of
the material and therefore, an upper bound exists (the Mott-Ioffe-Regel
bound) for the resistivity. If in a material, quasiparticle transport is at
work, its resistivity should saturate at high temperature.

A phenomenological description of the strange metallic phase can be
given in terms of the so-called marginal Fermi-liquid. In this approach
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Figure 1.5. Schematic phase diagram of the cuprates (from [31]).

one fits the ARPES data (at low temperature) with the Green’s function
of the form [26]:

GMFL(k,ω) = Z

vF (k− kF )− ω− Σ(ω)
, (1.19)

with

ΣMFL(ω) = λ

(
ω log

(
x

ωc

)
− iπ2x

)
, (1.20)

where x = max(|ω|,T ). This results in an occupation number as in Fig.
1.2 b). Note that the discontinuity disappears, signaling again that we
are not dealing with a gas of quasiparticles. Furthermore, as opposed to
the Fermi liquid the self energy is completely independent of the momen-
tum. We will see that this type of Green’s function can be obtained by
assuming that the fermions are interacting with a z = ∞ critical system
with large number of degrees of freedom. In this thesis we will meet other
forms of Green’s functions for non-Fermi liquids coming from different
considerations.

We can connect this form of Green’s function with the linear-T re-
sistivity using (1.14) with Im (ΣMFL) ∼ T and changing the integration
variable to k⊥ → Tk⊥. We emphasise, however, that this derivation was
based on the assumption that vertex-corrections can be neglected.
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Figure 1.6. Phase diagram of the Ising-nematic transition (from [11]).

1.1.4 Ising-nematic transitions: quantum critical boson cou-
pled to a Fermi surface

One can ask from a theoretical point of view, what kind of (effective)
fermionic Lagrangian can result to non-Fermi liquid behavior. A natural
attempt would be to introduce a four-fermion interaction between the
fermions. However, in d > 2 such an interaction is generically irrelevant
(with the well-known exception of BCS instability), therefore does not
destroy the quasiparticle properties near the Fermi surface and we are
still left with a Landau Fermi Liquid.

The simplest (continuum) model in which non-Fermi liquid behavior
appears involves a fluctuating massless bosonic order parameter. The ori-
gin of the order parameter can be different, but for concreteness we will
discuss the Ising-nematic transition observed for example in Y Ba2Cu3Oy
[30]. Here, in the unordered phase, the electronic correlations have C4
rotation symmetry originated from the underlying lattice. In the ordered
phase this rotation symmetry is spontaneously broken to C2 as it is de-
picted in Fig. 1.6.

The order parameter can be described with the Landau-Ginzburg rel-
ativistic action [11]

Sb =

ˆ
ddxdτ

[1
2
(
(∂τφ)

2 + (∇φ)2 + rφ2
)
+ uφ4

]
, (1.21)
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and the interaction with the fermions (we neglect the spin degrees of
freedom of the fermions) is

Sint ∼ λ
ˆ
dτ

ˆ
ddkddqd(k)φ(q)ψ+ (k+ q/2)ψ (k− q/2) . (1.22)

Of course, the free fermionic part of the action has the usual form of

Sf =

ˆ
dτ

ˆ
ddk

(2π)dψ
+(k) (∂τ + ε(k))ψ(k). (1.23)

In d = 2 dimensions, in which we are most interested, the coupling λ
is relevant. The parameter which controls the quantum phase transition
is the mass term r in the bosonic part. In the massive case r > 0 we can
integrate out the boson below the scale ω < r, therefore the shape of the
Fermi surface does not change. For r < 0 however φ acquire a non-zero
(uniform) expectation value 〈φ〉 6= 0 and its effect on the fermions is such
that the shape of the Fermi surface changes. To achieve the C2 symmetric
shape (as in Fig. 1.6) we can choose d(k) ∼ cos kx − cos ky. The most
interesting question however, is what happens to the system when we tune
r to criticality (r = 0).

Hertz-Millis approach

The model in the previous section was studied already in the 70’s by Hertz
[15]. His approach was to integrate out the fermions and derive an effective
action for the order parameter. After the evaluation of the fermionic path
integral one obtains for the partition function

Z =

ˆ
Dφ det

(
G−1 [φ]

)
e−Sb[φ] =

ˆ
Dφ exp (−Sb[φ]− Sdet [φ]) , (1.24)

where G−1 [φ] ∼ G−1
0 + λφ, with G0 being the free fermion propagator, is

the inverse of the fermion Green’s function in the presence of a scalar field
in real space - we assume d(k) = 1 for simplicity. The effective action
from the determinant can be formally written as

Sdet = −Tr logG−1 [φ] . (1.25)
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Figure 1.7. One-loop diagrams in the theory of fermions and quantum critical
bosons. On the left: boson polarization diagram (Landau damping). On the
right: fermion self energy correction.

This quantity has the usual non-local expansion in the coupling constant:

Tr logG−1[φ] ∼ λ2
ˆ
dd+1Xdd+1Y G0 (X − Y )2 φ (X)φ (Y ) (1.26)

+ λ3
ˆ
dd+1Xdd+1Y dd+1ZG0 (X − Y )G0 (Y −Z) ·

(1.27)
·G0 (Z −X)φ (X)φ (Y )φ (Z) + ..., (1.28)

involving closed fermion loops with n propagators which result in effective
interaction terms in the form of φn. Here, we used the simplified notation
X, Y and Z for the spatial coordinates and imaginary time variables. The
assumption of the Hertz-Milis approach is that the terms with n > 2 can
be neglected in the low frequency limit [15]. Therefore only the one-loop
Landau damping diagram (see the left figure in Fig. 1.7) contributes to
the boson correction. This has the form ΠLD = γ

∣∣ω
k

∣∣ in momentum space
[11].

We arrive therefore to the modified boson action after including the
one-loop polarization

SHertz =
1
2

ˆ
ddkdω

(2π)d+1

(
k2 + γ

∣∣∣∣ωk
∣∣∣∣+ r

)
|φ(k,ω)|2

+u

ˆ
ddxdτφ4(x, τ ).

The ω2 bare kinetic term was neglected based on that for small frequencies
the polarization (Landau damping) term dominates.

The quadratic part of this action is invariant under the scaling

~x→ s~x, t→ szt, φ→ φs1− d+z
2 (1.29)

if we choose z to be 3. Using this we can deduce that the dimension of
the quartic coupling u is dim[u] = 1− d. Therefore, under this scaling
the boson self-interaction is irrelevant for d > 1.
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However, the above argument of Hertz and Millis is questionable in
the case of d = 2 dimensions. It ignores how the boson-fermion coupling
λ scales, and in d = 2 it is relevant. In this case ignoring the terms with
n > 2 from (1.28) is no longer self-consistently justified. Therefore, more
careful analysis are needed for the problem. After the next section about
large-N methods we will list some newer approaches from the literature.
Then in Chapter 3 and 4 we will study the problem in detail in the so-
called quenched approximation.

1.2 Non-perturbative methods

d = 2 fermions coupled to a QCP is an example of an important phys-
ical systems where perturbative methods cannot be applied. Therefore
we need to seek alternative ways to deal with such problems. Non-
perturbative methods are only exact in case of very special theories. For
a reasonably generic case, one needs to use some form of approximation.
Therefore, it is important to be familiar with more than one technique
and to study the strongly coupled system at hand with several different
approaches, since they can shed light to different aspects of the physics.

In this chapter we will give a brief introduction of some of these meth-
ods, namely large-N theories, conformal field theory and finallyAdS/CFT
correspondence (and holography in general). It is far from the com-
plete list of important techniques, however. We must for example men-
tion Wilsonian-, and functional renormalization group approaches, Monte-
Carlo simulations and the use of dualities as the most successful ones. In-
tegrability, supersymmetry and localization are also very useful and well
studied methods with more limited applicability however than RG tech-
niques.

