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Abstract

A quantitative bio-imaging platform is developed for analysis of human cancer dissemination in a short-term vertebrate
xenotransplantation assay. Six days after implantation of cancer cells in zebrafish embryos, automated imaging in 96 well
plates coupled to image analysis algorithms quantifies spreading throughout the host. Findings in this model correlate with
behavior in long-term rodent xenograft models for panels of poorly- versus highly malignant cell lines derived from breast,
colorectal, and prostate cancer. In addition, cancer cells with scattered mesenchymal characteristics show higher
dissemination capacity than cell types with epithelial appearance. Moreover, RNA interference establishes the metastasis-
suppressor role for E-cadherin in this model. This automated quantitative whole animal bio-imaging assay can serve as a
first-line in vivo screening step in the anti-cancer drug target discovery pipeline.
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Introduction

Traditional anti-cancer drug screens are performed using cell

lines grown in 2D culture or using in vitro protein binding assays.

Cancer progression, however, is a complex process of dynamic

interactions between cancer cells and the organism that involves

genetic alterations leading to deregulated survival and prolifera-

tion, angiogenesis, invasion, and metastasis [1]. Ideally, genes that

play a role in this process are identified by in vivo ablation or

silencing. Although genetic mouse models for cancer and human

tumor cell xenotransplantation models in rodents remain essential,

such systems are costly, slow, and less amenable to high-

throughput assays for cancer drug target discovery. There is a

clear need to develop fast, semi-automated in vivo systems for

medium to high-throughput screening applications in preclinical

target discovery and lead compound identification.

In this respect, zebrafish (ZF) offer a number of unique

advantages for investigating the mechanisms that drive cancer

formation and progression. ZF are vertebrates that can be raised

in large numbers in a cost-effective manner. An almost complete

genome sequence reveals that most cancer genes and tumor

suppressor genes are highly conserved between ZF and humans

(http://www.ncbi.nlm.nih.gov/genome/guide/zebrafish) and ZF

form spontaneous tumors with similar histopathological and gene

expression profiles as human tumors [2–4]. Importantly, xeno-

transplantation with human cancer cells is possible [5,6]. ZF

embryos that are used for this purpose lack an adaptive immune

system, which increases the success of xenotransplantation while

they provide a microenvironment where human tumor cells

proliferate, migrate, form tumor masses, and stimulate angiogen-

esis [5–8].

ZF embryos are particularly useful for semi high-throughput

microscopic analysis platforms as they are translucent, and can be

maintained in 96 well plates. The optical transparency of ZF offers

exciting research opportunities allowing visualization of the meta-

static process at high resolution [8,9]. Recent findings indicate that a

wide range of pharmaceutically active compounds illicit physiological

responses in ZF embryos and inhibit disease development similar to

effects in mammalian systems [10–12]. These findings underscore the

potential for a ZF embryo xenotransplantation model to be used in

the anti-cancer drug discovery process. However, at this time, using

ZF to screen for cancer relevant drug - and gene targets is limited by

the lack of comprehensive automated bioassays. Here, we applied

automated imaging and image analysis procedures to a ZF

xenotransplantation model to develop the first semi-automated

whole-organism quantitative bio-imaging assay for analyzing cancer

dissemination in a vertebrate.

Results

We developed a noninvasive, quantitative whole animal

bioimaging method for dissemination of xenotransplanted human

cancer cells in ZF embryos in 96-well format. All the steps are

briefly outlined in Figure 1.

Automated image capturing and pre-processing
CMDiI-labeled tumor cells were injected in the yolk sac of 2-

day-old fli-EGFP embryos [13] and fixed 6 days post-implantation
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(dpi) (Figure 1A). Fixed embryos were arrayed in 96 well glass

bottom plates for automated imaging (,5 minutes per plate)

(Figure 1B). Epi-fluorescence microscopy failed to detect

disseminated tumor cells due to excessive background from the

primary tumor mass. Therefore, using a confocal laser-scanning

microscope (CLSM) combined with an automated stage; multiple

z stacks per embryo were captured for each well in a fully

automated procedure (Figure 1C, 1D and Video S1). Confocal

images were automatically converted into extended depth

composite images (Figure 1E) that were rearranged to a uniform

orientation (Figure 1F and G) to allow for automated

quantitative image analysis (Figure 1H).

