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5 CORRELATION METHOD FOR

WEAK LINE SEARCHES

5.1 Introduction

Spectral modeling of X-ray observations is a well-established field with well-established
techniques and tools. Current X-ray detectors have energy resolutions of order 100 eV,
however, which can cause fitting degeneracies between various features, such as between
various emission lines, or between the continuum and emission lines. This paper intro-
duces a proof-of-concept to distinguish spectral components by their scaling characteris-
tics between objects and environments.

A particular example, and the nominal science case on which we focus the devel-
opment, is the possibility that the Dark Matter may decay with a monochromatic X-ray
emission line as a result. This kind of Dark Matter has been well described, and covers a
wide range of particles. For example Essig et al. (2013) describes a number of these along
with current bounds, and more can be found in e.g. Abazajian et al. (2001); El Aisati et al.
(2014); Frandsen et al. (2014); Iakubovskyi (2014).

Currently, a candidate signal for decaying Dark Matter is being scrutinized thor-
oughly. It was discovered in spectra of galaxies and clusters of galaxies (Boyarsky et al.,
2014a; Bulbul et al., 2014a), and subsequently studied in many other objects (e.g., Bo-
yarsky et al., 2015; Jeltema & Profumo, 2015; Urban et al., 2015; Malyshev et al., 2014;
Ruchayskiy et al., 2015; Jeltema & Profumo, 2016; Bulbul et al., 2016a; Franse et al.,
2016, and references therein), although the final verdict remains due. The main approach
to establishing whether this interpretation is correct, is to compare the strength of this sig-
nal between objects, and seeing that the signal scales as the total Dark Matter mass inside
the field-of-view of the telescope over the distance to the object squared. However, the
signal strength has to be measured from spectral fits. In single objects, the low statistical
significance means that the flux has a large uncertainty and may be susceptible to spec-
tral model degeneracies. The statistics may be increased by stacking a number of objects
together and fitting to the resulting spectrum (Bulbul et al., 2014a). This has a number
of advantages, among which that instrumental effects smear out among the spectrum (as
long as the stacked sample has a large enough spread in redshifts). However, the spectrum
will be a superposition of varying environments, so that it becomes more difficult to relate
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model parameters to each other by simple physical relationships. In addition, a detection
in a stack precludes the possibility of comparing signal strength between the members of
the stack, although comparing the signal strength between different stacks is still possible.

Here we present a method to combine the statistical power of a stacked spectrum
with the ability to constrain the origin of a signal based on the scaling between the single
objects. Even though it would be impossible to measure the signal strength from each
object individually, we combine the limited number of X-ray events and the knowledge
of the mass and redshift of each object into a single estimator that reflects not only the
strength of a Dark Matter decay signal, but also whether or not its origin is actually Dark
Matter decay.

Scaling up this method to use as much archival data as possible, and introducing more
advanced simulations and minimization approaches along with the required computing
power, it is fully expected that this method can provide competitive limits on the Dark
Matter decay. With the loss of the Hitomi mission, our approach may be ideally suited to
testing the Dark Matter interpretation of the 3.5 keV signal in the future.

As a bonus, the method does not require background subtraction and can be made in-
sensitive to detector and mass calibration systematic effects under certain circumstances.
This method is also easily generalized and applied to any object or type of signal.

In Section 5.2 we will lay the mathematical groundwork for performing the correla-
tion, while Section 5.3 details how to use this formalism to perform a search for a Dark
Matter decay signal. We describe the data used and the practical implementation of the
method in Section 5.4 and discuss the error estimation in Section 5.5. Section 5.6 contains
the central results of our work, where a set of simulated signals is added to the real dataset,
and we report the success rate of recovering the simulated signals using our method. Our
conclusions are summarized in Section 5.7, and in Section 5.8 we discuss the performance
of our method and possible improvements. The appendices contain derivations of various
equations presented throughout the main text, the results of a few null tests, and a note on
the practical difference between a correlation and a weighted average and instructions on
how to incorporate weighting in the correlation.

5.2 Formalism

The formalism is adapted from Refregier et al. (1997), where the correlation w can be
expressed as

w =
〈NI〉
〈N〉〈I〉

− 1. (5.1)

Here, quantities N and I are being correlated over some field that is divided into cells,
and the averages indicated by 〈...〉 are performed over these cells. In this work we are
interested in possible Dark Matter signals, and therefore correlate the detected X-rays
(represented as I) with a catalog of galaxy groups that serve as a proxy for Dark Matter
mass overdensities. These are represented by N , but N can contain any (combination
of) physical characteristics of the galaxy groups. We call this the correlator throughout
this work. Of course, N can represent any other kind of object if so desired. The basic
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expressions for these are simply

〈NI〉 =
1

NC

NC∑
i=1

IiNi (5.2)

〈I〉 =
1

NC

NC∑
i=1

Ii (5.3)

〈N〉 =
1

NC

NC∑
i=1

Ni. (5.4)

with NC the number of cells in the field. If the two quantities are uncorrelated, their
averages become independent so that 〈NI〉 = 〈N〉〈I〉 and w = 0. For a correlation, w
becomes larger than 0, and smaller than 0 when an anti-correlation exists. Below, we will
extend this formalism in various ways, modifying the above expressions

As noted, the correlator N can be chosen to represent any kind of physical property
or object. In this work we are interested in galaxy groups as tracers of the Dark Mat-
ter density field, and will use various (combinations of) galaxy group properties as the
correlator.

The central methodology in this work is to perform the correlation in bins of spectral
energy and therefore in redshift-space. Essentially, it is possible to distinguish the various
components of the raw X-ray data by their spectral behaviour relative to the redshifts of
the physical objects that are being correlated with.

Since our interest is in the X-rays emitted by the galaxy groups, we work in the rest-
frames of each of those groups. When computing 〈NI〉, whenever a cell i contains a
galaxy group k, the entire X-ray spectrum of that cell Ii is blueshifted back to the group’s
redshift zk, represented as ζ(Ii, zk) or ζik for short. It is possible for a cell to contain
multiple groups at different redshifts. In that case, this blueshifting is performed once for
each group. The expression becomes

〈NI〉 =
1

NC

NC∑
i=1

Ng(i)∑
k=1

ζ(Ii, zk)Nk. (5.5)

with Ng(i) the number of groups in cell i.
The X-rays coming from the galaxy groups will indeed be redshifted (which is what

the ζik corrects for), but all backgrounds and foregrounds that are present in Ii will also
be shifted by ζik. This shift is random with respect to the fore-/backgrounds, a fact that
can be used to separate the galaxy group emission from those backgrounds. In order to
do that correctly, 〈I〉 should in a sense describe the average expected result of performing
these shifts on the backgrounds. In other words, 〈I〉 is the average X-ray spectrum of the
entire field, averaged in turn over all the shifts performed while calculating 〈NI〉.

In addition, the correlator Nk used in 〈NI〉 is effectively giving random weights to
the backgrounds in each cell that contains a group. Analogously to the the blueshifting
described above, therefore, the computation of 〈I〉 must also include the distribution of
the values of the correlator Nk in the group catalog. Specifically, during the calculation
of 〈NI〉, the redshifts and correlator values come in pairs (that is to say, the redshift of
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one group always goes along with the correlator value of the same group), so all in all, to
calculate 〈I〉, the distribution of (zk, Nk) must be taken into account. This gives

〈I〉 =
1

NC

NC∑
i=1

1∑Ng

l Nl

Ng∑
k=1

ζ(Ii, zk)Nk (5.6)

whereNg is the total number of groups in the catalog, the factor
∑Ng

l Nl accounts for the
proper normalization.

