
Large scale visual search
Wu, S.

Citation
Wu, S. (2016, December 22). Large scale visual search. Retrieved from
https://hdl.handle.net/1887/45135

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/45135

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/45135

Cover Page

The handle http://hdl.handle.net/1887/45135 holds various files of this Leiden University
dissertation.

Author: Wu, S.
Title: Large scale visual search
Issue Date: 2016-12-22

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/45135
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 4

Deep Binary Codes for Large Scale
Image Retrieval

Recent studies have shown that image representations built upon deep convolu-
tional layers in Convolutional Neural Networks (CNNs) have strong discriminative
characteristics. In this chapter, we present a novel and effective method to create
compact binary codes (deep binary codes) based on deep convolutional features
for image retrieval. Deep binary codes are generated by comparing the response
from each feature map and the average response across all the feature maps on
the deep convolutional layers. Additionally, a spatial cross-summing strategy is
proposed to directly generate bit-scalable binary codes. As the deep binary codes
on different deep layers can be obtained by passing the image through the CNN
and each of them makes a different contribution to the search accuracy, we then
present a dynamic, on-the-fly late fusion approach where the top N high quality
search scores from deep binary codes are automatically determined online and
fused to further enhance the retrieval precision. Two strengths of the proposed
methods are that the generation of deep binary codes is based on a generic model,
which does not require additional training for new image domains, and that the
dynamic late fusion scheme is query adaptive. Extensive experimental results on
well known benchmarks show that the performance of deep binary codes are com-
petitive with state-of-the-art approaches for large scale image retrieval. Moreover,

69

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

it is shown that the dynamic late fusion scheme substantially enhances the search
accuracy.

4.1 Introduction

Content-based image retrieval aims to find relevant images in an image database
that share a similar appearance with a given query image. This is a challenging
task for large scale visual search, because one must address both the typical
appearance transformations such as changes in perspective, rotation and scale;
and also minimize memory, computational cost, and response time.

Traditional image retrieval systems based on visual word representations mainly
owe their success to locally invariant features and large visual codebooks. The
Bag-of-Words (BoW) [1] approach is usually employed to encode local features
into a histogram according to the occurrence frequency of each visual word. Per-
onnin et al. proposed the Fisher Vector [2]. The visual words in a Fisher Vector
are constructed with a Gaussian mixture model (GMM) where the gradients of
local features corresponding to particular parameters in GMM are summed. The
Fisher Vector image representation is the concatenation of each accumulated gra-
dient. Jegou et al. proposed a Vector of Locally Aggregated Descriptors (VLAD)
[3] to capture more information from the image. VLAD and its variations [4, 5, 6]
are viewed as a type of simplified Fisher Vector, and it accumulates the differ-
ence of each local feature to the visual words and concatenates these accumulated
values to describe an image.

Visual word based approaches are challenging to scale to very large image databases,
as they have significant computational and memory requirements. Hashing tech-
niques, such as iterative quantization (ITQ) [137], locality-sensitive hashing (LSH)
[138], spectral hashing (SH) [23], spherical hashing (SpH) [139], locality-sensitive
hashing from shift-invariant kernels (SKLSH) [20], density sensitive hashing (DSH)
[140] as well as PCA-random rotation (PCA-RR) [137] focus on learning com-
pact yet powerful image representations for efficient large scale visual search.
The basic idea of hashing-based approaches is to construct a hash function to

70

4.1 Introduction

map each visual object into a binary string code such that similar visual objects
are mapped into similar binary codes. Unlike the above mentioned hashing ap-
proaches, which seek a linear function to project data into a binary vector, recent
supervised hashing methods based on convolutional neural network (CNN) archi-
tectures [141, 142] seek to learn multiple hierarchical non-linear transformations
to generate distinctive binary codes. However, most state-of-the-art hash func-
tion learning methods require additional training for each new image domain.
This can require significant resources both for assembling the supervised training
data and the learning process.

The recent CNN based image representation makes use of the transfer property
of a CNN architecture that is pre-trained on a large scale dataset. It has been
shown to provide a highly discriminative descriptor representing an image and
to produce superior performance in various computer vision tasks, such as image
classification, object detection and visual search [58, 143, 144, 145, 146]. Most
of these research projects utilize the outputs from the fully connected layers to
represent images (directly used or followed by PCA reduction [63]). In particular,
visual representations from activations of deep convolutional layers have been
shown to lead to high accuracy for image retrieval in real world image test sets.
This is achieved by processing a max-pooling, spatial max-pooling [64, 147] or
sum-pooling [65] operation on the deep convolutional layers. Better performance
is obtained using deep convolutional features than if the features from the fully
connected layers are used. This is mainly due to the fact that the activations
in each channel of the convolutional layer correspond to receptive fields in the
original image, i.e., having a direct semantic interpretation.

Inspired by the advantages of image representation through aggregating activa-
tions from deep convolutional layers, we propose a novel and efficient approach
to construct bit-scalable binary codes from deep convolutional layers for highly
efficient image retrieval (as shown in Figure 4.1). This idea is mainly based on
the fact that similar visual objects have similar distributions of responses of fea-
ture maps on deep convolutional layers. In this chapter, we propose to generate
the binary code on each convolutional layer according to the comparison between
the response of each feature map and the average response across all the feature

71

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

Image search results

Final results

Query image

Database

Late fusion

A pre-trained CNN

Deep binary code

1 0 1 1 0101…..

1 0 1 0…..

Bit-scalable

1 1 1 0 0111…..

1 1 1 0…..

Bit-scalable

1 0 0 1 1101…..