Automated multiparametric analysis of cancer cell
dissemination

Having established conditions for automated imaging and

image pre-processing of tumor cell implanted ZF embryos; we

subsequently developed an algorithm for automated analysis of

tumor foci burden in the post-processed ZF images. For this,

Image-Pro based software was developed, which performed

essentially three major functions (see materials and methods

section for detailed information on the macro’s). 1) Reorientation

of the images (Figure 2): all embryos were automatically

reoriented to a horizontal orientation, with the head towards the

right and the yolk sac towards the bottom. 2) Determination of the

injection position of labeled tumor cells (Figure 3A–C): the

injection position was calculated from the images based on the

segmented GFP channel (and confirmed by visual inspection using

the red channel). 3) Detection of tumor foci (Figure 3D and E):

The red channel was segmented using an intensity threshold and

minimum and maximum area filters.

Data were exported to excel and multiple numerical parameters

were calculated to describe the tumor cell burden per embryo.

These included total number of tumor foci, average distance of

tumor foci from the injection site, and cumulative distance

travelled from the injection site (Figure 3F). As only the

cumulative distance parameter combined number of disseminated

cells with their distance from the injection site, we reasoned that

this parameter best reflected the tumor dissemination capacity

(Figure S1). Data were represented as graphs displaying positions

of tumor foci relative to the injection point (at coordinates

x,y = 0,0) for each embryo (Figure 3G) or all embryos of a single

experimental condition (Figure 3H). From these data, cumulative

distance of all detected tumor foci was calculated per embryo (CD)

and subsequently averaged for all injected embryos in one

experimental group as a final quantitation of tumor cell

Figure 1. Schematic overview of the procedure. (A) Yolk sac implantation of CM-DiI labeled tumor cells into Tg (Fli:EGFP) ZF embryos 2 days
post-fertilization. (B) Formaldehyde fixed 6 dpi embryos arrayed in 96 well plates. (C) Automated image acquisition using CLSM platform equipped
with movable stage captures multiple Z stacks per embryo using 488 and 561 nm laser lines. (D and E) Automated creation of extended depth
composite images. (F) Multiple extended depth images depicting embryos lying in different lateral orientations. (G) Automated uniform reorientation
of images. (H) Scatter plot representing tumor foci burden in multiple embryos belonging to one experimental condition.
doi:10.1371/journal.pone.0031281.g001
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dissemination (mean cumulative distance (MCD) (Figure 3I and
S1).

We performed experiments to determine the earliest time point

that allowed robust discrimination between poorly aggressive and

highly aggressive cell lines. Using LnCAP and PC3 as such an

example for prostate cancer [14–19] we observed no difference at

2 dpi; MCD of PC3 could be distinguished from MCD of LnCAP

at 4 dpi; and at 6 dpi MCD was markedly higher in PC3

compared to LnCAP with strong significance (Figure 4).

Therefore, 6 dpi was chosen for analysis in all further experiments.