Note that without the blueshifting, it would not be required to write 〈I〉 explicitly
in terms of (sums involving) Nk, as the sum over the groups k would be independent
of the sum over the cells i, and the expression would be mathematically equivalent to
Equation 5.3. Due to the inclusion of ζik, the two sums mix and we get Equation 5.6.

5.2.1 (De)composition of the Correlation
If the true X-ray emission is know in terms of its components, we can predict what the
correlation should be for various choices of the correlator. We will actually use w〈I〉 as
this turns out to be the most useful choice. Below we give a few examples of this, with
derivations given in Appendix 5.A.1. With the expressions below in hand, we shall see
that it is possible to invert the process and obtain an estimate of the true X-ray emission
per component.

If the true emission is given by an intrinsic luminosity that is the same for each group
(Lgrp), the observed flux for each cell would be Ii = Lgrp/(4πD

2
lum,i). Using as corre-

lator then 1/(4πD2
lum), the correlation will result in

w〈I〉 = Lgrp

∑
k 1/D4

k∑
k 1/D2

k

(
1− 1

NC

)
(5.7)

where the sums run over all groups, and for convenience we write 4πD2
lum,k = D2

k.
Given the catalog and the known distances, it is possible to solve for Lgrp.

A more general case would be when the true emission is given by an arbitrary number
of components, each of which scales with a different power β of the group mass M like
so

Ii =
∑
β

LβM
β
i /D

2
i . (5.8)

If the correlator used is then Mγ/D2 (for an arbitrary γ), the resulting correlation is

wγ〈Iγ〉 =
∑
β

Lβ

∑
Mβ+γ/D4∑
Mγ/D2

(
1− 1

NC

)
≡
∑
β

LβAβγ (5.9)

where the sums run over all objects k in the catalog and the k subscripts on all powers of
M and D have been omitted for readability.

In this case, the masses and distances of the groups are known, the correlation wγ〈Iγ〉
is measured, but there are an arbitrary number of unknown Lβ’s (if at least the β’s are
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known, otherwise there are twice as many unknowns). It is still possible to solve for
these unknowns if the correlation is repeated for at least as many different values of γ
as there are unknowns. In that case, Equation 5.9 becomes a system of equations that
can be solved analytically if all the components can indeed be accurately described by
Equation 5.7 and the correlations is noise-free.

Of course, this is not the most general case imaginable, but the principle holds for any
model as long as it scales with known (for some value of known) properties of the objects
in the catalog. This principle also holds in the presence of foregrounds and backgrounds,
as these correlate out and do not contribute to w〈I〉 on average.

This is the central principle that we will use throughout this paper to search for a
Dark Matter decay signal. Of course the true emission of the galaxy groups may not be
perfectly described like in Equation 5.7 with a minimal set of components, nor will the
measurement of the correlation be noise free, so Section 5.3 will detail how to put the
principle into practice.

5.3 Methodology

In this section we will describe how to use the formalism from Section 5.2 to search for
Dark Matter decay-like signals in practice.

After choosing a suitable field, and having obtained the X-ray data and galaxy group
catalog appropriate for that field, a correlation can be computed given some correlator.
The choice of correlator should be related to the signal that is being looked for. In the
case of Dark Matter decay, the expected behaviour is Mγ/D2 with γ = 1, so that is a
good starting point.

In principle we could then compute some more correlations, for varying values of γ
for example. Then we could assume some model for the intrinsic correlated emission
(like Equation 5.7), and continue to solve the system of equations 5.9 using this set of
correlations (having different correlators each), and a choice of β’s. Regarding the search
for Dark Matter decay, then at least one of those β’s should be 1, and the objective is to
find a significant line-like contribution of the β = 1 component. This approach will be
discussed in Section 5.8.1, but turns out to be not very efficient to solve directly.

As we shall see in Section 5.6, even quite weak signals (in terms of signal-to-noise)
can sometimes be seen by eye in the correlation spectrum (the value of w as a function
of restframe energy). Therefore we shall use a quite naive estimator which will prove to
work remarkably well (also in Section 5.6) and takes advantage of the fact that we are
looking for a spectral line feature (although a generalized methodology will be described
later).

This simple estimator to test for the presence and strength of a decay line is to take
for a particular energy bin the difference between that bin’s w value, minus the average
of the neighboring bins, by way of continuum subtraction. We will refer to this estimator
as ∆w. In fact, to make use of Equation 5.9, we should actually use ∆(wγ〈Iγ〉), which
we will write as ∆γ for short.

Some arbitrariness is present in the choice on the width of the energy bin. Considering
the spectral resolution of the instrument, also the choice of which bins to use for the
‘signal region’ and which bins to use for the continuum estimate is somewhat arbitrary. If
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we call the energy bin under consideration the ‘central bin’; the central bin together with
potential extra bins that are considered to contain signal the ‘signal bins’; the bins that are
used to estimate the continuum ‘side bins’; and potentially some bins between the signal
bins and the side bins that may be ignored as ‘skipped bins’; then the estimator can be
written as

∆γ = ∆(wγ〈Iγ〉)

=

signal bins∑
b

wγ〈Iγ〉(Eb)−
Nsignal bins

Nside bins

side bins∑
s

wγ〈Iγ〉(Es) (5.10)

We will indicate the choice of which bins are used schematically for example like so

sskxXxkss

representing the bins in energy space, with X the central bin, x the remaining signal bins,
k skipped bins and s the side bins used for continuum subtraction. In words, we will say
this scheme uses 1 extra signal bin, 1 skipped bin and 2 side bins (since the scheme is
symmetric around the central bin, we refer only to one side).

A significant non-zero and positive value for ∆γ is an indicator for a line-like emission
feature. Below, we will describe how to use this estimator ∆γ to search for Dark Matter
decay-like signals. Four different approaches will be described, in order of increasing
complexity. The efficacy of each will be tested in Section 5.6.

• It is already possible to use ∆γ=1 to obtain Lβ=1 if one assumes that the excess is
caused by a Dark Matter decay-like signal, and solves Equation 5.9 like so; L1 =
∆1/A11. However, this carries no intrinsic information about the origin of the
excess.

• One way to test whether a Dark Matter decay may be the cause of non-zero and
positive ∆γ could be to take the set of computed correlations {∆γ} (for a set of
varying γ’s), and solve the resulting system of equations for Lβ=1, assuming a
single Dark Matter decay component.

∆1 = L1A11

∆2 = L1A12 (5.11)
...

∆n = L1A1n

Because real data contains noise, and because it is not a priori known whether
a single β = 1 component is the correct interpretation, this system of equations
probably does not have an perfect analytical solution. Instead, one should solve
this system using some fitting or optimization procedure. This difference between
solving the system of equations using the the set of γ’s, and only using γ = 1, is
that one may judge whether the Dark Matter decay is a consistent interpretation (ie.,
that assuming a single β = 1 component is correct) by requiring that the residuals
from the fitting are small.
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• Instead of just requiring small residuals from a given assumption (single β = 1
component), it is more convincing to let the optimization procedure find the best-fit
β for the obtained {∆γ}. So, still only a single component is assumed, but the
model now is two-parameter (β and Lβ) and the system of equations to be solved
is

∆1 = LβAβ1

∆2 = LβAβ2 (5.12)
...

∆n = LβAβn

• Lastly, it is of course possible to include more than a single component to describe
{∆γ}. The value of β for each component can be picked a priori, or be taken as a
free parameter. The number of different correlators used to solve this system should
be at least equal to the number of free parameters.

