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Chapter 2

A Comprehensive Evaluation of
Salient Point Methods

As salient point methods can represent distinctive and affine invariant points in
an image, various types of salient point methods have been proposed over the
past decade. Each method has particular advantages and limitations and may be
appropriate in different contexts. In this chapter, we evaluate the performance of
a wide set of salient point detectors and descriptors. First, we compare diverse
salient point methods with regard to the repeatability of detectors, and the recall
and precision of descriptors. Next, we integrate the salient point methods with
the framework of fully affine space and evaluate their performance under major
viewpoint transformations. The presented comparative experimental studies can
support researchers in choosing an appropriate detector and descriptor for their
specific computer vision applications.
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2. A COMPREHENSIVE EVALUATION OF SALIENT POINT
METHODS

2.1 Introduction

Salient point methods which can describe meaningful, stable, and representative
local features in an image have become prevalent in diverse areas in computer
vision, such as object and scene recognition [77, 78], 3D object reconstruction
[79], visual tracking [80, 81] and multimedia information retrieval [3, 18, 82, 83,
84, 85, 86, 87, 88]. Most of the salient point algorithms contain two parts: a
detector and a descriptor. The detector locates a set of distinctive points which
can be invariant to various transformations (e.g., scaling, translation, viewpoint
changes), and the descriptor encodes the important information from the local
patch centered on the salient point into a feature vector, which makes it possible
to reliably match correspondences across different transformations of the same
object or the same scene.

Typically, object recognition, 3D reconstruction and visual tracking mainly rely
on the correctly matched correspondences between two compared images. These
applications start by extracting local descriptors from each image and insert the
obtained local descriptors into an index space for efficient correspondence match-
ing. The RANSAC algorithm [89] is further adopted to eliminate outlier matches
and to estimate the homography between the compared images. Therefore, a
salient point detector with high repeatability and a local descriptor with discrim-
inatory power is required for these applications.

However, accurate correspondence matching under large viewpoint changes is
still a major challenge, because greater image viewpoint transformations result
in a significant decrease of saliency and repeatability of salient points. Yu et
al. [90] proposed to use the framework of fully affine space to overcome this
issue. The basic idea behind the framework of fully affine space is that the
projective transformation induced by camera motion around a smooth surface
can be approximated by an affine transformation. A notable method is ASIFT
which generates all image views in the whole affine space and extracts SIFT local
features in these synthetic images to increase the matching precision. As the high
dimensionality of the SIFT descriptor leads to a high computational complexity
in the framework of fully affine space, we combine the recent lower computational
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2.2 Background

complexity salient point algorithms with the framework of fully affine space and
evaluate their performance under the extreme viewpoint changes.

This chapter is an extension of our previous projects [87, 88] which provide a
comparison guide of recently proposed salient point detectors and descriptors.
The main contributions of this chapter are summarized as follows:

First, the repeatability performance and the computational cost of each salient
point detector are presented.

Second, the efficiency and accuracy of both the real valued descriptors and binary
string descriptors in terms of recall and precision on two benchmark datasets are
evaluated.

Third, we calculate the accuracy and time complexity of each salient point method
in the framework of fully affine space such that researchers could make a trade-off
between precision and efficiency under extreme viewpoint changes.

2.2 Background

Early research on salient point methods mainly focused on finding high vari-
ance or corner points in the image. One of the first detectors was developed by
Moravec [91] and it is defined according to the average intensity changes in differ-
ent directions within the local region around a point. The Harris corner detector
[92] defines a corner structure point, if its second-moment matrix has two large
eigenvalues. The similar Hessian corner detector [93] determines a corner point
in the image, if it is the local extrema of the Hessian matrix determinant. As
both the Harris and Hessian detectors find the corner points at a fixed scale, the
Harris-Laplacian and Hessian-Laplacian [94, 95] are designed to be scale invari-
ant. Harris-Laplacian and Hessian-Laplacian locate corner candidates on each
level of the scale space. Those points for which the Laplacian simultaneously
attains local extrema over scales are selected as corner points. The FAST [96]
detector identifies the corner points according to the criterion whether a set of
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contiguous pixels in a circle are all brighter or all darker than the intensity of the
centre point.

Since conventional corner point detectors are only invariant to scale, translation,
and noise, affine covariant region detectors were developed to reduce the influence
of viewpoint changes. The Harris-Affine detector and the Hessian-Affine detector
[97] find the initial candidate points by using the Harris-Laplacian corner detector
and Hessian-Laplacian corner detector, respectively, and then fit an elliptical
region to each point via the second moment matrix of the intensity gradient.
MSER [98] computes the connected binary regions through a large set of multiple
thresholds, and the selected regions are those that maintain unchanged shapes
over these thresholds. As edges are typically rather stable structures that can be
detected over a range of image changes, EBR [99] starts by detecting corner points
in an image and identifies the affine covariant region of each point by exploiting
the edge information present nearby. IBR [100] detects intensity extrema at
multiple scales and captures the intensity pattern along rays emanating from each
extremum to define a region of arbitrary shape. The region of IBR is delineated
by the image points defined over these rays where the intensity suddenly increases
or decreases, and then uses an ellipse to fit the region. However, the operation
of elliptical region fitting in the affine covariant detector could result in partial
information loss.

Recent salient point methods focus on the repeatability and precision of the
detector, as well as the distinctiveness, computational efficiency and low memory
requirement of the local descriptor. The most representative one is SIFT, which
efficiently builds the scale space by employing the Difference of Gaussians to
approximate the Laplacian of Gaussians and represents the local descriptor using
a gradient orientation histogram. Meanwhile, some variants of SIFT are proposed
with the aim to increase the discrimination of the SIFT descriptor. PCA-SIFT
[101] utilizes PCA to reduce the dimension of the original SIFT descriptor to
further speed up the process of local descriptor matching. Color-SIFT [102] takes
the color gradients, rather than intensity gradients in the local region around
the salient point to generate the feature. Rank-SIFT [103] adopts a data-driven
approach to learn a ranking function to sort the salient points such that the
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unstable points can be discarded. Root-SIFT [104] adds a square root operation
to the normalized SIFT features and uses the Hellinger kernel to increase the
matching accuracy. DSP-SIFT [105] generates the descriptor through pooling
the gradient histogram across different domain sizes of each salient point into
a feature and it even outperforms the high level convolutional neural network
feature [48]. Affine-SIFT (ASIFT) [90] is proposed with the aim to be perspective
invariant and it does this by simulating images under various views to cover
the whole affine space and extracting SIFT descriptors in all these simulated
images for matching. Different from these variants of SIFT, other approaches
target on improving the efficiency of scale space establishment or accuracy of
salient points localization. For example, the SURF detector makes use of a box-
filter and the integral image to speed up the scale space building. The ORB
and BRISK detectors use a Gaussian image pyramid to efficiently establish the
scale space. As the construction of scale space by linear multi-scale Gaussian
pyramids easily results in the blurring and the loss of boundary details, KAZE
[106] combines a nonlinear scale space with additive operator splitting (AOS) and
special conductance diffusion to reduce noise while retaining the object boundary
structure. The advantage of the nonlinear scale space in KAZE is that it could
provide more accurate positions for salient points.