1 0 1 1…..

Bit-scalable

Figure 4.1: The proposed image retrieval framework. Our method consists of
two main components. The first is the deep binary code generation on each deep
convolutional layer of a pre-trained CNN. In the second component, we propose a
dynamic late fusion scheme to further increase the search precision. Images with
green rectangles are positive results.

maps on the same deep convolutional layer. Additionally, a strategy of spatial
cross-summing is designed to generate bit-scalable deep binary codes. Extensive
experiments on well-known image retrieval benchmarks demonstrate the effec-
tiveness of the proposed binary code representation (referred to as deep binary
codes) and show competitive results compared to state-of-the-art image retrieval
approaches.

The strengths of the proposed deep binary codes are three-fold. First, the deep
binary code is highly efficient regarding computational and memory costs. By
passing a test image through a pre-trained CNN architecture, the compact bi-
nary codes on each deep convolutional layer can easily be generated. Second, the
length of a deep binary code can be controlled by the spatial cross-summing op-
eration. Third, available pre-trained CNN architectures (VGGNet [51], AlexNet
[48] as well as GoogleNet [42]) can be directly employed to generate deep binary
codes.

It is worth to note that during the procedure of passing an image through a

72

4.1 Introduction

pre-trained CNN architecture, all the deep binary codes from lower to higher
layers can be obtained. The similarity scores given by deep binary codes from
different layers vary largely. As illustrated in Figure 4.3, for a specific query
image, the average precision score of each deep binary code is different, and it is
difficult to determine in advance which deep binary code is the most robust one.
Thus, we are motivated to investigate how to fuse the search scores returned by
deep binary codes from different layers, to further improve the precision of visual
search. Inspired by the idea proposed by Zhang et al. [148] which demonstrates
that the score curve returned by a good feature shows an “L” shape, while that
returned by a bad feature shows a gradually dropping tendency, the effectiveness
of a feature can be estimated, as it is negatively related to the size of the area
under the normalized and sorted score curve. In this chapter, we propose to
optimize the operation of normalization in Zhang et al.’s method and design a
new unsupervised dynamic late fusion scheme to choose the top N good features
for a given query, and then aggregate the search scores of the top N candidates
to improve the search precision.

The main contributions of this chapter are summarized as follows:

First, this chapter introduces a novel and compact deep binary representation
which is generated from the convolutional layers of pre-trained CNN architec-
tures and investigates the reasons underlying its success. The proposed approach
creates bit-scalable deep binary codes in a data-independent manner in the sense
that it uses a generic transferred model, which does not require additional train-
ing.

Second, image representations based on different pooling operations (such as max-
pooling, average-pooling and sum-pooling) as well as various hashing function
learning methods on the activations of the deep convolutional layers are evaluated.
This results in both insights and a baseline for large scale image retrieval.

Third, the proposed adaptive and unsupervised dynamic (top N) score-level late
fusion scheme is shown to significantly improve the image retrieval accuracy.

The remainder of this chapter is organized as follows. First, we briefly review
related work in Section 4.2. Section 4.3 introduces the details of the proposed deep

73

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

binary codes and the dynamic score-level late fusion scheme. The experimental
results are presented in Section 4.4 and conclusions are given in Section 4.5.

4.2 Related Work

CNN based image representation: deep learning aims to learn higher seman-
tic representations by passing an image into the architecture of a convolutional
neural network [48]. The image features generated from the activations of the
fully connected layers have already demonstrated their good performance in im-
age retrieval tasks. Recent research projects further explore the features from
the deep convolutional layers. Ng et al. [149] treated the channels from one deep
convolutional layer as visual words and encoded them into a feature similar to
a VLAD. Razavian et al. [64] and Azizpour et al. [147] proposed to aggregate
the activations from the last convolutional layers by max-pooling or spatial max-
pooling which show better performance than those from fully connected layers.
Additionally, it was revealed that the image representation by sum-pooling and
PCA whitened on the last convolutional layer leads to much better performance
[65]. Giorgos et al. [150] proposed to extract a set of features by max-pooling
at multiple scales on a deep convolutional layer and subsequently summing the
collected features to describe an image.

Learning based hashing: the existing hash function learning methods can be
classified into two categories: data-independent and data-dependent. LSH [138]
is a representative data-independent method which proposed to use random pro-
jections to map data into binary codes. SKLSH [20] is an extension of LSH which
extends Euclidean distance to other distances. For the data-dependent categories,
the method of SH [23] was presented to obtain balanced binary codes by solving
a spectral graph partitioning problem. ITQ [137] creates binary codes by simul-
taneously maximizing the variance of each bit and minimizing the quantization
error. SpH [139] was proposed to preserve the data locality relationship to keep
neighbors in the input space as neighbors in the Hamming space. CNN based
hashing methods with supervisory information in the form of class labels have

74

4.3 Proposed Approach

been further developed by Lai et al. [141] and Zhao et al. [142], which opti-
mize the CNN architecture based on a loss function to preserve binary semantic
similarity of the data. Compared with the hashing-based learning methods, the
proposed deep binary codes achieved competitive and even better performance
without requiring training data and supervisory information.

Late fusion approaches: Late fusion approaches fuse the search results from
different features or different methods to increase the search accuracy. Nandaku-
mar et al. [151] proposed a framework which optimally combines the genuine
match scores through the likelihood ratio calculation. Zhang et al. [152] pro-
posed a graph-based query specific fusion method where multiple retrieval lists
obtained by different methods are merged and re-ranked by a graph model. Zheng
et al. [148] proposed to determine the weight of different search scores based on
the fact that the quality of a feature has a negative relationship to the area under
the normalized score curve. Our proposed method is similar to [148], however the
difference is that our late fusion approach only combines the search scores from
the top N high quality features, without requiring expensive offline calculations
for different features.

