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Chapter 1

Introduction

Content-based image retrieval (CBIR) is one of the important and challenging
problems in computer vision research. Frequently used search engines like Google
or Yahoo represent a category of text-based information retrieval. However, the
search accuracy of text-based information retrieval cannot satisfy the require-
ments of users when the text annotations are incomplete or incorrect. More-
over, due to the non-scalability of text-based information retrieval to large scale
datasets, especially for the ever increasing multimedia data on the web, a high
degree of manual effort is required to define the correct text annotations. There-
fore, research on content-based information retrieval was proposed to address this
issue.

CBIR aims to obtain more images related to the query by analyzing and explor-
ing the content in images. The classic features (e.g., color, shape, texture, and
etc.) are low-level features, which do not easily translate to the high level human
concept vocabulary. In order to bridge the semantic gap, Bag-of-Words (BoW)
[1] with local features was proposed to represent images and demonstrated high
performance in image retrieval. Inspired by the BoW model, Fisher Vector (FV)
[2], Vector of Locally Aggregated Descriptors (VLAD) [3], as well as their vari-
ants [4, 5, 6, 7] were proposed to seek a more informative image representation.
Additionally, hash techniques were designed to map real valued image represen-
tations to binary codes such that large scale image search can be carried out in
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1. INTRODUCTION

an efficient way.

Benefitting from the advantages of convolutional neural networks (CNNs) [8]
trained on sufficiently large and diverse datasets such as ImageNet [9], image
representations based on the activations within CNNs have shown significant
high performance regarding the state-of-the-art of various computer vision ap-
plications. Recent work focuses on investigating effective ways to aggregate the
activations within CNNs into compact and distinctive image representations for
large scale image search.

Our main research objectives in this thesis are as follows:

• design a robust local descriptor to improve the discrimination of BoW based
image representations.

• provide an effective way for large scale image search by exploring compact
deep binary codes from deep layers within CNNs.

• propose a more powerful CNN architecture to improve the robustness of
the image representation generated from the deep layers in CNNs.

1.1 Salient Point Methods

Generally, salient point methods consist of two parts: a local detector and a local
descriptor. A robust local detector should have high repeatability. For compared
images with the same object or scene, a high percentage of corresponding salient
points should be detected on the scene part visible in both images. At the same
time, they should be unaffected by various deformations, such as image blur,
affine deformations, compression, and noise. Distinctive and robust local descrip-
tors should be invariant and less sensitive to different deformations, such that
they can be distinguished and effectively matched. Most of the existing salient
point methods are invariant to transformations of scale, rotation, viewpoint and
noise. All these properties are achieved by three distinct steps in salient point
methods: scale space construction, orientation assignment and local descriptor
generation.
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1.1 Salient Point Methods

Scale space construction: the construction of scale space aims to solve the
challenges in computer vision where the vision information is captured at different
scales. The commonly used scale space is the Gaussian smoothed image pyramid
which can represent an image at multi-scales and multi-resolutions. The multi-
scale representation is achieved by convolving the original image with different
Gaussian smooth kernels, and the multi-resolution representation is achieved by
down sampling or spatial pooling of the original image.

The experimental evaluation in the work by Lindeberg [10] demonstrated that
the extreme points detected in a scale space constructed by scale-normalized
Laplace-of-Gaussian (LoG) show high stability and repeatability. The represen-
tation of LoG scale space is constructed by smoothing the high resolution image
with derivatives of Gaussian kernels of increasing size. Recent work focuses on
the efficiency of scale space construction. An efficient framework of Difference-
of-Gaussian (DoG) [11], which is an approximation of the Laplace-of-Gaussian
(LoG) was proposed. A Difference-of-Gaussians pyramid is computed from the
differences between the adjacent levels in the Gaussian pyramid. Then, the points
at which the DoG values assume extrema of the differences with respect to both
the spatial coordinates in the image domain and the scale level in the pyramid
can be considered as candidate salient points. Compared to LoG, the DoG op-
eration could significantly decrease the computational complexity. As the second
order Gaussian derivatives (Hessian matrix) can also be used to approximate the
LoG and the Hessian matrix can be further approximated by a box-filter, the
box-filter based scale space [12] makes use of the box-filter and integral images
to calculate the determinant of the Hessian matrix at a very low computational
cost. The Gaussian smoothing operation in LoG, DoG as well as box-filter based
scale space construction is linear and each pixel in the Gaussian image pyramid
layer is convolved with the same Gaussian kernel. Hence, it can cause blurring as
well as loss of the boundary details of the object in images. The introduction of
nonlinear scale space can reduce noise but retain the object boundary structure
such that we can obtain accurate positions of extreme points. The framework of
nonlinear scale space first convolves the image with a Gaussian kernel of stan-
dard deviation. Then it builds the nonlinear scale space in an iterative way via
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1. INTRODUCTION