In order to meet the requirements of real time systems and devices with lim-
ited computational and storage resources, binary string local descriptors were
recently introduced. Binary string representations make use of a pixel-pair in-
tensity comparison to generate the binary code. The resulting binary code holds
some significant advantages: first, the operation of intensity comparison is fast,
the memory requirement of binary codes is low and matching binary codes via
the Hamming distance is much faster than the Euclidean metric. A represen-
tative descriptor is BRIEF, which randomly samples a set of pixel-pairs from a
Gaussian distribution in the smoothed local patch around the salient point and
produces a binary string descriptor via the intensity comparison of pixel-pairs.
The ORB descriptor integrates rotation invariance into BRIEF by estimating the
orientation via the intensity centroid method. Additionally, ORB makes use of an
unsupervised learning scheme to select pixel-pairs, rather than the random sam-
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pling of BRIEF. BRISK and FREAK generate the binary string descriptors by
comparing pair-wise intensities over a pre-defined pattern, a concentric ring-based
sampling pattern and a retina sampling pattern, respectively. In contrast to those
hand-crafted patterns, learning based approaches are proposed with the goal of
closing the performance gap with real valued representations while maintaining
the benefits of binary representations. BinBoost learns a set of hash functions us-
ing boosting and projects the image patch into a binary representation. LATCH
proposes to learn patch triplet arrangements in the image and compares the in-
tensity of triplet patches rather than the intensity of pixel-pairs to generate the
binary codes.

Several related reviews present the performance evaluation of various salient point
methods. Schmid et al. [107] uses the measure of “repeatability rate” and “infor-
mation content” to evaluate the performance of different salient point detectors.
Mikolajczyk et al. [108] made a performance evaluation of local descriptors by
measuring the accuracy of matching and recognition. Accuracy and computa-
tional efficiency trade-offs [109] have been studied where different indexing struc-
tures were employed (such as approximate KD-trees). Heinly et al. [110] and
Figat et al. [111] investigate the recall and precision of recent binary string rep-
resentations under different image deformations. Gauglitz et al. [81] presents a
comparison of different salient point methods on video object tracking. Moreels
and Perona [112] made a performance evaluation of both feature detectors and
descriptors on 3D object matching. Mukherjee et al. [113] made a performance
evaluation for each combination of recent detectors and descriptors on object
matching. To our knowledge, our review is the first one that evaluates the view-
point invariance of each salient point approach in the fully affine space.

2.3 Overview of Evaluated Salient Point Meth-
ods

The aim of salient point methods is to extract distinctive invariant features from
images that can be used to perform image correspondence matching and to per-
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form the image representation. Recent salient point methods consist of four main
procedures: the first step is to establish the scale space and find the extrema
across all scales to achieve scale invariance. The second step is to determine the
locations of the extrema and to define a local region for each according to the
scale information. Then, each defined region is normalized and assigned a do-
main orientation to be rotation invariant. Finally, the region content is rotated
based on the calculated orientation, after which, the discriminative information
in the rotated region is encoded into a local descriptor. The existing schemes of
local descriptor generation can be categorized into hand-crafted schemes and au-
tomatically learned schemes. The recent literature focuses more on the automatic
learning of local descriptors. The learning based schemes usually optimize an ob-
jective function to generate robust and distinctive local descriptors. In particular,
the most common objective functions are designed to minimize the distance be-
tween the descriptors from the same 3D coordinate (scale and location) or same
class label extracted under varying imaging conditions and different viewpoints,
meanwhile, maximizing that distance between patches from different 3D coordi-
nates or different class labels. Table 2.1 gives an overview of all the evaluated
salient points approaches in the experiments section.

2.3.1 SIFT (detector/descriptor)

SIFT proposed by Lowe [14] is the most popular salient point approach. The
implementation of SIFT begins by building the Gaussian scale space which ap-
proximates the Laplacian-of-Gaussian function by the computationally efficient
Difference-of-Gaussian function. It searches extrema over all scales to identify the
potential salient points. Since the extreme points are detected in discrete scale
space, it then uses the derivative of the Taylor expansion of the DoG function
to determine the accurate scale and location for each salient point and simul-
taneously rejecting unstable extrema with low contrast. Furthermore, because
a poorly defined extremum in the DoG function has a large principal curvature
across the edge but a small one in the perpendicular direction, a Hessian matrix is
employed to compute the principal curvatures and to eliminate points which are
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Table 2.1: Overview of the evaluated salient point approaches in this chapter
by Detector (Det.), Descriptor (Desc.), Scale Space, Orientation, and Descriptor
Generation.

Methods Det./Desc. Scale Space Orientation Descriptor Generation

SIFT yes/yes
Difference of
Gaussian

local gradient
histogram

local gradient histogram

SURF yes/yes box-filter
local

Haar-wavelet
responses

local Haar-wavelet
responses

MSER yes/no no no no
HESSIAN-
AFFINE

yes/no no no no

FAST yes/no no no no
CenSurE yes/no bi-level filter no no
GFTT yes/no no no no

KAZE yes/no
nonlinear
scale space

no no

BRIEF no/yes no no
intensity comparison of
pair-wise pixels in the ran-
dom sampling pattern

ORB yes/yes
Gaussian
image

pyramid

intensity
centroid

calculation
oriented BRIEF descriptor

BRISK yes/yes
Gaussian
image

pyramid

average of the
sum of the

local gradient

intensity comparison of
pair-wise pixels in concen-
tric circles pattern

FREAK no/yes no
average of the
sum of the

local gradient

intensity comparison of
pair-wise pixels in retina
sampling pattern

BinBoost no/yes no no
projection by learned hash
function

LATCH no/yes no no
intensity comparison of
patch triplet arrangements

potentially sensitive to edge responses. To be invariant to rotation, an orientation

is assigned to the obtained stable points according to the local gradient orien-
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tation histogram within a region around the point. In addition, it accumulates
the orientations of a 16 × 16 neighborhood of sample points around the salient
point location into orientation histograms by summarizing the contents over 4×4

sub-regions. A 128-dimensional descriptor vector is finally generated to represent
each point.

2.3.2 SURF (detector/descriptor)

SURF is an efficient and robust scale and rotation-invariant method proposed
by Bay et al. [12] with the aim for fast salient point location and descriptor
generation. SURF is based on a Hessian matrix, where the components of the
Hessian matrix are generated by convolution of the Gaussian second-order deriva-
tive with the image pixels. Box-filters together with integral images are exploited
to approximate the Hessian matrix which is used to measure the salient points.
The Gaussian scale space of SURF is established computationally efficiently by
up-scaling the size of the box-filter. The extrema of the determinant of the Hes-
sian matrix are selected as salient points and the scale and location are updated
through an interpolating process. Each of the obtained salient points is assigned
an orientation which is estimated by summing the horizontal and vertical Haar-
wavelet responses within a sliding orientation window covering an angle of 60
degrees. For the SURF descriptor generation, first the square region centered
on and oriented along the salient point is divided into a number of 4 × 4 sub-
square regions. Then, it calculates the value and absolute value of Haar-wavelet
responses along horizontal and vertical directions within each sub-region. Finally
the total 64-dimensional (4 × 4 × 4) descriptor can be generated efficiently by
making use of the integral image.

