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Chapter 1

Introduction

Content-based image retrieval (CBIR) is one of the important and challenging
problems in computer vision research. Frequently used search engines like Google
or Yahoo represent a category of text-based information retrieval. However, the
search accuracy of text-based information retrieval cannot satisfy the require-
ments of users when the text annotations are incomplete or incorrect. More-
over, due to the non-scalability of text-based information retrieval to large scale
datasets, especially for the ever increasing multimedia data on the web, a high
degree of manual effort is required to define the correct text annotations. There-
fore, research on content-based information retrieval was proposed to address this
issue.

CBIR aims to obtain more images related to the query by analyzing and explor-
ing the content in images. The classic features (e.g., color, shape, texture, and
etc.) are low-level features, which do not easily translate to the high level human
concept vocabulary. In order to bridge the semantic gap, Bag-of-Words (BoW)
[1] with local features was proposed to represent images and demonstrated high
performance in image retrieval. Inspired by the BoW model, Fisher Vector (FV)
[2], Vector of Locally Aggregated Descriptors (VLAD) [3], as well as their vari-
ants [4, 5, 6, 7] were proposed to seek a more informative image representation.
Additionally, hash techniques were designed to map real valued image represen-
tations to binary codes such that large scale image search can be carried out in
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1. INTRODUCTION

an efficient way.

Benefitting from the advantages of convolutional neural networks (CNNs) [8]
trained on sufficiently large and diverse datasets such as ImageNet [9], image
representations based on the activations within CNNs have shown significant
high performance regarding the state-of-the-art of various computer vision ap-
plications. Recent work focuses on investigating effective ways to aggregate the
activations within CNNs into compact and distinctive image representations for
large scale image search.

Our main research objectives in this thesis are as follows:

• design a robust local descriptor to improve the discrimination of BoW based
image representations.

• provide an effective way for large scale image search by exploring compact
deep binary codes from deep layers within CNNs.

• propose a more powerful CNN architecture to improve the robustness of
the image representation generated from the deep layers in CNNs.

1.1 Salient Point Methods

Generally, salient point methods consist of two parts: a local detector and a local
descriptor. A robust local detector should have high repeatability. For compared
images with the same object or scene, a high percentage of corresponding salient
points should be detected on the scene part visible in both images. At the same
time, they should be unaffected by various deformations, such as image blur,
affine deformations, compression, and noise. Distinctive and robust local descrip-
tors should be invariant and less sensitive to different deformations, such that
they can be distinguished and effectively matched. Most of the existing salient
point methods are invariant to transformations of scale, rotation, viewpoint and
noise. All these properties are achieved by three distinct steps in salient point
methods: scale space construction, orientation assignment and local descriptor
generation.

2



1.1 Salient Point Methods

Scale space construction: the construction of scale space aims to solve the
challenges in computer vision where the vision information is captured at different
scales. The commonly used scale space is the Gaussian smoothed image pyramid
which can represent an image at multi-scales and multi-resolutions. The multi-
scale representation is achieved by convolving the original image with different
Gaussian smooth kernels, and the multi-resolution representation is achieved by
down sampling or spatial pooling of the original image.

The experimental evaluation in the work by Lindeberg [10] demonstrated that
the extreme points detected in a scale space constructed by scale-normalized
Laplace-of-Gaussian (LoG) show high stability and repeatability. The represen-
tation of LoG scale space is constructed by smoothing the high resolution image
with derivatives of Gaussian kernels of increasing size. Recent work focuses on
the efficiency of scale space construction. An efficient framework of Difference-
of-Gaussian (DoG) [11], which is an approximation of the Laplace-of-Gaussian
(LoG) was proposed. A Difference-of-Gaussians pyramid is computed from the
differences between the adjacent levels in the Gaussian pyramid. Then, the points
at which the DoG values assume extrema of the differences with respect to both
the spatial coordinates in the image domain and the scale level in the pyramid
can be considered as candidate salient points. Compared to LoG, the DoG op-
eration could significantly decrease the computational complexity. As the second
order Gaussian derivatives (Hessian matrix) can also be used to approximate the
LoG and the Hessian matrix can be further approximated by a box-filter, the
box-filter based scale space [12] makes use of the box-filter and integral images
to calculate the determinant of the Hessian matrix at a very low computational
cost. The Gaussian smoothing operation in LoG, DoG as well as box-filter based
scale space construction is linear and each pixel in the Gaussian image pyramid
layer is convolved with the same Gaussian kernel. Hence, it can cause blurring as
well as loss of the boundary details of the object in images. The introduction of
nonlinear scale space can reduce noise but retain the object boundary structure
such that we can obtain accurate positions of extreme points. The framework of
nonlinear scale space first convolves the image with a Gaussian kernel of stan-
dard deviation. Then it builds the nonlinear scale space in an iterative way via
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1. INTRODUCTION

the additive operator splitting (AOS) scheme [13]. Since the extreme points are
detected in discrete scale space, the final scale and location information of these
extreme points can be refined by a quadratic fitting operation.

Orientation assignment: assigning each detected salient point an orientation.
The local descriptor of the salient point in images can be represented relative
to the calculated orientation and therefore be invariant to image rotation. The
orientation assigned by a good measurement can make the generated local descrip-
tor more robust to even large image rotation changes. The general orientation
measurements can be categorized as: histogram of gradients [14], Haar-wavelet
response [12], intensity centroid [15], average gradient of sampling pairs in a
pre-designed pattern [16, 17, 18]. The histogram of gradient based orientation
is calculated according to the gradient of each pixel within a patch around the
salient point θ(x, y) = arctan(�I(x, y)). Then, all θ(x, y) values are counted to
generate a histogram and the maximum bin in the histogram is considered to be
the orientation of the salient point. The Haar-wavelet response based orienta-
tion is computed according to the responses of Haar-wavelets in both horizontal
and vertical directions in a circle region around the salient point. The domi-
nant orientation of the local region is estimated by calculating the sum of all
responses within a sliding orientation window covering an angle of 60 degrees,
and the largest response is considered as the orientation of the salient point. The
intensity centroid approach assumes that the intensity of a salient point is an
offset from its center, and it can be used to compute the moments of a patch
and further to find its centroid. The orientation is defined as the direction of the
vector from the salient point position to the centroid position in the local patch.
Some other methods assign orientations to the salient points by averaging the
sum of local gradients of the defined pairs in the pre-defined structure.

Local descriptor generation: the local descriptor generation is performed on
image data that has been transformed relative to the assigned scale, location,
and orientation such that they can be distinguished and matched under these
transformations. The existing local descriptor can be categorized as a hand-
crafted based scheme and a machine learning based scheme.
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1.1 Salient Point Methods

Hand-crafted local descriptors: the hand-crafted schemes mainly explore the
intensity patterns around the detected salient points. The most representative
descriptors are the distribution-based local descriptors, which include successful
representations such as: histogram of gradients, histogram of gradient orienta-
tions, and Haar-wavelet responses distributions, which represent distinctive visual
information according to the distributions of pixel intensities in the local patch.
Binary local descriptors were proposed with an emphasis on minimizing compu-
tational and storage costs. The binary string representations make use of simple
pair-wise pixel intensity comparisons. Different binary string local descriptors
advocate different pre-defined structures to select the pixel pairs and the gener-
ated binary codes can be very efficiently matched with low computational cost
using the Hamming metric (bitwise XOR followed by a bit count).

Machine learning based local descriptors: machine learning has been ap-
plied to improve both the efficiency and accuracy of local binary descriptor gen-
eration. Hashing is one of the most effective techniques which aims to construct
a set of hash functions to map the original input space to compact and similarity-
preserving local binary codes. Therefore, similar input spaces could be projected
to similar binary codes in the Hamming space. Existing hashing approaches can
be divided into two categories: data-independent and data-dependent methods.
Data-independent methods randomly generate a projection matrix to map image
features into binary representations without training data [19]. The represen-
tative methods are locality-sensitive hashing (LSH) [20] as well as its variants
[21, 22]. Data-dependent hashing which is also referred to as a hashing learning
approach focuses on learning hash functions from a specific training dataset.

