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Chapter 5

Comparison of Information Loss
Architectures in CNNs

Recent advances in image classification have been achieved by the application of
deep Convolutional Neural Networks (CNNs). Pooling and sub-sampling opera-
tions in the CNNs lead to invariance to local transformations, but result in loss
of accuracy. In this chapter, we propose a novel deep neural network called the
“Weighted Integration Architecture Network” (WIAN) that can effectively recover
the information loss due to the pooling operations in the CNNs. The proposed
WIAN reuses the information from the previous layers in the network and as-
signs a weight matrix to each layer; and then integrates them to further enhance
the image classification performance. Two weight value generation schemes are
investigated: the first one is calculated according to the responses or entropy in
the layer, and the second one is an adaptive learning scheme. Exhaustive experi-
ments on four standard benchmark datasets (CIFAR-10, CIFAR-100, MNIST and
SVHN) demonstrate the effectiveness and improved performance of the proposed
WIAN.
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5. COMPARISON OF INFORMATION LOSS ARCHITECTURES
IN CNNS

5.1 Introduction

Prior to convolutional neural networks, the commonly and widely used approaches
in image classification were using the Bags-of-Words (BoW) model [159]. This
type of model first encodes the local features from the salient regions in the
image as a histogram of quantized visual words, and then feeds the histogram
into a SVM classifier [160]. This method is a type of orderless statistics that
incorporates spatial geometry into the BoW representation. Lazebnik et al. [77]
integrated a spatial pyramid framework into the BoW feature generation, that
counts the number of visual words inside a set of image sub-regions instead of the
whole image region. This procedure was further improved by using sparse coding
optimization for the construction of a visual vocabulary [161], obtaining the best
performance on the ImageNet 1000-class classification problem. The approaches
based on the visual word model can be viewed as zero order statistics (i.e., counts
of visual words), and discard a lot of valuable information of the image. The
Fisher Vector image representation introduced by Perronnin et al. [162] overcame
this issue and extracted first and second order statistics by employing the Fisher
Kernel [163], achieving state-of-the-art image classification results.

Recently, a significant performance gain on the task of image classification has
been made with deep convolutional neural networks (CNNs) [164, 165]. This
is mainly due to their ability to learn rich high level image representations as
opposed to hand-designed low-level features, as well as the availability of very
large and more comprehensive training data.

Traditional convolutional neural networks used for image classification consist of
several stacked convolutional layers (optionally followed by a normalization layer
and a pooling layer), fully connected layers and a softmax layer (a classifier) on
the top. Convolutional layers take the inner product of a linear filter and the
underlying receptive field followed by a nonlinear activation function at every
local region of the input. The outputs from each convolutional layer are called
feature maps. The fully connected layer has connections to all individual acti-
vations in the feature maps from the previous layer and the resulting vector can
be fed into the softmax layer for classification (as shown in Figure 5.1). Variants
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5.1 Introduction

of this basic design are proposed to improve the performance of the network.
Most recent methods increase the depth of the CNN architecture as well as the
width of each layer to enhance the performance [47, 166]. However, increasing
the depth of CNNs brings the issue of vanishing gradients and over-fitting during
the optimization of the network, especially if the number of labeled examples
in the training set is limited. Several useful technologies are employed to ad-
dress the issue of over-fitting: data augmentation which increases the number of
training samples when using a small dataset, pre-training which initializes the
networks with pre-trained parameters rather than randomly set parameters, and
dropout which randomly omits half of the feature detectors, aims to prevent com-
plex co-adaptations on the training data and enhance the generalization ability.
The architecture of GoogleNet [42] is designed such that the depth and width of
the network is increased while the computational budget is keep constant. The
Network-in-Network (NIN) is an approach proposed by Lin et al. [47] that re-
places the linear convolution by a nonlinear convolution function to enhance the
abstraction ability of the neural network. Deeply supervised networks [167] focus
on the importance of minimizing the output classification error while reducing
the prediction error of each individual layer. A Siamese network [168] is trained
with a pairwise loss function that minimizes the distance between the same class
and maximizes the distance between different classes. A similar triplet network
[169] employs the triplet ranking loss function to preserve relative similarity re-
lations.