4.3 Proposed Approach

4.3.1 Generating Deep Binary Codes

In this section, we describe how to generate the deep binary codes. This starts
with a pooling operation, which calculates a summary statistic (such as max-
pooling, sum-pooling, multi-scale-max-pooling or multi-scale-sum-pooling) over
a local spatial region on the deep convolutional layers. The main motivation
behind the use of pooling is to promote invariance to local input transformations
(such as translation, occlusion and truncation of the local stimulus), which could
greatly improve the effectiveness of the deep convolutional layer representation.
This is due to fact that the resulting outputs by pooling are invariant to their
spatial location within the pooling region. This is particularly important for the

75

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

Hamming distance=75

Hamming distance=230

Deep binary code

Figure 4.2: The intra feature map distribution between relevant images and ir-
relevant images. Relevant images have similar distributions and the peak values
appear at the same positions, which results in similar deep binary codes.

performance of image search where local image transformations obfuscate object
identity. An additional advantage of the pooling operation is that it reduces the
spatial resolution, resulting in a lower-dimensional image representation.

Consider a pre-trained CNN architecture with L deep convolutional layers, and
a given input image I. We pass I through the pre-trained network where the
obtained feature maps can be denoted as F̄i = {Fi,j} with i = 1...L, j = 1...Ci,
where the Fi,j is equal to the jth feature map at the ith deep convolutional layer
and Ci is equal to the number of channels (or convolutional kernels) of deep layer
i. Assume that Fi,j has size Wi × Hi × Ci, where Wi and Hi are the width
and height of each channel, respectively. We further associate each cell in the
feature map from the ith layer with a spatial coordinate (x, y) and the response
at this position fi(x, y). Then, the image representation by max-pooling on a
deep convolutional layer can be described as follows:

V̄i = [V̄Fi,1
...V̄Fi,j

...V̄Fi,Ci
]where V̄Fi,j

= max
x,y∈Fi,j

(fi(x, y)) (4.1)

The max-pooling operation encodes the local maximum response from each fea-
ture map and leads to a compact feature vector with its dimension equal to the

76

4.3 Proposed Approach

number of feature maps.

In contrast to max-pooling which only makes use of the local maximum response
in the feature map, sum-pooling encodes all the responses into the feature vector.
Sum-pooling on activations from a deep convolutional layer can be calculated as
follows:

V̂i = [V̂Fi,1
...V̂Fi,j

...V̂Fi,Ci
], V̂Fi,j

=

Hi∑
x=1

Wi∑
y=1

fi(x, y) (4.2)

As the activations from the convolutional layers can be interpreted as local fea-
tures corresponding to particular original image regions, the simple max-pooling
and sum-pooling do not consider the spatial and location information of the ac-
tivations in the feature map, hence the generated feature vectors are only trans-
lation invariant. Furthermore, as the local regions appear at various scales in the
images, the scheme of multi-scale-pooling on feature maps is utilized to capture
information at different scales. In this way the image representation could be
robust to scale transformations. Let R denote a region in a feature map, then the
extracted feature in this region by pooling can be constructed as follows:

Vi,R = [VFi,1,R
...VFi,j,R

...VFi,Ci,R
], VFi,j,R

= P
x,y∈R

| fi(x, y) | (4.3)

Vi = [VFi,1
...VFi,j

...VFi,Ci
], VFi,j

=
∑
R∈Fi,j

Vi,R (4.4)

The function P | · | can be max-pooling, sum-pooling or average-pooling on the
region R. R is a square region of the feature map with width (height) from
1 to min(Wi, Hi). The extracted features from multiple scale regions are then
summed, and subsequently l2-normalized to represent the image.

We further observe that: for a pair of similar images, the feature maps with
a high response appear at almost the same index positions on the deep layer
(referred to as intra feature map distribution), as shown in Figure 4.2. Based
on this observation, we propose to convert the image representation on the deep
convolutional layers into binary codes Bi = [BFi,1

...BFi,j
...BFi,Ci

]. This binary

77

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

code is constructed by comparing the response from each feature map with the
average response across all the feature maps:

BFi,j
=

{
1, if VFi,j

≥ average(Vi)

0, if VFi,j
< average(Vi)

(4.5)

Thus, the image representation by the deep convolutional layers is converted into
binary codes in an unsupervised and training data independent way. Moreover,
these binary codes have low memory requirements and allow for fast matching
using the Hamming distance, hence binary codes are very suitable for large scale
image search.

4.3.2 Spatial Cross-Summing

Based on the pre-trained CNN architecture, the bit-length of the deep binary
codes is preset according to the number of feature maps in the deep layers. In
real-world applications, binary codes with different bit-lengths allow researchers
to make trade-offs between accuracy and efficiency. For example, real-time sys-
tems and devices with limited computational and storage resources require low
dimensional binary codes, while higher dimensional binary codes are more appro-
priate for increased accuracy. The conventional PCA-operation is data-dependent
and is not suitable for the generation of bit-scalable deep binary codes. To ad-
dress these issues, we propose a spatial cross-summing strategy to create compact
and bit-scalable deep binary codes from deep-layer features.