1.2.1 Large-N theories

When dealing with strongly coupled systems one can not rely on the small-
ness of the coupling constant. Therefore, to gain insight of the system,
it is possible to extend the theory with another parameter and use it as
a control parameter. One standard way is to take multiple copies of the
fields. This means adding additional degrees of freedom, therefore making
the theory more classical than the original one. Large-N extensions have
an important role in strongly coupled physics (both in condensed matter,
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and high energy physics) on its own and they are crucial ingredients of
the AdS/CFT correspondence as well.

Of course this extension can be implemented in different ways. We
will review here the vector large-N and the matrix large-N models.

Vector large-N models

For the sake of concreteness, let us consider the following O(N) bosonic
model:

S =

ˆ
ddxdt

[
−1

2∂µφi∂
µφi − m2

2 φiφ
i − λ

4!

(
φiφ

i
)2
]

, (1.30)

where i = 1, ...,N indicates the different species of bosons. This is called
a vector model because φ transforms in the fundamental represenation of
O(N). The coupling has the (naive) scaling dimension 3− d therefore it
is relevant in d = 2.

We can introduce a non-dynamical auxilary field σ by writing

Z =

ˆ
Dφ exp (−S) = c ·

ˆ
DφDσ exp (−Sψσ) , (1.31)

where c is a field-independent, irrelevant constant. The extended action
has the form

Sψσ =

ˆ
ddxdt

[
−1

2∂µφi∂
µφi − m2

2 φiφ
i +

6
λ
σ2 − σφiφi

]
(1.32)

Since in this form the φ integrals are gaussian, we can evaluate the path
integral explicitly

Z = c ·
ˆ
Dσ exp (−Sσ) , (1.33)

with
Sσ = N

ˆ
ddxdt

( 6
λ̃
σ2 +

i

2 log
(
−�+m2 + σ

))
, (1.34)

where we have rescaled the coupling constant λ̃ = Nλ.
If N is large, than the path integral is dominated by the saddle point

of Sσ and therefore, the theory can be analysed by semi-classical meth-
ods. Note, that we would arrive to similar results if we had started with
N species of fermions transforming in the fundamental representation of
O(N). We have seen therefore that introducing N can help solving the
original model.

15



Matrix large-N models

There is another way how one can introduce multiple similar degrees of
freedom: by considering matrix valued fields. This is very natural in high-
energy physics. The prime examples of the matrix valued large-N limit
is the study of QCD and non-Abelian gauge theories in general. There
the meaning of the parameter N there is the number of colors of the
quarks (Nc). The theory has a local SU(Nc) symmetry. The matter fields
(quarks) transform in the fundamental representation, while the force-
carriers (gluons) transforms in the adjoint matrix representation. The
(SU(N) invariant) action for the gauge-fields and quarks is

S =

ˆ
ddxdt

[
− 1

4g2
YM

Tr (FµνF
µν + ψ̄γµDµψ)

]
, (1.35)

where Dµ = ∂µ− iqAµ and the non-abelian field strength can be deduced
from the matrix valued gauge connection

Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ] . (1.36)

The matrix form of the vector potential can be written as Aµ = AaµTa
with Ta being the generators of SU(N).

However, the notion of matrix large-N limit is more general and can
be applied to scalar field theories as well. Let’s consider therefore the “φ4

type theory”:

S =
1
g2

ˆ
ddxdt

[
Tr
(
−∂µΦ+∂µΦ−m2Φ+Φ

)
− 1

4!
Tr
(
Φ+ΦΦ+Φ

)]
.

(1.37)
The dynamics of this theory is different from the vector large-N case. First
of all, note that the single trace structure of the interaction Tr (Φ+ΦΦ+Φ)
prevent us to introduce an auxilary field in the form of (1.32). If we had a
double trace type of interaction (Tr (Φ+Φ) Tr (Φ+Φ)) which is a differ-
ent way of generalizing, the method of the previous section would apply.
However, as we will see there is a notion of classicalisation here as well.
For simplicity we will consider the symmetry group to be U(N). As for
gauge theories, Φ transforms in the adjoint representation Φ→ U−1ΦU .

The interesting limit here was first introduced by t’Hooft [12]. He stud-
ied the special limit where one keeps the combination λ = g2N fixed while
taking N →∞. To determine the N dependence of Feynman diagrams it
is very useful to introduce the so-called double line notation where for the
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Figure 1.8. The propagator and verticies in a matrix theory with double line
notation. The propagator scales as 1/N , while each vertices as N1 (from [45]).

propagators we draw two lines representing the two indices of the field Φi
j

(see in Fig. 1.8). In this convention we can directly read off from (1.37)
what is the N dependence of a diagram. A propagator contributes with
g2 ∼ λ/N , while a vertex is proportional to N/λ. Furthermore, every
index loop comes with an additional factor of N . We see therefore that
the N dependence of a diagram is NV−P+L, where V , P and L stand for
the number of vertices, propagators and index loops respectively.

Note, that we can attach a topological meaning to this result. To
demonstrate this, we consider vacuum diagrams. Let associate to each
diagram a triangulation of a two dimensional manifold (as in Fig. 1.9)
where the propagators are the edges, and the interior of each index loops
are the faces. In this construction the exponent of the N dependence
is F −E + V = χ = 2− 2h (F , E and V are being the faces, edges and
vertices of the triangulation respectively), which is the Euler characteristic
of the triangulation with h the number of holes. χ = 2 (h = 0) corresponds
to a triangulation of a sphere, where h 6= 0 corresponds to a triangulation
of a torus with h holes. Therefore, the more complex the topology of a
diagram, the more subleading it is in terms of N .

The interesting quantities are correlation functions of U(N) invariant
(“gauge-invariant”) operators. If the symmetry is gauged then the physical
observables are only single- and multitrace combination of the elementary
fields: i.e. Tr

(
(Φ+Φ)

n), Tr (Φ+Φ) Tr (Φ+Φ). If the symmetry is not
gauged then the physical Hilbert space is larger but we will still call these
operators gauge-invariant and the consequences of the large-N limit will
be identical.

Let’s first examine the two-point function of a single trace operator
(we take O4 = Tr (Φ+ΦΦ+Φ) for concreteness). We can write it as a
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Figure 1.9. Two vacuum diagram in a matrix theory (with both cubic and
quartic coupling). The left diagrams scales as N2, while the right as N0. This
fact is also manifested in the fact that with the left diagram it is possible to
tringulate a sphere while the right one only can be drawn to a torus (from [45]).

sum of the disconnected and connected component.

〈O4O4〉 = 〈O4〉〈O4〉+ 〈O4O4〉c (1.38)

Using the double line notation it is easy to see that while both the con-
nected and the disconnected piece have the same number of vertices and
propagators (at leading order), the connected one has less index loops (see
in Fig. 1.10). Therefore if 〈O4〉 is non-vanishing, the two-pont function
is dominated by the disconnected component. However, this expectation
value is often zero (in a CFT it is always vanishing) and the leading behav-
ior of the correlation function is non-trivial. The connected component
scales as 〈O4O4〉c ∼ N2 and therefore it become infinite in the N → ∞
limit. To avoid this, one usually renormalizes the single-trace operators
of the theory such that its connected two-point function does not scale
with N (for example 1

NO4 = Õ4). After this normalization there is no
additional freedom in the definition of multi-trace operators.

In similar way we can show that the higher-point functions always
factorizes. To illustrate this, let us consider the four point function of
(the already properly normalized operator) O2 = 1

N Tr (Φ
+Φ):

〈O2O2O2O2〉 = 〈O2O2O2O2〉c + 〈O2O2〉c〈O2O2〉c + ... (1.39)
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Figure 1.10. The two-point function of a single-trace operator can be split into
a disconnected and a connected piece (from [8]). Both type of diagrams have the
same number of propagators and vertices but the connected diagrams have less
index loops, therefore they are subleading in N .

The disconnected piece (which can no longer vanish under any circum-
stances) scales as N0 but the connected one goes to zero in the large-N
limit.