2.3.3 MSER (detector)

Maximally stable extremal regions (MSER), proposed by Matas et al. [98], is an
affine invariant region detector. MSER computes the connected binary regions
through a large set of multiple thresholds, and the selected regions are those
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that maintain unchanged shapes over a range of thresholds. During the affine
invariant regions detection, the area of each connected component is stored as a
function of intensity and the “maximally stable” ones are selected as candidates
by analyzing the changes of function values for each potential region. The final
maximally stable extremal regions are the ones that maintain an unchanged or
similar function value over a large range of multiple thresholds. The shape of
each obtained region is further estimated by elliptical regions by computing the
eigenvectors of their second-moment matrix. Then the local neighborhoods are
normalized into circular regions to achieve affine invariance.

2.3.4 HESSIAN-AFFINE (detector)

The Hessian-Affine region detector proposed by Matas et al. [97] is based on the
Hessian matrix. A related variant of the Hessian-Affine detector is the Harris-
Affine detector which employs the Harris detector to find the salient points. Since
the second derivatives in the Hessian matrix offer strong responses on blobs and
ridges, the extrema of the determinant of the Hessian matrix are searched by
applying non-maximum suppression using a 3× 3 window over the entire image.
To deal with the scale invariance, given an extremum location, a scale-dependent
signature function is defined on its local neighborhood and the corresponding
scale can be determined by searching for scale-space extrema of the signature
function. The estimation of the affine shape is applied to each extremum and
an elliptical region is fit around each point using the second moment matrix of
the intensity gradient. Finally, the affine region is normalized into a circular
region. In this chapter, the improved Hessian-Affine detector [114] is used, which
proposes the gravity vector assumption to fix rotation uncertainty.

2.3.5 FAST (detector)

The high-speed corner point detector named features from accelerated segment
test (FAST) was proposed by Rosten and Drummond [96]. The simple scheme
of FAST corner detection is based on a circle (the radius of the circle is three
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pixels) of sixteen pixels around the candidate point. If there exists a set of twelve
contiguous pixels in the circle which are all brighter or all darker than the intensity
of the candidate point pixel value plus a threshold, the point will be classified
as a corner point. However, this scheme has a limitation for sampling less than
twelve pixels and the efficiency of the corner detector depends on the distribution
of corner appearances. To overcome the above weaknesses, a machine learning
approach is employed on training sets to establish a decision tree for fast and
accurate corner detection. Moreover, the issue of multiple features being detected
adjacent to one another, can be solved by applying non-maximum suppression on
the detected candidate corner points.

2.3.6 CenSurE (detector)

The scale invariant center-surround salient point detector (CenSurE) is proposed
by Agrawal et al. [115]. CenSurE determines the salient points by exploiting
the extrema of the Hessian-Laplacian matrix across all scales and locations. In-
spired by SIFT which uses the Difference of Gaussian function to approximate the
Laplacian of Gaussian function, CenSurE employs a simplified center-surround
filter called bi-level filter to approximate the Laplacian of Gaussian for fast com-
putation. The CenSurE detector computes the response of the bi-level filter at all
locations and all scales, and detects the extrema in a local neighborhood (based
on the non-maximum suppression method, which is the same as SIFT and SURF).
For each obtained extremum, the accurate location of the potential points can
be determined directly, since the responses are calculated on the original image.
Furthermore, through computing the Harris measure for the potential points,
those points with weak corner responses will be eliminated.

2.3.7 GFTT (detector)

Good feature to track (GFTT) is a salient point detector proposed by Shi and
Tomasi [116], which is derived from an image motion model. GFTT is used as
a method for feature selection, tracking and monitoring, and it performs well
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under affine image transformations. According to the proposed feature selection
criteria, a candidate point is accepted if it is defined as a good feature which can
be tracked well. GFTT is based on the Harris corner detector and it defines points
with large eigenvalues of a special matrix as corners. To ensure the robustness
of corners, potential corners with minimum eigenvalues less than a threshold are
eliminated. Candidates which are closer than a certain distance-threshold to a
strong corner are also rejected.

2.3.8 KAZE (detector)

Most salient point approaches (SIFT, SURF) construct the scale space based on
linear multi-scale Gaussian pyramids. However, the Gaussian function does not
respect the natural boundaries of objects and smoothes the details and noise at
the same level, which leads to loss of localization accuracy and distinctiveness.
The use of a nonlinear scale space is expected to reduce noise but to retain the
object boundary structure in order to obtain accurate positions of salient points.
The traditional method is based on the forward Euler scheme for solving nonlin-
ear diffusion but requiring significant computational complexity. Therefore, the
nonlinear scale space in KAZE [106] proposes to use the additive operator split-
ting algorithm (AOS) for efficient nonlinear diffusion filtering. The framework of
KAZE first convolves the image with a Gaussian kernel of standard deviation, and
then builds the nonlinear scale space in an iterative way using the AOS scheme.
Based on the response of the scale-normalized determinant of the Hessian matrix
at multiple scale levels, the extrema responses can be detected as salient points by
non-maximum suppression and the position of the salient points can be estimated
with sub-pixel accuracy using quadratic fitting.

2.3.9 BRIEF (descriptor)

Binary robust independent elementary features (BRIEF), designed by Calonder
et al. [117], uses an efficient binary string descriptor to represent the salient
points. With regard to the BRIEF descriptor generation, Gaussian smoothing
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is first utilized to reduce the effect of noise sensitivity such that it can achieve

good performance in complex scenes. The value of each bit in the binary string

depends on the intensity comparison of two points inside the local patch centered

on each salient point (provided by detectors, as BRIEF is a descriptor), i.e., if

the value of first point is larger than the second then it is set to “1”, otherwise

to “0”. The pixel-pairs sampling patterns are randomly selected using a Gaussian

distribution (locations that are closer to the center of the patch are preferred)

around the smoothed patch center. Similarity of two binary string descriptors

is calculated using the Hamming distance, which is significantly more efficient

than the common Euclidean distance. The BRIEF descriptor is not rotation

invariant.

2.3.10 ORB (detector/descriptor)

ORB (oriented FAST rotated BRIEF) [118] is a combination of the FAST detector

and the BRIEF descriptor. The ORB detector applies the FAST corner detector

to find potential salient points. However, FAST does not offer scale information,

and has large responses along edges. ORB builds a scale pyramid of the image and

keeps the top N number of keypoints by the Harris corner measure at each level

in the scale pyramid. The scale information is the scale factor of the specific level

of the image pyramid. The direction of points is computed using their intensity

centroid [15]. The intensity centroid approach assumes that the intensity of a

keypoint is offset from its center, and it can be used to compute the moments of

a patch and also to find its centroid. The orientation is defined as the direction of

the vector between the keypoint location and the centroid position in the patch.