For a given deep-layer feature Vi with length Ci, the objective is to generate a
bit-scalable deep binary code with length n, n = Ci/2

m, and m = 1, . . . , log2(Ci).
This procedure starts by generating the deep-layer feature with length n by
a spatial cross-summing strategy. For example, let n = Ci/4, then V2n

i =

Vi[1, 2, ..., 2n]+Vi[Ci, Ci−1, ..., 2n+1], and Vn
i = V2n

i [1, 2, ..., n]+V2n
i [2n, 2n−

1, ..., n+1]. Finally, the deep binary code Bi is calculated using Formula (4.5) on
the vector Vn

i . Algorithm 1 formalizes the procedure of bit-scalable deep binary
code generation.

78

4.3 Proposed Approach

Algorithm 1 : Bit-scalable deep binary codes generation

Input: the ith deep-layer image feature: Vi with length Ci, and n = Ci/2
m, gives

m ∈ N ≥ 1

Output: deep binary codes B with n bits
1: X ⇐ Ci/2, V⇐ Vi

2: while X 6= n do
3: bit⇐ X, l⇐ length(V)

4: Va ⇐ [V1, V2, · · · , Vbit],Vb ⇐ [Vl, Vl−1, · · ·Vl−bit+1]

5: V′ = Va + Vb

6: X ⇐ X/2, V⇐ V′

7: end while
8: Deep binary code B generation of size n bits
9: for all Vbit in V and Bbit in B do

10: if Vbit ≥ average(V) then
11: Bbit ⇐ 1

12: else
13: Bbit ⇐ 0

14: end if
15: end for
16: return B of size n bits

4.3.3 Dynamic Late Fusion

Another advantage of the proposed binary string representation is that the deep

binary codes on different layers could all be generated by passing the input image

through the pre-trained CNN just once, without additional re-feeding operations.

Moreover, different deep binary codes make different contributions to the image

search. As illustrated in Figure 4.3, the deep binary code from the conv5 layer

gives a higher average precision score than that from the pool5 layer. Thus, the

critical issue is how to automatically measure and compare the quality of each

deep binary code, since no supervision and relevance feedback are available online,

and the only accessible information is the search scores returned by different deep

binary codes. Therefore, we aim to exploit these search scores to improve the

79

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

0 500 1000 1500
The number of returned images

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d
 h

a
m

m
in

g
 d

is
ta

n
c

e

Sorted search score curve

deep binary code (pool3) ap=0.0227

deep binary code (conv5) ap=0.95

deep binary code (pool5) ap=0.25

Figure 4.3: The deep binary codes from pool3, conv5 and pool5 are employed to
obtain three sorted search scores respectively, where the code from conv5 produces
good performance (AP =0.95) and has a smaller area under the curve than those
from pool3 and pool5. Note that the curve from pool3 goes beneath that from
pool5 after the marked yellow line (which needs to be avoided).

retrieval performance.

The authors of [148] show that the curve of a sorted search score returned by

a good feature appears to have an “L” shape and the curve returned by a bad

feature shows a gradually decreasing tendency. Furthermore, they showed that

the size of the area under the sorted score curve can be used as an indicator to

identify the quality of the features. Motivated by this, we fuse the search scores

from the top N good deep binary codes.

For a specific query image I, together with a set of deep binary codes Bi, i = 1...L,

we can use the Hamming distance to measure similarity. Note that in case of the

Hamming distance higher similarity corresponds to a lower value. We use a

modified Hamming distance H̄I = K − HI such that H̄I has a higher value for

higher similarity. Here K is the size of the deep binary code and the sorted search

score based on the modified Hamming distance returned by one deep binary code

is represented by Si. We further use max-min normalization on the sorted search

scores returned by the modified Hamming distance, so that relevant images for a

80

4.4 Experiments and Setup

query give a max score equal to 1, while irrelevant images give a score of 0.

S̄i =
Si −min(Si)

max(Si)−min(Si)
(4.6)

The size of the area under the curve S̄i is calculated as:

areai =
M∑
j=1

S̄i,j (4.7)

whereM denotes the topM nearest neighbors in each search score. We introduce
the parameter M ,to prevent the situation where the sorted curve from a good
feature may go under that from a bad search score for a large M (as shown
in Figure 4.3, the marked yellow line). This parameter controls the size of the
area, and it is set as 400 in the experiments. Clearly, the calculated size of the
area under each normalized score curve can be used to select the top N high
quality features. We further assign an adaptive weight value to each of the top
N scores:

weighti =
1

areai
(4.8)

Finally, the fused search score from high quality deep binary codes is calculated
as follows:

Score =
N∑
i=1

(Si × weighti) (4.9)

The proposed dynamic (top N) score-level late fusion scheme is adaptive and the
quality of the deep binary code is automatically measured in an unsupervised
manner. Clearly, it does not need any offline computation, thus the late fusion
scheme is compatible with dynamic databases and suitable for large scale image
search.

4.4 Experiments and Setup

In this section, we construct experiments and present the performance of our
proposed image representation based on deep binary codes as well as the dynamic
late fusion scheme in image retrieval.

81

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

The VGG network (VGGNet) [51] is employed to generate the deep binary codes
(without fine-tuning). The deep convolutional layers: pool3, pool4, conv5 and
pool5 from the VGGNet architecture are examined and the activations extraction
from each deep convolutional layer is implemented using Caffe [153]. All images
are resized to 224×224 before passing through the CNN network. The dimensions
and the number of feature maps of the examined deep layers are summarized in
Table 4.1. Max-pooling, sum-pooling, multi-scale-max-pooling, and multi-scale-
sum-pooling are utilized to transform the activations from the feature maps to
deep convolutional features, which are referred to as MP, SP, MSMP and MSSP,
respectively. The deep binary codes are accordingly referred to as BMP, BSP,
BMSMP and BMSSP. The cosine similarity measure is used to compare two
images represented by their deep convolutional features (floating point values),
while the Hamming distance is employed to compare the similarity based on the
proposed deep binary codes (a binary string).