〈O2O2O2O2〉c ∼ N−2 → 0. (1.40)

As we will see in the forthcoming sections, the vanishing of the non-trivial
component of higher point functions of single-trace operators in the large-
N limit has important consequences in AdS/CFT as well.

Large-N approaches to quantum critical fermions

Large-N type approaches are important in condensed matter physics as
well. As we have seen the quantum critical fermion model introduced in
Section 1.1.4 in d = 2 dimensions is strongly coupled. To analyse the
system (at least qualitatively) a usual approach is to generalize the theory
and introduce multiple species of bosons (Nb) and fermions (Nf ). One
then can hope for a non-perturbative solution in a certain limit (typically
large-N limit).

Since we have two parameters (Nb, Nf ), there are in principle a lot of
possible extension of the theory.

• One approach is to take the vector large-Nf limit while keeping
λ
√
Nf fixed [20, 21, 24]. In this case at one-loop the Landau damp-

ing (left of Fig. 1.7) or boson polarization diagram is O(N0
f ) but

the fermion self energy correction (right of Fig. 1.7) is O(N−1
f ).

This limit is extensively studied by renormalization group methods
up to four loops. However as pointed out in [24] it is questionable
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whether it is a controllable expansion is since there are infinitely
many diagrams with the same power of Nf .

• It is also possible to consider large N matrix theories with SU(N)
symmetry [26–29]. In this case the fermions transform in the funda-
mental representation (therefore there areNf = N number of them),
while the bosons transform in the adjoint representation (so there are
Nb = N2 of them). The scaling of the coupling is chosen to be such
that λ

√
N is fixed similarly to the previous case (and the t’Hooft

limit). Since Nb � Nf the Landau damping is subleading compare
to the fermion self energy. In the original problem (Nf = Nb = 1),
the Landau damping believed to be an important effect at low fre-
quencies. With this limit therefore one can qualitatively study the
physics above this scale. At higher order for Nf →∞ the so-called
rainbow diagrams give the dominant contributions to the self energy
as we will explain in Chapter 3.

1.2.2 Conformal field theories

We now turn our attention to conformal field theories which are another
type of important non-perturbative systems where we have (somewhat
better) mathematical control. We have seen that studying critical points
are crucial in understanding strongly correlated systems. In the Wilsonian
language, at a general point in the RG flow one can compute the β function
of the coupling (for example with momentum decimation)

β(g) = µ
∂g

∂µ
(1.41)

When this function vanishes β (g?) = 0 for some values (g∗) of the
coupling, the renormalization group flow ends in fixed point and the sys-
tem has the scaling symmetries (1.16). If the dynamical critical exponent
is unity, i.e. time and spatial dimensions scales at the same way (the sys-
tem is “relativistic”), these symmetries enhanced with the so-called special
conformal symmetry and the system is conformally invariant. In most of
the condensed matter applications, the vanishing β function is at only a
special value of the coupling (g?) so the critical point is isolated. We will
see however, that in certain supersymmetric theories it is possible, that
the β function vanishes for all values of the coupling.

This large symmetry group offers us another way to study strongly
correlated systems non-perturbatively. 1 + 1 dimensional theories turned
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out to be special in such a way that the symmetry group is even larger
than in d > 1 spatial dimensions. In some cases (in the so-called minimal
models and Liouville theory), this imposes such large constraints on the
correlation functions that the theory can be solved exactly via the confor-
mal bootstrap. This program was an active area of reasearch in the 70’s
and 80’s and recently it has received renewed attention with systems in
higher dimensions. We will focus here on d > 1, and study features which
are generic so we do not need to restrict ourselves to 1 + 1 dimension.

Since the strategy with these systems is to squeze out as much physics
as possible from the symmetry properties we should start with the algebra.
Let us study therefore the properties of this symmetry group (in d > 1)
which is realized in z = 1 critical points. For concreteness we will focus
here on the Euclidean case. In the following table we summarize the
(finite) coordinate transformations and its generators:

Transformation Generator
Translation x′µ = xµ + aµ Pµ = −i∂µ
Rotation x′µ =Mµ

ν x
ν Lµν = i (xµ∂ν − xν∂µ)

Dilatation x′µ = sxµ D = −ixµ∂µ
Special Conformal Transfor-
mation x′µ = xµ−bµx2

1−2b·x+b2x2

Kµ = −i
(
2xµxν∂ν − x2∂µ

)

These generators satisfy the following algebra

[D,Pµ] = iPµ (1.42)

[D,Kµ] = −iKµ (1.43)

[Kµ,Pν ] = 2i (ηµνD−Lµν) (1.44)

[Kρ,Lµν ] = i (ηρµKν − ηρνKµ) (1.45)

[Pρ,Lµν ] = i (ηρµPν − ηρνPµ) . (1.46)

Here ηµν = diag(1, ..., 1) is the Euclidean metric.
This group is called the conformal group and denoted by SO(d+ 2, 1).

It turns out that it is isomorphic to the group of Lorentz transformations
in d+ 3 dimensions. Note the somewhat unconventional notation for the
number of dimensions. Although we are in Euclidean signature, we still
denote the number of spacetime dimensions d+ 1 (d spatial dimensions
and an imaginary time dimension) to keep our notation consistent with
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the previous sections. In other words the conformal group in certain di-
mensions is always isometric to the Lorentz algebra with two extra di-
mensions (one space-like and one time-like). In the same manner, if our
CFT has Lorentzian signature, then its symmetry group is isometric to
SO(d+ 1, 2).

As in a (continuum) general quantum field theory one classifies states
with respect to the symmetry elements of the Poincare group (translations
and rotations), it is possible to introduce extra quantum numbers with the
additional symmetries. Under translation and rotations a scalar operator
transforms as

[Pµ,O(x)] = i∂µO(x), (1.47)

[Lµν ,O(x)] = −i (xµ∂ν − xν∂µ)O(x). (1.48)

In a CFT the most important quantum number is the scaling dimen-
sion of the operator. A trivial example of a CFT is a massless, free scalar
field. In this case the fundamental field φ is a primary operator (for d > 1)
and its ’naive’ dimension (the one we can deduce from the Lagrangian)
and ’true’ scaling dimension (the one appears in the propagator) are the
same. In an interacting theory, this is not the case however. Therefore we
will always mean the latter by scaling dimension. On the other hand there
are special operators for which the scaling dimension does not renormalize
even in a strongly interacting theory. In some examples this phenomenon
is highly specific to the concrete theory i.e. in supersymmetric theories
where the protection is due to supersymmetry. However, it is generic
that the energy momentum tensor Tµν and a global current Jµ possess
the ’naive’ dimensions due to their conservation laws. In d dimensions it
means ∆T = d+ 1, ∆J = d.

If the scaling dimension of O is ∆ at the fixed point, its commutator
with the dilatation operator is

[D,O(0)] = i∆O(0). (1.49)

We have one more generator: the one of the special conformal transfor-
mations. By definition, we call O a primary operator if its satisfies the
commutation relation

[Kµ,O(0)] = 0. (1.50)

There are also operators which have definite scaling quantum numbers
but are not primaries. For example, if O is primary, then its derivatives
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(for example ∂νO) are not. To see this, first we write the commutation
relations (1.49), (1.50) for a general point x:

[D,O(x)] = i (∆ + xµ∂µ)O(x), (1.51)

[Kµ,O(x)] = i
(
2xµ∆ + 2xµ (xρ∂ρ)− x2∂µ

)
O(x). (1.52)

If we differentiate these two properties, we can see that ∂νO satisfies (1.49)
with ∆∂O = ∆O+ 1. However, the commutator with Kµ is not of the form
of (1.50)

[Kµ, ∂νO(0)] = 2iηµν∆O(0) 6= 0. (1.53)

Derivatives of a primary are called descendants and together with the
primary operators they span the space of possible local operators. An im-
portant theorem of the field of conformal field theories is that states in the
theory are in one-to-one correspondance with local operators. Therefore
primary and descendant states also span the Hilbert space of the system.