Having decided upon which of the above approaches to employ, one obtains the ‘de-
composition’ of the correlation (best-fit solution to Equation 5.9), one for each energy
bin. An example of such a ‘spectrum’ is given in Figure 5.1, for a simulated signal (see
Section 5.6). Such a figure can then be used to determine whether a Dark Matter decay
signal is present in the data. The requirements for that are; 1) a significant positive value
for the Lβ=1 component, 2) a best-fit β close to 1 (if β was a free parameter), 3) a high
goodness-of-fit and 4) a line-like shape in the ‘decomposition spectrum’ (with regards to
the instrument resolution).

5.4 Data and Implementation
To test and explore this method, we utilize the publicly available data and catalogs of
the COSMOS survey (Scoville et al., 2007). This field of roughly two square degrees has
been covered in most wavelength regimes, among with deep XMM-Newton exposures, and
multiple catalogs of Dark Matter tracers are available. The COSMOS field is relatively
empty of very bright objects in any wavelength and galactic foregrounds are low and
reasonably homogeneous.

The main Dark Matter tracer population that we use is the X-ray selected galaxy group
catalog by George et al. (2011). It contains 183 groups between redshifts of 0 and 1, which
have been detected by a spatial wavelet analysis on the X-ray mosaic and confirmed by
optical galaxy overdensities. This we refer to as the G11-sample. Another catalog is
also available, which is the optically selected group catalog by Knobel et al. (2012). It
enables us to check for systematics and in the case of a possible line candidate test the
robustness of that detection. This catalog uses spectroscopic redshift measurements and
a friend-of-friends algorithm to detect galaxy groups. It contains around 1500 groups of
which almost 200 have 5 or more spectroscopic members. We shall refer to this catalog
as the ‘20k’ sample, since it is based on the zCOSMOS spectroscopic survey (Lilly et al.,
2007) of nearly 20,000 redshifts. The zCOSMOS field is slightly smaller than the full
COSMOS field.
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Figure 5.1: How to determine if there’s a Dark Matter decay line in the data? Example plot of
simulated data showing the last step in the methodology (see text, Sections 5.2 and 5.3). All four re-
quirements are met: 1) a significant positive measured value for Lβ (top panel) reflecting the intrinsic
luminosity of the correlated excess emission; 2) a best-fit value of β consistent with 1 (middle panel),
reflecting that the correlated excess emission scales with mass to the power β = 1, as is required
of Dark Matter decay; 3) a sufficiently low relative RMS deviation (bottom panel) for this combina-
tion of best-fit values of Lβ and β; 4) a line-like profile in the top panel, since Dark Matter decay is
a monochromatic signal. Therefore it can be concluded that a Dark Matter decay signal is present
at 7.5 keV in this simulated data. This ‘decomposition spectrum’ is for the real COSMOS data (Sec-
tion 5.4) and a simulated injected signal (Section 5.6). The simulated signal is indeed at 7.5 keV and is
a very strong signal in order to demonstrate the method. Note that the ‘significant’ peak below 0.5 keV
is an artifact of the estimator ∆γ due to edge effects (the edge of the spectrum). Different colors and
symbols indicate data from the three different cameras (mos1, mos2 and pn instruments represented
in red and by diamonds, in blue and by triangles, and in green and by squares respectively). The error
bars in the top and middle panels indicate 68% bootstrap intervals (Section 5.5).
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We use all available XMM-Newton data of the COSMOS field (Hasinger et al., 2006)
that is available in the science archives. The standard SAS pipelines were used to reduce
the data and filter the data for flares using the espfilt procedure. Additional flare
filtering was performed based on in-FoV and out-FoV high energy count rates (De Luca
& Molendi, 2004), with observations having a ratio over 1.3 being excluded. The whole
COSMOS field was then divided into a square grid with 75” spacing, resulting in 5256
cells. This cell size was chosen to be somewhat larger than the XMM-Newton PSF. Using
the SAS procedures rmfgen and arfgen the effective area curves for each exposure
of each cell were generated. The different exposures of each cell were then combined
by weighting by the cleaned exposure time, effective area and usable solid angle (not all
pixels are usable). The data from the three instruments (MOS1, MOS2 and PN) and the
correlation products were kept separate throughout this work unless otherwise noted. The
main computational time sink in the entire method is the generation of rmf and arf files
for each exposure of each cell. This is the reason for using a flexible and multi-functional
square grid.

Obs ID Expsure (ks)
MOS1 MOS2 PN

0203360101 28.9 29.0 24.3
0203360201 15.1 15.1 10.6
0203360301 30.1 30.3 24.2
0203360401 27.2 26.9 20.2
0203360501 26.0 26.3 19.9
0203360601 23.1 22.1 18.4
0203360701 32.1 33.0 27.0
0203360801 14.1
0203360901 20.7 21.4 16.2
0203361001 14.0 13.6 10.6
0203361101 19.6 20.5 7.9
0203361201 25.3 25.0 21.6
0203361301 25.1 25.0 21.6
0203361401 30.5 29.8 26.1
0203361501 23.2 23.4 13.3
0203361701 30.0 29.8 25.1
0203361801 26.4 26.4 22.9
0203361901 22.9 23.2 19.5
0203362001 8.1 7.5 4.6
0203362101 59.0 58.2 51.2
0203362201 28.3 29.2 13.4
0302350101 12.9 14.0 11.5
0302350201 13.6 14.4 8.9
0302350401 7.3 7.7
0302350501 18.4 18.6 15.1
0302350601 17.0 16.4

Obs ID Expsure (ks)
MOS1 MOS2 PN

0302350701 17.8 18.2 14.7
0302350801 18.9 18.6 15.1
0302350901 7.5 8.1 3.4
0302351001 36.1 37.7 28.2
0302351101 15.1 15.5 11.5
0302351201 15.0 14.8 12.1
0302351301 18.6 18.5 15.3
0302351401 16.2 17.2 8.7
0302351501 14.1 13.9 9.5
0302351601 28.9 29.4 21.9
0302351701 19.0 18.3 14.3
0302351801 17.3 17.4 14.1
0302351901 11.4 10.5 7.5
0302352001 4.8 4.8 3.5
0302352201 7.6 7.8 3.9
0302352301 4.4 5.4 3.0
0302352401 18.8 18.4 15.0
0302352501 22.5 22.5 19.1
0302353001 2.7 2.7 2.1
0302353101 17.5 17.8 13.6
0302353201 11.3 11.0 7.6
0302353301 12.2 12.4 8.7
0302353401 8.8 9.5 5.1
0501170101 32.1 31.5 26.5
0501170201 29.8 30.2 22.0

Total 99.3 99.9 75.5

Table 5.1: Cleaned exposure times of the used XMM-COSMOS observations. Entries without expo-
sure listed were discarded for having a Fin-Fout ratio too high (see text).
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During development, it was found that the outer regions of the full COSMOS field
are not usable for the correlation. As metioned, the 20k-sample of galaxy groups was
only based on the zCOSMOS field. However, the G11-sample suffers from the reduced
sensitivity at the outsides of the COSMOS field, caused by the vignetting effect of XMM-
Newton. Even in the mosaic of all XMM-Newton exposures, the outermost regions of the
COSMOS field are only covered by the edges of the detector, which have lower effective
area. Including the full COSMOS field when correlating using the G11 sample caused
residual systematic effects for that reason. Throughout the rest of this work, we shall
consider only the zCOSMOS field, whose boundaries coincide well with the region of
lower sensitivity of the COSMOS X-ray mosaic.