the additive operator splitting (AOS) scheme [13]. Since the extreme points are
detected in discrete scale space, the final scale and location information of these
extreme points can be refined by a quadratic fitting operation.

Orientation assignment: assigning each detected salient point an orientation.
The local descriptor of the salient point in images can be represented relative
to the calculated orientation and therefore be invariant to image rotation. The
orientation assigned by a good measurement can make the generated local descrip-
tor more robust to even large image rotation changes. The general orientation
measurements can be categorized as: histogram of gradients [14], Haar-wavelet
response [12], intensity centroid [15], average gradient of sampling pairs in a
pre-designed pattern [16, 17, 18]. The histogram of gradient based orientation
is calculated according to the gradient of each pixel within a patch around the
salient point θ(x, y) = arctan(5I(x, y)). Then, all θ(x, y) values are counted to
generate a histogram and the maximum bin in the histogram is considered to be
the orientation of the salient point. The Haar-wavelet response based orienta-
tion is computed according to the responses of Haar-wavelets in both horizontal
and vertical directions in a circle region around the salient point. The domi-
nant orientation of the local region is estimated by calculating the sum of all
responses within a sliding orientation window covering an angle of 60 degrees,
and the largest response is considered as the orientation of the salient point. The
intensity centroid approach assumes that the intensity of a salient point is an
offset from its center, and it can be used to compute the moments of a patch
and further to find its centroid. The orientation is defined as the direction of the
vector from the salient point position to the centroid position in the local patch.
Some other methods assign orientations to the salient points by averaging the
sum of local gradients of the defined pairs in the pre-defined structure.

Local descriptor generation: the local descriptor generation is performed on
image data that has been transformed relative to the assigned scale, location,
and orientation such that they can be distinguished and matched under these
transformations. The existing local descriptor can be categorized as a hand-
crafted based scheme and a machine learning based scheme.
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1.1 Salient Point Methods

Hand-crafted local descriptors: the hand-crafted schemes mainly explore the
intensity patterns around the detected salient points. The most representative
descriptors are the distribution-based local descriptors, which include successful
representations such as: histogram of gradients, histogram of gradient orienta-
tions, and Haar-wavelet responses distributions, which represent distinctive visual
information according to the distributions of pixel intensities in the local patch.
Binary local descriptors were proposed with an emphasis on minimizing compu-
tational and storage costs. The binary string representations make use of simple
pair-wise pixel intensity comparisons. Different binary string local descriptors
advocate different pre-defined structures to select the pixel pairs and the gener-
ated binary codes can be very efficiently matched with low computational cost
using the Hamming metric (bitwise XOR followed by a bit count).

Machine learning based local descriptors: machine learning has been ap-
plied to improve both the efficiency and accuracy of local binary descriptor gen-
eration. Hashing is one of the most effective techniques which aims to construct
a set of hash functions to map the original input space to compact and similarity-
preserving local binary codes. Therefore, similar input spaces could be projected
to similar binary codes in the Hamming space. Existing hashing approaches can
be divided into two categories: data-independent and data-dependent methods.
Data-independent methods randomly generate a projection matrix to map image
features into binary representations without training data [19]. The represen-
tative methods are locality-sensitive hashing (LSH) [20] as well as its variants
[21, 22]. Data-dependent hashing which is also referred to as a hashing learning
approach focuses on learning hash functions from a specific training dataset.