In this chapter, we propose a novel architecture called Weighted Integration Ar-
chitecture Network (WIAN) to boost the performance of image classification.
WIAN starts by reshaping the convolutional layers to the same shape by a con-
volution operation, and normalizes each reshaped convolutional layers to the same
scale. WIAN automatically learns a weight value matrix using an adaptive learn-
ing scheme or using the responses or entropy on each reshaped and normalized
convolutional layer. Then these convolutional layers are multiplied by the as-
signed weight matrixes respectively, and finally combined into a single layer by
element-wise summing, as illustrated in Figure 5.3. The main contributions of
WIAN are as follows:
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First, the weight matrix learning scheme for each layer is adaptive.

Second, the integration layer can effectively recover the spatial information loss
caused by the pooling operation and improve the accuracy of image classifica-
tion.

The remainder of this chapter is organized as follows: we make a review of related
work on the recovery of spatial information loss in Section 5.2. Section 5.3 gives
an overview of convolutional neural networks for image classification. Section 5.4
provides a detailed description of the proposed Weighted Integration Architecture
Network (WIAN). Section 5.5 presents the experimental results, and conclusions
are given in Section 5.6.

5.2 Related Work

In CNNs, a convolutional layer is usually followed by a pooling operation. The
pooling operation reduces the spatial resolution by computing a summary statis-
tic over a local spatial region (typically a max or average operation). The main
motivation behind the use of pooling is to promote invariance to local input trans-
formations (such as translation, occlusion and truncation of the local stimulus).
This is mainly due to the fact that the resulting outputs after pooling show invari-
ance to the spatial location within the pooling region. Hence, the pooling layer is
particularly important for the performance of image classification where local im-
age transformations may obfuscate the object identity. Additionally, the pooling
layer plays a vital role in preventing over-training while reducing computational
complexity for the task of image classification. However, these invariance achieved
by pooling come at the price of loss of accurate spatial information. Several re-
search efforts attempt to make up for the loss caused by the pooling operation.
A commonly used method is cascaded convolutional neural network. Sun et al.
[170] proposed to use cascaded convolutional networks to improve the accuracy
of facial landmarks detection and Toshev et al. [71] applied the cascaded convo-
lutional network to the human pose estimation. Tompson et al. [75] designed a
heat-map regression model to refine the locations of human body joints. Yang
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conv1 conv2 conv3pool1 pool2 pool3

Fully connected layer Softmax

(a classifier)

Figure 5.1: The architecture of a standard deep Convolutional Neural Network
(CNN) used for image classification.

et al. [171] designed a DAG-CNN which extracts multi-scale features across each

layer in the CNN and further integrates them for image classification. Inspired

by the architecture of DAG-CNNs, the proposed WIAN automatically learns a

weight matrix for each of previous layers and then integrates them for image

classification. Thereby, the WIAN could improve the performance of the CNN.

5.3 Convolutional Neural Networks Classification

Considering a standard CNN architecture, as depicted in Figure 5.1, there are N

convolutional layers, denoted as C1,..., CN . Each convolutional layer is followed

by a pooling layer denoted as P 1,..., PN , respectively. The objective of training

a traditional CNN is to maximize the probability of the correct class, which is

achieved by minimizing the softmax loss function. For a specific training set

which includes m images: {(I(i), L(i)); i = 1, ...,m}, where I(i) is the ith image

and L(i) ∈ {1, ..., K} is the class label. Let {x(i)j ; j = 1, ..., K} be the output of

the activation j in the last fully connected layer, then the probability that the

label of I(i) is j is given by

p
(i)
j =

exp(x
(i)
j )∑K

j=1 exp(x
(i)
j )

(5.1)

97



5. COMPARISON OF INFORMATION LOSS ARCHITECTURES
IN CNNS

The output of the fully connected layer is then fed into the softmax layer which
aims to minimize the following loss function:

Jθ = − 1

n
[
n∑
i=1

K∑
j=1

1{L(i) = j} log(p
(i)
j )] (5.2)

where 1{.} is the indicator function. Standard back-propagation is utilized to op-
timize the parameters of the network by computing the derivatives of the defined
loss function.