Hash learning approaches involve two main steps. First, the training data is rep-
resented as hand-crafted real valued local features. Second, optimize an objective
function to learn the hash function and use the learned hash function to convert
the real valued input space representation into a binary representation. Generally,
the process of hash functions learning is either done in an unsupervised, semi-
supervised or supervised manner. Unsupervised hash function learning makes use
of the unlabeled training data, and learns the compact binary descriptors whose
Hamming distance is correlated with data similarity in the original input space
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1. INTRODUCTION

[23, 24, 25, 26, 27]. Supervised and semi-supervised hashing approaches take
advantage of semantic label information of training data to preserve the ground
truth similarity during the construction of binary hash codes. Supervised hashing
fully exploits the labeled training data to seek a linear transformation. A loss
function is usually defined that penalizes the reconstruction errors between the
distances of original data and the distances of corresponding binary data to learn
the hash functions [28, 29, 30, 31, 32]. For the case of semi-supervised hashing
learning, both unlabeled data and labeled data are utilized to learn the hash
functions. For example, the semi-supervised hashing frameworks proposed by
Wang et al. [33, 34] minimize the empirical error on the labeled data while max-
imizing the variance over labeled and unlabeled data for binary representations.
Recently, the deep supervised hashing methods were proposed to learn binary
hashing codes. Deep supervised hashing trains a deep hierarchical and nonlinear
transformation model and projects the original local descriptors into local binary
codes [35, 36, 37, 38].

1.2 Visual Word based Image Search

Content-based image search is still a challenging problem in computer vision.
This is mainly due to the existing variations in image appearance, such as the
changes of scale, orientation, viewpoint and illumination. In addition, with the
increasing amounts of image data on the web, a robust image representation with
the approximate nearest neighbor (ANN) search has been widely used for large
scale image retrieval. This method is mainly benefiting from the robustness of
local descriptors to various geometric transformations and the applicability of
different similarity measures.

The Bag-of-Words (BoW) model which is inspired from simple document re-
trieval systems and based on the analogy of visual words, has been widely ap-
plied in content-based image retrieval. In the BoW model, salient regions are
first detected from each image in the training dataset and a high dimensional
descriptor is calculated for each region. These descriptors are then clustered to

6



1.2 Visual Word based Image Search

form a vocabulary of visual words. Therefore, an image is finally represented as
a histogram over a set of learned visual words after quantizing each of the local
descriptors to the nearest visual word. Early systems [1] used a flat K-means
clustering to generate the visual vocabulary, but it was difficult to scale to large
vocabularies generation and large scale datasets. The later works [39, 40] show
that flat K-means can be scaled to similarly large vocabulary sizes by the use of
approximate nearest neighbor methods.

The Fisher Vector (FV) [2] image representation seeks to capture the probability
distribution of features. The generative model Gaussian mixture model (GMM)
is utilized in FV to estimate a parametric probability distribution over the feature
space from a large representative set of local descriptors. The local descriptors
extracted from the image dataset are assumed to be sampled independently from
this probability distribution. Each local descriptor is represented by the gradient
of the probability distribution at that feature with respect to its parameters.
Gradients corresponding to all the features with respect to a particular parameter
are summed. The final FV representation is the concatenation of the accumulated
gradients. They achieve a fixed length vector from a varying set of features that
can be used in various discriminative learning activities. Compared with the K-
means cluster algorithm, GMM delivers not only the mean information of visual
words, but also the shape of their distribution.

Jegou et al. proposed Vector of Locally Aggregated Descriptors (VLAD) [3] which
can be viewed as a simplified non-probabilistic version of Fisher Vector. Similar
to the BoW model, a vocabulary with C visual words is first learned via K-means
cluster. Each local descriptor is associated to its nearest visual word in the vo-
cabulary. The idea of the VLAD representation is to accumulate the residuals
belonging to each of the visual words. This characterizes the distribution of the
vectors with respect to the center. A number of variants of VLAD have also been
designed to enhance the image representation by considering vocabulary adap-
tation and intra-normalization [4], residual normalization and local coordinate
systems [5], geometry information [6] and multiple vocabularies [7].

The relationship among the models of BoW, FV and VLAD can be described as:
BOW encodes the 0-order statistics of the distribution of local descriptors, the

7



1. INTRODUCTION

Fisher vector extends the BOW by encoding high-order statistics (first-order and,
optionally, second-order), and VLAD is a non-probabilistic equivalent of Fisher
Vector. During the past decade, the visual words based image representation has
been successfully applied in various computer vision applications.

1.3 Convolutional Neural Networks

Generally, the convolutional neural network (CNN) is a hierarchical architecture
[8] which consists of several stacked convolutional layers (optionally followed by
a normalization layer and a spatial pooling layer), fully connected layers and
a loss layer on top. The convolutional layers generate feature maps by linear
convolutional filters followed by nonlinear activation functions (Rectifier, Sigmoid,
TanH, etc.). The fully connected layer has full connections to all activations in
the feature maps and the resulted one dimensional vector can be fed into the loss
layer for loss function optimization.

There are two main stages for training the convolutional neural network: a for-
ward stage and a backward stage. First, the forward stage is to represent the
input image with the current parameters (weights and bias) in each layer. Then
the output from the last layer is used to compute the loss function with the ground
truth labels. Second, based on the loss cost, the backward stage computes the
gradients of each parameter with chain rules. All the parameters are updated
based on the gradients, and are prepared for the next forward computation. Af-
ter sufficient iterations of the forward and backward stages, the network could be
optimized. The convolutional neural network has been applied in diverse com-
puter vision applications and demonstrated their significant advantages and high
performance.

We will first present an overview of the different types of layers and then briefly
review the CNN based computer vision applications.

Convolutional layers: the convolutional layers in the CNN architecture utilizes
k filters (or kernels) to convolve the input image to generate k feature maps.
There are three main advantages of the convolution operation [41]: first, the
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1.3 Convolutional Neural Networks

parameter sharing mechanism is used in convolutional layers such that the number
of parameters could be significantly reduced. Second, local connectivity learns
correlations among neighboring pixels. Third, it is invariant to the location of
the object. Due to these benefits introduced by the convolution operation, some
well-known research papers also use it as a replacement for the fully connected
layers to accelerate the learning process [42, 43].

Pooling layers: a pooling layer is an optional layer following a convolutional
layer which sub-samples its input. Average pooling and max pooling are the most
commonly used pooling operations. The reason to use a pooling operation in the
convolutional neural network is that: first, it can reduce the dimensions of the
output and the number of parameters of the network, while keeping the most
salient information. Second, a pooling operation also provides basic invariance
to translating (shifting) and rotation. For max pooling and average pooling,
Boureau et al. [44] provided a detailed theoretical analysis of their performances.
Scherer et al. [45] further conducted a comparison between the two pooling
operations and found that max-pooling can lead to faster convergence, selection
of superior invariant features and improve generalization.

Fully-connected layers: after several convolutional and max pooling layers,
the high-level reasoning in the convolutional neural network is done via the fully
connected layers. A fully connected layer takes all neurons in the previous layer
(be it fully connected, pooling, or convolutional) and connects it to every single
neuron it has. Fully connected layers are not spatially located, as the input feature
maps are converted to a one dimensional feature vector. The one dimensional
feature vector could either feed forward the vector into a loss layer or take it
as a feature representation for follow-up processing [46]. The drawback of the
fully connected layer is that it contains many parameters, which results in large
computational and storage costs. Therefore, GoogleNet [42] designed a deep and
wide network while keeping the computational budget constant, by switching from
fully connected to sparsely connected architectures. The Network in Network
(NIN) [47] architecture replaces the fully connected layer by a global average
pooling layer.

9



1. INTRODUCTION

Recently, deep learning, especially for the CNNs, produced state-of-the-art per-
formance on various computer vision applications, such as image classification,
image search, object detection, semantic image segmentation, human pose esti-
mation, etc.