The conformal symmetry has large implications for the form of corre-
lation function in a CFT. We can concentrate on correlation function of
primary operators, since every other quantities follows from them. For a
primary O1 and O2 with conformal dimension ∆1 and ∆2 the two point
function has the scaling form

〈O1(x)O2(y)〉 =
1

|x− y|2∆1
δ∆1,∆2 . (1.54)

The form of the three-point function of primary operators are also
fixed by the conformal symmetry. Let us consider the O1, O2 and O3
with dimensions ∆1, ∆2, ∆3. It turns out that the combinations

αijk =
∆i + ∆j − ∆k

2 , (1.55)

where i, j, k = 1, 2, 3, determines the powers in the form of the three-point
function in the following way:

〈O1 (x1)O2 (x2)O3 (x3)〉 =
λ123

(x12)
2α123 (x13)

2α132 (x23)
2α231

(1.56)

with xij = xi − xj .
Finally, for a four point function, conformal invariance cannot fix the

form of momentum dependence completely, but it still restricts it. Taking
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only one type of operator with conformal dimension ∆ one can arrive to
the formula

〈O (x1)O(x2)O (x3)O (x4)〉 =
1

(x12)
2∆ (x34)

2∆F (u, v), (1.57)

where F is an arbitrary function which depends in the conformal cross
ratios

u =
x2

12x
2
34

x2
13x

2
24

(1.58)

v =
x2

14x
2
23

x2
13x

2
24

. (1.59)

Large-N CFTs and generalized free field theory

So far we have introduced two type of systems in which one can use non-
perturbative methods: large-N theories and conformal field theories. In
the former one has a large number of degrees of freedom per spacetime
point which supress ’quantumness’ compare to system with a few degrees
of freedom. In the latter one can use the large symmetry group to gain
information about the correlation functions.

A natural question arises: what happens if we combine these two prop-
erties and consider large-N CFTs. We will focus on matrix type theories
since we have seen that they are richer in the large-N limit. These sys-
tems first appeared in the study of supersymmetric gauge theories where
due to supersymmtery (another symmetry which we can use for study-
ing strongly coupled physics) one can analyze RG flows and fixed point
structures non-perturbatively. We will review N = 4 super Yang-Mills
theory, the most symmetric field theory that exists in physics in Section
1.3. This is a very special system originally studied by string theorists
and mathematical physicsis but it has become relevant in a much wider
range of applications since the discovery of AdS/CFT and holography.

Let us put together what we know about correlation functions in a
large-N CFT. The most important objects here are single trace primary
operators. From large-N considerations we have seen that the higher-
point correlation functions at leading order are gaussian. The two-point
function, however, is not constrained and has the form of (1.54) with
non-trivial scaling dimensions ∆. Because of these properties (non-trivial
two-point but gaussian higher-point correlator) at infinite N we call these
theories generalized free field (or generalized mean field) theories.
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We also know more about the Hilbert space structure of the CFT at
large N . If O is a single trace primary with conformal dimension ∆, then
O2 is a multitrace primary with dimension 2∆. Taking another example, it
can be shown by differentiating (1.52) that ∂νOO−O∂νO is also primary
with dimension 2∆ + 1. In general we can construct a whole new tower of
primaries by sandwiching differential operators between two copies of O
with the schematic form of

[OO]n,l ∼ O
(←→
∂
)2n←→

∂ µ1 ...
←→
∂ µnO. (1.60)

Due to large-N its dimension is the naive ∆(n, l) = 2∆ + 2n+ l. However
at finite N this gets corrected leading to an anomalous dimension γ(n, l).
These operators will play a crucial role in the interpretation of the results
in Chapter 2.

1.3 AdS/CFT

In this section we will introduce probably the most exciting discovery of
theoretical physics which connects many research areas. AdS/CFT (or
holographic duality in general) is rooted in string theory. However, to
motivate its results we will use the knowledge we introduced in the previ-
ous sections. AdS/CFT states the equivalence between certain quantum
field theories in D dimensional flat space-time and quantum gravity in
curved background in one dimension higher. Therefore from a funda-
mental physics point of view it gives us the possibility to study quantum
gravity from perspective we are more familiar.

The AdS/CFT correspondence, however, has a very important feature
which makes it even more remarkable and interesting for a wider range of
audience. It is a weak-strong duality in the sense that when the gravity
side is weakly coupled, the field theory is strongly coupled. This means
that by studying weakly coupled gravitational systems we can deduce
properties of strongly correlated ones.

In practice there are limitations of this method. Most notably, we
understand this duality well for matrix large-N theories only. Moreover,
in the cases where we do know the two sides in details, the field theories
are close to QCD but very different from other areas of physics such as
the condensed matter systems. However, even if we do not know the exact
Lagrangian of the field theory (which in the case of strong coupling are
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much less informative than in perturbative physics) this method can be
very insightful about universal features.

Let us summarize the content of the original correspondance found
in 1997 by Juan Maldacena [5]. The field theory consist N = 4 super
Yang-Mills theory in four space-time dimensions. N denote the number
of generators of supersymmetry the system has. In flat space this corre-
sponds to the largest supersymmetry group. This is actually so restrictive
that it determines not only the total field content but also the interaction
structure of the theory. The fields are:

• Aµ non-Abelian gauge field of some gauge group (say SU(N))

• Four species of fermions ψa, where a = 1, .., 4 is the flavor index

• Six scalar fields Xi i = 1, ..., 6

The Lagrangian of the theory has the form

LSYM = − 1
4g2
YM

Tr

[
FµνF

µν +DµX
iDµXi + ψ

i
γµDµψ

i +
[
Xi,Xj

]2
+ ...

]
,

(1.61)
where ... indicates Yukawa type of interactions between the scalars and
fermions. These are necessary for supersymmetry.

This theory seems very complicated in terms of field content and in-
teractions. However, this complicated structure results a very important
simple observation. This theory has a vanishing β function for all value of
gYM . This feature has such important consequences in the properties of
physical observables such as scattering amplitudes that it is reasonable to
say that actually N = 4 SYM is one of the simplest quantum field theory
[40].

Maldacena conjectured that the theory above is equivalent to type IIB
string theory living in the spacetime of AdS5 × S5. Here S5 denotes the
five-dimensional sphere and AdS5 is an Anti-de-Sitter spacetime which
properties will be discussed shortly. This theory can be characterised by a
number of parameters. In string theory we have a length parameter which
describes the tension of the string (ls), and a coupling constant gs which is
the strength of the interaction between different strings. Additionally, the
AdS5 background has a length scale L. The connection of the parameters
between the two sides are:

4πgs = g2
YM =

λ

N
, (1.62)
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L

ls
= λ1/4, (1.63)

where λ = g2
YMN is the t’Hooft coupling of the N = 4 SYM theory.

This immediately shows two limits which can be taken in order to
obtain a tracktable duality. First of all the large-N limit λ� N suppresses
quantum gravity effects (which corresponds to small gs). Also, to work
with only supergravity fields (low energy mode of the string) instead of the
entire string spectrum then we can take L/ls large. This corresponds to
the large t’Hooft coupling limit in the field theory. Note, that since we do
not have a well established theory of non-perturbative strings, considering
large N is crucial. It is, however, in principle possible to move away from
the supergravity limit.

This prototype of holographic duality is very well tested in details. We
will see that scaling dimensions in the field theory side correspond to the
spectrum in the string theory. In the strongly coupled N = 4 SYM theory
there are special single trace operators, whose scaling dimensions can be
determined with the help of integrability. These have been compared to
the weakly coupled string theory spectrum and a perfect agreement was
found [39].

1.3.1 AdS spacetime

To present the more general content of the correspondence let us study
the structure of AdS spacetime. Specifically we will present two useful
sets of coordinates: the global coordinates and the Poincare patch. In the
former, the symmetries of the system are more manifest and it is useful
when one is studying general features of the duality. The latter, however,
is used more often in practical calculations and applications.