Additionally, the success of AlexNet [48] suggests that the features emerging at
the fully connected layers of a CNN trained for image classification can serve as
good descriptors, when for example, using a SVM classifier for image classifica-
tion.

5.4 Integration Architecture Network

As the architecture of standard CNNs did not take into account the information
loss caused by the pooling operation, in this section, we explore several useful
practices to integrate the information from the previous convolutional layers to
recover the accuracy loss in CNNs. Performance evaluation results demonstrate
that the integration of information from the previous convolutional layers could
effectively increase the performance of image classification.

5.4.1 Concatenate Architecture Network

Inspired by the architecture of GoogleNet, a simple and effective way to train
a high quality CNN is to concatenate the previous convolutional layer into a
new layer. The illustration of the concatenate architecture network (CONCAT)
is shown in Figure 5.2. In this architecture, we first reshape the convolutional
layers in the CNN into the same shape by applying a convolution operation. These
reshaped layers are normalized into the same scale and concatenated together.
The fully connected layer takes all outputs of neurons in the concatenated layers
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conv1 conv2 conv3pool1 pool2 pool3

conv1_1 conv2_1 conv3_1

Concatenate layer

Fully connected layer Softmax

(a classifier)

Figure 5.2: The illustration of the concatenate network (CONCAT). Each convo-
lutional layer is reshaped and normalized, and concatenated in one layer for further
processing.

conv1 conv2pool1 conv3pool2 pool3

conv1_1 conv2_1 conv3_1

Integration layer

Fully connected layer

Element-wise 

MAX, 

AVERAGE 

or SUM 

operation

Softmax

(a classifier)

Figure 5.3: The architecture of the proposed Integration Architecture Networks.
The layers are integrated by element-wise max, average or sum operations, re-
spectively. The resulting network is called Max Integration Architecture Network
(MIAN), Average Integration Architecture Network (AIAN) and Sum Integration
Architecture Network (SIAN), respectively.

as input to every single neuron it has. Finally the output from the fully connected
layer is fed into the softmax loss function optimizing classification.

5.4.2 Weighted Integration Architecture Network

The concatenate operation significantly increases the width of the integration
layer, which means a larger number of parameters are stored in this layer. How-
ever, a large amount of parameters results in high storage requirements, and
also it makes the network susceptible to over-fitting, especially if the amount of
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conv1

conv1_1

conv2

conv2_1

conv3

conv3_1

Integration layer

Fully connected layer
pool1

weight matrix 1

pool2

weight matrix 2

pool3

weight matrix 3

weight matrix 4

Softmax

(a classifier)

Figure 5.4: The architecture of the proposed Weighted Integration Architecture
Network (WIAN). A weight matrix is assigned to each integration layer.

labeled data in the training set is small. Additionally, because of the existing
redundant information between two adjacent layers, we propose to integrate the
previous convolutional layers (reshaped to the same dimensions by a convolution
operation and subsequently normalized) by applying element-wise max, average
or sum operations, as depicted in Figure 5.3. The resulting network architectures
are named the Max Integration Architecture Network (MIAN), the Average In-
tegration Architecture Network (AIAN) and the Sum Integration Architecture
Network (SIAN), respectively. Furthermore, we propose an adaptive method to
integrate the previous convolutional layers, which assigns to each previous convo-
lutional layer a weight matrix, respectively, and then combine them by element-
wise summing (as shown in Figure 5.4). Two weight schemes are explored in this
section, one relies on the responses or entropy of the convolutional layer and the
other one is based on an adaptive weight learning method.