For solving the system of equations described in Section 5.3, we employ the IDLmin-
imization routine TNMIN with a relative least-squares implementation. This procedure is
general enough to be able to solve the multi-component decompositions and allows lim-
iting the Lβ parameters to only positive values.

5.5 Error Estimation

Although it is possible to simply propagate in the usual way the Poisson noise through
the entire calculations of 〈NI〉, 〈I〉, and w or w〈I〉, it is likely that upon scaling up this
method the Poissonian noise becomes subdominant to for example chance alignments of
sources and features in the astrophysical or instrumental background. More importantly
maybe, is that the the wγ (and ∆γ) and their errors will be correlated between different
values for γ. Also the energy bins within a correlation spectrum will be correlated up to a
point due to the blueshifting procedure (and due to the instrumental spectral resolution).

For the purposes then of the (estimators) of the decomposition, the propagated Pois-
sonian noise is insufficient. The most efficient way to emulate all possible sources of
uncertainty at the same time is to perform a bootstrapping resampling of the dataset. We
split the zCOSMOS field into 9 evenly sized subfields. For each bootstrap iteration then, a
new realization of the zCOSMOS field is obtained by drawing randomly with replacement
9 subfields from the original 9. The entire algorithm is then applied to this new ‘survey’.

However, by resampling the field, the group catalog for each realisation will also be
different. The values of w and w〈I〉 depend on the group catalog, so that the spread in
values of w from the bootstrap does not represent an uncertainty in the ‘true’ value of w
since there is no one true value forw among the bootstrap realizations. The decomposition
in terms of Lβ does not depend on the group catalog in principle, as Lβ is an intrinsic
properties of the physical process. However, a resampling of the field can seriously affect
the significance of any correlated signal, if the resampled catalog contains many fewer,
less massive and/or higher redshift groups for example. Therefore, during bootstrapping
we only accept resamplings of the field if the resulting group catalog is within 0.02 dex
(about 5%) of the original group catalog in terms of

∑
kMk/D

2
k, which serves as a proxy

for the expected total received signal photons.
This constrained bootstrap provides an uncertainty interval for the decomposition, and

is now also suited for obtaining uncertainties on w and w〈I〉. The requirement threshold
on the similarity of bootstrapped group catalogs is somewhat arbitrary. Larger (more
lenient) thresholds will broaden the uncertainty interval (overestimating the error), while
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stricter requirements risk limiting the bootstrap process so it is no longer representative
of the actual errors, leading to underestimation of the errors. The threshold of 0.02 dex
mentioned above has been established by trial-and-error, it having been observed that after
applying an initial lenient threshold, only the lower end of the uncertainty interval was
affected, as would be expected. Stronger thresholds would however also start to reduce
the size of the uncertainty interval at the high end. In addition, at 0.02 dex, only 20% of
the resamplings comply with the threshold. Stronger thresholding would therefore likely
inhibit the proper working of the bootstrap. In Section 5.6 we compare the the bootstrap
interval to the scatter in simulated signal recovery, and find that the bootstrap interval is
larger than the scatter. This may indicate that the bootstrap errors are still overestimating
the errors due to other effects. In order to improve error estimation a suite of full end-
to-end simulations would be required, possibly supported by cosmological hydrodynamic
simulations and mock catalogs.

5.6 Recovery of Injected Decay Signals
To actually test the ability of this method to detect Dark Matter decay-like emission sig-
nals without the need to rely on spectral modeling, we inject into the real COSMOS
dataset several simulated Dark Matter decay signals. For this purpose, we utilize the
fakeit procedure, which creates a simulated event list given such information as the
telescope response and exposure, and input parameters for the simulated signal. In this
particular case, we seek to relate the simulated Dark Matter decay to actual Dark Matter
particle models, to place the performance into context. We compare to the sterile neutrino
model as discussed in e.g. Dodelson & Widrow (1994); Abazajian et al. (2001); Boyarsky
et al. (2009c), which for a given particle massmDM and mixing angle sin2(2θ) generates
a flux of

FDM = 3.9 · 10−7 ph

cm2s

[
sin2(2θ)

10−8

] [mDM

5keV

]4
×
[
DL(z = 0.1)

DL(z)

]2 [
M

1013M�

]
(5.13)

for an object at redshift z with mass M .
We then inject a simulated redshifted gaussian line into the data at each cell that

contains an object from the catalog, at E = mDM/2(z + 1) with a normalization as
given by the above equation and according to the mass and luminosity distance of the
object. The generated event list is concatenated to the original cell’s event list, and the
correlation can be computed again.

We simulated a number of decay signals at various values for mDM and sin2(2θ),
for the G11 sample of galaxy groups. Because the injected signal is known and we can
compare the pre-injection and post-injection correlation, we prove in Figure 5.2 that Equa-
tion 5.9 is correct. Here, we plot the input luminosity per unit mass against the luminosity
derived from the difference between pre- and post-injection w(γ = 1) and equation 5.9.
The correspondence is one-to-one up to the poissonian noise from the simulation.

For a few of these we show w as a function of restframe energy in Figure 5.3. Clearly,
the only difference between these cases is the addition of a line at a particular energy. The
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Figure 5.2: Practical proof of the validity of Equation 5.9 and therefore the formalism presented in
this work. The input intrinsic Dark Matter decay luminosity (in 1035 ph s−1 M�−1) to the simulation
compared to the change in correlation pre- and post-injection as expressed through Equation 5.9.
Note that this is not a realistic measurement (see Section 5.6 for that), but rather the response of the
correlation w to the injection of a fake signal. Excellent agreement confirms in practice the behaviour
of the formalism as described in Section 5.2, while the scatter is due to the randomized nature of
the fakeit simulation’s photon distributions. Colors indicate the 3 different detectors, while the error
bars in this case indicate the Poisson noise on the added signal.
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Figure 5.3: Example of the effect of a few simulated signals. Correlation as a function of energy for
the nominal zCOSMOS field, using the G11 sample, correlating with M/D2

lum using energy bins of
120 eV, in the top panel. Other panels are the same, but with a simulated line added for a particle with
the indicated mass (in keV, so the signal is at an energy half that mass). The SNR indicated is the
total amount of raw simulated photons divided by the square root of the raw total amount of photons
at the energy of injection. The range on the SNR indicated is spanned by the different cameras. Red,
blue and green lines refer to MOS1, MOS2, and PN cameras respectively. Error bars are Poissonian
propagated errors for indicative purposes only (see Section 5.5).
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Figure 5.4: The set of simulated signals used in Section 5.6, by input luminosity versus the signal-
to-noise ratio in terms in total injected signal photons to the square root of the total photons. The
three cameras are shown separately as the SNR differs between them. Points are coloured by the
Dark Matter particle mass used for that simulation, which is related to the injection restframe energy.
Most of the scatter is due to different background counts between cameras and between restframe
energies.

figure also indicates the signal-to-noise ratio of the injected signal, expressed as the total
amount of simulated line photons over the square root of the total amount of photons in
this energy bin as determined from a traditional stacking of the cells that contain groups
(taking the proper blueshifting to restframe into account). It can be seen that even low
SNR injected signals can be picked out by eye in some cases from the correlation.

The SNR for all injected signals is shown in Figure 5.4, separately for each instrument,
and as a function of the input luminosity. Our sample has three injected signals below an
SNR of 2, four signals between an SNR of 2 and 3, and SNR of 3 and higher starts at
input luminosities of about 5 · 1035 ph/s/M�. We draw attention to the fact that such
weak (low SNR) signals would be challenging to detect in traditional stacking analyses.
For reference, the simulated signal contains on average 1 photon per group at an SNR of
around 6 (there are 180 groups in the G11 sample up to a redshift of 1.0).