To characterize tumor foci identified by this method, we

calculated the mean diameter of segmented red objects in the tail

region of PC3 implanted embryos. The average mean diameter

was ,15 mm with some larger objects up to ,45 mm but no

objects with average diameter ,8 mm being selected for the

analysis, fitting with the identification of individual tumor cells or

small clusters (Figure 5A). We further analyzed identified tumor

foci by high-resolution imaging, 3D reconstruction, and surface

rendering (Figure 5B and Video S2). This confirmed and

extended the finding that single tumor cells or small clusters were

identified by the automated image analysis and showed tumor cells

interacting with the host vasculature (Figure 5B). To rule out

artifacts due to CMDiI labeling, we injected mCherry labeled PC3

cells. In complete agreement with the properties of red objects

identified after injection of CMDiI-labeled PC3, individual PC3-

mCherry cells were observed in close association with host blood

vessels (Figure 5C and Video S3). Finally, experiments using

unimplanted embryos (Figure 6A) and comparison of CM-DiI-

Figure 2. Outline of steps involved in embryo orientation. (A) Extended depth image of 6 dpi ZF embryo. (B) Grey value image from
combination of green and red channels. (C) Blurred grey image after applying closing filter to optimize determination of outline. (D) Embryo
segmented after applying intensity threshold and area filter. Arrowhead indicates a red object outside the outline that is excluded from
segmentation. (E) Cropped image with only selected object. (F) Embryo rotated by xu for horizontal reorientation. (G and H) Determination of the x
position value of the center of mass (cm) and center of centroid (cc). (I) Horizontal flip of the image only if cm is on the left side of cc, resulting in
images with the head of the embryo always to the right side. (J) Image after applying closed filter to the combined green and red channel to get the
outline of the embryo. Point lying at 75% distance from the extreme left of the embryo outline is calculated. Y-axis is drawn at this X-position from
upper to lower outline. Upper rectangle 1 is drawn. (K) Lower rectangle 2 is drawn. (L) Vertical flip of the image only if red intensity in rectangle 1 is
higher than in rectangle 2. (M) Schematic representation of calculations for steps E–I. Altogether, this procedure results in images where the head is
on the right and the yolk sac is on the bottom of the image. Scale bar = 200 mm in E and I.
doi:10.1371/journal.pone.0031281.g002
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Figure 3. Automated multiparametric quantification of PC3 tumor foci. (A) Extended depth image of 6 dpi fixed embryo after realignment.
(B) Embryo outline from segmented GFP channel and Y-axis intersecting X-axis at 75% from extreme left. (C) Calculated injection point at 75%
distance from the extreme left and 75% from the top Y position. (D) Segmented red channel showing tumor foci burden in the embryo. (E) Identified
tumor foci. (F) Multiple parameters of tumor foci burden calculated per embryo. Each number in the image corresponds to one tumor focus. (G)

Automated Bioassay for Cancer Dissemination
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labeled PC3 cells injected into standard fli-EGFP or Casper fli-

EGFP embryos lacking all pigments (Figure 6B and C), ruled out

any false positives due to autofluorescence of pigment cells.

Taken together, this method eliminates the need for visual

scoring and enables automated generation and archiving of images

and numerical data describing dissemination of tumor cells in a

vertebrate organism. Moreover, for tumor cells identified by this

automated bio-imaging assay, tumor-host interactions can be

further studied in detail by high-resolution microscopy.

Assay validation: correlation with behavior in mouse
models and epithelial versus scattered phenotype

To demonstrate the applicability of our automated platform to

differentiate between poorly aggressive and highly aggressive

cancer cells, three different panels of cell lines were analyzed: 1)

For prostate cancer, PC3 (highly metastatic in mouse models;

prostate carcinoma/bone metastasis; androgen independent;

scattered growth in 2D culture; mesenchymal markers) and

LNCaP (very poorly metastatic in mouse models; prostate

carcinoma/lymph node; expression of prostate differentiation

markers; epithelial islands in 2D culture; epithelial markers) were

analyzed [14–19]. 2) For breast cancer, BT474 (metastatic in

mouse models; breast invasive ductal carcinoma/duct; ER+/

PR+/p53mutated; high Her2 expression; ‘‘weakly luminal epithe-

lial like’’ phenotype in culture; reduced expression of epithelial

markers) and MCF7 (very weak metastatic potential in the absence

of ectopically expressed oncogenes; breast adenocarcinoma/

pleural effusion; ER+/PR+/p53 normal; low Her2; epithelial

islands in 2D culture; epithelial markers) were analyzed [20–23].

3) For colorectal cancer, SW620 (colorectal adenocarcinoma

Dukes’ type C/lymph node metastasis; scattered growth in 2D

culture; mesenchymal markers) and HT29 (colorectal adenocar-

cinoma/colon; epithelial islands in 2D culture; epithelial markers)

were analyzed [24]. Strikingly, for each cancer type tested,

dissemination in this ZF xenograft assay significantly correlated

with metastatic capacity reported in mouse models and/or

characteristics known to be associated with cancer progression

including differentiation markers or epithelial versus scattered

phenotype (Figure 7A and B; Figure S2). These data validate

this short-term automated bio-imaging method and show that it

represents a powerful tool to predict aggressiveness of cancer cells

in more complex, long-term in vivo systems.

Extensive ZF cellular movement takes place in the region of the

yolk sac, where intestinal development occurs within the time

frame of our analysis [25]. We wanted to exclude any influence of

passive migration of implanted tumor cells due to this develop-

mental process near the primary implantation area. For this

reason, we expanded the macro with an additional step in which

all tumor foci within a square encompassing this region were

excluded from the analysis in an unbiased automated fashion

(Figure 7C and D). Although this may lead to underestimation of

the cumulative distance parameter, we found that this exclusion

step even further widened the window between the non-aggressive

versus highly aggressive cell types (Figure 7E). Moreover, analysis

of several independent experiments using PC3, BT474, and

MCF7, demonstrated that this methodology is highly reproducible

(Figure 7F).