Image classification: Krizhevsky et al. [48] set a milestone for large-scale im-
age classification when training a large CNN on the ImageNet dataset [9], thus
proving that CNN could perform well on natural image classification. OverFeat
[49] proposed a multi-scale and sliding window framework, which could find the
optimal scale of the image and fulfill different tasks simultaneously, e.g., image
classification, object detection and localization. Because the existing CNNs re-
quire fixed-size image data as input, the SPP-Net [50] model eliminated this
restriction via a spatial pyramid pooling strategy in the CNNs and improved the
classification accuracy of a variety of CNN architectures despite their different
designs. The later proposed VGGNet [51] and GoogleNet [42] significantly im-
proved the performance of image classification by increasing the width and depth
of the network architectures.

Object detection: a general scheme for high performance object detection sys-
tems is to generate a large number of candidate object region proposals and
classify them using their high performance CNN features. The most representa-
tive approach is the regions with CNN features (RCNNs) [46]. It utilizes selective
search [52] to generate object region proposals, and extracts the CNN features
for each candidate region. The features are then fed into a SVM classifier to
decide whether the related candidate windows contain the object or not. RCNNs
improved the benchmark of object detection by a large margin, and became the
base model for many other promising algorithms [53, 54, 55]. Also, the original
RCNNs were computationally expensive, the recent works [50, 56] employed the
strategy of sharing convolutions across the region proposals to reduce the com-
putation cost. The latest frameworks of Fast RCNNs [56] and Faster RCNNs [57]
achieve near real-time rates using very deep networks.

Image retrieval: The success of AlexNet [48] suggests that CNNs can be used
as high level and universal feature extractors. The features emerging in the
fully connected layers of the CNN can serve as a high level image representation
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1.3 Convolutional Neural Networks

for image classification. Motivated by this, many recent studies make use of
the activations of the top fully connected layers in CNNs for image retrieval
[58, 59, 60, 61, 62, 63]. Recent researches also suggested to explore the features
from the deep convolutional layers in CNNs. These features have very useful
properties: first, they can be efficiently extracted from an image of any size
and aspect ratio. Second, features from the convolutional layers have a natural
interpretation as descriptors of local image regions corresponding to receptive
fields of the particular features. Finally, simple pooling operations can aggregate
feature maps from deep convolutional layers into low dimensional and highly
distinctive features [58, 60, 63, 64, 65]. The CNNs based image representations
have demonstrated their competitive and even better results compared with the
traditional visual words methods, such as BoW, VLAD and Fisher Vector.

Semantic image segmentation: semantic image segmentation can be referred
to as a problem of pixel-level classification or labeling. Recently, the CNNs
and probabilistic graphical models were utilized to address this task and yielded
promising progress [66, 67, 68, 69, 70]. The CNN based semantic image seg-
mentation methods usually convert an existing CNN architecture constructed for
classification to a fully convolutional network (FCN). This is mainly because the
FCN architecture accepts a whole image as an input and performs fast and ac-
curate inference. Long et al. [68] replaced the last fully connected layers of a
CNN by convolutional layers, and obtained a coarse label map from the network
by classifying every local region in the image, then performed a simple deconvo-
lution, which is implemented as a bilinear interpolation, for pixel-level labeling.
DeepLab [69] proposed a similar FCN based model which obtained denser score
maps within the FCN framework to predict pixel-wise labels and refined the label
map using the fully connected conditional random field (CRF). Instead of using
CRF as a post-processing step, Lin et al. [70] jointly trained the FCN and CRFs
by efficient piece wise training.

Human pose estimation: estimating the human pose by locating human body
joints or facial landmarks is a challenging task, because of the changes in pose,
illumination, occlusion and etc. As CNNs have shown outstanding performance
on visual classification and object localization, human pose estimation can be
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formulated as a CNN-based regression problem towards human body joints. The
representative projects [71, 72] proposed to use a cascade of CNN-based regres-
sors to reason the positions of body joints or facial landmarks. The cascade of
CNNs can be viewed as a kind of holistic process which takes the full image as
the input and output the ultimate position of body joints or facial landmarks
in the image without using any explicit graphical model or part detectors. The
part-based processing methods propose to detect the human body parts indi-
vidually, followed with a graphical model to incorporate the spatial information.
Rather than training the network using the whole image as input, Chen et al.
[73] utilized the local part patches to train a CNN, in order to learn conditional
probabilities of the part presence and spatial relationships. By incorporating with
graphical models, the algorithm gained promising performance. Tompson et al.
[74] designed multi-resolution ConvNet architectures to perform heat-map like-
lihood regression for each body part, followed with an implicit graphical model
to further promote joint consistency. The model was further extended and im-
proved [75], which argues that the pooling layers in the CNN would limit spatial
localization accuracy and try to recover the precision loss caused by the pooling
process. Additionally, Fan et al. [76] proposed a dual-source convolutional neu-
tral network (DS-CNN) to integrate the holistic and partial view in a two branche
CNN architecture. It takes part-patches and body-patches as inputs to combine
both local and contextual information for more accurate pose estimation.

1.4 Thesis Overview

This thesis is based on first-authored conference papers that have been published
or journal papers are currently under review. The research has been carried out
during the four-year period of the PhD research. The focus of this thesis has
been on developing and analyzing techniques to improve the state-of-the-art of
large scale image search.

Chapter 2: A Comprehensive Evaluation of Salient Point Methods

12



1.4 Thesis Overview

A survey is presented that evaluates the performance of a wide set of salient
point detectors and descriptors. First, the survey compares diverse salient point
algorithms with regard to the repeatability of salient point detectors, recall and
precision of salient point descriptors. Then, it integrates the salient point meth-
ods with the framework of fully affine space and evaluates the performance under
major viewpoint transformations. The presented comparative experimental re-
sults can benefit researchers in choosing an appropriate detector and descriptor
for different computer vision applications. An early version of this work was
presented at:

• 21st ACM international conference on Multimedia (MM 2013), in Barcelona,
Spain.

Chapter 3: RIFF: Retina-inspired Invariant Fast Feature Descriptor

We first propose the Retina-inspired Invariant Fast Feature, RIFF, which was de-
signed for invariance to scale, rotation, and affine image deformations. The RIFF
descriptor is based on pair-wise comparisons over a sampling pattern loosely based
on the human retina and introduces a method for improving accuracy by maxi-
mizing the discriminatory power of the point set. A performance evaluation with
regard to Bag-of-Words based image retrieval on several well-known benchmark
datasets demonstrates that the RIFF local descriptor has competitive perfor-
mance to the state-of-the-art local descriptors. Additionally, a popular approach
from the literature is to use visual words (or Bag-of-Words) constructed from real
valued descriptors (SIFT and SURF). To accommodate large scale data sets, we
used the approximate nearest neighbor (ANN) based cluster approach to both
real valued local descriptors and binary string local descriptors (BRIEF, ORB,
BRISK and FREAK) and the results on the test datasets reveal that some of the
recent binary string approaches outperformed notable descriptors such as SIFT
and SURF. This approach has been presented at the following conferences:

• 22nd ACM international conference on Multimedia (MM 2014), in Orlando,
FL, USA.

• 4th ACM International Conference on Multimedia Retrieval (ICMR 2014),
in Glasgow, Scotland.