The generation of the ORB binary string descriptor also uses the comparison of

intensities of pixel-pairs based on the oriented BRIEF descriptor. Additionally, a

combination of earning and greedy search is introduced for de-correlating BRIEF

features under rotational invariance, leading to a better performance.
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2.3.11 BRISK (detector/descriptor)

In the implementation of BRISK [16], the scale space is also based on the simple
image pyramid. For the salient points detection, BRISK first employs AGAST
[119] which is essentially an extension for accelerated performance of the FAST
detector to locate the potential keypoints at each layer in the scale space. Then
it measures their saliency via comparing FAST scores with respect to its eight
neighbors in the same layer and 3 × 3 neighbors in the layer above and below.
The local maxima of FAST score points will be identified as salient points. The
accurate location and scale of each salient point are obtained in the continuous
domain via refinement of quadratic function fitting. BRISK presents a novel sam-
pling pattern which consists of sample points equally distributed on concentric
circles centered around the salient point. It weights each respective circle in the
pattern with a standard deviation Gaussian, and then divides all the sampling-
point pairs in the pattern into short-distance pairs and long-distance pairs based
on the defined threshold. The direction of the patch is determined via the av-
erage of the sum of the local gradients of all selected long distance pairs. The
bit-vector descriptor is assembled by comparing all the short-distance pair-wise
intensities.

2.3.12 FREAK (descriptor)

Similar to the BRISK scheme which uses a pre-defined pattern to estimate the ori-
entation and for generating the binary string features, the FREAK [17] descriptor
is based on the retina sampling pattern. The retina sampling pattern simulates
the distribution of ganglion cells over the retina which reduces exponentially with
the distance to the center. The orientation is calculated mainly based on selected
pairs with symmetric receptive structure with respect to the center point of the
patch. The direction of the patch is also obtained by averaging the sum of the
local gradient of the defined pairs in the structure. In the descriptor creation of
FREAK, less correlated pairs over a retina pattern are selected based on a similar
learning algorithm performed in ORB and the intensities are then compared to
generate the binary strings.
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2.3.13 BinBoost (descriptor)

The approach of BinBoost is a supervised learning framework to generate a low
dimensional but highly discriminative local binary representation. A hash func-
tion is implemented as a sign operation on a linear combination of non-linear
weak classifiers which are gradient based image features, and the hash function
is learned by the optimization of a loss function with the aim to reduce the
Hamming distances between binary representations of similar patches in training
data, while increasing the Hamming distances between binary representations of
dissimilar patches in the training data.

2.3.14 LATCH (descriptor)

LATCH extracts learned patch triplet arrangements in a salient region, and com-
pares the intensity of the triplet patches to form the binary string codes. The
learning procedure of LATCH is based on training data with labels, and possible
triplet arrangements are extracted from the training data. It defines the qual-
ity of an arrangement by summing the number of times it correctly yielded the
same binary value for positive pairs and different values for negative pairs. A
candidate arrangement is selected, if its absolute correlation with all previously
selected arrangements is smaller than a certain threshold such that the obtained
triplet arrangements are with less correlation.

2.4 Fully Affine Space Framework

The main idea behind the framework of fully affine space is that the projec-
tive transformation induced by camera motion around a smooth surface can be
approximated by an affine transformation, and it consists of all possible affine
distortions caused by the change of the camera’s optical axis orientation from a
frontal view. The reason to employ this scheme is that we expect two salient
points to be correctly matched under certain perspective transformations. The
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Figure 2.1: (a) Illustration of the synthetic view generation for correct correspon-
dence matching. (b) Illustration of the camera model under affine transformation.

fully affine space framework could also be viewed as a data augmentation tech-
nology which expands the training data by systematically adding transformed
samples. The transformed samples are typically generated to be label-preserving
such that they can encourage the system to become invariant to different trans-
formations. As illustrated in Figure 2.1 (a), it is difficult to match point A in
the reference image to point B’ in the compared image, but it is easy to match
point Ai which is located in the deformed view image arising from viewpoint
changes to point B’. Generating a deformed view image can be modeled by an
affine transformation of the original image, where the affine transformation can
be decomposed into a zoom, rotation, tilt, and rotation around the optical axis
[120].

A = λR(ψ)TtR(ϕ)

= λ

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

] [
t 0
0 1

] [
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
(2.1)

where λ > 0 is a zoom factor, R(ψ), R(ψ) are rotations and t is the tilt, as
shown in Figure 2.1 (b). The parameter ψ ∈ [0, 2π) denotes the angle of planar
rotation around the optical axis. The angle θ between the z axis and the optical
axis is called the latitude and t = 1/cos(θ). The angle ϕ ∈ [0, π) between
the x axis and the projection of the optical axis is called the longitude. Then,
each synthesized view can be described by the parameters of λ (zoom), R(ψ)
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(planar rotation), t = 1/cos(θ) (the rotation angle of the latitude) and R(ϕ) (the

rotation angle of the longitude). The simulated latitudes θ correspond to tilts

t = 1, a, a2, ..., an, with a > 1, and a is set
√

2 for a good compromise between

accuracy and efficiency. Each tilt in the fully affine space is a t sub-sampling.

The number of rotated images for each tilt is 2.5t. Thus, the complexity is

proportional to the amount of tilts. As the fully affine space can significantly

increase the precision of correspondence matching, we integrated the recent salient

point methods with the fully affine space framework and evaluated their accuracy

and efficiency.

Generally, the Nearest Neighbor Distance Ratio (NNDR) is used as the matching

strategy to find the similar descriptors in the image pairs. NNDR defines that

two points will be considered to be matched only if ||DA −DB||/||DA −DC || <
threshold, where DB is the first and DC is the second nearest neighbor to DA.

However, for the matched correspondences in the specific fully affine space, lots

of repeatable salient points are present in the synthetic view images which results

in the NNDR to be close to one for some correct correspondences, thus, those

correct correspondences will be easily defined as false according to the threshold

(less than one) of NNDR. In order to address this issue, we propose to use the

K-order NNDR matching strategy for correspondence matching in the fully affine

space. Unlike the standard NNDR which only takes the first and second nearest

neighbors into account, K-order NNDR fully explores the relationship among the

group of K nearest neighbors, such that it can address the problem faced by

NNDR but without increasing the computational cost. The K-order NNDR is

characterized as follows:

K-order NNDR = Rk × (1− w∏k−1
i=2 Ri−1

) (2.2)

where Rk = ||DA −D1||/||DA −Dk|| and Dk is the kth nearest descriptor to DA.

w is a weight which is set to 0.01 in the experiments to achieve good perfor-

mance.

33



2. A COMPREHENSIVE EVALUATION OF SALIENT POINT
METHODS

2.5 Experimental Setup

The experimental environment for the evaluation is a Intel Quad Core i7 Processor

(2.67GHz), 12GB of RAM, 64 bit OS. The implementations of Hessian-affine,

KAZE, LATCH and BinBoost are from the authors, others are implementations

from OpenCV. The parameters of each salient point method were set to the

defaults and we used 8 randomized forests in the KD-tree index, 20 hash tables

in the multi-probe LSH index. Our evaluation implementations are available at:

http://press.liacs.nl/researchdownloads/.