Hash learning approaches involve two main steps. First, the training data is rep-
resented as hand-crafted real valued local features. Second, optimize an objective
function to learn the hash function and use the learned hash function to convert
the real valued input space representation into a binary representation. Generally,
the process of hash functions learning is either done in an unsupervised, semi-
supervised or supervised manner. Unsupervised hash function learning makes use
of the unlabeled training data, and learns the compact binary descriptors whose
Hamming distance is correlated with data similarity in the original input space
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[23, 24, 25, 26, 27]. Supervised and semi-supervised hashing approaches take
advantage of semantic label information of training data to preserve the ground
truth similarity during the construction of binary hash codes. Supervised hashing
fully exploits the labeled training data to seek a linear transformation. A loss
function is usually defined that penalizes the reconstruction errors between the
distances of original data and the distances of corresponding binary data to learn
the hash functions [28, 29, 30, 31, 32]. For the case of semi-supervised hashing
learning, both unlabeled data and labeled data are utilized to learn the hash
functions. For example, the semi-supervised hashing frameworks proposed by
Wang et al. [33, 34] minimize the empirical error on the labeled data while max-
imizing the variance over labeled and unlabeled data for binary representations.
Recently, the deep supervised hashing methods were proposed to learn binary
hashing codes. Deep supervised hashing trains a deep hierarchical and nonlinear
transformation model and projects the original local descriptors into local binary
codes [35, 36, 37, 38].

1.2 Visual Word based Image Search

Content-based image search is still a challenging problem in computer vision.
This is mainly due to the existing variations in image appearance, such as the
changes of scale, orientation, viewpoint and illumination. In addition, with the
increasing amounts of image data on the web, a robust image representation with
the approximate nearest neighbor (ANN) search has been widely used for large
scale image retrieval. This method is mainly benefiting from the robustness of
local descriptors to various geometric transformations and the applicability of
different similarity measures.

The Bag-of-Words (BoW) model which is inspired from simple document re-
trieval systems and based on the analogy of visual words, has been widely ap-
plied in content-based image retrieval. In the BoW model, salient regions are
first detected from each image in the training dataset and a high dimensional
descriptor is calculated for each region. These descriptors are then clustered to
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1.2 Visual Word based Image Search

form a vocabulary of visual words. Therefore, an image is finally represented as
a histogram over a set of learned visual words after quantizing each of the local
descriptors to the nearest visual word. Early systems [1] used a flat K-means
clustering to generate the visual vocabulary, but it was difficult to scale to large
vocabularies generation and large scale datasets. The later works [39, 40] show
that flat K-means can be scaled to similarly large vocabulary sizes by the use of
approximate nearest neighbor methods.

The Fisher Vector (FV) [2] image representation seeks to capture the probability
distribution of features. The generative model Gaussian mixture model (GMM)
is utilized in FV to estimate a parametric probability distribution over the feature
space from a large representative set of local descriptors. The local descriptors
extracted from the image dataset are assumed to be sampled independently from
this probability distribution. Each local descriptor is represented by the gradient
of the probability distribution at that feature with respect to its parameters.
Gradients corresponding to all the features with respect to a particular parameter
are summed. The final FV representation is the concatenation of the accumulated
gradients. They achieve a fixed length vector from a varying set of features that
can be used in various discriminative learning activities. Compared with the K-
means cluster algorithm, GMM delivers not only the mean information of visual
words, but also the shape of their distribution.

Jegou et al. proposed Vector of Locally Aggregated Descriptors (VLAD) [3] which
can be viewed as a simplified non-probabilistic version of Fisher Vector. Similar
to the BoW model, a vocabulary with C visual words is first learned via K-means
cluster. Each local descriptor is associated to its nearest visual word in the vo-
cabulary. The idea of the VLAD representation is to accumulate the residuals
belonging to each of the visual words. This characterizes the distribution of the
vectors with respect to the center. A number of variants of VLAD have also been
designed to enhance the image representation by considering vocabulary adap-
tation and intra-normalization [4], residual normalization and local coordinate
systems [5], geometry information [6] and multiple vocabularies [7].

The relationship among the models of BoW, FV and VLAD can be described as:
BOW encodes the 0-order statistics of the distribution of local descriptors, the
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Fisher vector extends the BOW by encoding high-order statistics (first-order and,
optionally, second-order), and VLAD is a non-probabilistic equivalent of Fisher
Vector. During the past decade, the visual words based image representation has
been successfully applied in various computer vision applications.