13
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Chapter 4: Deep Binary Codes for Large Scale Image Retrieval

We present a novel and effective method to create compact binary codes (deep
binary codes) based on deep convolutional features for image retrieval. Deep
binary codes are generated by comparing the response from each feature map and
the average response across all the feature maps on the deep convolutional layer.
Additionally, a spatial cross-summing strategy is proposed to directly generate
bit-scalable binary codes. As the deep binary codes on different deep layers can
be obtained by passing the image through the CNN and each of them makes a
different contribution to the search accuracy, we then present a dynamic, on-the-
fly late fusion approach where the top N high quality search scores from deep
binary codes are automatically determined online and fused to further enhance
the retrieval precision. Two strengths of the proposed methods are that the
generation of deep binary codes is based on a generic model which does not require
additional training for new domain areas, and the dynamic late fusion scheme is
query adaptive. Extensive experimental results on well known benchmarks show
that the deep binary codes are competitive to state-of-the-art approaches in terms
of the performance on large scale image retrieval. Moreover, the search accuracy
is shown to be enhanced substantially by the dynamic late fusion scheme. The
paper has been submitted to:

• Journal of Neurocomputing

Chapter 5: Comparison of Information Loss Architectures in CNNs

We propose a novel deep convolutional neural network called “Weighted Integra-
tion Architecture Network” (WIAN) which can effectively recover the information
loss due to the pooling operation in the CNNs. The proposed WIAN reuses the
information from the previous layers in the network and assigns a weight matrix to
each layer and then integrates them via an element-wise sum operation to further
enhance the performance of image classification. Several types of weight scheme
such as adaptive weight learning framework as well as responses or entropy based
weight learning schemes have been evaluated in this chapter. Extensive experi-
ments on four standard benchmark datasets demonstrate the effectiveness as well
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as an improved performance of the proposed WIAN. The basis for this chapter
is formed by the publication in the conference proceeding:

• 17th Pacific-Rim Conference on Multimedia (PCM, 2016) in Xi’an China.

These are the publications which were related to the contents of this thesis:

• Wu S., and Lew M.S., “Evaluation of salient point methods.” Proceedings
of the 21st ACM International Conference on Multimedia. ACM, 2013.

• Wu S., and Lew M.S., “Salient features for visual word based image copy de-
tection.” Proceedings of International Conference on Multimedia Retrieval.
ACM, 2014.

• Wu S., and Lew M.S., “RIFF: Retina-inspired Invariant Fast Feature De-
scriptor.” Proceedings of the 22nd ACM International Conference on Mul-
timedia. ACM, 2014.

• Wu S., and Lew M.S., “Comparison of Information Loss Architectures in
CNNs.” Proceedings Pacific RIM Conference on Multimedia, 2016.

• Wu S., and Lew M.S., “Image Correspondences Matching Using Multiple
Features Fusion.” Proceedings of European Conference on Computer Vision
Workshop, 2016.

• Wu S., Oerlemans A, Bakker E.M., and Lew M.S., “Deep Binary Codes for
Large Scale Image Retrieval.” Journal of Neurocomputing (submitted).

• Wu S., Oerlemans A, Bakker E.M., and Lew M.S., “A Comprehensive
Evaluation of Salient Point Methods.” Journal of Computer Vision and
Image Understanding (submitted).

• Guo Y., Liu Y., Oerlemans A., Lao S., Wu S., and Lew M.S. “Deep learning
for visual understanding: A review.” Journal of Neurocomputing, vol 187,
2016.

• Zhang Q., Zaaijer S., Wu S., and Lew M.S. “3D Image Browsing: The
Planets”. Proceedings of International Conference on Multimedia Retrieval.
ACM, 2014.

15



1. INTRODUCTION

• Guo Y., Bai L, Lao S., Wu S., and Lew M.S. “ A Comparison between Arti-
ficial Neural Network and Cascade-Correlation Neural Network in Concept
Classification.” Proceedings Pacific RIM Conference on Multimedia, 2014.

• Liu Y., Guo Y., Wu S., and Lew M.S. (2015), “DeepIndex for Accurate
and Efficient Image Retrieval.” Proceedings of International Conference on
Multimedia Retrieval. ACM 2015.
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Chapter 2

A Comprehensive Evaluation of
Salient Point Methods

As salient point methods can represent distinctive and affine invariant points in
an image, various types of salient point methods have been proposed over the
past decade. Each method has particular advantages and limitations and may be
appropriate in different contexts. In this chapter, we evaluate the performance of
a wide set of salient point detectors and descriptors. First, we compare diverse
salient point methods with regard to the repeatability of detectors, and the recall
and precision of descriptors. Next, we integrate the salient point methods with
the framework of fully affine space and evaluate their performance under major
viewpoint transformations. The presented comparative experimental studies can
support researchers in choosing an appropriate detector and descriptor for their
specific computer vision applications.
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2. A COMPREHENSIVE EVALUATION OF SALIENT POINT
METHODS

2.1 Introduction

Salient point methods which can describe meaningful, stable, and representative
local features in an image have become prevalent in diverse areas in computer
vision, such as object and scene recognition [77, 78], 3D object reconstruction
[79], visual tracking [80, 81] and multimedia information retrieval [3, 18, 82, 83,
84, 85, 86, 87, 88]. Most of the salient point algorithms contain two parts: a
detector and a descriptor. The detector locates a set of distinctive points which
can be invariant to various transformations (e.g., scaling, translation, viewpoint
changes), and the descriptor encodes the important information from the local
patch centered on the salient point into a feature vector, which makes it possible
to reliably match correspondences across different transformations of the same
object or the same scene.

Typically, object recognition, 3D reconstruction and visual tracking mainly rely
on the correctly matched correspondences between two compared images. These
applications start by extracting local descriptors from each image and insert the
obtained local descriptors into an index space for efficient correspondence match-
ing. The RANSAC algorithm [89] is further adopted to eliminate outlier matches
and to estimate the homography between the compared images. Therefore, a
salient point detector with high repeatability and a local descriptor with discrim-
inatory power is required for these applications.

However, accurate correspondence matching under large viewpoint changes is
still a major challenge, because greater image viewpoint transformations result
in a significant decrease of saliency and repeatability of salient points. Yu et
al. [90] proposed to use the framework of fully affine space to overcome this
issue. The basic idea behind the framework of fully affine space is that the
projective transformation induced by camera motion around a smooth surface
can be approximated by an affine transformation. A notable method is ASIFT
which generates all image views in the whole affine space and extracts SIFT local
features in these synthetic images to increase the matching precision. As the high
dimensionality of the SIFT descriptor leads to a high computational complexity
in the framework of fully affine space, we combine the recent lower computational
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complexity salient point algorithms with the framework of fully affine space and
evaluate their performance under the extreme viewpoint changes.

This chapter is an extension of our previous projects [87, 88] which provide a
comparison guide of recently proposed salient point detectors and descriptors.
The main contributions of this chapter are summarized as follows:

First, the repeatability performance and the computational cost of each salient
point detector are presented.

Second, the efficiency and accuracy of both the real valued descriptors and binary
string descriptors in terms of recall and precision on two benchmark datasets are
evaluated.

Third, we calculate the accuracy and time complexity of each salient point method
in the framework of fully affine space such that researchers could make a trade-off
between precision and efficiency under extreme viewpoint changes.

2.2 Background

Early research on salient point methods mainly focused on finding high vari-
ance or corner points in the image. One of the first detectors was developed by
Moravec [91] and it is defined according to the average intensity changes in differ-
ent directions within the local region around a point. The Harris corner detector
[92] defines a corner structure point, if its second-moment matrix has two large
eigenvalues. The similar Hessian corner detector [93] determines a corner point
in the image, if it is the local extrema of the Hessian matrix determinant. As
both the Harris and Hessian detectors find the corner points at a fixed scale, the
Harris-Laplacian and Hessian-Laplacian [94, 95] are designed to be scale invari-
ant. Harris-Laplacian and Hessian-Laplacian locate corner candidates on each
level of the scale space. Those points for which the Laplacian simultaneously
attains local extrema over scales are selected as corner points. The FAST [96]
detector identifies the corner points according to the criterion whether a set of
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contiguous pixels in a circle are all brighter or all darker than the intensity of the
centre point.

Since conventional corner point detectors are only invariant to scale, translation,
and noise, affine covariant region detectors were developed to reduce the influence
of viewpoint changes. The Harris-Affine detector and the Hessian-Affine detector
[97] find the initial candidate points by using the Harris-Laplacian corner detector
and Hessian-Laplacian corner detector, respectively, and then fit an elliptical
region to each point via the second moment matrix of the intensity gradient.
MSER [98] computes the connected binary regions through a large set of multiple
thresholds, and the selected regions are those that maintain unchanged shapes
over these thresholds. As edges are typically rather stable structures that can be
detected over a range of image changes, EBR [99] starts by detecting corner points
in an image and identifies the affine covariant region of each point by exploiting
the edge information present nearby. IBR [100] detects intensity extrema at
multiple scales and captures the intensity pattern along rays emanating from each
extremum to define a region of arbitrary shape. The region of IBR is delineated
by the image points defined over these rays where the intensity suddenly increases
or decreases, and then uses an ellipse to fit the region. However, the operation
of elliptical region fitting in the affine covariant detector could result in partial
information loss.