The experimental environment for the evaluation is a computer with an i7 CPU,
64GB of RAM, and an NVIDIA K40.

The source code of our bit-scalable deep binary codes and dynamic late fusion
are released online at: http://press.liacs.nl/researchdownloads/.

Convolutional layer
The size of
feature map

The number of
feature maps

pool3 28× 28 256
pool4 14× 14 512
conv5 14× 14 512
pool5 7× 7 512

Table 4.1: Overview of the deep convolutional layers.

4.4.1 Datasets

We evaluate the performance of the deep binary code and the dynamic late fusion
scheme on four publicly available datasets: INRIA Holidays [154], Oxford5K [122],
UKbench [40] and MIRFLICKR 1M [136].

82

4.4 Experiments and Setup

INRIA Holidays: this dataset consists of 1491 personal holiday photos that
can be divided into 500 image groups, where the first image of each group is the
query. The retrieval performance is measured in terms of mean Average Precision
(mAP).

Oxford5K: this is a dataset composed of 5062 images which are downloaded from
Flickr by searching 11 buildings or landmarks associated with Oxford. There are a
total of 55 queries corresponding to 11 buildings and the performance is measured
using mAP over the queries.

UKbench: a total of 10200 images are contained in this dataset, divided into
2550 groups. Each image is taken as the query in turn. The performance is
measured by the average recall of the top four ranked images, referred to as N-S
score.

MIRFLICKR 1M: this dataset includes one million images which are randomly
retrieved from Flickr. We use this dataset to test the scalability of our deep binary
code.

4.4.2 Evaluation of Deep Convolutional Feature Represen-
tation

We first evaluate the performance using deep convolutional representations (MP,
SP, MSMP and MSSP), where the feature vectors generated by the operations of
MP, SP, MSMP and MSSP are l2-normalized. Table 4.2 summarizes the perfor-
mance of the deep convolutional representations on each examined layer. For the
single-scale pooling process, we observe that the sum-pooling operation achieves a
better performance than max-pooling, while the multi-scale pooling scheme out-
performs the single-scale operation. In general, the scheme of MSMP obtained
the best search scores on each of the four benchmark datasets. It is also worth
noting that the search precision from the lower layers to higher layers reveals an
increasing trend, and the deep convolutional features on pool5 outperform fea-
tures taken from other layers. This is mainly because each activation from higher
deep layers correspond to a larger local region in the original image than those

83

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

from a lower deep layer, hence more semantic information is represented at a high
deep layer.

Dataset Deep feature pool3 pool4 conv5 pool5

Holiday dataset (mAP score)

MP 57.24 71.40 78.50 79.27
SP 65.23 75.49 76.37 79.17

MSMP 67.22 76.91 80.24 80.65
MSSP 64.40 74.80 76.18 78.81

Oxford5K dataset (mAP score)

MP 22.67 31.70 46.38 49.03
SP 31.68 47.28 54.73 56.55

MSMP 33.74 49.39 57.39 58.05
MSSP 32.57 50.29 54.48 57.18

UKbench dataset (N-S score)

MP 2.7 3.34 3.72 3.73
SP 2.95 3.47 3.7 3.73

MSMP 3.04 3.54 3.74 3.75
MSSP 2.94 3.46 3.66 3.7

Table 4.2: The performance of various deep convolutional features on image re-
trieval on the benchmark datasets. The accuracy is measured by the mAP score for
the Holiday and Oxford5K datasets and the N-S score for the UKbench dataset.

4.4.3 Performance of Deep Binary Codes

We further test the image retrieval accuracy of the proposed deep binary codes
on the benchmark datasets and the results are displayed in Table 4.3. The results
demonstrate the effectiveness of the deep binary codes. We can see that the deep
binary codes from the same layer generated using SP, MSMP and MSSP have
similar performance on each dataset, and they all give better results than the
representation based on MP. Compared to the performance of the deep convolu-
tional features in Table 4.2, the dimensions of deep binary code are significantly
reduced from 256 float values (2048 bytes of memory) to 256 bits (32 bytes of
memory) on pool3 layer and 512 float values (4096 bytes) to 512 bits (64 bytes)
on pool4, conv5, and pool5 layers, respectively. Meanwhile, the computation-
time cost of the cosine similarity between two deep convolutional features (512

84

4.4 Experiments and Setup

float values) is 0.14ms, while the comparison of the Hamming distance measure
between two deep binary codes (512 bits) costs 0.007ms computation-time. The
performance of deep binary codes is very competitive to deep convolutional fea-
tures on the Holiday and UKbench datasets, which verifies that the deep binary
codes have significant advantages with respect to speed/storage trade-off over
the deep convolutional features, especially in the case of large scale image search.

Dataset Deep feature pool3 pool4 conv5 pool5

Holiday dataset (mAP score)

BMP 45.02 63.32 70.98 71.05
BSP 59.47 73.04 74.52 75.5

BMSMP 60.47 73.79 74.83 74.69
BMSSP 57.78 73.82 72.94 74.65

Oxford5K dataset (mAP score)

BMP 21.4 33.93 43.13 42.59
BSP 29.78 46.54 49.26 49.92

BMSMP 29.1 46.68 48.93 49.55
BMSSP 29.3 47.26 50.33 50.45

UKbench dataset (N-S score)

BMP 2.26 3.1 3.54 3.56
BSP 2.83 3.41 3.62 3.64

BMSMP 2.85 3.45 3.63 3.64
BMSSP 2.84 3.42 3.59 3.62

Table 4.3: The performance of various deep binary codes on image retrieval based
on four benchmark datasets. The accuracy is measured by mAP score for the
Holiday and Oxford5K datasets and N-S score for the UKbench dataset.