1.3 Convolutional Neural Networks

Generally, the convolutional neural network (CNN) is a hierarchical architecture
[8] which consists of several stacked convolutional layers (optionally followed by
a normalization layer and a spatial pooling layer), fully connected layers and
a loss layer on top. The convolutional layers generate feature maps by linear
convolutional filters followed by nonlinear activation functions (Rectifier, Sigmoid,
TanH, etc.). The fully connected layer has full connections to all activations in
the feature maps and the resulted one dimensional vector can be fed into the loss
layer for loss function optimization.

There are two main stages for training the convolutional neural network: a for-
ward stage and a backward stage. First, the forward stage is to represent the
input image with the current parameters (weights and bias) in each layer. Then
the output from the last layer is used to compute the loss function with the ground
truth labels. Second, based on the loss cost, the backward stage computes the
gradients of each parameter with chain rules. All the parameters are updated
based on the gradients, and are prepared for the next forward computation. Af-
ter sufficient iterations of the forward and backward stages, the network could be
optimized. The convolutional neural network has been applied in diverse com-
puter vision applications and demonstrated their significant advantages and high
performance.

We will first present an overview of the different types of layers and then briefly
review the CNN based computer vision applications.

Convolutional layers: the convolutional layers in the CNN architecture utilizes
k filters (or kernels) to convolve the input image to generate k feature maps.
There are three main advantages of the convolution operation [41]: first, the
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1.3 Convolutional Neural Networks

parameter sharing mechanism is used in convolutional layers such that the number
of parameters could be significantly reduced. Second, local connectivity learns
correlations among neighboring pixels. Third, it is invariant to the location of
the object. Due to these benefits introduced by the convolution operation, some
well-known research papers also use it as a replacement for the fully connected
layers to accelerate the learning process [42, 43].

Pooling layers: a pooling layer is an optional layer following a convolutional
layer which sub-samples its input. Average pooling and max pooling are the most
commonly used pooling operations. The reason to use a pooling operation in the
convolutional neural network is that: first, it can reduce the dimensions of the
output and the number of parameters of the network, while keeping the most
salient information. Second, a pooling operation also provides basic invariance
to translating (shifting) and rotation. For max pooling and average pooling,
Boureau et al. [44] provided a detailed theoretical analysis of their performances.
Scherer et al. [45] further conducted a comparison between the two pooling
operations and found that max-pooling can lead to faster convergence, selection
of superior invariant features and improve generalization.

Fully-connected layers: after several convolutional and max pooling layers,
the high-level reasoning in the convolutional neural network is done via the fully
connected layers. A fully connected layer takes all neurons in the previous layer
(be it fully connected, pooling, or convolutional) and connects it to every single
neuron it has. Fully connected layers are not spatially located, as the input feature
maps are converted to a one dimensional feature vector. The one dimensional
feature vector could either feed forward the vector into a loss layer or take it
as a feature representation for follow-up processing [46]. The drawback of the
fully connected layer is that it contains many parameters, which results in large
computational and storage costs. Therefore, GoogleNet [42] designed a deep and
wide network while keeping the computational budget constant, by switching from
fully connected to sparsely connected architectures. The Network in Network
(NIN) [47] architecture replaces the fully connected layer by a global average
pooling layer.
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Recently, deep learning, especially for the CNNs, produced state-of-the-art per-
formance on various computer vision applications, such as image classification,
image search, object detection, semantic image segmentation, human pose esti-
mation, etc.

Image classification: Krizhevsky et al. [48] set a milestone for large-scale im-
age classification when training a large CNN on the ImageNet dataset [9], thus
proving that CNN could perform well on natural image classification. OverFeat
[49] proposed a multi-scale and sliding window framework, which could find the
optimal scale of the image and fulfill different tasks simultaneously, e.g., image
classification, object detection and localization. Because the existing CNNs re-
quire fixed-size image data as input, the SPP-Net [50] model eliminated this
restriction via a spatial pyramid pooling strategy in the CNNs and improved the
classification accuracy of a variety of CNN architectures despite their different
designs. The later proposed VGGNet [51] and GoogleNet [42] significantly im-
proved the performance of image classification by increasing the width and depth
of the network architectures.