Recent salient point methods focus on the repeatability and precision of the
detector, as well as the distinctiveness, computational efficiency and low memory
requirement of the local descriptor. The most representative one is SIFT, which
efficiently builds the scale space by employing the Difference of Gaussians to
approximate the Laplacian of Gaussians and represents the local descriptor using
a gradient orientation histogram. Meanwhile, some variants of SIFT are proposed
with the aim to increase the discrimination of the SIFT descriptor. PCA-SIFT
[101] utilizes PCA to reduce the dimension of the original SIFT descriptor to
further speed up the process of local descriptor matching. Color-SIFT [102] takes
the color gradients, rather than intensity gradients in the local region around
the salient point to generate the feature. Rank-SIFT [103] adopts a data-driven
approach to learn a ranking function to sort the salient points such that the
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unstable points can be discarded. Root-SIFT [104] adds a square root operation
to the normalized SIFT features and uses the Hellinger kernel to increase the
matching accuracy. DSP-SIFT [105] generates the descriptor through pooling
the gradient histogram across different domain sizes of each salient point into
a feature and it even outperforms the high level convolutional neural network
feature [48]. Affine-SIFT (ASIFT) [90] is proposed with the aim to be perspective
invariant and it does this by simulating images under various views to cover
the whole affine space and extracting SIFT descriptors in all these simulated
images for matching. Different from these variants of SIFT, other approaches
target on improving the efficiency of scale space establishment or accuracy of
salient points localization. For example, the SURF detector makes use of a box-
filter and the integral image to speed up the scale space building. The ORB
and BRISK detectors use a Gaussian image pyramid to efficiently establish the
scale space. As the construction of scale space by linear multi-scale Gaussian
pyramids easily results in the blurring and the loss of boundary details, KAZE
[106] combines a nonlinear scale space with additive operator splitting (AOS) and
special conductance diffusion to reduce noise while retaining the object boundary
structure. The advantage of the nonlinear scale space in KAZE is that it could
provide more accurate positions for salient points.

In order to meet the requirements of real time systems and devices with lim-
ited computational and storage resources, binary string local descriptors were
recently introduced. Binary string representations make use of a pixel-pair in-
tensity comparison to generate the binary code. The resulting binary code holds
some significant advantages: first, the operation of intensity comparison is fast,
the memory requirement of binary codes is low and matching binary codes via
the Hamming distance is much faster than the Euclidean metric. A represen-
tative descriptor is BRIEF, which randomly samples a set of pixel-pairs from a
Gaussian distribution in the smoothed local patch around the salient point and
produces a binary string descriptor via the intensity comparison of pixel-pairs.
The ORB descriptor integrates rotation invariance into BRIEF by estimating the
orientation via the intensity centroid method. Additionally, ORB makes use of an
unsupervised learning scheme to select pixel-pairs, rather than the random sam-
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pling of BRIEF. BRISK and FREAK generate the binary string descriptors by
comparing pair-wise intensities over a pre-defined pattern, a concentric ring-based
sampling pattern and a retina sampling pattern, respectively. In contrast to those
hand-crafted patterns, learning based approaches are proposed with the goal of
closing the performance gap with real valued representations while maintaining
the benefits of binary representations. BinBoost learns a set of hash functions us-
ing boosting and projects the image patch into a binary representation. LATCH
proposes to learn patch triplet arrangements in the image and compares the in-
tensity of triplet patches rather than the intensity of pixel-pairs to generate the
binary codes.

Several related reviews present the performance evaluation of various salient point
methods. Schmid et al. [107] uses the measure of “repeatability rate” and “infor-
mation content” to evaluate the performance of different salient point detectors.
Mikolajczyk et al. [108] made a performance evaluation of local descriptors by
measuring the accuracy of matching and recognition. Accuracy and computa-
tional efficiency trade-offs [109] have been studied where different indexing struc-
tures were employed (such as approximate KD-trees). Heinly et al. [110] and
Figat et al. [111] investigate the recall and precision of recent binary string rep-
resentations under different image deformations. Gauglitz et al. [81] presents a
comparison of different salient point methods on video object tracking. Moreels
and Perona [112] made a performance evaluation of both feature detectors and
descriptors on 3D object matching. Mukherjee et al. [113] made a performance
evaluation for each combination of recent detectors and descriptors on object
matching. To our knowledge, our review is the first one that evaluates the view-
point invariance of each salient point approach in the fully affine space.

2.3 Overview of Evaluated Salient Point Meth-
ods

The aim of salient point methods is to extract distinctive invariant features from
images that can be used to perform image correspondence matching and to per-

22



2.3 Overview of Evaluated Salient Point Methods

form the image representation. Recent salient point methods consist of four main
procedures: the first step is to establish the scale space and find the extrema
across all scales to achieve scale invariance. The second step is to determine the
locations of the extrema and to define a local region for each according to the
scale information. Then, each defined region is normalized and assigned a do-
main orientation to be rotation invariant. Finally, the region content is rotated
based on the calculated orientation, after which, the discriminative information
in the rotated region is encoded into a local descriptor. The existing schemes of
local descriptor generation can be categorized into hand-crafted schemes and au-
tomatically learned schemes. The recent literature focuses more on the automatic
learning of local descriptors. The learning based schemes usually optimize an ob-
jective function to generate robust and distinctive local descriptors. In particular,
the most common objective functions are designed to minimize the distance be-
tween the descriptors from the same 3D coordinate (scale and location) or same
class label extracted under varying imaging conditions and different viewpoints,
meanwhile, maximizing that distance between patches from different 3D coordi-
nates or different class labels. Table 2.1 gives an overview of all the evaluated
salient points approaches in the experiments section.

2.3.1 SIFT (detector/descriptor)

SIFT proposed by Lowe [14] is the most popular salient point approach. The
implementation of SIFT begins by building the Gaussian scale space which ap-
proximates the Laplacian-of-Gaussian function by the computationally efficient
Difference-of-Gaussian function. It searches extrema over all scales to identify the
potential salient points. Since the extreme points are detected in discrete scale
space, it then uses the derivative of the Taylor expansion of the DoG function
to determine the accurate scale and location for each salient point and simul-
taneously rejecting unstable extrema with low contrast. Furthermore, because
a poorly defined extremum in the DoG function has a large principal curvature
across the edge but a small one in the perpendicular direction, a Hessian matrix is
employed to compute the principal curvatures and to eliminate points which are
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Table 2.1: Overview of the evaluated salient point approaches in this chapter
by Detector (Det.), Descriptor (Desc.), Scale Space, Orientation, and Descriptor
Generation.

Methods Det./Desc. Scale Space Orientation Descriptor Generation

SIFT yes/yes
Difference of

Gaussian
local gradient

histogram
local gradient histogram

SURF yes/yes box-filter
local

Haar-wavelet
responses

local Haar-wavelet
responses

MSER yes/no no no no
HESSIAN-
AFFINE

yes/no no no no

FAST yes/no no no no
CenSurE yes/no bi-level filter no no
GFTT yes/no no no no

KAZE yes/no
nonlinear

scale space
no no

BRIEF no/yes no no
intensity comparison of
pair-wise pixels in the ran-
dom sampling pattern

ORB yes/yes
Gaussian

image
pyramid

intensity
centroid

calculation
oriented BRIEF descriptor

BRISK yes/yes
Gaussian

image
pyramid

average of the
sum of the

local gradient

intensity comparison of
pair-wise pixels in concen-
tric circles pattern

FREAK no/yes no
average of the

sum of the
local gradient

intensity comparison of
pair-wise pixels in retina
sampling pattern

BinBoost no/yes no no
projection by learned hash
function

LATCH no/yes no no
intensity comparison of
patch triplet arrangements

potentially sensitive to edge responses. To be invariant to rotation, an orientation

is assigned to the obtained stable points according to the local gradient orien-
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tation histogram within a region around the point. In addition, it accumulates
the orientations of a 16 × 16 neighborhood of sample points around the salient
point location into orientation histograms by summarizing the contents over 4×4

sub-regions. A 128-dimensional descriptor vector is finally generated to represent
each point.