Below we will show the efficiency at which the injected simulated signals are recov-
ered using a variety of estimators as described in Section 5.3. For the remainder of this
section, all results shown are for the following choices for the computation of the correla-
tion and the estimator. We limit the field to that of the zCOSMOS sample, and use the full
G11 X-ray selected catalog of galaxy groups except for those that fall outside the zCOS-
MOS field. In the computation of the correlation we only use events detected at an energy
greater than 200 eV and less than 10 keV, and use energy bins (in restframe) of 50 eV.
The correlator used is Mγ/D2 with {γ} = {0, 0.25, 0.75, 1.0, 1.25, 1.75, 2.25}, ie., we
obtain a set of 7 correlations for different values of γ. The estimator ∆γ is computed as
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per Section 5.3, using 2 extra signal bins, 2 skipped bins and 3 side bins.

The best results are obtained using the approach where the set of ∆γ are fit to a single
component with a free β. The results are shown in Figure 5.5. The majority of all injected
signals is recovered between 80 and 100% of the injected signal. High input luminosities
are more likely to be correctly recovered. Essential is the fact that almost all best-fit β’s
are found within 10% of the correct value of 1. It is confirmed that the correct value for β
is equally well recovered for simulated injected signals that scale as M2 (not shown).

The efficiency of the other three estimators mentioned in Section 5.3 is shown for
reference in Figure 5.6. The most naive estimator, to simply use ∆γ=1 and solve Equa-
tion 5.9 with a single β = 1 component, returns a distribution that is centered on a ratio
of measured-to-input of 1, with quite a broad spread. Fitting to the set of correlators, like
in Figure 5.5, but with β fixed to 1 gives a distribution similar to Figure 5.5 but with more
outliers. Fitting the set of correlators to multiple components (5 in this case) does not
work well at all. This will be discussed further in Section 5.8.

As mentioned in Section 5.5, bootstrap errors are employed to estimate uncertainties
on the best-fit values of Lβ (and β). These errors were already shown in the left panel
of Figure 5.5 on the individual simulated signals, for 100 bootstrap realizations. We
check the validity of this approach by comparing the distribution of recovery ratios of
the injected signals to the distribution of recovery ratios in the bootstrap realizations with
the same injected signals. To be clear, the bootstrap only resamples the field, it does not
simulate additional realizations on the injected signal. As can be seen in Figure 5.7, the
bootstrap distribution for best-fit β resembles closely that of the nominal injected signals
in Figure 5.5. As was described before, the bootstrap resampling also changes the group
catalog so that some realizations may contain much less significant signal than others.
A less significant signal will be more difficult to recover, so that the bootstrap intervals
would overestimate the uncertainty at the low-recovery end. Therefore, as mentioned, the
bootstraps are performed in such a way that only realizations of the group catalog are
used that are close in expected signal significance to the nominal group catalog. For a
too lenient filtering, then, the error bars are overestimated. However a too strict filtering
would defeat the purpose of the bootstrap method in the first place. We determined from
trial-and-error that a requirement of similarity of 0.02 dex in terms of the ratio of the
value of

∑
kMk/D

2
k is justified, but not stronger. As can be seen in Figure 5.7, the

distribution of the bootstrap realizations is however broader and peaks at slightly lower
ratios than the nominal distribution in Figure 5.5. Although the number of simulated
signals is not very large, this may indicate that the bootstrap errors overestimate the true
uncertainty interval, despite the filtering of the bootstrap realizations. The source of this
is currently unknown, but we will continue to use the bootstrap estimation of the errors as
a conservative measure.

The choice of which bins to use for the calculation of ∆γ (Equation 5.10) is of course
of impact on the results presented above. The choice presented was taken for providing
a distribution that peaked close to 1 (based on trial-and-error). Taking fewer signal bins
or fewer skipped bins typically reduces the recovery ratio, but therefore also reduced the
probability of over-estimation. Performing the correlation with smaller bins allows more
freedom to refine this choice, but also increases computation times.
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Figure 5.5: Recovery of injected decay signals using ∆γ with Mγ/D2 and {γ} =
{0, 0.25, 0.75, 1.0, 1.25, 1.75, 2.25} to fit a single component with Lβ and β free parameters. In all
panels, colors indicate the different detectors, and black is the weighted average of the detectors per
injection. Top: for each individual injected signal the input luminosity and recovered Lβ . Error bars
indicate the distribution of 100 bootstrap realizations. Middle: histogram of the 26 injected signals in
terms of the ratio of recovered to input signal. Bottom: histogram of the 26 injected signals in terms
of the best-fit β.



5.6 Recovery of Injected Decay Signals 103

Figure 5.6: Recovery of injected decay signals using three different methods from Section 5.3. Shown
as histograms of the 26 injected signals in terms of the ratio of recovered to input signal. In all panels,
colors indicate the different detectors, and black is the weighted average of the detectors per injection.
Top: directly solving Equation 5.9 for a single γ = 1 and a single β = 1 components. Middle: fitting
∆γ with Mγ/D2 and {γ} = {0, 0.25, 0.75, 1.0, 1.25, 1.75, 2.25} to a single component with fixed
β = 1. Bottom: fitting ∆γ with Mγ/D2 and {γ} = {0, 0.25, 0.75, 1.0, 1.25, 1.75, 2.25} to five different
components with {β} = {0.1, 0.5, 1.0, 1.5, 2.0}.
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Figure 5.7: Same as Figure 5.5, but for all 100 bootstrap realizations of the 26 injected signals.

5.7 Conclusion and Summary
We have presented a new method to search for Dark Matter decay signals that does not
rely on spectral modeling and does not require dedicated background subtraction. Both of
these properties have been shown to be exhibited by our proof-of-concept implementation
of the method on the COSMOS data using injected simulated Dark Matter decay signals.

The method relies on a spatial correlation and a correlation in redshift- and energy-
space at the same time to automatically remove any and all backgrounds and foregrounds.
The other main advantage is that by computing the correlation using different properties
as the correlator, the behaviour of any correlated emission can be studied as a function
of those properties. It is also possible to decompose the correlated emission into differ-
ent components that behave differently. This method requires large datasets, but makes
it possible to combine the advantages of a traditional stacking analysis with those of a
population study (Sections 5.2 and 5.3).

We have performed a number of simulations of fake decay signals that have been
injected into the real data, and subsequently attempted to recover this signal using our
method. Our most effective estimator recovers the majority of the simulated signals to
within 20 to 30% of the input luminosity, depending on the signal strength, and confirms
its Dark Matter-like behavior (Section 5.6). It does so reliably for signals with a signal-
to-noise ratio (raw photon count-based) as low as 3, without the need for any background
subtraction or spectral modeling.

We expect that with more advanced fitting methods and considerable computing re-
sources additional advantages of this method can be unlocked, such as independence of
calibration uncertainties of both the instrument and the group properties (Section 5.8).