4.4.4 Comparison with Hashing Learning Approaches

In the research literature, the closest related competitive algorithms are the un-
supervised hashing learning methods [20, 23, 137, 138, 139, 140]. Specifically, to
make a trade-off towards accuracy, efficiency and storage requirements in large
scale image retrieval, hash function learning methods map deep convolutional
features to binary string representations. In this section, we evaluate the per-
formance of bit-scalable deep binary codes by comparing them with seven unsu-

85

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

Method
Holiday dataset (mAP)

pool3 (bits) pool4 (bits) conv5 (bits) pool5 (bits)
256 128 64 512 256 128 512 256 128 512 256 128

BMSMP 59.86 54.17 42.33 73.91 71.42 64.32 74.79 70.77 65 75.32 72.22 64.67
LSH 44.48 34.13 23.64 69.42 59.93 53.33 71.57 66.75 58.49 69.47 67.69 57.82

SKLSH 37.2 25.74 23.37 64.62 53.93 39.32 67.78 60.7 46.56 66.97 60.53 47.17
ITQ 39.73 27.63 15.7 71.99 64.2 52.07 74.26 70.39 63.72 74.5 72 64.15

PCAH 12.05 18.11 26.4 37.98 48.3 48.17 46.56 62.48 62.96 44.14 60.49 62.65
SH 57.9 52.81 41.39 71.52 69.61 63.96 72.48 70.1 64.75 71.29 72.05 64.44

PCA-RR 43.98 28.78 30.82 68.29 64 53.13 73.17 69.69 64.02 72.71 70.66 64.05
DSH 53.02 46.24 37.84 63.9 60.7 53.5 66.32 60.84 55.5 67.99 63.86 57.31

Table 4.4: Comparison with various unsupervised hash function learning methods
on the Holiday dataset.

Method
Oxford dataset (mAP)

pool3 (bits) pool4 (bits) conv5 (bits) pool5 (bits)
256 128 64 512 256 128 512 256 128 512 256 128

BMSMP 29.1 22.6 19.06 46.68 40.71 35.41 48.93 48.02 41.45 49.55 47.36 40.51
LSH 21.35 15.84 4.21 40.57 30.33 23.4 47.2 46.07 39.85 48.72 44.78 33.51

SKLSH 16.32 14.04 7.52 39.45 26.88 23.98 46.47 38.53 29.75 50.15 39.96 33.6
ITQ 12.44 7.17 6.55 42.36 34.67 21.98 48.42 47.99 41.29 48.8 47.3 40.99

PCAH 10.6 12.13 7.01 20.27 23.9 27.08 33.17 37.77 37.58 35.08 41.54 38.45
SH 24.31 22.25 17.01 44.73 40.21 34.84 48.64 47.31 41.44 49.17 48.4 42.84

PCA-RR 17.56 16.76 13.01 38.59 31.4 27.39 48.9 47.91 39.53 49.14 47.07 40.49
DSH 21.89 20.22 17.75 32.2 28.25 2.43 40.78 37.58 30.6 43.32 38.06 28.78

Table 4.5: Comparison with various unsupervised hash function learning methods
on the Oxford5k dataset.

pervised hash function learning methods. The compared approaches include two
categories: data-independent methods (LSH and SKLSH) and data-dependent
methods (ITQ, PCAH, SH, PCA-RR and DSH). The implementation of these
methods are provided by the authors. Considering that the image representation
based on MSMP achieves the best performance (as the results demonstrated in
Table 4.2) and in order to make an objective comparison, all evaluated hashing
learning methods map the deep convolutional features generated by using the
MSMP operation. Moreover, different sizes of binary representations are evalu-
ated.

Table 4.4, 4.5 and 4.6 illustrate the search accuracy of all the evaluated approaches
on the benchmark datasets with different numbers of bits. We observe that deep
binary codes from deep convolutional layers pool3, pool4 and conv5 give better
results than the other hashing learning methods. The deep binary codes with
different bit sizes from all examined layers obtained the best results on both the
Holiday and UKbench datasets. The deep binary codes with 512, 256 and 128

86

4.4 Experiments and Setup

Method
UKbench dataset (N-S score)

pool3 (bits) pool4 (bits) conv5 (bits) pool5 (bits)
256 128 64 512 256 128 512 256 128 512 256 128

BMSMP 2.6 2.6 2.18 3.46 3.31 2.66 3.64 3.47 3.2 3.65 3.48 3.21
LSH 2.39 1.76 1.16 3.31 3.0 2.41 3.50 3.32 2.97 3.52 3.32 2.94

SKLSH 2.18 1.74 0.84 3.15 2.76 2.18 3.39 3.10 2.51 3.38 3.04 2.58
ITQ 1.78 0.89 0.33 3.22 2.82 2.19 3.54 3.4 3.11 3.55 3.41 3.12

PCAH 1.59 1.61 1.48 2.77 2.64 2.35 3.42 3.38 3.19 3.41 3.38 3.18
SH 2.6 2.58 2.12 3.43 3.21 2.65 3.58 3.45 3.11 3.59 3.45 3.18

PCA-RR 2.40 2.06 1.45 3.31 3.08 2.63 3.54 3.43 3.19 3.56 3.42 3.15
DSH 2.42 2.18 1.92 3.03 2.84 2.61 3.41 3.21 2.91 3.41 3.25 2.99

Table 4.6: Comparison with various unsupervised hash function learning methods
on the UKbench dataset.

bits on pool5 show competitive performance to SKLSH and SH on the Oxford5K
dataset. Regarding the data-dependent hash function learning approaches, the
computational complexity and the time-cost will be significantly increased when
the amount of training data becomes large. The deep binary code does not
suffer from this issue because it does not need retraining. Furthermore, it shows
its competitiveness and in some cases even better performance on image search
compared to the hash function learning approaches.