2.3.2 SURF (detector/descriptor)

SURF is an efficient and robust scale and rotation-invariant method proposed
by Bay et al. [12] with the aim for fast salient point location and descriptor
generation. SURF is based on a Hessian matrix, where the components of the
Hessian matrix are generated by convolution of the Gaussian second-order deriva-
tive with the image pixels. Box-filters together with integral images are exploited
to approximate the Hessian matrix which is used to measure the salient points.
The Gaussian scale space of SURF is established computationally efficiently by
up-scaling the size of the box-filter. The extrema of the determinant of the Hes-
sian matrix are selected as salient points and the scale and location are updated
through an interpolating process. Each of the obtained salient points is assigned
an orientation which is estimated by summing the horizontal and vertical Haar-
wavelet responses within a sliding orientation window covering an angle of 60
degrees. For the SURF descriptor generation, first the square region centered
on and oriented along the salient point is divided into a number of 4 × 4 sub-
square regions. Then, it calculates the value and absolute value of Haar-wavelet
responses along horizontal and vertical directions within each sub-region. Finally
the total 64-dimensional (4 × 4 × 4) descriptor can be generated efficiently by
making use of the integral image.

2.3.3 MSER (detector)

Maximally stable extremal regions (MSER), proposed by Matas et al. [98], is an
affine invariant region detector. MSER computes the connected binary regions
through a large set of multiple thresholds, and the selected regions are those
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that maintain unchanged shapes over a range of thresholds. During the affine
invariant regions detection, the area of each connected component is stored as a
function of intensity and the “maximally stable” ones are selected as candidates
by analyzing the changes of function values for each potential region. The final
maximally stable extremal regions are the ones that maintain an unchanged or
similar function value over a large range of multiple thresholds. The shape of
each obtained region is further estimated by elliptical regions by computing the
eigenvectors of their second-moment matrix. Then the local neighborhoods are
normalized into circular regions to achieve affine invariance.

2.3.4 HESSIAN-AFFINE (detector)

The Hessian-Affine region detector proposed by Matas et al. [97] is based on the
Hessian matrix. A related variant of the Hessian-Affine detector is the Harris-
Affine detector which employs the Harris detector to find the salient points. Since
the second derivatives in the Hessian matrix offer strong responses on blobs and
ridges, the extrema of the determinant of the Hessian matrix are searched by
applying non-maximum suppression using a 3× 3 window over the entire image.
To deal with the scale invariance, given an extremum location, a scale-dependent
signature function is defined on its local neighborhood and the corresponding
scale can be determined by searching for scale-space extrema of the signature
function. The estimation of the affine shape is applied to each extremum and
an elliptical region is fit around each point using the second moment matrix of
the intensity gradient. Finally, the affine region is normalized into a circular
region. In this chapter, the improved Hessian-Affine detector [114] is used, which
proposes the gravity vector assumption to fix rotation uncertainty.

2.3.5 FAST (detector)

The high-speed corner point detector named features from accelerated segment
test (FAST) was proposed by Rosten and Drummond [96]. The simple scheme
of FAST corner detection is based on a circle (the radius of the circle is three
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pixels) of sixteen pixels around the candidate point. If there exists a set of twelve
contiguous pixels in the circle which are all brighter or all darker than the intensity
of the candidate point pixel value plus a threshold, the point will be classified
as a corner point. However, this scheme has a limitation for sampling less than
twelve pixels and the efficiency of the corner detector depends on the distribution
of corner appearances. To overcome the above weaknesses, a machine learning
approach is employed on training sets to establish a decision tree for fast and
accurate corner detection. Moreover, the issue of multiple features being detected
adjacent to one another, can be solved by applying non-maximum suppression on
the detected candidate corner points.

2.3.6 CenSurE (detector)

The scale invariant center-surround salient point detector (CenSurE) is proposed
by Agrawal et al. [115]. CenSurE determines the salient points by exploiting
the extrema of the Hessian-Laplacian matrix across all scales and locations. In-
spired by SIFT which uses the Difference of Gaussian function to approximate the
Laplacian of Gaussian function, CenSurE employs a simplified center-surround
filter called bi-level filter to approximate the Laplacian of Gaussian for fast com-
putation. The CenSurE detector computes the response of the bi-level filter at all
locations and all scales, and detects the extrema in a local neighborhood (based
on the non-maximum suppression method, which is the same as SIFT and SURF).
For each obtained extremum, the accurate location of the potential points can
be determined directly, since the responses are calculated on the original image.
Furthermore, through computing the Harris measure for the potential points,
those points with weak corner responses will be eliminated.

2.3.7 GFTT (detector)

Good feature to track (GFTT) is a salient point detector proposed by Shi and
Tomasi [116], which is derived from an image motion model. GFTT is used as
a method for feature selection, tracking and monitoring, and it performs well
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under affine image transformations. According to the proposed feature selection
criteria, a candidate point is accepted if it is defined as a good feature which can
be tracked well. GFTT is based on the Harris corner detector and it defines points
with large eigenvalues of a special matrix as corners. To ensure the robustness
of corners, potential corners with minimum eigenvalues less than a threshold are
eliminated. Candidates which are closer than a certain distance-threshold to a
strong corner are also rejected.

2.3.8 KAZE (detector)

Most salient point approaches (SIFT, SURF) construct the scale space based on
linear multi-scale Gaussian pyramids. However, the Gaussian function does not
respect the natural boundaries of objects and smoothes the details and noise at
the same level, which leads to loss of localization accuracy and distinctiveness.
The use of a nonlinear scale space is expected to reduce noise but to retain the
object boundary structure in order to obtain accurate positions of salient points.
The traditional method is based on the forward Euler scheme for solving nonlin-
ear diffusion but requiring significant computational complexity. Therefore, the
nonlinear scale space in KAZE [106] proposes to use the additive operator split-
ting algorithm (AOS) for efficient nonlinear diffusion filtering. The framework of
KAZE first convolves the image with a Gaussian kernel of standard deviation, and
then builds the nonlinear scale space in an iterative way using the AOS scheme.
Based on the response of the scale-normalized determinant of the Hessian matrix
at multiple scale levels, the extrema responses can be detected as salient points by
non-maximum suppression and the position of the salient points can be estimated
with sub-pixel accuracy using quadratic fitting.

2.3.9 BRIEF (descriptor)

Binary robust independent elementary features (BRIEF), designed by Calonder
et al. [117], uses an efficient binary string descriptor to represent the salient
points. With regard to the BRIEF descriptor generation, Gaussian smoothing
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is first utilized to reduce the effect of noise sensitivity such that it can achieve

good performance in complex scenes. The value of each bit in the binary string

depends on the intensity comparison of two points inside the local patch centered

on each salient point (provided by detectors, as BRIEF is a descriptor), i.e., if

the value of first point is larger than the second then it is set to “1”, otherwise

to “0”. The pixel-pairs sampling patterns are randomly selected using a Gaussian

distribution (locations that are closer to the center of the patch are preferred)

around the smoothed patch center. Similarity of two binary string descriptors

is calculated using the Hamming distance, which is significantly more efficient

than the common Euclidean distance. The BRIEF descriptor is not rotation

invariant.

2.3.10 ORB (detector/descriptor)

ORB (oriented FAST rotated BRIEF) [118] is a combination of the FAST detector

and the BRIEF descriptor. The ORB detector applies the FAST corner detector

to find potential salient points. However, FAST does not offer scale information,

and has large responses along edges. ORB builds a scale pyramid of the image and

keeps the top N number of keypoints by the Harris corner measure at each level

in the scale pyramid. The scale information is the scale factor of the specific level

of the image pyramid. The direction of points is computed using their intensity

centroid [15]. The intensity centroid approach assumes that the intensity of a

keypoint is offset from its center, and it can be used to compute the moments of

a patch and also to find its centroid. The orientation is defined as the direction of

the vector between the keypoint location and the centroid position in the patch.