2.5.1 Datasets

The performance of salient point detectors and descriptors is evaluated on the

Oxford dataset proposed by Mikolajczyk and Schmid [108] and the dataset de-

signed by Fischer et al. [121]. The Oxford dataset contains eight groups, and

each group consists of six image samples (a total of 48 images) with various

transformations (rotation, viewpoint, scale, JPEG compression, illumination and

image blur). The Fischer dataset is a large scale dataset that includes 16 groups

and each group contains 26 images generated synthetically by applying 6 types

of transformations (zooming, blurring, illumination, rotation, perspective and

nonlinear). Some examples of each dataset used for evaluation are illustrated in

Figure 2.2.

2.5.2 Evaluation Criteria

The criteria employed to measure the performance of the salient point methods

in each application are summarized in Table 2.2. We follow the commonly used

evaluation protocol [87, 107, 108, 122]. The score of repeatability, recall and pre-

cision, and the number of correct correspondences are used as evaluation criteria

in the experiments.
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(a)

(b)

Figure 2.2: Examples from each dataset for the evaluation of salient point meth-
ods. (a) Examples from the Oxford dataset [108] used for the evaluation of the
accuracy of correspondence matching. (b) Examples from the Fischer dataset [121]
used for the evaluation of the accuracy of correspondence matching.

Table 2.2: Overview of the evaluation criteria used in the experiments.

Criteria Function description

Repeatability [107]
Measures the performance of the detector:
the higher the repeatability score, the bet-
ter the performance.

Recall and precision [108]
Measures the accuracy of correspondence
matches: a distinctive descriptor shows
high recall at any precision.

Number of correct
correspondences

Total amount of correct correspondences
between two compared images, a robust
method shows a high score.

2.6 Results and Discussions

2.6.1 Detector Evaluation

In this section, we test the performance of each salient point detector on the
benchmark Oxford dataset [108] and the Fischer dataset [121]. The evaluated
salient point detectors are: SIFT, SURF, ORB, BRISK, FAST, CenSurE, GFTT,
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Figure 2.3: The performance evaluation of salient point detectors based on the
criterion of repeatability.

KAZE, MSER and Hessian-Affine.

An important evaluation criterion from the research literature is repeatability
[107]. The repeatability score is calculated as the ratio between the number of
correspondences and the minimum of m1 and m2, where m1, m2 denote the num-
ber of points in the reference and the query images after projecting the reference
image points by the ground truth homography and discarding those points outside
the common area, respectively.

repeatability =
C(m1,m2)

min(m1,m2)
(2.3)

C(m1,m2) is the number of correspondences between m1 and m2. An overlap
error is used to identify the correspondence. For a keypoint region in the query
image which is the nearest one to a projection keypoint region in the reference
image by using homography: if the ratio between the intersection of the two
regions and the union of the two regions is larger than the overlap error, it
will be considered as a correspondence. We compute the average repeatability
scores on the whole dataset, respectively, thus, the detection performance of each
method can be estimated in a comprehensive perspective. The trend of average
repeatability under varying overlap errors (in the range from 0.4 to 0.9) is shown
in Figure 2.3.

The evaluation results based on the two datasets illustrate that an increase in
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the repeatability scores is clearly indicated when the value of 1-overlap error

becomes larger. We can also notice that the FAST detector had the highest

repeatability and the ORB and BRISK detectors obtained the lowest scores. The

detectors SURF, Hessian-Affine, KAZE, and CenSurE have a similar rank on

both datasets. The performance of the nonlinear scale space detector KAZE

reveals superior results to the well known SIFT detector. All detectors can reach

a stable and acceptable performance when the value of overlap error is 0.5, so the

overlap error will be set at 0.5 to identify the correspondences in the following

experiments.

Since the salient point detection mechanism in each salient point method is based

on a different scheme, which results in a different computational complexity, and

a different set of feature points can be extracted from the same image, time

costs should be compared statistically. We applied different types of detectors

to various test images, in order to determine statistically significant results. The

average number of detected points and the time cost of the compared salient point

methods are shown in Table 2.3.

Table 2.3: Comparison of average number of detected points and detection time

Method
Oxford Dataset [108] Fischer Dataset [121]

Average number Time cost(ms) Average number Time cost(ms)
of points of 1000 points of points of 1000 points

SIFT 5472 40 5607 52.02

SURF 5368 22.8 6138 34.8

ORB 497 27.0 490 29.5

BRISK 1498 20.2 1607 19.3

FAST 15857 0.31 17388 0.27

CenSurE 915 20.1 920 25.1

GFTT 1000 31.2 984 35.6

MSER 750 341.8 793 360.5
HESSIAN-
AFFINE

3680 247.8 3693 260.1

KAZE 2940 59.8 3108 73.5
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The results listed in Table 2.3 reveal that the most efficient detector is FAST.
FAST detected the largest number of salient points on both datasets, which is
almost ten times higher than what was obtained by other detectors. FAST defines
the salient points according to simple intensity comparisons, thus, the time cost
is only 0.31 ms for a total of 15857 points on the Oxford dataset [108] and 0.27
ms for 17388 points on the Fischer dataset [121]. The most time-consuming
detectors are MSER and Hessian-Affine, because they need do the ellipse fitting
for each salient point. The detectors SIFT, SURF, ORB, BRISK and KAZE
all contain scale space and rotation estimation procedures. KAZE builds the
nonlinear scale space in an iterative way using the AOS scheme which is much
more time consuming than the linear scale space calculation. As SURF, ORB
and BRISK speed up building the scale space, they are more efficient than the
SIFT detector.

2.6.2 Descriptor Evaluation

The Oxford and Fischer datasets are also utilized in the local descriptors evalua-
tion. Note that some of the salient point detectors from the previous section do
not define descriptors and are not compared here. In order to make an objective
comparison of different salient point descriptors, SURF was applied as the salient
point detector, as the SURF detector is scale invariant and it provides a high
repeatability score according to its performance in the detector evaluation. We
combined SURF detectors with local descriptors including SIFT, SURF, ORB,
BRIEF, BRISK, FREAK, BinBoost and LATCH. The evaluation starts by ex-
tracting salient point features from the reference images and establishing a KD-
tree or LSH index space for the obtained local features. Then, we extract features
from the query image and match them against the features from each reference
image based on the approximate nearest neighbor search. In the matching proce-
dure, a KD-tree index is established for real value descriptors and the Euclidean
distance is used for matching, while binary string descriptors are matched in an
LSH index using the Hamming distance.

38



2.6 Results and Discussions

The NNDR is used as the matching strategy to find similar descriptors in im-
age pairs. In addition we use recall and 1-precision [108] (not to be confused
with precision@1) as criteria to measure the performance of various salient point
descriptors. Recall denotes the number of correct matches with respect to the
number of correspondences between two compared images, and the precision is
the number of correct matches with respect to the total number of matches.

recall =
#correct_matches
#correspondences

(2.4)

precision =
#correct_matches
#total_matches

(2.5)

We varied the value of the threshold in the NNDR to obtain the curves of the
tendency of the average recall vs. 1-precision under each transformation. Figure
2.4 and Figure 2.5 show the results on each dataset. We also provide the area
under the recall vs. 1-precision curve, averaged over all image transformations in
each dataset, as shown in Table 2.4 and Table 2.5. A distinctive descriptor would
give a high score of area under each curve (AUC).