We expanded the analysis to a broader panel of human cancer

cell lines from different origins including prostate, breast, lung,

colorectal, skin, and connective tissue. Interestingly, when these

lines were grouped according to their morphology in 2D culture

and expression of epithelial or mesenchymal markers, there was a

clear correlation of high dissemination with a scattered phenotype

(one notable exception was HT1299, which did not disseminate

effectively); all cell lines growing as epithelial islands had very low

dissemination capacity (Figure 8A; Table S1). We functionally

tested the role of one typical marker of the epithelial phenotype,

the cell-cell adhesion receptor E-cadherin. For this, we used 4T1

mouse breast carcinoma cells that possess an intermediate

phenotype, growing as clusters of loosely attached cells in 2D

and expressing E-cadherin as well as some mesenchymal markers

such as vimentin (Figure 8B). E-cadherin was silenced resulting in

a fully scattered phenotype in 2D (Figure 8B and C) and these

cells were injected in ZF to determine dissemination capacity.

Indeed, shRNA targeting E-cadherin but not control shRNA

strongly increased dissemination of 4T1 cells and the automated

bio-imaging method allowed significant separation between

4T1shCdh1 on the one hand and 4T1Wt and 4T1shCtr on the

other (Figure 8D–F).

Altogether, a short–term medium throughput fully automated

whole-organism bio-imaging model has been developed that

distinguishes with good reproducibility cancer cell types that grow

as islands or have epithelial markers or have been shown to be

poorly aggressive in mouse models from cell lines that are scattered

or have more mesenchymal characterisitics or are known to

metastasize in mice. It is compatible with RNAi for identification

of regulators of cancer cell dissemination and allows switching

from low-resolution fast imaging to high-resolution detailed

analysis to study effects on tumor cell properties or tumor cell-

host interactions.

Discussion

Here, we developed a short term in vivo ZF xenograft assay that

is compatible with automated imaging in 96 well plates and

coupled to fully automated analysis of tumor cell dissemination.

This assay represents the first automated whole organism

bioimaging assay in a vertebrate that allows for studying aspects

of cancer progression. Our findings show that this assay closely

reflects the results obtained in more expensive and much lower

throughput assays such as rodent xenografts.

The ZF xenograft model has been previously applied to cancer

migration studies [5–9]. There are limitations to this model,

including potential differences in the host microenvironment and

the need to work at temperatures that are compatible with survival

and migration of mammalian cells while at the same time being

favorable for normal ZF physiology. Nevertheless, we have

modified experimental conditions such that behavior of a large

panel of human cancer cell lines from various origins closely

resembles known behavior in rodent models. Moreover, our work

provides this model with the automation in imaging and image

analysis as well as with the statistical power required for

application in screening procedures.