Responses based weight scheme: as shown in Figure 5.4, for the given N

convolutional layers in the network, we denote the feature maps from layer Cn

as F n, n = 1, ..., N . These feature maps can be represented as a vector with
dimension wn × hn × cn, where wn and hn are the width and height of each
individual feature map, and cn denotes the number of feature maps of layer Cn.
We further associate each unit of a feature map with a spatial coordinate (x, y)

and the activation of this unit by a(x, y). The response value of each feature map
is calculated as rc =

∑wn

x=1

∑hn

y=1 a(x, y), c = 1, ..., cn. The response value of each
layer is computed as Rn =

∑cn

c=1 r
c. The weight value in the weight matrix of
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each layer is defined as:

weightnR =
Rn∑N
n=1R

n
(5.3)

Entropy based weight scheme: we further employ entropy information [172]
on each convolutional layer to define a weight value. The activation of each
unit a(x, y) in the feature map can be treated as a state pi, and the entropy of
each feature map is computed by ec =

∑wn

x=1

∑hn

y=1(pi × log pi), c = 1, ..., cn. The
entropy of each layer is computed as En =

∑ck

c=1 e
c. The weight value in the

weight matrix of each layer is then defined as:

weightnE =
En∑N
n=1E

n
(5.4)

For the responses or entropy based weight scheme, each unit in the weight matrix
is assigned the same value of response or entropy calculated from each layer, thus,
the weight matrix of responses or entropy based weight scheme can be reduced
to one single weight value.

Finally, the activation value of each unit an+1(x, y) in the integration layer is
calculated using the following formula:

an+1(x, y) =
N∑
n=1

weightn × an(x, y) (5.5)

Note that, in the specific case that the weight value from each layer is equal to
1/N , the scheme becomes equal to the scheme of AIAN. If the weight from each
layer is equal to 1, the scheme becomes equal to the scheme of SIAN.

Adaptive weight learning scheme: we further investigate an adaptive weight
learning scheme in this chapter. Different from the responses or entropy based
scheme where each unit in the weight matrix share the same weight value, the
adaptive weight learning scheme assigns to each of the integrated layer a weight
matrix. The initial values in each weight matrix are set to 1/k, where k is the
number of integrated layers. Then each unit in the weight matrix is automatically
updated during each iteration of the CNN training. Let weightn(x,y) be the value
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of each unit in the weight matrix of the nth layer, then the integrated value of
each unit an+1(x, y) in the integration layer is calculated as:

an+1(x, y) =
N∑
n=1

weightn(x,y) × an(x, y) (5.6)

5.5 Experimental Results

The proposed WIAN is implemented using Caffe [153]. The experimental envi-
ronment is consisted of a computer with an i7 processor, 32GB RAM, and an
NVIDIA TITANX. The network is trained using mini-batches of size 100 with-
out data augmentation. The training process starts from the initial weights and
learning rates, and it continues until the accuracy on the training set stops im-
proving. Then the learning rates are lowered by a factor of 10 according to an
epoch schedule determined on the validation set. The source code of WIAN is
available at: http://press.liacs.nl/researchdownloads/.

5.5.1 Datasets

We evaluate the performance of WIAN on four benchmark datasets: CIFAR-10
[164], CIFAR-100 [164], MNIST [8] and SVHN [173].

CIFAR-10: the CIFAR-10 dataset is constructed for object recognition. It is
composed of 10 object classes, with 6000 images per class. 50000 images are
selected for training, and the remaining 10000 images are used for testing. Each
image is given in the RGB-format with size 32× 32 pixels.

CIFAR-100: the CIFAR-100 dataset is similar to the CIFAR-10 dataset (both
use the same image size and format), except that the CIFAR-100 contains 100
classes with 600 images per class. CIFAR-100 also uses 50000 images for training
and the remaining 10000 images for testing.

MNIST: the MNIST dataset consists of images of hand written digits which are
28× 28 pixels in size. There are 60000 training images and 10000 testing images
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in total. For this experiment, all images of the dataset have been resized to a
fixed resolution of 32× 32 pixels.

SVHN: the Street View House Numbers (SVHN) dataset is a collection of house
numbers in the Google Street View images. It is composed of over 600000 color
images with a fixed resolution of 32× 32 pixels.

5.5.2 Details of Weighted Integration Architecture

The architecture of the network in the evaluation contains three convolutional
layers, followed by Rectified Linear Unit (RELU) normalization and pooling op-
erations, as well as a fully connected layer and a softmax classifier on top. More-
over, in order to integrate the previous convolution layers into one layer, we first
convolute them to the same shape, normalize them into the same scale and then
combine them.