4.4.5 Evaluation of the Late Fusion Scheme

In this section, we verify the effectiveness of the proposed dynamic top N score-
level late fusion approach. Both binary string features and float value features
are evaluated.

1 2 3 4
The number of top N good features

70

72

74

76

78

80

m
A

P
 s

co
re

Holiday dataset

BMP
BSP
BMSSP
BMSMP

1 2 3 4
The number of top N good features

35

40

45

50

55

m
A

P
 s

co
re

Oxford5K dataset

BMP
BSP
BMSSP
BMSMP

1 2 3 4
The number of top N good features

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

N
-S

 s
co

re

UKbench dataset

BMP
BSP
BMSSP
BMSMP

Figure 4.4: The search accuracy for different values of N . Four search scores from
each of the compared methods are used, and most of them obtain the best fused
score at value 3.

87

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

Method Holiday dataset Oxford5K dataset UKbench dataset
(mAP score) (mAP score) (N-S score)
Best Fused Best Fused Best Fused

BMSMP 75.32 80.3 49.55 53.04 3.65 3.71
LSH 71.57 77.17 48.72 51.53 3.52 3.63

SKLSH 67.78 75.27 50.15 54.27 3.39 3.59
ITQ 74.5 77.85 48.8 50.75 3.55 3.61

PCAH 46.56 55.54 35.08 39.15 3.42 3.59
SH 72.48 79.52 49.17 54.17 3.59 3.68

PCA-RR 73.17 77.84 49.14 52.43 3.56 3.65
DSH 67.99 72.52 43.32 45.12 3.41 3.45

Table 4.7: The comparison of each evaluated method on image retrieval accuracy
with and without top N score-level late fusion (N = 3).

The impact of the parameter N . First, we construct experiments to validate
the influence of parameter N introduced in Formula (4.9). The normalized and
sorted search scores from the deep binary codes generated by the operations of
sum-pooling, max-pooling, multi-scale-sum-pooling and multi-scale-max-pooling
on deep convolutional layers pool3, pool4, conv5 and pool5 are used. The dy-
namic late fusion for the deep binary codes is based on Formula (4.9) and the
search accuracy on each test dataset is depicted in Figure 4.4. We find that the
fusion accuracy from each search score increases steadily with N , while slightly
decreasing at position top4. All the fused search scores show peak values at po-
sition top3, therefore, we set N equal to λ − 1, where λ is the number of fused
features.

Then, we compare the retrieval performance of the binary string representation
with the dynamic late fusion framework to the retrieval performance of the bi-
nary string representation without the dynamic late fusion framework. The deep
binary codes and learned binary codes by hash functions are evaluated, and 256
bits on pool3, 512 bits on pool4, conv5 and pool5 are used in this comparison.
The comparison results are shown in Table 4.7, “Best” denotes the best accuracy
of each method from deep convolutional layers, “Fused” denotes that the search
score is obtained using the dynamic late fusion scheme. We find that the search

88

4.4 Experiments and Setup

accuracy is significantly increased after the top3 late fusion. The deep binary
codes obtain the best fused scores on the Holiday and UKbench datasets and
show competitive results on the Oxford5K dataset. Moreover, the fused scores
also show competitive performance when compared to deep convolutional fea-
tures.

Comparison with other fusion schemes. In order to further verify the
strength of our late fusion method, we evaluate the dynamic late fusion scheme
on some search scores using real valued features and compare the retrieval accu-
racy with two state-of-the-art late fusion schemes: graph model late fusion [152]
and query-adaptive late fusion [148]. The comparison is carried out on the Holi-
day and UKbench datasets, and using the features of BoW (a 20K visual words
histogram generated from rootSIFT [104] local descriptors and the tf-idf weight
scheme), GIST [155] (a 512-dimensional global GIST descriptor), CNN [153] (a
4096-dimensional feature extracted from the first fully connected layer in the Alex
CNN architecture), RAND (a global descriptor generated through multiplying by
a random transform matrix) and HS (a 1000-dimensional HSV color histogram),
respectively. The implementation of search scores on the Holiday and UKbench
datasets from the five category features are offered by [156].

Formula (4.9) fuses the sorted search scores from binary string features using the
Hamming distance to measure the similarity. We then modified it in Formula
(4.10) to satisfy the distribution of search scores from float value features (BoW,
GIST, CNN, HS and RAND) when using the cosine distance to measure the
similarity. The N in Formula (4.10) is set to 4, because the number of search
scores is 5 and we should set it equal to 5− 1 = 4.