Table 2.4 and Table 2.5 summarized the results of AUC under each transformation
as well as the average score. SIFT, BRISK, and FREAK show good performance
for all image degradations on the two datasets. Looking at the performance on
the Oxford dataset [108], all descriptors perform better on image changes (blur,
illumination and JPEG compression) than on affine deformation changes (rota-
tion, scale and perspective). The descriptors created by SIFT, BRISK, FREAK,
SURF, and BinBoost are more robust and distinctive than ORB, BRIEF and
LATCH under affine deformation. This is mainly because the BRIEF descrip-
tor only conducts pixel-pair intensity comparisons and is not rotation invariant,
while the ORB descriptor as an improved BRIEF descriptor is rotation invariant
and resistant to noise, but not scale invariant. The LATCH descriptor uses the
same scale information causing it not to be scale invariant. For the scores under
changes of blur and JPEG compression, the BinBoost descriptor obtains the low-
est score, thus, it is more sensitive to those types of noise. An illumination change
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Figure 2.4: Comparison of various descriptors using recall vs 1-precision under
different image degradations. The evaluation results are for the Oxford dataset
[108].

has a big influence on the SURF descriptor, while the other descriptors are ro-
bust to illumination changes and show scores close to each other. The evaluation
results on the Fischer dataset [121] show the same tendency under the changes of
image blur and perspective when compared to the results on the Oxford dataset
[108]. In addition, the descriptors of ORB, BRIEF and LATCH also show their
weakness under the change of image zoom.

The time and memory complexity of local descriptor extraction is also statistically
analyzed in this section. The average time costs for generating local descriptors
based on the Oxford dataset [108] and the Fischer dataset [121] are shown in
Table 2.6. It is clear that binary string descriptors are more efficient than real
valued descriptors in terms of memory requirement. The SIFT descriptor has
the highest time complexity, followed by the BinBoost descriptor. The SURF

40



2.6 Results and Discussions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Image blur and translation

SIFT
SURF
ORB
BRISK
BRIEF
FREAK
BinBoost
LATCH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Image rotation

SIFT
SURF
ORB
BRISK
BRIEF
FREAK
BinBoost
LATCH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Image zoom

SIFT
SURF
ORB
BRISK
BRIEF
FREAK
BinBoost
LATCH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Perspective transformation

SIFT
SURF
ORB
BRISK
BRIEF
FREAK
BinBoost
LATCH

Figure 2.5: Comparison of various descriptors using recall vs 1-precision under
different image degradations. The evaluation results are for the Fischer dataset
[121].

descriptor is more efficient than the SIFT descriptor. However, binary string
descriptors like ORB, BRIEF, BRISK and FREAK perform much faster than
the other local descriptors. Thus, the binary string descriptors ORB, BRIEF,
BRISK and FREAK are more appropriate for real-time applications.

2.6.3 Affine Invariant Evaluation

According to the above performance evaluation, most of the salient point meth-
ods are significantly influenced by affine transformations. As the framework of
fully affine space could improve the accuracy of correspondence matching under
huge viewpoint changes,we evaluate each salient point method in the framework
of fully affine space and employ the proposed K-order NNDR matching strat-
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egy to define the final correspondences. The evaluated salient point methods in
the framework of fully affine space contain SIFT+SIFT (detector+descriptor),
SURF+SURF, SURF+BRIEF, ORB+ORB, BRISK+BRISK, SURF+FREAK,
SURF+BinBoost and SURF+LATCH. We also use randomized KD-trees to es-
tablish an index space and Euclidean distance for real valued descriptor match-
ing. Binary descriptors are matched in a LSH index space with Hamming dis-
tance.

For the extracted local features of salient points in two compared images I and
I’, the obtained set of matches can be defined as:

MI−I′ = {piI ↔ pj
I′
} (2.6)

point pj
I′

in image I ′ is the closest neighbor to point piI in image I. We need to
note the situation that the same point in the index space could be the nearest
neighbor to different points in the query space (many-to-one matches), we then
enforce a one-to-one constraint through a cross-check operation. The cross-check
operation starts by building an index space for the local descriptors in the query
image, and searching the k closest neighbors for each point in the reference image.
Then we build the index space for the local descriptors in the reference image,
and find k nearest neighbors for each point in the query image. Only if they

Table 2.4: The Oxford benchmark results [108]. Numerical results summarizing
area under the recall vs. 1-precision curve for different transformations. Higher
results are better.

Descriptor Affine Blur Illumination JPEG Average
SIFT 0.523 0.832 0.892 0.931 0.794
SURF 0.404 0.49 0.774 0.723 0.598
ORB 0.141 0.596 0.844 0.711 0.573
BRISK 0.5 0.716 0.866 0.824 0.727
BRIEF 0.113 0.841 0.864 0.879 0.674
FREAK 0.484 0.735 0.843 0.863 0.731
BinBoost 0.4 0.412 0.83 0.641 0.571
LATCH 0.164 0.697 0.894 0.809 0.641
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Table 2.5: The Fischer benchmark results [121]. Numerical results summarizing
area under the recall vs. 1-precision curve for different transformations. Higher
results are better.

Descriptor Blur+Translation Perspective Rotation Zoom Average
SIFT 0.915 0.776 0.925 0.705 0.83
SURF 0.777 0.702 0.791 0.796 0.766
ORB 0.837 0.556 0.715 0.128 0.559
BRISK 0.902 0.79 0.887 0.85 0.857
BRIEF 0.882 0.606 0.443 0.117 0.41
FREAK 0.893 0.767 0.871 0.763 0.824
BinBoost 0.707 0.735 0.85 0.78 0.768
LATCH 0.859 0.54 0.832 0.1 0.583

satisfy formula (2.7), they can be considered a match.

M = {MI−I′ = {piI ↔ pj
I
′} ∧MI′−I = {pj

I′
↔ piI}} (2.7)

We use the proposed K-order NNDR matching strategy, replacing the original
NNDR matching strategy, to define the matched correspondences:

C = {piI ↔ pj
I′
|K-order NNDR(piI , p

j

I′
) < threshold} (2.8)

where K-order NNDR(piI , p
j

I′
) denotes that two similar descriptors satisfy the K-

order NNDR threshold and (piI , p
j

I′
) ∈M .