According to the parameter configuration of each layer, the architecture of the
WIAN in the performance evaluation can be described concisely by layer notations
with the following layer sizes (CONV denotes the convolutional layer, RELU
denotes the rectified linear unit layer, POOL denotes the pooling layer, and FC
denotes the fully connected layer):

INPUT (32× 32× 3)

CONV 1(32× 32× 32)→ RELU1→ POOL1(16× 16× 32)

CONV 2(16× 16× 32)→ RELU2→ POOL2(8× 8× 32)

CONV 3(8× 8× 64)→ RELU3→ POOL3(4× 4× 64)

CONV 1→ CONV 1_1(4× 4× 64)

CONV 2→ CONV 2_1(4× 4× 64)

CONV 3→ CONV 3_1(4× 4× 64)

CONV 1_1 + CONV 2_1 + CONV 3_1 + POOL3→ FC → Softmax
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Methods CIFAR-10 CIFAR-100 MNIST SVHN
WIAN(responses) 83.92 55.84 99.65 95.21
WIAN(entropy) 83.86 55.25 99.58 94.95

WIAN(adaptive learning) 83.15 54.25 99.55 94.6
MIAN 82.75 54.2 99.4 94.55
AIAN 82.9 54.1 99.46 94.68
SIAN 82.6 53.9 99.3 94.52

CONCAT [42] 83.3 55.06 99.51 94.94
CNNs [48] 81.5 53.5 99.3 94.15

Table 5.1: The performance comparison of different convolutional neural network
architectures on the four benchmark datasets, CIFAR-10, CIFAR-100, MNIST and
SVHN. The number in the table denotes the accuracy of image classification.

5.5.3 Evaluation Results

We present the performance of our proposed WIAN (three weight schemes are
evaluated, the first one is based on responses, the second one relies on entropy
information and the third one is an adaptive weight learning scheme) and make
a comprehensive comparison with general CNNs, Max Integration Architecture
Networks (MIAN), Average Integration Architecture Networks (AIAN), Sum Inte-
gration Architecture Networks (SIAN) as well as the directly concatenate (CON-
CAT) of the previous convolutional layers in the CNN architecture. The concate-
nation operation is similar to the inception module in GoogleNet [42]. A softmax
loss function is employed to predict the classification accuracy. The evaluation
results of the classification accuracy are listed in Table 5.1.

It turns out that the evaluated integration schemes (WIAN, MIAN, AIAN, SIAN
and CONCAT) all achieve improved performance when compared to general
CNNs. The WIAN (based on responses, entropy and adaptive weight learning
on each layer in the CNN) show much better results than the other approaches.
WIAN based on the weight calculated according to the responses on each layer
shows the best performance on all the benchmarks. The integration schemes of
MIAN, AIAN and SIAN show similar results on the test datasets.
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Figure 5.5: The comparison of the classification error among several possible
architectures on the four benchmark datasets.

Additionally, we further investigate the behaviours of the testing error during

each epoch in the CNN training. The performance of WIAN (responses), AIAN,

CONCAT and the general CNNs are evaluated. The graphs depicted in Figure 5.5

show that WIAN (responses) reaches the smallest testing error faster than others.
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This further demonstrates that the weighted integration of previous convolutional
layers can boost the performance of the network.

5.6 Conclusions

In this chapter, we propose to reuse the information encoded in previous layers
in the network to recover the precision loss due to the pooling operation in the
CNN. We present a novel Weighted Integration Architecture Network (WIAN) to
enhance the performance of CNN based image classification, where each layer is
multiplied by a weight matrix generated according to the responses or entropy of
the layer, adaptive learning and then element-wise summed together. The eval-
uation results demonstrated that the WIAN can yield high accuracy on image
classification, and WIAN shows better performance than the scheme that employs
direct concatenation, and the schemes employing max, average and sum integra-
tion of the previous convolutional layers in the CNN architecture. Moreover,
WIAN based on the weight value calculated according to the responses on each
layer is more robust than WIAN based on entropy value as well as the adaptive
learning scheme.
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