The generation of the ORB binary string descriptor also uses the comparison of

intensities of pixel-pairs based on the oriented BRIEF descriptor. Additionally, a

combination of earning and greedy search is introduced for de-correlating BRIEF

features under rotational invariance, leading to a better performance.
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2.3.11 BRISK (detector/descriptor)

In the implementation of BRISK [16], the scale space is also based on the simple
image pyramid. For the salient points detection, BRISK first employs AGAST
[119] which is essentially an extension for accelerated performance of the FAST
detector to locate the potential keypoints at each layer in the scale space. Then
it measures their saliency via comparing FAST scores with respect to its eight
neighbors in the same layer and 3 × 3 neighbors in the layer above and below.
The local maxima of FAST score points will be identified as salient points. The
accurate location and scale of each salient point are obtained in the continuous
domain via refinement of quadratic function fitting. BRISK presents a novel sam-
pling pattern which consists of sample points equally distributed on concentric
circles centered around the salient point. It weights each respective circle in the
pattern with a standard deviation Gaussian, and then divides all the sampling-
point pairs in the pattern into short-distance pairs and long-distance pairs based
on the defined threshold. The direction of the patch is determined via the av-
erage of the sum of the local gradients of all selected long distance pairs. The
bit-vector descriptor is assembled by comparing all the short-distance pair-wise
intensities.

2.3.12 FREAK (descriptor)

Similar to the BRISK scheme which uses a pre-defined pattern to estimate the ori-
entation and for generating the binary string features, the FREAK [17] descriptor
is based on the retina sampling pattern. The retina sampling pattern simulates
the distribution of ganglion cells over the retina which reduces exponentially with
the distance to the center. The orientation is calculated mainly based on selected
pairs with symmetric receptive structure with respect to the center point of the
patch. The direction of the patch is also obtained by averaging the sum of the
local gradient of the defined pairs in the structure. In the descriptor creation of
FREAK, less correlated pairs over a retina pattern are selected based on a similar
learning algorithm performed in ORB and the intensities are then compared to
generate the binary strings.
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2.3.13 BinBoost (descriptor)

The approach of BinBoost is a supervised learning framework to generate a low
dimensional but highly discriminative local binary representation. A hash func-
tion is implemented as a sign operation on a linear combination of non-linear
weak classifiers which are gradient based image features, and the hash function
is learned by the optimization of a loss function with the aim to reduce the
Hamming distances between binary representations of similar patches in training
data, while increasing the Hamming distances between binary representations of
dissimilar patches in the training data.

2.3.14 LATCH (descriptor)

LATCH extracts learned patch triplet arrangements in a salient region, and com-
pares the intensity of the triplet patches to form the binary string codes. The
learning procedure of LATCH is based on training data with labels, and possible
triplet arrangements are extracted from the training data. It defines the qual-
ity of an arrangement by summing the number of times it correctly yielded the
same binary value for positive pairs and different values for negative pairs. A
candidate arrangement is selected, if its absolute correlation with all previously
selected arrangements is smaller than a certain threshold such that the obtained
triplet arrangements are with less correlation.

2.4 Fully Affine Space Framework

The main idea behind the framework of fully affine space is that the projec-
tive transformation induced by camera motion around a smooth surface can be
approximated by an affine transformation, and it consists of all possible affine
distortions caused by the change of the camera’s optical axis orientation from a
frontal view. The reason to employ this scheme is that we expect two salient
points to be correctly matched under certain perspective transformations. The
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(a) (b)

Figure 2.1: (a) Illustration of the synthetic view generation for correct correspon-
dence matching. (b) Illustration of the camera model under affine transformation.

fully affine space framework could also be viewed as a data augmentation tech-
nology which expands the training data by systematically adding transformed
samples. The transformed samples are typically generated to be label-preserving
such that they can encourage the system to become invariant to different trans-
formations. As illustrated in Figure 2.1 (a), it is difficult to match point A in
the reference image to point B’ in the compared image, but it is easy to match
point Ai which is located in the deformed view image arising from viewpoint
changes to point B’. Generating a deformed view image can be modeled by an
affine transformation of the original image, where the affine transformation can
be decomposed into a zoom, rotation, tilt, and rotation around the optical axis
[120].

A = λR(ψ)TtR(ϕ)

= λ

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

] [
t 0
0 1

] [
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
(2.1)

where λ > 0 is a zoom factor, R(ψ), R(ψ) are rotations and t is the tilt, as
shown in Figure 2.1 (b). The parameter ψ ∈ [0, 2π) denotes the angle of planar
rotation around the optical axis. The angle θ between the z axis and the optical
axis is called the latitude and t = 1/cos(θ). The angle ϕ ∈ [0, π) between
the x axis and the projection of the optical axis is called the longitude. Then,
each synthesized view can be described by the parameters of λ (zoom), R(ψ)
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(planar rotation), t = 1/cos(θ) (the rotation angle of the latitude) and R(ϕ) (the

rotation angle of the longitude). The simulated latitudes θ correspond to tilts

t = 1, a, a2, ..., an, with a > 1, and a is set
√
2 for a good compromise between

accuracy and efficiency. Each tilt in the fully affine space is a t sub-sampling.

The number of rotated images for each tilt is 2.5t. Thus, the complexity is

proportional to the amount of tilts. As the fully affine space can significantly

increase the precision of correspondence matching, we integrated the recent salient

point methods with the fully affine space framework and evaluated their accuracy

and efficiency.

Generally, the Nearest Neighbor Distance Ratio (NNDR) is used as the matching

strategy to find the similar descriptors in the image pairs. NNDR defines that

two points will be considered to be matched only if ||DA −DB||/||DA −DC || <
threshold, where DB is the first and DC is the second nearest neighbor to DA.

However, for the matched correspondences in the specific fully affine space, lots

of repeatable salient points are present in the synthetic view images which results

in the NNDR to be close to one for some correct correspondences, thus, those

correct correspondences will be easily defined as false according to the threshold

(less than one) of NNDR. In order to address this issue, we propose to use the

K-order NNDR matching strategy for correspondence matching in the fully affine

space. Unlike the standard NNDR which only takes the first and second nearest

neighbors into account, K-order NNDR fully explores the relationship among the

group of K nearest neighbors, such that it can address the problem faced by

NNDR but without increasing the computational cost. The K-order NNDR is

characterized as follows:

K-order NNDR = Rk × (1− w∏k−1
i=2 Ri−1

) (2.2)

where Rk = ||DA −D1||/||DA −Dk|| and Dk is the kth nearest descriptor to DA.

w is a weight which is set to 0.01 in the experiments to achieve good perfor-

mance.
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2.5 Experimental Setup

The experimental environment for the evaluation is a Intel Quad Core i7 Processor

(2.67GHz), 12GB of RAM, 64 bit OS. The implementations of Hessian-affine,

KAZE, LATCH and BinBoost are from the authors, others are implementations

from OpenCV. The parameters of each salient point method were set to the

defaults and we used 8 randomized forests in the KD-tree index, 20 hash tables

in the multi-probe LSH index. Our evaluation implementations are available at:

http://press.liacs.nl/researchdownloads/.

2.5.1 Datasets

The performance of salient point detectors and descriptors is evaluated on the

Oxford dataset proposed by Mikolajczyk and Schmid [108] and the dataset de-

signed by Fischer et al. [121]. The Oxford dataset contains eight groups, and

each group consists of six image samples (a total of 48 images) with various

transformations (rotation, viewpoint, scale, JPEG compression, illumination and

image blur). The Fischer dataset is a large scale dataset that includes 16 groups

and each group contains 26 images generated synthetically by applying 6 types

of transformations (zooming, blurring, illumination, rotation, perspective and

nonlinear). Some examples of each dataset used for evaluation are illustrated in

Figure 2.2.