First, however let us make some coordinate independent remarks on
AdS. This spacetime is a solution of the vacuum Einstein’s equation with
negative cosmological constant

Rµν −
1
2gµν (R− 2Λ) = 0. (1.64)

By taking the trace of the equation (in Lorentzian signature) one can
see that the curvature (Ricci scalar) is constant throughout the entire
spacetime

R =
2D
D− 2Λ. (1.65)
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AdS has constant negative curvature and therefore it can be obtained
by embedding a hyperboloid in a D + 1 dimensional flat space with sig-
nature (−,−,+,+, ...)

X2
0 +X2

d+2 − Σd+1
i=1X

2
i = L2, (1.66)

where d = D − 2 is the number of spacelike directions in our original
spacetime and the AdS radius L is related to the Ricci curvature by

L2 = −D(D− 1)
R

. (1.67)

The solution of the constraint (1.66) can be parametrized in the following
way

X0 = L
cos τ
cos ρ ,

Xd+2 = L
sin τ
cos ρ ,

Xi = Lui tan ρ. (1.68)

Here τ ∈ (−∞,∞) is a timelike coordinate, ρ ∈ [0,π/2) is a spacelike com-
pact coordinate and ui i = 1, ..., d+ 1 are the component of a unitvector.
With these coordinates the AdS metric can be deduced from the induced
metric formula gab = ∂aX

µ∂bX
νη

(2)
µν , where η(2)µν is the flat space metric

with signature (-,-,+,+,...). The result is

ds2 =
L2

cos2 ρ

(
−dt2 + dρ2 + sin2 ρdΩ2

d

)
. (1.69)

This shows that AdS is conformally equivalent to a cylinder as in
Fig. 1.11. The global time coordinate runs parralel to the axis of the
cylinder while ρ is the radial coordinate. The conformal boundary is at
ρ = π/2. Note that although the coordinate ρ terminates at a finite
value, the boundary is still infinitely far away from an arbitrary point
with ρ < π/2 due to the conformal 1/ cos2 ρ factor in the metric.

An alternative way of parametrizing (part of) AdS space is with the
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Figure 1.11. AdS spacetime and its parametrization with global coordinates
and Poincare Patch coordinates in lorentzian signature. The shaded area indi-
cates the region what the Poincare Patch covers (from [8]).

Poincare coordinates (t, ~x, z):

X0 =
z

2

(
1 + L2 + ~x2 − t2

z2

)

Xd+2 =
L

z
t

Xi<d+1 =
L

z
xi

Xd+1 =
z

2

(
−1 + L2 − ~x2 + t2

z2

)
, (1.70)

where z ∈ (0,∞) is the radial coordinate and xi, t ∈ (−∞,∞) are very
similar to Cartesian coordinates in flat space. With these coordinates the
metric takes the form

ds2 =
L2

z2

(
−dt2 + dz2 + Σdi=1dx

2
i

)
. (1.71)

An often used form of the metric (1.71) uses instead of z the radial coor-
dinate we use r = L2/z:

ds2 =
r2

L2

(
−dt2 + d~x2

)
+
L2

r2 dr
2. (1.72)

In this parametrization, r =∞ is the position of the boundary.

29



It is important to note that in Lorentzian signature the Poincare patch
only covers a part of global AdS. This can be seen by expressing t from
(1.68) and (1.70)

t = L
sin τ

cos τ − ud+1 sin ρ .

The limit t→ ±∞ corresponds to the case where the denominator vanishes
which happens at finite value of τ .

The Euclidean version of the metric can be obtained by flipping the
sign of the timelike coordinate. The relation between the embedding co-
ordinates and the global coordinates are (1.68) with sin τ → sinh τ and
cos τ → cosh τ . Note also, that in this case the Poncare Patch covers the
whole AdS spacetime.

AdS spacetime has a boundary related to the limit ρ → π/2. This
limit can be approached however in different ways. If we let ρ→ π/2 by
keeping the other global coordinates (τ , Ω) fixed, we define a boundary
surface with the topology of a sphere SD−1. On the other hand, if we
let the Poincare coordinate z → 0 we arrive to a surface with flat metric
and topology. Of course this later scaling can be also done in the global
coordinates. To achive this, in the case of Euclidean signature we have to
take the limit ε→ 0

ρ =
π

2 − εe
−τ . (1.73)

In this case, the metric in the boundary surface is

ds2 =
1

cos2 ρ

(
dτ2 + sin2 ρdΩ2

)
→ e2τ

(
dτ2 + dΩ2

)
= dr2 + r2dΩ2,

(1.74)
where r = eτ . We obtain therefore the flat metric in polar coordinates.
The most important property ofAdSD spacetime is that its isometry group
(in Euclidean signature) is SO(D, 1). Therefore, the isometries of AdS
are in one-to-one correspondence with the symmetries of a CFT in lower
dimensions.

1.3.2 The dictionary

In the previous section we have already mentioned that the symmetries
of a CFT in flat space and the isometries of curved AdS space-time are
identical. This indicates that we have two different descriptions of the
same physics. We now turn to the detailed dictionary between the two
theories.
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Since the Hilbert space of the two system is identical according to the
conjecture, their partition function must be equal:

ZCFT (N) = ZAdS(N) =

ˆ
Dφ exp

(
iN2SAdS (φ)

)
. (1.75)

On the right-hand side φ is the set of all fields living in AdS. We explicitly
indicated the N dependence in the exponent. In case of large-N we can
approximate the path integral by its saddle point. In fact, it is the only
limit where our correspondence is tractable.

The most important dictionary element is the rule to compute corre-
lation functions for the field theory. This is called the Gubser-Klebanov-
Polyakov-Witten (GKPW) rule after its inventors [6, 7]. Strictly speak-
ing, this has a conjectural status (as everything else in holography) but it
passed numerous non-trivial tests.

First, let us recall that a correlation function in field theory can be
calculated by modifying the Lagrangian by adding source terms in the
form:

L(x)→ L(x)− i
∑
i

ji(x)Oi(x). (1.76)

Having done this, one can compute any correlation function by first cal-
culating the log of the partition function of the theory in the presence of
the external sources Z [Ji] and using the formula:

〈O1 (x1)O2 (x2) ...On (xn)〉 =
n∏
i=1

δ

δji (xi)
logZCFT |j=0. (1.77)

The question is how to generalize (1.75), or in other words what the
sources on the field theory side correspond to in the gravitational theory.
The answer turns out to be somewhat counterintuitive: the sources in the
field theory translate to a boundary condition for the fields φ in AdS.
(1.75) generalizes to

ZCFT [j] = 〈e
´
dd+1xj(x)O(x)〉CFT =

ˆ
DφeiN

2SAdS(φ(x,r))|φ(x,r=∞)=j(x) ,
(1.78)

where r is the radial coordinate with the property that the boundary is
at r = ∞. As we discussed, in practice we choose N to be large so that
we can approximate (1.78)ˆ
DφeiN

2SAdS(φ(x,r))|φ(x,r=∞)=j(x) ∼ eiN
2Son−shell(φ(x,r))|φ(x,r=∞)=j(x) . (1.79)
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To calculate a specific correlation function we need to go through the
following steps. First we solve the classical equation of motions with
general boundary conditions φ (∂Bulk). Then, this is substituted into SAdS
to obtain the on-shell action. Finally, according to (1.77), we differentiate
(1.79) with respect to the boundary conditions.

There is one important detail in the above procedure which we did
not touch upon. By considering the integral of the whole spacetime, the
on-shell action Son−shell turns out to be infinite. To cure this divergence,
we need to regularize our theory by cutting off the spacetime and place
the boundary at a finite rcutoff = ε−1 radius (instead having it at infin-
ity). This property of the gravitational theory is actually not a surprise.
The dual quantum field theory (as the majority of interacting QFTs) is
expected to have UV divergencies. These divergences can be shown to
translate to the infinite bulk action due to the infinite volume of AdS.
This is one of the clearest examples of an aspect of AdS/CFT known as
UV-IR duality because the cutoff rcutoff is an IR regulator in the bullk.
As in normal QFT the choice of regularization can be fixed by adding
counterterms to the bulk action. To address these questions, a systematic
treatment for a general class of spacetimes was developed under the name
of holographic renormalization [42].