We provide proof-of-principle for such applicability by testing a

known regulator of cancer cell migration. Using a panel of cell

Tumor foci dissemination in a single embryo represented as scatter plot (coordinates 0,0 represents calculated injection site). (H) Combined scatter
plot showing tumor foci dissemination from 39 injected embryos. (I) Quantification of cumulative distance (CD). Each filled square represents
cumulative distance from injection point of all identified tumor foci in a single embryo. Mean cumulative distance (MCD) in the 39 injected embryos
in this experiment is 15024 mm. Scale bar = 200 mm in A.
doi:10.1371/journal.pone.0031281.g003
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Figure 4. Determination of cancer cell dissemination kinetics. (A and B) LnCAP (A) or PC3 cells (B) were implanted and embryos were fixed at
2, 4, or 6 dpi for imaging (immunofluorescence images and automated image analysis (scatter plots)). Bottom row images (scale bar = 50 mm) show
zoom-in of area marked by dotted line in top row images (scale bar = 100 mm). (C) CD at 2, 4 and 6 dpi for LnCAP (grey) and PC3-injected embryos
(black) calculated from scatterplots in A and B, respectively. Statistical testing for difference between LnCAP and PC3 at different dpi is indicated.
*p,0.05, ***p,0.001.
doi:10.1371/journal.pone.0031281.g004
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Figure 5. Characterization of tumor cell foci identified by macro using high-resolution imaging. (A) Quantification of the mean diameter
of macro-identified tumor cell foci from the tail region of PC3-injected embryos. Data obtained from 5 embryos. (B) High resolution imaging of CM-
DiI-labeled PC3 tumor cell foci. (B1) Macro-identified PC3 tumor cell foci. (B2) Zoom-in on area indicated in B1 shows tumor cells in association with
host vasculature. (B3 and B4) Three dimensional reconstruction and surface rendering of area in insert of B2; arrowheads point to tumor cell partly
inside distal longitudinal anastomotic vessel (Video S2 and S3). (C) High resolution imaging of PC3-mCherry tumor cell foci. C1–4, as B1–4 for PC3-
mCherry. Scale bar is 100 mm in B1 and C1; 50 mm in B2 and C2; 15 mm in B3 and C3; 10 mm in insets in B3 and C3; 5 mm in B4 and C4.
doi:10.1371/journal.pone.0031281.g005
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Figure 6. Excluding disturbance of the image analysis by autofluorescence signal from pigment cells. (A–C) In each case top left image
shows green signal (Fli-EGFP) and top right image shows red signal for tumor cells. Bottom images show zooms of boxed area in top left image
providing green (left) and red signal (middle) and transmitted light (right). Scale bar is 100 mm in images showing whole embryo and 50 mm in
zoomed images. (A) Non-implanted fli-EGFP embryo imaged at 8 days post fertilization. Number of non-implanted embryos and number of tumor
cells (falsely) detected by automated imaging and image analysis method is indicated at the right. (B) Fli-EGFP embryo implanted with CM-DiI-labeled
PC3 imaged at 6 dpi. (C) Fli-EGFP Casper embryo implanted with CM-DiI-labeled PC3 imaged at 6 dpi.
doi:10.1371/journal.pone.0031281.g006

Automated Bioassay for Cancer Dissemination

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e31281



Figure 7. Differentiation between poorly and highly aggressive human cancer cell lines using automated bioimaging assay. (A)
Scatter plot representation of tumor cell dissemination for indicated prostate (upper graphs), breast (middle), and colorectal cancer cell lines (lower
graphs). Number of injected embryos from 2 biological replicates is indicated. (B) MCD determined from data represented in A. Data are presented as
mean 6 s.e.m. *p,0.05, ***p,0.001. (C) 6 dpi embryo injected with PC3 showing tumor foci burden determined from segmented red channel (left),
and represented as scatter plot (right). (D) Automated determination of region for exclusion of tumor foci around implantation site and in area of

Automated Bioassay for Cancer Dissemination
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lines we show that this imaging platform can discriminate between

cell types with more epithelial characteristics or growing in islands

versus those with more mesenchymal characteristics or displaying

a scattered phenotype). We then combine the assay with RNAi to

silence the cell-cell adhesion molecule, E-cadherin. We rapidly

obtain data from ,90 animals per experimental group in two

biological replicates supporting the inhibitory role of E-cadherin in

cancer dissemination.

Taken together, this relatively fast medium throughput assay

may be used as a first in vivo analysis platform in the target

discovery pipeline. It provides the automation and statistical power

to identify those hits from large-scale in vitro RNAi screening

efforts that warrant more time- and money-consuming studies in

mouse models. Future directions will include incorporation of

similarly automated analysis of induction of tumor angiogenesis

and tumor cell proliferation to capture multiple aspects of cancer

progression within this bio-imaging assay.

Materials and Methods

Cell lines and ZF handling
All human cancer cell lines were obtained from ATCC and

cultured according to the provided protocol. ZF and embryos were

raised, staged and maintained according to standard procedures in

compliance with the local animal welfare regulations. The

transgenic ZF line Tg (fli1:EGFP) expressing EGFP in endothelial

cells in wild type or ‘‘Casper’’ background, was maintained

according to standard protocols (http://ZFIN.org). PC3-mCherry

cells were generated using a pCMV-mCherry-bc-puro-Kl201

lentiviral vector (provided by Dr. R.C. Hoeben, Leiden University

Medical Center, Leiden NL). 4T1-shCdh1 and 4T1-shCtr cells

were generated by lentiviral transduction using TRC shRNA

constructs (Sigma).