As the salient point extraction in the fully affine space could result in duplicate
correspondences, we eliminate these duplicates according to the spatial distance (2

Table 2.6: Comparison of average description time cost on both two datasets

Method
Feature Memory Oxford Dataset [108] Fischer Dataset [121]

dimensions requirement Average time Average time
(1000 points) cost(s)/5400 cost(s)/6000

SURF+SIFT 128 float 0.488M 4.3 4.8
SURF+SURF 64 float 0.244M 0.24 0.26
SURF+BRIEF 256 bit 0.03M 0.013 0.015
SURF+ORB 256 bit 0.03M 0.015 0.018
SURF+BRISK 512 bit 0.06M 0.028 0.032
SURF+FREAK 512 bit 0.06M 0.02 0.025
SURF+BinBoost 256 bit 0.03M 3.03 3.27
SURF+LATCH 256 bit 0.03M 0.25 0.28
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pixels) of point location in both image. To further determine whether a matched
correspondence is correct or not, each correspondence obtained by the K-order
NNDR is determined as correct only if its corresponding point is geometrically
the closest point within the defined pixel coordinate error, and the final correct
correspondences are evaluated by the ground-truth homography:

Correct_matches = {piI ↔ pj
I′
|D(H(piI), p

j

I′
) < ε} (2.9)

where D(H(piI), p
j

I′
) is the position error after the ground-truth homography H

projection for the point in image I, and in all cases, the ε is set as 2 pixels.

Following common practice in evaluation protocols, we use the total number of
correct matches between two compared images as criterion for the evaluation
of correspondences matching. As ASIFT set the NNDR matching threshold to
0.73 × 0.73, we use the same threshold in our K-order NNDR. Moreover, in the
framework of fully affine space, the parameter of tilt t controls the number of
generated synthetic images in the affine space, and we need to note that larger
value of the parameter t leads to higher computational complexity of the frame-
work of fully affine space. For the evaluation, we set the parameter of t to 5,
6, and 7 corresponding to the numbers of the generated synthetic images 27, 41,
and 61, respectively.

2.6.3.1 Parameter of K in K-order NNDR

In this part, we evaluate the impact of size K in the K-order NNDR. The im-
ages under viewpoint changes in the Oxford dataset [108] and the images for
perspective changes in the Fischer dataset [121] are used. The impact of K in
the K-order NNDR is shown in Figure 9. The test is based on the SIFT+SIFT,
where the tilt in the scale space is set to 5. Figure 9 displays that the amount
of correct correspondences shows a tendency to increase when K becomes larger,
and for the SIFT detector with the SIFT descriptor, the K-order NNDR shows
superior results to the original NNDR. Since the increase of magnitude of the
correct correspondence is not significant when K varies from 4 to 6 and larger
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Figure 2.6: The demonstration of parameter K in the K-order NNDR (KNNDR)
used in the fully affine space framework.

value of K reduces the efficiency of K-order NNDR, we set K equal to 4 in the
following experiments.

2.6.3.2 Correspondence Matching Using the Framework of Fully Affine
Space

For an objective comparison, we first evaluated the performance of each method
without using the fully affine space framework. Figure 2.7 displays the amount of
correct correspondences on the Oxford dataset, as well as the average numbers of
correct correspondences on the Fischer dataset. It is clear that the SIFT+SIFT
performs best on both datasets, and ORB+ORB, BRISK+BRISK are more sen-
sitive to the affine changes (scale, rotation and perspective changes) than the
other salient point methods. However, when the magnitude of perspective trans-
formation becomes larger, all methods show poor performance.

As all salient point methods can only tolerate a small magnitude of viewpoint
transformation, we apply the fully affine space framework and the proposed K-
order NNDR scheme to evaluate their performance. Figure 2.8, Figure 2.9 and
Figure 2.10 depict the evaluation results for real valued and binary string de-
scriptors. It can be observed that a similar tendency is demonstrated on both
datasets. When comparing the results of salient point methods using the fully
affine space framework with the previous results, the performance has been signif-
icantly improved under large viewpoint transformations. We can note that Affine-
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Figure 2.7: The demonstration of the amount of correct correspondences under
perspective changes for each salient point method without using the fully affine
space framework.
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Figure 2.8: Evaluation results of salient point methods with real valued descriptor.
The fully affine space framework is applied (the tilt varied from 5 to 7), and both
NNDR and K-order NNDR (KNNDR) are compared.

SIFT+SIFT obtained the highest number of correct matches in all cases, and this
is mainly due to the distinctiveness of the SIFT local descriptor. Moreover, the
real valued descriptors are more distinctive than binary string descriptors.

In addition, for the comparison between NNDR and K-order NNDR, the evalua-
tion results show the advantages of the K-order NNDR matching strategy. The

46



2.6 Results and Discussions

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

200

400

600

800

1000

#C
o

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Oxford dataset-graf)

Affine-SURF-BRIEF-NNDR(tilt=5)
Affine-SURF-BRIEF-NNDR(tilt=6)
Affine-SURF-BRIEF-NNDR(tilt=7)
Affine-SURF-BRIEF-KNNDR(tilt=5)
Affine-SURF-BRIEF-KNNDR(tilt=6)
Affine-SURF-BRIEF-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

2000

4000

6000

8000

10000

#C
o

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Oxford dataset-wall)

Affine-SURF-BRIEF-NNDR(tilt=5)
Affine-SURF-BRIEF-NNDR(tilt=6)
Affine-SURF-BRIEF-NNDR(tilt=7)
Affine-SURF-BRIEF-KNNDR(tilt=5)
Affine-SURF-BRIEF-KNNDR(tilt=6)
Affine-SURF-BRIEF-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

2000

4000

6000

8000

10000

12000

14000

16000

#A
ve

ra
g

e 
co

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Fischer dataset)

Affine-SURF-BRIEF-NNDR(tilt=5)
Affine-SURF-BRIEF-NNDR(tilt=6)
Affine-SURF-BRIEF-NNDR(tilt=7)
Affine-SURF-BRIEF-KNNDR(tilt=5)
Affine-SURF-BRIEF-KNNDR(tilt=6)
Affine-SURF-BRIEF-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

100

200

300

400

500

600

#C
o

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Oxford dataset-graf)

Affine-ORB-ORB-NNDR(tilt=5)
Affine-ORB-ORB-NNDR(tilt=6)
Affine-ORB-ORB-NNDR(tilt=7)
Affine-ORB-ORB-KNNDR(tilt=5)
Affine-ORB-ORB-KNNDR(tilt=6)
Affine-ORB-ORB-KNNDR(tile=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

100

200

300

400

500

600

#C
co

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Oxford dataset-wall)

Affine-ORB-ORB-NNDR(tilt=5)
Affine-ORB-ORB-NNDR(tilt=6)
Affine-ORB-ORB-NNDR(tilt=7)
Affine-ORB-ORB-KNNDR(tilt=5)
Affine-ORB-ORB-KNNDR(tilt=6)
Affine-ORB-ORB-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

250

500

750

1000

1250

1500

1750

2000

#A
ve

ra
g

e 
co

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Fischer dataset)

Affine-ORB-ORB-NNDR(tilt=5)
Affine-ORB-ORB-NNDR(tilt=6)
Affine-ORB-ORB-NNDR(tilt=7)
Affine-ORB-ORB-KNNDR(tilt=5)
Affine-ORB-ORB-KNNDR(tilt=6)
Affine-ORB-ORB-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

40

80

120

160

200

#C
o

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Oxford dataset-graf)