As the most elementary example let us take a massive scalar field in
euclidean AdS with the action:

S =
1
2

ˆ
dd+1xdr

√
g
(
∂µφ∂

µφ+m2φ2
)

, (1.80)

By applying the GPKW rule to this case one obtains for the (boundary)
2-point function:

〈O (~x1)O (~x2)〉 =
C1

|~x1 − ~x2|2∆ , (1.81)

where C1 is a constant and the power ∆ denotes the combination

∆ =
d+ 1

2 +

√
(d+ 1)2

4 +m2L2. (1.82)

We can see that the result (1.81) has the scaling form (1.54) indicating
that the dual field theory is a CFT.

To further verify this we can check the three-point function. For this,
we need to introduce an interaction term in the bulk action:

Sint =

ˆ
dd+2x

√
g

(
λ

3!
φ3
)

. (1.83)
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The result of the holographic calculation has the form:

〈O (~x1)O (~x2)O (~x3)〉 =
C2

|~x1 − ~x2|∆ |~x1 − ~x3|∆ |~x2 − ~x3|∆
, (1.84)

with the coefficient C2 being proportional to the coupling λ. This is also
consistent with the CFT result (1.56). The relations (1.82) and (1.84) are
crucial results. They tell us how to relate the conformal dimensions and
OPE coefficients of an operator (which are boundary data) to the mass
and coupling parameters in the bulk. It is also important to note that the
above form of correlation functions implies that the operators in the CFT
which have dual fields in the bulk are single trace primary operators.

We will shortly see that the GPKW rule extends to correlation func-
tions of operators with more non-trivial index structure, such as
〈Tij (~x1) Jk (~x2) Jl (~x2)〉 (with T and J being the energy-momentum ten-
sor and the conserved current respectively). These were computed in e.g.
[41]. Again, the conformal symmetry allows one to determine the com-
plex structure of this correlator and the holographic result is in perfect
agreement.

As we mentioned, the GPKW rule is a bit counterintuitive. In many
cases, it effectively reduces to a simpler prescription that gives the same
results. Let us consider the correlation function of a scalar living in AdS
spacetime with the action (1.80) (plus possible interactions such as (1.83))
〈≺ (~x1, r1) ...≺ (~xn, rn)〉AdS . For example, the two point function (called
also the bulk-to-bulk propagator) is the Green’s function of the free equa-
tion of motion in AdS(
∇µ∇µ −m2

)
G (x1, r1;x2, r2) =

1
√
g
δd+1 (x1 − x2) δ (r1 − r2) . (1.85)

We can obtain a correlation function in the boundary theory by consider-
ing the corresponding bulk n-point function and taking the radial coordi-
nates r to the boundary while rescaling the expression it in the following
way:

〈O (~x1) ...O (~xn)〉 ∼ lim
r1,..,rn→∞

r∆
1 ...r∆

n〈≺ (~x1, r1) ...≺ (~xn, rn)〉AdS . (1.86)

Although this method is more intuitive (and in some situation can be
quicker way to calculate), the GPKW rule is easier to use if one consider
non-conformal theories such as models with finite temperature and density.
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1.3.3 Finite density and temperature

For most of the interesting systems in condensed matter physics the con-
formal symmetry is broken by several scales. The usefulness of AdS/CFT
in applications originates from the fact that the original correspondence
can be deformed in many ways. Specifically, we are often interested in
systems at finite temperature and chemical potential. Let us summarize
here how to incorporate these effects.

For the dual description of a chemical potential we need to first de-
scribe, how a U(1) global conserved current Jµ translates into the bulk
theory. Because it obeys the conservation law ∂µJ

µ = 0, its conformal
dimension is fixed to the canonical dimension which is ∆J = d as we men-
tioned in Section (1.2.2). Furthermore, in the bulk, the corresponding
field has to be a vector field. There is a slightly different analog of (1.82)
which relates the conformal dimension and the mass in case of the spin-1
field which dictates that our dual vector field has to be massless. In other
words it has to be invariant under gauge transformation so its action is
fixed to usual Maxwell term:

SA = − 1
4g2
F

ˆ
dd+1xdrFµνFµν , (1.87)

with Fµν = ∇µAν −∇νAµ. Interestingly, a global symmetry in the bound-
ary translates into a local symmetry in the bulk.

A chemical potential µ means that we deform our original theory by
δS = µQ = µ

´
dd+1xJ0(x). By looking at (1.78) with the specific de-

formation of j(x) = µ, O(x) = J0(x) we can see that solving our bulk
theory with the boundary condition A0(r → ∞) = µ corresponds to a
boundary theory at finite density.

We can identify the dual of the energy-momentum tensor by similar
logic. Its conformal dimension is also equal its canonical dimension ∆T =
d+ 1 as it is also a conserved current ∂µTµν = 0. This again results a
masslessness condition for the spin-2 dual tensor field. However, the only
consistent theory of interacting massless spin-2 fields is general relativity,
therefore the dual field must be the metric tensor gµν itself. As a result, by
studying the fluctuations of the metric (gravitational waves) in the bulk
one can gain information about the energy and momentum dynamics.

So far in our introduction to AdS/CFT we have been discussing zero
temperature physics. One of the most remarkable fact of AdS/CFT how
naturally it can encode finite temperature systems. This is done by chang-
ing the bulk geometry so that it includes black holes. To see this, let us
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write down the asymptotically AdS black hole solution (or black brane
more precisely) with planar horizon (which is similar to the Schwarzschild
solution in asymptotically flat space):

ds2 =
r2

L2

(
f(r)dτ2 + Σdi=1dx

2
i

)
+

L2

r2f(r)
dr2, (1.88)

with
f(r) = 1− rd+1

H

rd+1 , (1.89)

where rH is the position of the horizon of the black hole. The Hawking
temperature of this black hole can be determined by the following ar-
gument. The solution (1.88) is plagued by an unphysical conical defect
unless we make the (imaginary) time direction τ periodic (τ ∼ τ + β) with
the period

β =
4πL2

r2
Hf
′(rH)

=
4πL2

(d+ 1)rH
. (1.90)

In the boundary field theory the time direction is identified with τ in the
bulk and therefore it is also periodic. However, in thermal field theory
a periodic imaginary time means that our system is considered in a heat
bath with a temperature equal to the inverse of the time period:

T =
(d+ 1)rH

4πL2 . (1.91)

This temperature in the dual CFT is thus given by the Hawking tem-
perature of the bulk AdS black hole [11]. We can of course reverse this
thought process and for a specific temperature T we can choose a horizon
postition rH to describe the dual gravitational system.