Implantation procedure
Mammalian cells were labeled with lipophilic fluorescent cell

tracker (CM-DiI; excitation maximum 553 nm, lot no. C7000;

Invitrogen) according to the manufacturers instructions. The

labeled cell suspension was loaded into borosilicate glass capillary

needles (1 mm O.D.60.78 mm I.D.; Harvard Apparatus) and the

intrayolk injections were performed using a Pneumatic Pico pump

and a manipulator (WPI). Dechorionated 2 days post-fertilization

ZF embryos were anesthetized with 0.003% tricaine (Sigma) and

positioned on a 10 cm petridish coated with 1% agarose. By

controlling injection pressure and duration the number of injected

cells was set at ,100 per embryo as determined by standard cell

counting of injection droplets. Injected embryos were maintained

in egg water at 34uC and fixed 6 dpi with 4% paraformaldehyde.

Automated microscopy and high-resolution imaging
Fixed embryos were manually arrayed into 96 well glass bottom

plates (material no.655892; Greiner) with each well containing a

single embryo. This was easily done in ,5 min per plate. Image

acquisition was performed by using a Nikon Eclipse Ti CLSM,

which integrates advanced optics, fluorescence detection and

scanning hardware in a single platform controlled by EZ C1

software. 488 and 561 nm laser lights were used to excite Tg (fli1:

EGFP) embryos and DiI- positive tumor cells. Serial sagittal

(lateral) sections were captured 6 dpi in an automated fashion

(14630 mm) using a Plan Apo 4X Nikon dry objective with 0.2 NA

and 20 WD. For three dimensional images 0.5 mm step Z stacks

(102461024 focal planes, 50–74 mm in depth) were acquired by

using 406Nikon dry plan fluor objective with 0.75 N.A and 0.66

WD.

Image analysis software
Automated image pre-processing, automated analysis, and 3D

reconstruction and surface rendering were performed by Image-

Pro Plus-based software from Media Cybernetics.

Extended depth of field
The software used Z-stack color images from the confocal

microscope. The obtained gray images were pseudo colored with

green for GFP and red for CM-DiI labeled tumor cells. A macro

was built that uses both channels for batch processing of all images

in a folder. First from the Z-stack a single, in-focus, composite

image was made. Pixels in the Z-stack were analyzed. For every

position, the pixel from the plane with the largest variance or local

contrast was selected. This pixel was then used for the final

composite image.

Automated orientation of the embryos (Figure 2)
For the image analysis, all embryos should have the same

orientation. For this, a macro was developed in which the images

were modified so that all embryos were horizontally oriented, with

the head towards the right and the yolk sac towards the bottom of

the image.

Automated horizontal alignment: the color image was convert-

ed to a grey value image to give a combination of the GFP and red

channels. The embryo was then segmented using mean intensity

histogram value and minimum and maximum area filter. Then, a

direction value of the segmented object was determined, which

was used to give the embryo a horizontal position.

Automated horizontal orientation: the X position value of the

center of mass was determined from the grey combined GFP and

red channels. If this value was located left from the center of

centroid, the image was flipped horizontally. In all cases, this

provided images in which the head of the embryo was oriented to

the right.

Automated vertical orientation: from the outer horizontal

positions, the point lying on the X-axis at 75% distance from

the extreme left of the embryo outline was determined. At this X-

position the Y-axis was drawn from top to bottom outlines. A

rectangle was drawn from 220 to +20 pixels horizontally from the

calculated 75% point and vertically 80 pixels above the middle of

the upper Y-axis. Another rectangle was drawn with identical

horizontal parameters and vertically 80 pixels below the middle of

the lower Y-axis. The average fluorescence intensity in the red

channel was determined for both rectangles. If intensity was higher

in the upper rectangle compared to the lower rectangle, the image

was flipped vertically. The same procedure could be performed

using the GFP channel in which case images were flipped if

intensity was higher in the bottom rectangle. Visual inspection

showed that this procedure, in all cases resulted in images where

the yolk sac was oriented to the bottom of the image.