Object detection: a general scheme for high performance object detection sys-
tems is to generate a large number of candidate object region proposals and
classify them using their high performance CNN features. The most representa-
tive approach is the regions with CNN features (RCNNs) [46]. It utilizes selective
search [52] to generate object region proposals, and extracts the CNN features
for each candidate region. The features are then fed into a SVM classifier to
decide whether the related candidate windows contain the object or not. RCNNs
improved the benchmark of object detection by a large margin, and became the
base model for many other promising algorithms [53, 54, 55]. Also, the original
RCNNs were computationally expensive, the recent works [50, 56] employed the
strategy of sharing convolutions across the region proposals to reduce the com-
putation cost. The latest frameworks of Fast RCNNs [56] and Faster RCNNs [57]
achieve near real-time rates using very deep networks.

Image retrieval: The success of AlexNet [48] suggests that CNNs can be used
as high level and universal feature extractors. The features emerging in the
fully connected layers of the CNN can serve as a high level image representation
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for image classification. Motivated by this, many recent studies make use of
the activations of the top fully connected layers in CNNs for image retrieval
[58, 59, 60, 61, 62, 63]. Recent researches also suggested to explore the features
from the deep convolutional layers in CNNs. These features have very useful
properties: first, they can be efficiently extracted from an image of any size
and aspect ratio. Second, features from the convolutional layers have a natural
interpretation as descriptors of local image regions corresponding to receptive
fields of the particular features. Finally, simple pooling operations can aggregate
feature maps from deep convolutional layers into low dimensional and highly
distinctive features [58, 60, 63, 64, 65]. The CNNs based image representations
have demonstrated their competitive and even better results compared with the
traditional visual words methods, such as BoW, VLAD and Fisher Vector.

Semantic image segmentation: semantic image segmentation can be referred
to as a problem of pixel-level classification or labeling. Recently, the CNNs
and probabilistic graphical models were utilized to address this task and yielded
promising progress [66, 67, 68, 69, 70]. The CNN based semantic image seg-
mentation methods usually convert an existing CNN architecture constructed for
classification to a fully convolutional network (FCN). This is mainly because the
FCN architecture accepts a whole image as an input and performs fast and ac-
curate inference. Long et al. [68] replaced the last fully connected layers of a
CNN by convolutional layers, and obtained a coarse label map from the network
by classifying every local region in the image, then performed a simple deconvo-
lution, which is implemented as a bilinear interpolation, for pixel-level labeling.
DeepLab [69] proposed a similar FCN based model which obtained denser score
maps within the FCN framework to predict pixel-wise labels and refined the label
map using the fully connected conditional random field (CRF). Instead of using
CRF as a post-processing step, Lin et al. [70] jointly trained the FCN and CRFs
by efficient piece wise training.

Human pose estimation: estimating the human pose by locating human body
joints or facial landmarks is a challenging task, because of the changes in pose,
illumination, occlusion and etc. As CNNs have shown outstanding performance
on visual classification and object localization, human pose estimation can be
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formulated as a CNN-based regression problem towards human body joints. The
representative projects [71, 72] proposed to use a cascade of CNN-based regres-
sors to reason the positions of body joints or facial landmarks. The cascade of
CNNs can be viewed as a kind of holistic process which takes the full image as
the input and output the ultimate position of body joints or facial landmarks
in the image without using any explicit graphical model or part detectors. The
part-based processing methods propose to detect the human body parts indi-
vidually, followed with a graphical model to incorporate the spatial information.
Rather than training the network using the whole image as input, Chen et al.
[73] utilized the local part patches to train a CNN, in order to learn conditional
probabilities of the part presence and spatial relationships. By incorporating with
graphical models, the algorithm gained promising performance. Tompson et al.
[74] designed multi-resolution ConvNet architectures to perform heat-map like-
lihood regression for each body part, followed with an implicit graphical model
to further promote joint consistency. The model was further extended and im-
proved [75], which argues that the pooling layers in the CNN would limit spatial
localization accuracy and try to recover the precision loss caused by the pooling
process. Additionally, Fan et al. [76] proposed a dual-source convolutional neu-
tral network (DS-CNN) to integrate the holistic and partial view in a two branche
CNN architecture. It takes part-patches and body-patches as inputs to combine
both local and contextual information for more accurate pose estimation.