Usually, we are interested in systems which are at finite temperature
and density at the same time. For this we need to combine the two
descriptions and this calls for the black hole solutions of the Einstein-
Maxwell action

SEM =

ˆ
dd+2x

√
g

[
1

16πG

(
R+

d(d+ 1)
L2

)
− 1

4g2
F

FµνF
µν

]
, (1.92)

with the boundary condition A0(r →∞) = µ. The solution for the metric
is still in the form of (1.88) but with the emblackening factor

fRN (r) = 1 + Q2

r2d −
M

rd+1 , (1.93)
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where Q and M are the charge and mass of the black hole. The gauge
field profile in this solution is

A0 = µ

(
1− rd−1

H

rd−1

)
. (1.94)

This black hole, the charged Reissner-Nordstrom (RN) black hole, has
two horizons in general but for us only the outer one (at position rH) has
importance. The relation between its position and the parameters of the
black hole can be determined from the condition fRN (rH) = 0:

M = rd+1
H +

Q2

rd−1
H

. (1.95)

For studying a boundary theory at temperature T and chemical potential
µ we need to choose the mass and the charge such that

T =
(d+ 1)rH

4πL2

(
1− (d− 1)Q2

(d+ 1)r2d
H

)
, (1.96)

µ =
gFQ

2cd
√
πGL2rd−1

0
, (1.97)

with

cd =

√
2(d− 1)

d
. (1.98)

This solution is especially interesting in the limit where the temper-
ature goes to zero but the chemical potential is fixed. In this extremal
limit the two separate horizons mentioned above merge and form a double
horizon despite the fact that we are in zero temperature. It means that
near the horizon the embleckening factor takes the form

fNH(r) = d(d+ 1) (r− rH)
2

r2
H

+ ... (1.99)

We can see the double zero of fNH(r) from this expression. If we define
new near horizon variables

L2 =
L√

d(d+ 1)
, (1.100)
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ζ =
L2

r− rH
(1.101)

then the near horizon metric can be written as

ds2 =
L2

2
ζ2

(
dτ2 + dζ2

)
+
r2
H

L2 Σdi=1dx
2
i . (1.102)

Comparing to the AdS metric in the coordinates (1.71) we recognize that
here the space time is a product of two dimensional Anti-de-Sitter space
and flat space resulting in the geometry of AdS2 ×Rd.

This is a remarkable result and has profound implication to the bound-
ary field theory. According to holography, the radial direction can be
thought of a flow of the renormalization group such that the UV of the
field theory is characterized by the near boundary geometry and the IR
is characterized by the near horizon geometry. Let us study the scaling
properties of the UV and IR limit. The UV geometry is invariant under
the relativistic, z = 1 scaling

τ → sτ , z → sz, x→ sx, (1.103)

while the IR AdS2 ×R2 is invariant under

τ → sτ , ζ → sζ, x→ x. (1.104)

Comparing this with the general form of (1.16) we can see that the IR of
the theory has the dynamical critical exponent of z =∞.

The extremal RN geometry therefore corresponds to a flow from a
CFT with z = 1 to a state with z = ∞ upon turning on a chemical
potential. This property is called “local quantum criticality” since only
the time direction has scaling behavior.

The question arises whether it is possible to construct holographic
examples with more general z. The answer turns out to be yes, but for
this we need to consider slightly more general models. The hint comes
from the string theoretical construction of AdS/CFT . Generally, in a
top-down construction there are numerous fields living in AdS but most
of them have large masses so we can ignore them. However, there is a
type of field which generically appears in the low-energy spectrum called
the dilaton field. It is a scalar similar to the example above but it has
unusual properties from a traditional field theory point of view. Namely it
has non-linear and non-minimal coupling to the gauge field. The extended
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theory is the “Einstein-Maxwell-dilaton” gravity [37, 36, 38, 35] with the
Lagrangian

L = R− 1
2 (∂µφ)

2 − Z(φ)

4 F 2 − V (φ). (1.105)

We can think of this as modification of the pure “Einstein-Maxwell” the-
ory that makes the gauge coupling dynamical gF ,eff = Z−1(φ). This
generalization is parametrized by two functions: V (φ) and Z(φ). Based
on string theory arguments these are usually approximated by the expo-
nential forms: V (φ) ∼ eα2φ and Z(φ) ∼ eα1φ.

After solving the Einstein’s equation for this type of theory, the IR
metric (near r = 0) can be written in the following form

ds2
EMD = r−2θ/d

(
r2zdτ2 + r2dx2

i +
dr2

r2

)
+ ..., (1.106)

with

θ =
d2α2

α1 + (d− 1)α2
, z = 1 + θ

d
+

2 (d(d− θ) + θ)2

d2(d− θ)α1
. (1.107)

We have a family of solution with two parameters. We do not touch upon
the parameter θ here which is called the hyperscaling violation exponent
and we set it to zero for our discussion (we choose α2 = 0). In this special
case the metric (1.106) is the so-called Lifshitz solution, which is invariant
under the scale transformation

τ → szτ , r → s−1r, x→ sx. (1.108)

This means that the boundary field theory has the dynamical critical
exponent z.

1.3.4 Holographic fermions

So far we have been investigated holographic models in which the bulk
action contains only bosonic fields. Now, we briefly study here the exciting
case where the bulk conatains fermions as well. In the field theory side
these correspond to fermionic single trace operators, e.g. OΨ ∼ Tr (φψ),
where φ and ψ are bosonic and fermionic fundamental fields. The latter
is quite natural from the perspective of the original correspondence since
there the field theory is supersymmetric.
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To study the properties of the fermion we need to incorporate the
Dirac term into the gravitational action

S =

ˆ
dd+2x

√
−g

[
1

16πG (R− 2Λ)− 1
4g2
F

FµνF
µν (1.109)

−iΨ̄
(
eµaΓa

(
∂µ +

1
4ωµbcΓ

bc − iqAµ
)
−m

)
Ψ
]

, (1.110)

where Γa are the gamma matrices, eµa is the so-called vielbein defined with
the help of the flat metric η as eµaeνbηab = gµν and ω is the spin connection
with the properties

∂µe
a
ν − Γσµνe

a
σ + ωaµνe

b
ν = 0. (1.111)

Here we have restricted ourself to a bulk action containing only the metric,
the gauge field and the fermion field. A natural generalization of this
involves the dilaton field introduced in the previous section.

Probe limit

Solving (1.110) in generality is a very hard task and one needs additional
approximations. Fermions are intrinsically quantum mechanical objects
and therefore in the large-N (semiclassical) limit their backreaction to the
geometry and gauge field is small. A natural simplification is to consider
the fermion dynamics in the fixed background determined by the other
fields. We have seen in Section 1.3.3 that this background is the charged
Reissner-Nordstrom (RN) black hole.

The most interesting quantity to compute is the Green’s function of
the fermionic operators in the boundary field theory. In general, this can
only be done numerically as in the first papers on this topic [10, 9, 34].
Later, the problem was reconsidered in a semi-analytical approach which
uses the AdS2 nature of the IR geometry [33, 32].

The key step in this method is to determine the IR AdS2 Green’s
function G which is just the fermion retarded two-point function obtained
using the AdS2 ×R2 background (1.102) (we restrict ourselves to d = 2
dimensions). It has the form

Gk(ω) = cke
iφkω2νk , (1.112)

where ck and φk are real, analytical function of the momenta k. The
z = ∞ local quantum critical scaling is manifest in the power law fre-
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quency dependence. The exponent νk depends on the momentum, chem-
ical potential and the parameters of the fermion (mass and charge):

νk =

√
2k2

µ2 +
m2

6 −
q2

3 . (1.113)

The full RN black hole geometry interpolates between the near horizon
AdS2×R2 and the near boundary AdS4 region. It turns out by matching
asymptotic expansions that the full Green’s function GR at low frequencies
ω � µ can be obtained from G:

GR (ω, k) =
b
(0)
+ + ωb

(1)
+ + Gk(ω)

(
b
(0)
− + ωb

(1)
−

)
a
(0)
+ + ωa

(1)
+ + Gk(ω)

(
a
(0)
− + ωa

(1)
−

) . (1.114)

We ignored in the formula (real) terms of order ω2. The coefficients a(i)± ,
b
(i)
± which can be determined numerically, are real functions of the mo-

mentum and the parameters of the model (chemical potential, mass and
charge of the fermion). The realness of these coefficients implies that the
spectral function is proportional to the AdS2 spectral function in the limit
ω → 0

A(ω, k) = ImGR(ω, k) ∼ ImGk(ω) + ..., (1.115)

provided a
(0)
+ 6= 0. This latter condition is satisfied when the mass to

charge ratio m/q is large.
However, when m/q is small the coefficient a(0)+ can vanish linearly

around a momenta kF : a(0)+ (k) = vF (k− kF ) + ... . In this case (1.114)
can be written near kF in the familiar form of (1.1):

GR (ω, k) ≈ Z

ω− vF (k− kF )− Σ (ω, k)
+ ..., (1.116)

with the self-energy being of the form of

Σ (ω, k) = − ckF
a(1) (kF )

eiφkω2νkF ∼ Gk(ω). (1.117)

The emergent parameters vF and Z are functions of a(i)± and b(i)± evaluated
at kF .