The sensitivity of the COSMOS dataset as a training set is not sufficient to reach the
current state-of-the-art reported Dark Matter decay sensitivity, but the method is particu-
larly well equipped to be scaled up and take advantage of all available archival data. As
our simulations show that even very weak signals in terms of photon-count-based SNR
have a good probability to be detected by our method, it is fully expected that it is possible
to reach or surpass those sensitivities, while at the same time providing a robust tool for
determining a potential signal’s physical origin (Section 5.8).
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5.8 Discussion

5.8.1 Decomposition Reliability

The estimator ∆γ introduced in Section 5.3 requires a certain minimum of spectral infor-
mation to detect line-like excesses. However, for weaker signals in regimes crowded with
other emission lines (or other non-monotonic features) this approach may not work very
well. In such a case it would be necessary to either take into account modeling of the full
spectrum, or disregard any spectral information altogether. The latter being the main ob-
jective of the concept in this work. In this case, then, the ∆γ estimator is skipped and the
full set of wγ〈Iγ〉 is decomposed into a number of components as per Equation 5.9. Al-
though in the current implementation presented in this work, the performance is sub-par,
this approach offers dramatic advantages in the form of calibration independence once the
reliability has been increased.

The results presented in Section 5.6 focused on decomposing the estimator ∆γ into
a single component with one or two free parameters. In the bottom panel of Figure 5.6,
some results of a decomposition of {∆γ} into 5 components with a single free parameters
each show that this approach did not work well in this case. Foregoing the estimator
and employing the decomposition of the entire correlated signal delivers better results
however. For the same set of correlators, the same fake injected signals and the same
components (ie., components with the same β’s), the results for the Lβ component are
shown in Figure 5.8. This is an improvement compared to the same decomposition but
only relying on the estimator ∆γ , but compares badly to the single-component estimators.

The main problem for the multi-component minimization procedure is likely that the
coefficients Aβγ from Equation 5.9 behave monotonically with both β and γ, which may
incur some degeneracies if the number of components is too large. Additionally, it may
not be clear what the ideal choice of β’s should be for the decomposition. Although the
β = 1 choice is clearly physically motivated, the usual astrophysical signals in a narrow
energy bin may not necessarily scale as any power of the group mass, but rather as some
more complicated function. The set of 5 values used above was chosen solely in order
to provide enough opportunity for any signal that is not Dark Matter decay to ‘choose’
components with β 6= 1.

Possibilities for improvement then might be found along the following lines. Firstly,
the decomposition may be performed with an intermediate number of components, such
as a single β = 1 component and one or two components with a free (within some lim-
its) β. Secondly, the correlators nor the components chosen neccesarily all have to be
different powers of the same property. It should be possible to combine, for example,
mass and temperature correlators, as long as the additive components of the decompo-
sition are physically independent processes. Thirdly, the minimization procedure would
likely profit, especially for more decompositions with more than 1 component, of a more
advanced implementation, such as a Markov-chain Monte-Carlo method to more fully
explore any degeneracies.
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Figure 5.8: Recovery of injected decay signals using the full correlated signal wγ〈Iγ〉 with Mγ/D2

and {γ} = {0, 0.25, 0.75, 1.0, 1.25, 1.75, 2.25} to fit 5 components with {β} = {0.1, 0.5, 1.0, 1.5, 2.0}.
The recovery rate leaves something to be desired, but is already better than those of the bottom panel
of Figure 5.6. Possible improvements to this approach are discussed in Section 5.8.1.

5.8.2 Independence of Calibration Uncertainties
As alluded to earlier, the decomposition of the full correlated signalwγ〈Iγ〉 can be used to
obtain an estimator that is independent of telescope and mass calibration. To be explicit,
if the instrumental (mis-)calibration can be described as,

I = mI ′ + a

with I the measured X-rays flux, I ′ the true instrinsic X-ray flux, m a multiplicative
calibration factor and a an additive calibration component; and if the mass calibration
suffers only from a multiplicative bias so that M = bM ′ with M the measured (reported)
mass, M ′ the true mass and b the multiplicative bias; then the following estimator is
insensitive to all of a, m and b:

Qβγ ≡
LβAβγ
wγ〈Iγ〉

(5.14)

=
L′βA

′
βγ

w′γ〈Iγ〉′
= Q′βγ

where all primed quantities represent the true values of the measured un-primed quanti-
ties. The derivation can be found in Appendix 5.A.2. The estimatorQβγ rather intuitively
represents the fraction of the total correlated emission (the denominator) sourced by the
component with exponent β. It also has the convenient property that

Qγ ≡
∑
{β}

Qβγ = 1 (5.15)

by definition if the decomposition is perfect and noise-free.
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The estimator effectively sacrifices any knowledge about the intrinsic value of any
Lβ (which is why Q still depends on γ) to get rid of the dependence on the calibration.
The obvious advantage of this is that multiple instruments can be combined in order to
increase sensitivity without introducing additional systematics related to calibration. We
expect that it is also possible using this formalism to combine not just different instru-
ments but also different fields and surveys without losing the benefits described above.
As long as the type of object being correlated with is the same across surveys (ie, de-
scribed by the same physics and thus by the same decomposition), the Lβ measured from
the decomposition should be the same for each survey performed with the same telescope
(assuming the telescope calibration does not change between surveys, and that the mass
calibration b is also the same for each survey). In that case, the Lβ’s from different sur-
veys but the same instrument can be combined by some weighted average, or one may
perform the fitting procedure to all surveys simultaneously, keeping the values of Lβ tied
between surveys (the coefficients Aβγ will change between surveys). To obtain Qβγ , a
single survey has to be chosen as an arbitrary reference point. After all, the Lβ are the
same for each survey, but Aβγ , wγ and 〈Iγ〉 are not. As long as the same survey is chosen
as the reference point for each instrument, the Q’s of the individual instruments can now
also be combined to obtain a final single value for Qβγ .

In principle, Qβγ can also be constructed for the estimator ∆γ , without the loss of
calibration independence. For single-component estimators however, the actual value of
Qβγ does not provide a lot of insight, except that any deviation from the value of 1 is
equal to the residual in the fitting process. The advantage would be found though in the
ability to reduce the error bars by being able to combine results from different instruments
without having to worry about calibration issues.

Since the full decomposition (without using the estimator ∆γ) requires more advanced
minimization or fitting implementations to deliver reliable results (see Section 5.8.1), and
because in simulating the injected Dark Matter decay signals the available telescope re-
sponse files are assumed to be correct, practical proof of the usefulness of this estimatorQ
will have to be postponed until future work that is able to employ a full suite of end-to-end
simulations of the data.

5.8.3 Flexibility and Robustness

One advantage of this method is that when a candidate signal is found, it is possible to
perform many tests by merely changing the parameters of the correlation and decomposi-
tion. A real signal should be present in all circumstances albeit with different significance.
Jack-kniving is the first obvious possibility; the dataset can be split by redshift, by various
properties of the objects in the catalog like mass or size, or by sky location. The process
of bootstrapping already covers some of these variations in a way. Secondly, the object
catalog can be changed. This may help root out possible selection bias. For example, if
the X-ray coverage is not of uniform depth, the objects in an X-ray-selected catalog could
be correlated with the exposure depth (see Section 5.4). Thirdly, even though the instru-
mental backgrounds cancel out very well on average (see Section 5.B), chance alignments
of spectral and spatial inhomogeneities with catalog objects may occur. It is possible to
check for robustness here by simply masking known instrumental lines in the raw data
(observed frame). Because of the correlation being performed in redshift-space (object



108 Correlation Method for Line Searches

restframe), any real signal will persist even though the significance will be lower over
some energy range.