intestinal development (left), and remaining tumor foci represented as scatter plot (right). (E) MCD before (black) and after exclusion (white bars) for
the indicated prostate (left), breast (middle), and colorectal cancer lines (right graph). Fold difference between poorly and highly aggressive cell lines is
indicated. Data are presented as mean 6 s.e.m. *p,0.05, ***p,0.001. (F) MCD after exclusion for PC3 and MCF7 in multiple independent
experiments demonstrates reproducibility. Data are presented as mean 6 s.e.m.
doi:10.1371/journal.pone.0031281.g007
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Figure 8. Differentiation between epithelial and mesenchymal cell types using the automated bioimaging assay. (A) MCD in a panel
of human cancer cell lines from different origins. Number of injected embryos is indicated. White bars indicate cell lines showing a scattered
phenotype in 2D cell culture. Black bars indicate cell lines growing as epithelial islands in 2D culture. Grey bars indicate cell lines with intermediate/
mixed epithelial/mesenchymal characteristics. (B) 4T1 breast cancer cells growing as islands of loosely attached spindle-shaped cells (left) and
completely scattered growth of 4T1 cells following E-cadherin silencing (right). (C) E-cadherin surface expression by FACS. (D) Scatter plot
representation of indicated 4T1 variants. Number of injected embryos from 2 independent experiments is shown. (E) Representative images of
embryos injected with indicated 4T1 variants. (F) MCD determined from data represented in D. Data are presented relative to wild type 4T1 as mean
6 s.e.m. **p,0.01. Scale bar is 200 mm in E.
doi:10.1371/journal.pone.0031281.g008

Automated Bioassay for Cancer Dissemination

PLoS ONE | www.plosone.org 11 February 2012 | Volume 7 | Issue 2 | e31281



Automated calculation of the injection position of the
Cy3 labeled cells

First the leftmost and the rightmost X positions of the embryo

outline were determined. From these X positions, a point lying at

75% from the extreme left was determined. Then, from this X

position the uppermost and lowermost Y positions were deter-

mined. Subsequently, from these Y positions a point lying at 75%

from the uppermost Y position was determined, which was

designated as the arbitrary injection point. Visual inspection

showed that the arbitrary injection point by this procedure, always

resided within the primary tumor mass.

Automated detection of CMDil labeled tumor cells
The pseudo colored red objects were segmented using a

threshold value, and by applying a minimum and maximum area

filter. After the segmentation, a mild watershed separation was

applied. For all detected red objects the distance (in mm) from the

injection point was calculated. A positive X value indicates tumor

foci towards the head; a positive Y value indicates tumor foci

towards the dorsal region of the embryo. Various other

parameters, including number of objects, mean distance, cumu-

lative distance, mean area, and mean intensity were calculated for

segmented red objects.

Processing of the results in excel
All data, together with the image were exported into excel. In

excel 2 macro’s were used: a) exclusion of tumor foci where [X

absolute] is within 500 mm and [Y absolute] is within 200 mm

from the calculated injection point; b) calculation of the average of

all analyzed embryos. The major calculation chosen for represen-

tation of the data was ‘‘mean cumulative distance’’ (MCD) of

tumor foci from injection position.

Statistical analysis
Statistical analysis was performed with Prism 4 software

(GraphPad) using two tailed, unpaired t-test. ns, not significant;

*, P,0.05; **, P,0.01; ***, P,0.0001.

Supporting Information

Figure S1 Automatically calculated cumulative distance (CD) in

6 dpi PC3 implanted embryos correlates with visual inspection of

tumor cell dissemination. A, Scheme depicting concept of CD of

tumor cell-foci. B, left images show CM-DiI-labeled tumor cells in

red and GFP-endothelial cells of the Tg (Fli:GFP) line in green.

Right images show only CM-DiI signal and calculated CD is

indicated for each embryo.

(TIF)

Figure S2 Representative image of BT474 (left) and MCF7 (right)

implanted 6 dpi embryo. Scale bar is 200 mm.

(TIF)

Table S1 Characteristics of cell lines used in Figure 8.

Appearance in 2D culture and expression of epithelial versus

mesenchymal markers is described for prostate cancer (black),

breast cancer (red), lung cancer (green), colorectal cancer (blue),

melanoma (orange), and fibrosarcoma (grey) cell lines.

(DOC)

Video S1 Combined multiple Z stacks of 6 dpi PC3-implanted

embryo (range = 420 mm, step size = 30 mm, top = 180 mm, bot-

tom = 2210 mm). Red, CM-DiI-labeled tumor cells; green, GFP-

endothelial cells of the Tg (Fli:GFP) line.

(AVI)

Video S2 Three-dimensional reconstruction and surface render-

ing shows tumor cell–vessel interaction for CM-DiI-labeled PC3

cell.

(AVI)

Video S3 Three-dimensional reconstruction and surface render-

ing shows tumor cell–vessel interaction for PC3-mCherry cell.

(AVI)
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