Affine-BRISK-BRISK-NNDR(tilt=5)
Affine-BRISK-BRISK-NNDR(tilt=6)
Affine-BRISK-BRISK-NNDR(tilt=7)
Affine-BRISK-BRISK-KNNDR(tilt=5)
Affine-BRISK-BRISK-KNNDR(tilt=6)
Affine-BRISK-BRISK-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

100

200

300

400

500

#C
o

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Oxford dataset-wall)

Affine-BRISK-BRISK-NNDR(tilt=5)
Affine-BRISK-BRISK-NNDR(tilt=6)
Affine-BRISK-BRISK-NNDR(tilt=7)
Affine-BRISK-BRISK-KNNDR(tilt=5)
Affine-BRISK-BRISK-KNNDR(tilt=6)
Affine-BRISK-BRISK-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation

0

200

400

600

800

1000
#A

ve
ra

g
e 

co
rr

ec
t 

co
rr

es
p

o
n

d
en

ce
s

Perspective transformation (Fischer dataset)

Affine-BRISK-BRISK-NNDR(tilt=5)
Affine-BRISK-BRISK-NNDR(tilt=6)
Affine-BRISK-BRISK-NNDR(tilt=7)
Affine-BRISK-BRISK-KNNDR(tilt=5)
Affine-BRISK-BRISK-KNNDR(tilt=6)
Affine-BRISK-BRISK-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

300

600

900

1200

1500

#C
o

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Oxford dataset-graf)

Affine-SURF-FREAK-NNDR(tilt=5)
Affine-SURF-FREAK-NNDR(tilt=6)
Affine-SURF-FREAK-NNDR(tilt=7)
Affine-SURF-FREAK-KNNDR(tilt=5)
Affine-SURF-FREAK-KNNDR(tilt=6)
Affine-SURF-FREAK-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

1000

2000

3000

4000

5000

6000

#C
o

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Oxford dataset-wall)

Affine-SURF-FREAK-NNDR(tilt=5)
Affine-SURF-FREAK-NNDR(tilt=6)
Affine-SURF-FREAK-NNDR(tilt=7)
Affine-SURF-FREAK-KNNDR(tilt=5)
Affine-SURF-FREAK-KNNDR(tilt=6)
Affine-SURF-FREAK-KNNDR(tilt=7)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

2500

5000

7500

10000

12000

#A
ve

ra
g

e 
co

rr
ec

t 
co

rr
es

p
o

n
d

en
ce

s

Perspective transformation (Fischer dataset)

Affine-SURF-FREAK-NNDR(tilt=5)
Affine-SURF-FREAK-NNDR(tilt=6)
Affine-SURF-FREAK-NNDR(tilt=7)
Affine-SURF-FREAK-KNNDR(tilt=5)
Affine-SURF-FREAK-KNNDR(tilt=6)
Affine-SURF-FREAK-KNNDR(tilt=7)

Figure 2.9: Evaluation results of salient point methods with hand-crafted binary
string descriptor. The fully affine space framework is applied (the tilt varied from
5 to 7), and both NNDR and K-order NNDR (KNNDR) are compared.

K-order NNDR is effective for all the salient point methods. We can observe that

K-order NNDR finds roughly double the number of correct correspondences com-

pared to the original NNDR. Moreover, the results of K-order NNDR with tilt
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Figure 2.10: Evaluation results of salient point methods with supervised learning
based binary string descriptors. The fully affine space framework is applied (the
tilt is varied from 5 to 7), and both NNDR and K-order NNDR (KNNDR) are
compared.

equal to 5 is even much better than NNDR with tilt equal to 7. This means that

K-order NNDR can get high accuracy even at a low computational complexity

of the fully affine space framework. Although the discrimination of binary string

features is insufficient, binary string descriptors using the K-order NNDR can also

offer competitive results compared to real valued descriptors using NNDR.

According to the above evaluation results on both datasets, we can also note that

the original salient point methods failed to find the correct matches under huge

viewpoint changes, but they all get expected performance levels by using the

fully affine space framework and the proposed K-order NNDR matching strategy.

Especially for the BRIEF, ORB, BinBoost and LATCH local descriptors which

are easily influenced by scale, rotation and viewpoint changes, good performance

was obtained for these changes by the framework of fully affine space and K-order

NNDR.
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Table 2.7: The comparison of computational cost and memory requirement in the
framework of fully affine space.

Tilt=5 Tilt=6 Tilt=7
Method Average Average Average Average Average Average

numbers memory numbers memory numbers memory
of points requirement of points requirement of points requirement

Affine-SIFT+SIFT 55635 27.15M 65384 31.9M 74095 36.16M
Affine-SURF+SURF 79341 19.36M 99341 24.24M 119627 29.2M
Affine-SURF+RIFF 79341 21.74M 99341 27.22M 119627 32.77M
Affine-SURF+BRIEF 79341 2.38M 99341 2.98M 119627 3.58M
Affine-ORB+ORB 13314 0.4M 19263 0.58M 25805 0.77M

Affine-BRISK+BRISK 17565 1.05M 20583 1.24M 23066 1.38M
Affine-SURF+FREAK 79341 4.76M 99341 5.96M 119627 7.16M

2.6.3.3 Computational Cost and Memory Requirement

Computational cost and memory requirement are also important to the frame-

work of fully affine space, because they reflect the computational complexity of

the framework as well as the potential for the requirement of real-time systems.

Considering that each salient point method extracts different amounts of local

features in the fully affine space, we evaluated the average number of detected

salient points and average memory requirement per image. The statistical results

are summarized in Table 2.7.

It is worth noting that Affine-SIFT+SIFT and Affine-SURF+SURF consumed a

huge amount of memory for the salient points detection and descriptor extraction

in the fully affine space. For Affine-SIFT+SIFT and Affine-SURF+SURF, a large

amount of salient points is extracted in the fully affine space framework and it

increases the memory consumption correspondingly. We can also note that the

memory requirement of binary string descriptors is less than that of real valued

features. Moreover, as the performance show that the binary string features

also achieved expected results under major viewpoint changes, integrating binary

string features with K-order NNDR matching strategy in the framework of fully

affine space is a good candidate for real-time systems.
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2.7 Conclusions

In this chapter, we presented a comparison of detectors and descriptors on diverse
image distortions and also evaluated their performance in the framework of fully
affine space. According to the evaluation results, the FAST detector had the high-
est repeatability score compared to the score of other detectors, moreover it had
the least detection time cost per point. Regarding the criterion of recall-precision,
our experiments showed that the descriptors of SIFT, BRISK, and FREAK per-
formed the best as affine invariant descriptors, and the time complexity showed
that the binary descriptors provide very efficient feature description and match-
ing.

In addition, for the special case of finding correspondences, we proposed the K-
order NNDR matching strategy for the correspondences matching in the frame-
work of fully affine space, and the experimental results show that the K-order
NNDR is effective and obtained high accuracy correspondences under challeng-
ing image transformations. Furthermore, Affine-SIFT+SIFT showed the best
performance on the correct correspondences in the framework fully affine space.
When taking into account the computational complexity and memory require-
ment, binary string descriptors using the K-order NNDR matching strategy are
a good trade-off between the accuracy and efficiency.
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