1.4 Thesis Overview

This thesis is based on first-authored conference papers that have been published
or journal papers are currently under review. The research has been carried out
during the four-year period of the PhD research. The focus of this thesis has
been on developing and analyzing techniques to improve the state-of-the-art of
large scale image search.

Chapter 2: A Comprehensive Evaluation of Salient Point Methods
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A survey is presented that evaluates the performance of a wide set of salient
point detectors and descriptors. First, the survey compares diverse salient point
algorithms with regard to the repeatability of salient point detectors, recall and
precision of salient point descriptors. Then, it integrates the salient point meth-
ods with the framework of fully affine space and evaluates the performance under
major viewpoint transformations. The presented comparative experimental re-
sults can benefit researchers in choosing an appropriate detector and descriptor
for different computer vision applications. An early version of this work was
presented at:

• 21st ACM international conference on Multimedia (MM 2013), in Barcelona,
Spain.

Chapter 3: RIFF: Retina-inspired Invariant Fast Feature Descriptor

We first propose the Retina-inspired Invariant Fast Feature, RIFF, which was de-
signed for invariance to scale, rotation, and affine image deformations. The RIFF
descriptor is based on pair-wise comparisons over a sampling pattern loosely based
on the human retina and introduces a method for improving accuracy by maxi-
mizing the discriminatory power of the point set. A performance evaluation with
regard to Bag-of-Words based image retrieval on several well-known benchmark
datasets demonstrates that the RIFF local descriptor has competitive perfor-
mance to the state-of-the-art local descriptors. Additionally, a popular approach
from the literature is to use visual words (or Bag-of-Words) constructed from real
valued descriptors (SIFT and SURF). To accommodate large scale data sets, we
used the approximate nearest neighbor (ANN) based cluster approach to both
real valued local descriptors and binary string local descriptors (BRIEF, ORB,
BRISK and FREAK) and the results on the test datasets reveal that some of the
recent binary string approaches outperformed notable descriptors such as SIFT
and SURF. This approach has been presented at the following conferences:

• 22nd ACM international conference on Multimedia (MM 2014), in Orlando,
FL, USA.

• 4th ACM International Conference on Multimedia Retrieval (ICMR 2014),
in Glasgow, Scotland.
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Chapter 4: Deep Binary Codes for Large Scale Image Retrieval

We present a novel and effective method to create compact binary codes (deep
binary codes) based on deep convolutional features for image retrieval. Deep
binary codes are generated by comparing the response from each feature map and
the average response across all the feature maps on the deep convolutional layer.
Additionally, a spatial cross-summing strategy is proposed to directly generate
bit-scalable binary codes. As the deep binary codes on different deep layers can
be obtained by passing the image through the CNN and each of them makes a
different contribution to the search accuracy, we then present a dynamic, on-the-
fly late fusion approach where the top N high quality search scores from deep
binary codes are automatically determined online and fused to further enhance
the retrieval precision. Two strengths of the proposed methods are that the
generation of deep binary codes is based on a generic model which does not require
additional training for new domain areas, and the dynamic late fusion scheme is
query adaptive. Extensive experimental results on well known benchmarks show
that the deep binary codes are competitive to state-of-the-art approaches in terms
of the performance on large scale image retrieval. Moreover, the search accuracy
is shown to be enhanced substantially by the dynamic late fusion scheme. The
paper has been submitted to:

• Journal of Neurocomputing

Chapter 5: Comparison of Information Loss Architectures in CNNs

We propose a novel deep convolutional neural network called “Weighted Integra-
tion Architecture Network” (WIAN) which can effectively recover the information
loss due to the pooling operation in the CNNs. The proposed WIAN reuses the
information from the previous layers in the network and assigns a weight matrix to
each layer and then integrates them via an element-wise sum operation to further
enhance the performance of image classification. Several types of weight scheme
such as adaptive weight learning framework as well as responses or entropy based
weight learning schemes have been evaluated in this chapter. Extensive experi-
ments on four standard benchmark datasets demonstrate the effectiveness as well
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as an improved performance of the proposed WIAN. The basis for this chapter
is formed by the publication in the conference proceeding:

• 17th Pacific-Rim Conference on Multimedia (PCM, 2016) in Xi’an China.
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