We recognize parts of an interacting Fermion system as in the begining
but also very different. The value of the power 2νkF is a very important
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in the behavior of our result. If νkF > 1/2, then at low frequencies the
linear bare term dominates over the self-energy. It means that the system
has well-defined quasiparticles whose lifetime however is different from
quasiparticles in on ordinary Landau type Fermi-liquid (which has Σ ∼
ω2). In the case of νkF < 1/2 we arrive to a novel non-Fermi liquid state
without quasiparticles. In the special (finetuned) case of νkF → 1/2 the
self-energy has the marginal Fermi-liquid form Σ ∼ ω logω we have seen
in formula (1.19). We see therefore that within this simple holographic
model one can get a whole zoo of fermionic behavior with or without Fermi
surfaces and quasiparticles, including models that we have only postulated
phenomenologically up to this point.

Semi-holography

The result (1.117) that the self-energy is proportional to the AdS2 prop-
agator has a very insightful interpretation. It tells us that we are deal-
ing with a nearly free fermion interacting with a matrix large-N local
quantum critical system. to see this let us consider the following effec-
tive theory [48]. Let χ be the nearly free fermion and ψ a fermionic
operator of a strongly coupled theory whose Green’s function has the of
〈ψψ〉 = G. We then couple χ and ψ with the following (sometimes called
semi-holographic) action:

S = S (Ψ) +

ˆ
dtddx

(
χ† (i∂t − ε (i∇) + µ)χ+ gχ†Ψ + gΨ†χ

)
. (1.118)

Here S (Ψ) is the action for the strongly coupled system. We have seen
that in the matrix large-N limit the higher-point correlators vanishes. In
this case the Dyson summation is exact for the χ fermion Green’s function

〈χ†χ〉 =
∑
n

gnG0 (GG0)
n =

1
G−1

0 + gG
, (1.119)

where G0 denotes the free Green’s function for the fermion χ. We obtained
therefore a result from our effective action which has the same form as the
fully holographic result.

One can qualitatively understand this structure by analysing in details
the properties of the fermion wavefunction in the RN background. The
region where the AdS4 and AdS2 ×R2 geometry meet can be thought
as a domain wall where the fermion wavefunction localizes an interacts
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weakly with its enviroment. However this fermion can tunnel to the near
horizon local critical region. The latter therefore acts as a heat bath for
the particle.

In this view of splitting the full system to a nearly free fermion and
a local quantum critical subsystem our holographic setup has similarities
to the Hertz-Milis type model in Section 1.1.4 used for the Ising-nematic
transition. There the fermions however was coupled to a z = 1 critical
system, namely to a massless scalar. In view of the disucssion there, the
virtues and pitfalls of using AdS/CFT to study such theories should be
clear. Nevertheless it is able to offer us novel insights into these compli-
cated systems.

Instabilities

The above mentioned solutions for holographic fermions in the probe limit
are very insightful but it turns out that in the parameter region where
Fermi surfaces are found instabilities occur. The exponent of the AdS2
Green’s function (1.113) already signals this instality for the small m/q
ratio. In that case νk become imaginary and G shows log-oscillatory be-
haviour. It means that to quantitatively study these holographic systems
with Fermi surfaces one needs to take into account the fermion backre-
action to the geometry (and to the other fields). Determining the new
geometry is a hard task and extra assumptions are needed to make the
theory tractable. One approach is to approximate the fermions as a fluid
and study the self-gravitating star-like objects and the geometry they have
created [14]. This approximation turns out to be good if the total charge
of the system Q is much larger than the induvidual charge q of a fermion.
The crucial difference compare to the RN black hole geometry is the ab-
sence of a horizon.

Another crude approach is to by hand cut off the AdS geometry at
some radial distance zW and consider the fermions in this background. In
this case we arrive by construction to a state which is an interacting CFT
in the UV and a free Fermi gas in the IR. We will review this approach in
the next chapter in details.

We end this section with table (1.1) summarizing our review of the
basics of AdS/CFT by indicating the main dictionary elements.
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Boundary field theory Bulk gravitational theory
Partition function Partition function
Scalar operator O Scalar field φ

Energy-momentum tensor
Tµν

Metric gµν

Current of a global symmetry
Jµ

Gauge field Aµ

Fermionic operator Oψ Dirac field ψ

Spin, charge of the operator Spin, charge of the field
Conformal dimension of the
operator

Mass of the field

Global space-time symmetry Isometry of the geometry
Global internal symmetry Local (gauge) symmetry
Finite temperature T Black hole with Hawking tem-

parature T
Chemical potential µ Boundary condition for the

gauge field A0(r →∞) = µ

RG flow Evolution in the radial direc-
tion

Table 1.1. (Non-complete) dictionary for holography.
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1.4 This thesis

In the rest of this thesis we apply these techniques to problems in strongly
correlated physics. Chapter 2, 3 and 4 are based on the research papers
[14–16] respectively.

In Chapter 2 we study pairing induced superconductivity in large N
strongly coupled systems at finite density using holographic methods de-
scribed in the previous section. The goal of this direction is to understand
the pairing instability occurring in non-Fermi liquids. We made the first
step by studying the pairing of a holographic Fermi liquid (Fermi liquid
which is an interacting CFT in the UV). To obtain this state, we introduce
an IR hardwall in the background AdS geometry. This results in a discrete
spectrum of fermions. Next, we add a dynamical order parameter field
and couple it to the fermions with (a relativistic extension of) a BCS type
interaction. We solve then (in fixed background) the scalar-gauge-fermion
system self-consistently and study the behavior of the order parameter
as a function of the relative scaling dimension of the scalar and fermion
fields. When translating the bulk physics to the boundary we find novel
results namely that the order parameter have resonances for specific scal-
ing dimensions. We speculate about the origin of these and point out that
operator mixing in the boundary field theory has an important role when
the bulk theory has interaction terms.

In Chapter 3 we study a Fermi surface coupled to a quantum critical
boson in d = 2 dimensions defined in Section (1.1.4). As we have seen, this
model has a relevant interaction between the boson order parameter and
the fermion, therefore perturbation theory is not applicable. Because of
the fermion sign problem, we cannot use numerical Monte-Carlo methods
either. Unlike previous studies which mostly use renormalization group
technique we investigate the problem with a different approach. We show
that when one excludes fermion loops (which is called the quenched ap-
proximation in high-energy physics) it is possible to compute the fermion
spectral function exactly using the linear nature of the fermion dispersion
relation near the Fermi surface. As we expect the resulting state is not
a Fermi liquid. Instead, the original Fermi surface splits and forms three
singularities at low energies where the Green’s function has power law
behavior with different exponents.

In Chapter 4 we continue our investigation of this Hertz-Millis quan-
tum critical metal by weakening our approximations and allow fermion
loops to be present. We show that if the Fermi surface curvature is small,
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in first approximation it is consistent to correct the boson two-point func-
tion only at one-loop order. With this modified propagator we carry out
a similar computation than in Chapter 3 to obtain the fermionic Green’s
function. In the UV/intermediate energy range the quenched approxima-
tion is still valid but at lower energies different behavior was found. Deep
in the IR the result is very similar to the RPA form using a strongly Lan-
dau damped boson. Therefore this calculation shows how to connect the
quenched result with the Landau damping dominated low energy regime.
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[15] B. Meszena, P. Säterskog, A. Bagrov and K. Schalm, “Non-
perturbative emergence of non-Fermi liquid behaviour in d = 2 quan-
tum critical metals,” Phys. Rev. B 94, 115134, [arXiv:1602.05360
[cond-mat.str-el]].
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