5.8.4 Sensitivity

With regards to the sensitivity to Dark Matter decay signals, this dataset is limited mostly
by the total number of (expected) signal photons, as can be seen from the simulations in
Section 5.6. Increasing the expected number of photons can be achieved in three ways;
increased exposure depth, a larger number of objects in the group catalog, or a larger field.
With increased photon statistics, it also becomes increasingly important to reduce the
amount of noise in the correlation caused by chance alignments. Because the formalism
depends on backgrounds (and other effects not related to the group catalog) canceling
out on average, and because the field under consideration (or any field) is finite, some
chance alignments between objects and some spatial or spectral inhomogeneities in the
backgrounds are expected, inducing fluctuations in the correlation (see Section 5.B). Both
higher object counts and larger fields (more cells) will improve the fidelity of correlation
in this respect and thus reduce the (bootstrap) error bars. Note that the objects should have
an appreciable range in redshifts for the correlation in redshift-space to work properly.

The simulated signals in this work are stronger than what is already currently ruled out
from previous studies. The 3.5 keV signal (Boyarsky et al., 2014a; Bulbul et al., 2014a),
for example, would have an Lβ of the order 0.1 ph s−1 M�

−1, an order of magnitude
weaker than the weakest signal we’ve simulated here.

5.A Derivations

5.A.1 Correlation (De)composition

In this Appendix, Equation 5.9 is derived. We will write Nk for the correlator (which can
represent any combination of properties of the galaxy group k). For readability, we will
assume the X-rays consists of a single monochromatic Dark Matter decay component,
and a homogeneous backgrounds component. We will generalize this later. The detected
X-ray flux in a cell i at observed energy E′ that contains a galaxy group at redshift zi is
then

Ii(E
′) = δ [E′(1 + zi)− E0]LMi/D

2
i + Ibg,i(E

′) (5.16)

with L the intrinsic luminosity per unit mass of the component, E0 the restframe energy
of this monochromatic component, Mi the group’s mass and D2

i short for 4πD2
lum,i rep-

resenting the luminosity distance to the group. The δ-function makes sure the monochro-
matic component only contributes to Ii(E′) if E′ = E0/(1 + zi).

We then put this into the equations for the correlation, where we will sometimes write
a sum over Ncwg meaning all cells that contain a group, and we will use the shorthand
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∑
kNk to mean the sum over all groups in the catalog.

〈NI(E)〉
〈N〉

=
1

NC

NC∑
kNk

Ncwg∑
i

Ng(i)∑
k

[Ii(E
′ = E/(1 + zk))Nk] (5.17)

=
1∑
kNk

Ncwg∑
i

Ng(i)∑
k

(
δ
[
(1 + zi)E/(1 + zk)− E0

]
LMkNk/D

2
k

+ Ibg,i
(
E/(1 + zk)

)
Nk

)
(5.18)

Note that
Ncwg∑
i

Ng(i)∑
k

is just the same as the sum over all groups, so that zi = zk in this

summation;

〈NI(E0)〉
〈N〉

=
L∑
kNk

Ng∑
k

NkMk/D
2
k+

1∑
kNk

Ncwg∑
i

Ng(i)∑
k

Ibg,i
(
E0/(1+zk)

)
Nk (5.19)

Repeat for 〈I〉

〈I(E)〉 =
1

NC
∑
kNk

NC∑
i

Ng∑
k

[
Ii
(
E′ = E/(1 + zk)

)
Nk

]
(5.20)

=
1

NC
∑
kNk

Ncwg∑
i

Ng∑
k

(
δ
[
(1 + zi)E/(1 + zk)− E0

]
LMiNk/D

2
i

)

+
1

NC
∑
kNk

NC∑
i

Ng∑
k

Ibg,i
(
E/(1 + zk)

)
Nk (5.21)

Notice that the first double-summation runs over all cells with a group and all groups in
the catalog, instead of all cells and all groups. Therefore, in this first double-sum, zi and
zk are not always the same. At E = E0, the δ-function however does enforce zi = zk, so
that

〈I(E0)〉 =
L

NC
∑
kNk

Ng∑
k

NkMk/D
2
k +

1

NC
∑
kNk

NC∑
i

Ng∑
k

Ibg,i
(
E0/(1 + zk)

)
Nk

(5.22)
Now we note that the parts from both 〈NI〉/〈N〉 and 〈I〉 that contain Ibg and are

on average equal if the background and the groups are uncorrelated (so that one might
replace every Ibg,i with Ibg). This leads to

w〈I〉(E0) = L

∑
kNkMk/D

2
k∑

kNk

(
1− 1

NC

)
(5.23)

Since the number of cells is typically very large (more than 3000 in this work), the con-
tribution of the correlated components to 〈I〉 is typically very small, ie. (1− 1/NC) ' 1.
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This can be generalized by replacing the scaling Mk/D
2
k with any other desired scaling

(which we will represent with Sk).
If the component is constant in energy instead of monochromatic, the result would

instead be

w〈I〉 = L

(∑
kNkMk/D

2
k∑

kNk
−
∑
kMk/D

2
k

NC

)
(5.24)

and independent of energy. Again due to the factor 1/NC , in practice the change between
monochromatic and constant in energy is about 1% at most for the dataset used in this
work.

For completeness, we must note that for a single monochromatic component atE0 the
relevant part of 〈NI(Ej)〉 for any other Ej 6= E0 will be zero, but the part of 〈I(Ej)〉
containing Lδ((1 + zi)Ej/(1 + zk)−E0) will not, as there may be pairs of (zi, zk) that
solve (1 + zi)Ej/(1 + zk) = E0. This reduces the correlation at every Ej 6= E0, but only
marginally due to the factor 1/NC .

Any arbitrary physical scenario can be expressed as the sum of many δ components
at different energies Es with their scalings Ss:

Ii =
∑
s

LsSs,i + Ibg,i (5.25)

The contributions to 〈NI〉 and 〈I〉 can then also simply be summed so that finally the
generalized expression is

w〈I〉 =
∑
s

Ls

∑
kNkSs,k∑
kNk

(
1− 1

NC

)
, (5.26)

neglecting as before the smearing of each δ-function as part of 〈I〉. This approximation
may not work well if one is interested in components whose intrinsic luminosity (in terms
of Ls

∑
kNkSs,k/

∑
kNk) is of the order NC smaller than the dominant component,

setting a fundamental sensitivity limit for a given number of cells (ie, size of the field).

5.A.2 Calibration Independence
Here we will prove that Qβγ (Equation 5.14) is indeed independent of telescope and
mass calibrations. The derivation is very similar to that of the previous Section. In this
case however, we will suppress the explicit writing of energy dependence for now for
readability.

Let I ′X be the true intrinsic X-ray emission from catalog objects in particular cell,
I ′r any physical X-rays not sourced by and therefore not correlated with catalog objects,
m the multiplicative calibration of the instrument and a the additive calibration of the
instrument and the instrumental background. Let M ′ be an object’s true mass, and b
the multiplicative bias on that mass, so that M = bM ′. Let L′β be the true intrinsic
luminosity per unit (massβ/distance2) for the X-ray emission component process that
scales as (massβ). Then the measured flux Ii in cell i will be

Ii = m(I ′X + I ′r) + a (5.27)

= m(I ′r +
∑
{β}

L′βM
′β
i /D

2
i ) + a (5.28)
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where the sum over the set of components {β} runs over all physical processes at work
(which we do not need to specify here).