Score =
N∏
i=1

(Si)
weighti (4.10)

For graph model late fusion and query-adaptive late fusion, we use the code re-
leased from the papers [152] and [148] respectively. In order to make an objective
comparison, the parameter M in Formula (4.7) is set to 400 such that it is equal
to the corresponding parameter in the query-adaptive late fusion scheme. On
the Holidays dataset, our late fusion scheme outperforms graph model fusion and

89

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

Method Holiday dataset UKbench dataset
(mAP score) (N-S score)

Graph model [152] 81.04 3.82
Query-adaptive [148] 87.98 3.84

Ours 88.61 3.84

Table 4.8: Results on benchmarks with different fusion methods. We compare our
method with Graph Fusion [152] and Query-adaptive [148] approaches.

the query-adaptive method. On the UKbench dataset, our result is equal to the

query-adaptive method and better than graph model fusion. The comparison

results further illustrate that the proposed dynamic top N late fusion method is

effective for the search scores from both the binary string representation and the

real valued representation.

4.4.6 Performance on Large Scale Image Search

In order to evaluate the performance of deep binary codes on large scale im-

age search, we further perform large-scale experiments by combining the MIR-

FLICKR 1M dataset with the Holiday, Oxford5K, and UKbench datasets. The

deep binary codes as well as the binary codes learned by hash functions with a bit

size of 256 on pool3, and a bit size of 512 on pool4, conv5 and pool5 are utilized

for the evaluation. The accuracy results and the average time-cost of learning the

hash function are summarised in Table 4.9. On each of the datasets with more

than one million images, the deep binary code obtains the best accuracy with and

without the dynamic late fusion scheme. This is further showing that the deep

binary code is suitable for large scale image search and the dynamic late fusion

scheme could significantly improve the search accuracy without requiring offline

calculation.

90

4.4 Experiments and Setup

Method Holiday+1M Oxford5K+1M UKbench+1M Learning
(mAP) (mAP) (mAP) time cost

Best Fused Best Fused Best Fused average(s)
BMSMP 71.76 77.19 49.18 52.04 90.48 91.56 -
LSH 60.68 69.26 44.24 47.3 83.26 87.36 -

SKLSH 55.33 66.99 46.1 51.18 79.79 87.19 -
ITQ 57.47 64.32 43.31 44.75 83.02 86.23 1120

PCAH 64.71 72.45 46.7 49.95 83.92 89.01 125
SH 64.3 73.98 46.08 50.38 86.4 90.28 1500

PCA-RR 61.91 70.27 45.44 49.38 85.44 88.77 190
DSH 52.13 59.13 38.8 39.8 76.98 78.69 400

Table 4.9: Comparison of the accuracy of each evaluated method for large scale
image retrieval with and without top N score-level late fusion (N = 3), score-level
late fusion (N = 3), and the time-cost of learning the hashing function.

Method #dimensions Holiday dataset Oxford5K dataset Ukbench dataset
(mAP score) (mAP score) (mAP score/N-S score)

VLAD+RootSift [4] 128float 62.5 44.8 –/–
VLAD+CSurf [157] 128float 73.8 29.3 83.0/–
mVLAD+Surf [157] 128float 71.8 38.7 87.5/–

FV+T-embedding [158] 128float 61.7 43.3 85.0/–
FV+T-embedding [158] 256float 65.7 47.2 86.3/–
Sum pooling+PCAW [65] 256float 80.2 58.9 –/3.65
Max pooling+l1 dist [64] 256float 71.6 53.53 84.2/–
Deep fully connected [63] 256float 74.9 43.5 –/3.42

Deep fully connected+finetune [63] 256float 78.9 55.7 –/3.56
BMSMP 512bit 74.83 49.55 90.78/3.65
FBMSMP 1792bit 80.3 53.1 92.15/3.71

Table 4.10: Comparison with state-of-the-art compact image representations on
three benchmark datasets. FBMSMP denotes deep binary codes after applying
dynamic top N late fusion.

Method #Dim Memory cost Holiday+Flicker 1M Oxford5K+Flicker 1M Ukbench+Flicker 1M
(Flicker 1M) (mAP score) (mAP score) (mAP score)

VLAD+RootSift[4] 128float 0.48G 37.8 – –
Geometric+VLAD[6] 128float 0.48G 60.7 43.8 –

BMSMP 512bit 0.06G 71.76 49.18 90.48
FBMSMP 1792bit 0.24G 77.19 52.04 91.56

Table 4.11: Comparison with state-of-the-art compact image representations on
large scale dataset. FBMSMP denotes deep binary codes after applying dynamic
top N late fusion.

91

4. DEEP BINARY CODES FOR LARGE SCALE IMAGE
RETRIEVAL

4.4.7 Comparison with state-of-the-art

We then compare the image retrieval results from deep binary codes with some
other important state-of-the-art low dimensional image features. The results are
from the papers [64] and [65], and the comparison is displayed in Table 4.10 and
Table 4.11. Note that, the size of deep binary codes is 256-bit on pool3, 512-bit on
pool4, conv5 and pool5. The results show that our deep binary codes outperform
hand-crafted image representations, such as VLAD and Fisher Vector, and even
outperform some recent CNN-based features. Moreover, after applying the top
N late fusion scheme on the deep binary codes, the performance has been further
improved.

4.5 Conclusions

In this chapter, we proposed a novel image representation called deep binary codes
which have several important advantages over deep convolutional feature repre-
sentations, as they can be calculated using a generic transferred model and there-
fore do not require additional training unlike many of the competitive algorithms
from the research literature. The experimental results on well-known datasets
as well as a large scale dataset show that deep binary codes are competitive
to state-of-the-art approaches and can significantly reduce memory requirements
and computational costs for large scale image search. Second, the dynamic late
fusion scheme estimates the quality of each feature in a query-adaptive manner
which highlights the strengths of score-level fusion without needing supervision
and offline calculations. In our experiments the dynamic late fusion scheme gave
consistent improvements in accuracy.

92