Writing Ncwg for the number of cells that contain a group, Ng(i) for the numbers of
groups in cell i, then the measured quantities relate to the true quantities in the following
way;

〈N〉(γ) =
1

NC

Ng∑
k

bγM ′γk (5.29)

= bγ〈N〉′(γ) (5.30)

〈NI〉(γ) =
1

NC

Ncwg∑
i

Ng(i)∑
k

mI ′r,i + a+
∑
{β}

mL′βM
′β
i /D

2
i

(bγM ′γk ) (5.31)

=
mbγ

NC

Ncwg∑
i

Ng(i)∑
k

∑
{β}

L′βM
′β
i M

′γ
k /D
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k

abγM ′γk (5.32)

= mbγ〈NI〉′(γ) +
1

NC

Ncwg∑
i

Ng(i)∑
k

abγM ′γk (5.33)

〈I〉(γ) =
1

NC

 Ng∑
l

bγM ′γl

−1(Ncwg∑
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Ng∑
k
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∑
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L′βM
′β
i b

γM ′γk

+

NC∑
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(5.34)

= m〈I〉′(γ) +
1

NC

 Ng∑
l

M ′γl

−1
NC∑
i

Ng∑
k

aM ′γk (5.35)

The uncorrelated emission Ir is still part of 〈I〉 and 〈NI〉, both in the primed and
unprimed quantities, but cancels out in w and w〈I〉. Notice that in Equation 5.33 we can
simplify

1

NC

Ncwg∑
i

Ng(i)∑
k

abγM ′γk =
1

NC

Ng∑
k

abγM ′γk , (5.36)

and in Equation 5.35

1

NC

 Ng∑
l

M ′γl

−1
NC∑
i

Ng∑
k

aM ′γk =

 Ng∑
l

M ′γl

−1
Ng∑
k

aM ′γk , (5.37)
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so that those parts cancel out below;

w(γ)〈I〉(γ) =
〈NI〉(γ)

〈N〉(γ)
− 〈I〉(γ) (5.38)

= m

(
〈NI〉′(γ)

〈N〉′(γ)
− 〈I〉′(γ)

)
= mw′(γ)〈I〉′(γ) (5.39)

The decomposition of the different correlating components as described in Section 5.2
is now affected as follows. Recall that in Equation 5.9

Aβγ =

∑
kM

β+γ
k /D2

k∑
kM

γ
k

(
1− 1

NC

)
(5.40)

so that Aβγ = bβA′βγ . All of the above means that the solutions to Equation 5.9 will be

Lβ =
m

bβ
L′β (5.41)

We can then construct the following quantity that reflects which fraction of the corre-
lated emission is explained by the component with exponent β

Qβγ ≡
LβAβγ

w(γ)〈I〉(γ)
(5.42)

=
L′βA

′
βγ

w′(γ)〈I〉′(γ)
. (5.43)

This quantity is completely independent of detector calibration and of multiplicative mass
bias, as shown.

The energy dependence of m and a were not explicitly taken into account above for
readability. Comparing with the previous section, it will be clear that this does not change
the independence of Qβγ . The energy dependence of a functions exactly like Ibg,i in
the previous section, which canceled out completely since it is an uncorrelated additive
component. Regarding m = m(E′) = m(E/(1 + zk)) ≡ mk, one may see that if
this factor is introduced in the equations of the previous section, it becomes part of the
summation like so

1∑
kNk

Ng∑
k

mkNkMk/D
2
k (5.44)

it is clear that the calibration of the instrument at some energy in the observed frame,
m(E′), is uncorrelated with any properties of the group k. On average then, the preceding
expression can be written as

1∑
kNk

Ng∑
k

mkNkMk/D
2
k =

(∑
kmk

Ng

) ∑
kNkMk/D

2
k∑

kNk
(5.45)

so that
∑
kmk/Ng can be associated with the factor m in Equations 5.33, 5.35, 5.39

and 5.41. All of which is to say that the intuitively expected

〈NI〉
〈N〉〈I〉

=
〈NmI ′〉
〈N〉〈mI ′〉

=
〈m〉〈NI ′〉
〈N〉〈m〉〈I ′〉

. (5.46)

is confirmed to hold also when performing the correlation in redshift space.
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5.B Null Tests
One of the main features of this method is the fact that it automatically finds the correlated
emission, and does not require separate background subtraction or modeling. This is
possible because of the large field and object catalog, and because of the correlation in
redshift space. To show that this feature works as claimed, we perform the following null
test.

We first create a instrumental background-only facsimile version of the COSMOS
field. This is achieved by using the available XMM-Newton closed-filter calibration ob-
servations. These observations are performed, as indicated by the name, while the fil-
ter wheel is in the closed position, blocking any physical emission, leaving only the
instrumental backgrounds. To create a mosaic that resembles the actual instrumental
background in the COSMOS observations, the closed filter dataset is cut into parts with
roughly similar numbers of event counts as the real COSMOS exposures. Each part is
then made a piece of the mosaic by using the skycast procedure to give all events sky
coordinates.

The resulting mosaic is then used instead of the real data to compute the correlation as
described above. The same catalogs are used, but in addition the correlation is performed
on a number of randomized versions of the catalogs. So for each iteration, all objects in
the catalog are assigned to a random cell. This means that all catalog properties remain
the same, such as the redshift distribution.

We show the result of 40 of such randomized catalogs of the G11-sample, using as
correlator M/D2

lum, in Figure 5.9. The average of all the random catalogs is shown in
red, and is very close to 0 for all energies, as is expected. The variation is shown in the red
error bars, being the 68% intervals. This variation indicates the potential impact of chance
alignments of objects in the catalog and spatial and spectral features in the instrumental
backgrounds.

An additional on-the-spot null test can be included with every correlation. If the ob-
served X-rays used for the correlation include events up to high energies, so that the tele-
scope’s effective area at these energies is essentially negligible, then the high-energy tail
of the correlation spectrum should not include any correlated signal (up to some random
fluctuations).

5.C Weighted Correlations
Although in a sense the performing of a correlation could be described as a weighted
average, strictly speaking the equations for 〈NI〉 and 〈I〉 (Equations 5.5 and 5.6) would
be different if they both employed weighting by some cell’s property in the form of

X =

∑
i xiwi∑
i wi

. (5.47)

The difference with correlating is that weighting is used when there are certain prop-
erties of the cell that are not related to the correlating property of the groups nor to the
correlating property of the cell, but which for some reason should increase or decrease
how important this single cell is to the total.
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Figure 5.9: Results of the correlation for 40 randomized versions of the G11-sample. Median and
68% interval shown in red. Correlator used is M/D2

lum, with energy bins of 320 eV.
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We will here show for completeness how a weighting can be incorporated in the for-
malism, although one should beware that including a weight with residual relations be-
tween the quantities being correlated will induce systematic offsets.

Let us first rewrite 〈I〉

〈I〉 =
1

NC

NC∑
i=1

1∑Ng

l=1Nl

Ng∑
k=1

ζikNk (5.48)

=
Ng∑Ng

l=1Nl

NC∑
i=1

Ng∑
k=1

ζikNk

NC∑
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Ng∑
k=1

1

(5.49)

For 〈NI〉, we first observe that

NC∑
i=1

1

NC(i, θ)

NC(i,θ)∑
j=1

Ng(j)∑
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1 = Ng (5.50)

so that

1
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= 〈NI〉NC
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(5.51)

and we can write

〈NI〉 =
Ng
NC

NC∑
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1
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(5.52)

Now when adding the weights ai the equations become

〈NI〉 =
Ng
NC

NC∑
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1
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(5.53)
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ζikNkai
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i=1

Ng∑
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(5.54)
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Initial tests of a weighting by each cell’s product of exposure time, effective area and
usable solid angle yielded systematic positive and increasing offsets at the high energy
tail of the correlation spectrum (where it should be zero), for both the G11 sample and
the 20k sample. We speculate this may be caused by telescope calibration uncertainty.
Further application and study of any weights during the correlation was not pursued.