2.5.2 Evaluation Criteria

The criteria employed to measure the performance of the salient point methods

in each application are summarized in Table 2.2. We follow the commonly used

evaluation protocol [87, 107, 108, 122]. The score of repeatability, recall and pre-

cision, and the number of correct correspondences are used as evaluation criteria

in the experiments.
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(a)

(b)

Figure 2.2: Examples from each dataset for the evaluation of salient point meth-
ods. (a) Examples from the Oxford dataset [108] used for the evaluation of the
accuracy of correspondence matching. (b) Examples from the Fischer dataset [121]
used for the evaluation of the accuracy of correspondence matching.

Table 2.2: Overview of the evaluation criteria used in the experiments.

Criteria Function description

Repeatability [107]
Measures the performance of the detector:
the higher the repeatability score, the bet-
ter the performance.

Recall and precision [108]
Measures the accuracy of correspondence
matches: a distinctive descriptor shows
high recall at any precision.

Number of correct
correspondences

Total amount of correct correspondences
between two compared images, a robust
method shows a high score.

2.6 Results and Discussions

2.6.1 Detector Evaluation

In this section, we test the performance of each salient point detector on the
benchmark Oxford dataset [108] and the Fischer dataset [121]. The evaluated
salient point detectors are: SIFT, SURF, ORB, BRISK, FAST, CenSurE, GFTT,
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Figure 2.3: The performance evaluation of salient point detectors based on the
criterion of repeatability.

KAZE, MSER and Hessian-Affine.

An important evaluation criterion from the research literature is repeatability
[107]. The repeatability score is calculated as the ratio between the number of
correspondences and the minimum of m1 and m2, where m1, m2 denote the num-
ber of points in the reference and the query images after projecting the reference
image points by the ground truth homography and discarding those points outside
the common area, respectively.

repeatability =
C(m1,m2)

min(m1,m2)
(2.3)

C(m1,m2) is the number of correspondences between m1 and m2. An overlap
error is used to identify the correspondence. For a keypoint region in the query
image which is the nearest one to a projection keypoint region in the reference
image by using homography: if the ratio between the intersection of the two
regions and the union of the two regions is larger than the overlap error, it
will be considered as a correspondence. We compute the average repeatability
scores on the whole dataset, respectively, thus, the detection performance of each
method can be estimated in a comprehensive perspective. The trend of average
repeatability under varying overlap errors (in the range from 0.4 to 0.9) is shown
in Figure 2.3.

The evaluation results based on the two datasets illustrate that an increase in
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the repeatability scores is clearly indicated when the value of 1-overlap error

becomes larger. We can also notice that the FAST detector had the highest

repeatability and the ORB and BRISK detectors obtained the lowest scores. The

detectors SURF, Hessian-Affine, KAZE, and CenSurE have a similar rank on

both datasets. The performance of the nonlinear scale space detector KAZE

reveals superior results to the well known SIFT detector. All detectors can reach

a stable and acceptable performance when the value of overlap error is 0.5, so the

overlap error will be set at 0.5 to identify the correspondences in the following

experiments.

Since the salient point detection mechanism in each salient point method is based

on a different scheme, which results in a different computational complexity, and

a different set of feature points can be extracted from the same image, time

costs should be compared statistically. We applied different types of detectors

to various test images, in order to determine statistically significant results. The

average number of detected points and the time cost of the compared salient point

methods are shown in Table 2.3.

Table 2.3: Comparison of average number of detected points and detection time

Method
Oxford Dataset [108] Fischer Dataset [121]

Average number Time cost(ms) Average number Time cost(ms)
of points of 1000 points of points of 1000 points

SIFT 5472 40 5607 52.02

SURF 5368 22.8 6138 34.8

ORB 497 27.0 490 29.5

BRISK 1498 20.2 1607 19.3

FAST 15857 0.31 17388 0.27

CenSurE 915 20.1 920 25.1

GFTT 1000 31.2 984 35.6

MSER 750 341.8 793 360.5
HESSIAN-
AFFINE

3680 247.8 3693 260.1

KAZE 2940 59.8 3108 73.5
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The results listed in Table 2.3 reveal that the most efficient detector is FAST.
FAST detected the largest number of salient points on both datasets, which is
almost ten times higher than what was obtained by other detectors. FAST defines
the salient points according to simple intensity comparisons, thus, the time cost
is only 0.31 ms for a total of 15857 points on the Oxford dataset [108] and 0.27
ms for 17388 points on the Fischer dataset [121]. The most time-consuming
detectors are MSER and Hessian-Affine, because they need do the ellipse fitting
for each salient point. The detectors SIFT, SURF, ORB, BRISK and KAZE
all contain scale space and rotation estimation procedures. KAZE builds the
nonlinear scale space in an iterative way using the AOS scheme which is much
more time consuming than the linear scale space calculation. As SURF, ORB
and BRISK speed up building the scale space, they are more efficient than the
SIFT detector.

2.6.2 Descriptor Evaluation

The Oxford and Fischer datasets are also utilized in the local descriptors evalua-
tion. Note that some of the salient point detectors from the previous section do
not define descriptors and are not compared here. In order to make an objective
comparison of different salient point descriptors, SURF was applied as the salient
point detector, as the SURF detector is scale invariant and it provides a high
repeatability score according to its performance in the detector evaluation. We
combined SURF detectors with local descriptors including SIFT, SURF, ORB,
BRIEF, BRISK, FREAK, BinBoost and LATCH. The evaluation starts by ex-
tracting salient point features from the reference images and establishing a KD-
tree or LSH index space for the obtained local features. Then, we extract features
from the query image and match them against the features from each reference
image based on the approximate nearest neighbor search. In the matching proce-
dure, a KD-tree index is established for real value descriptors and the Euclidean
distance is used for matching, while binary string descriptors are matched in an
LSH index using the Hamming distance.
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The NNDR is used as the matching strategy to find similar descriptors in im-
age pairs. In addition we use recall and 1-precision [108] (not to be confused
with precision@1) as criteria to measure the performance of various salient point
descriptors. Recall denotes the number of correct matches with respect to the
number of correspondences between two compared images, and the precision is
the number of correct matches with respect to the total number of matches.

recall =
#correct_matches
#correspondences

(2.4)

precision =
#correct_matches
#total_matches

(2.5)

We varied the value of the threshold in the NNDR to obtain the curves of the
tendency of the average recall vs. 1-precision under each transformation. Figure
2.4 and Figure 2.5 show the results on each dataset. We also provide the area
under the recall vs. 1-precision curve, averaged over all image transformations in
each dataset, as shown in Table 2.4 and Table 2.5. A distinctive descriptor would
give a high score of area under each curve (AUC).

Table 2.4 and Table 2.5 summarized the results of AUC under each transformation
as well as the average score. SIFT, BRISK, and FREAK show good performance
for all image degradations on the two datasets. Looking at the performance on
the Oxford dataset [108], all descriptors perform better on image changes (blur,
illumination and JPEG compression) than on affine deformation changes (rota-
tion, scale and perspective). The descriptors created by SIFT, BRISK, FREAK,
SURF, and BinBoost are more robust and distinctive than ORB, BRIEF and
LATCH under affine deformation. This is mainly because the BRIEF descrip-
tor only conducts pixel-pair intensity comparisons and is not rotation invariant,
while the ORB descriptor as an improved BRIEF descriptor is rotation invariant
and resistant to noise, but not scale invariant. The LATCH descriptor uses the
same scale information causing it not to be scale invariant. For the scores under
changes of blur and JPEG compression, the BinBoost descriptor obtains the low-
est score, thus, it is more sensitive to those types of noise. An illumination change
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Figure 2.4: Comparison of various descriptors using recall vs 1-precision under
different image degradations. The evaluation results are for the Oxford dataset
[108].

has a big influence on the SURF descriptor, while the other descriptors are ro-
bust to illumination changes and show scores close to each other. The evaluation
results on the Fischer dataset [121] show the same tendency under the changes of
image blur and perspective when compared to the results on the Oxford dataset
[108]. In addition, the descriptors of ORB, BRIEF and LATCH also show their
weakness under the change of image zoom.

The time and memory complexity of local descriptor extraction is also statistically
analyzed in this section. The average time costs for generating local descriptors
based on the Oxford dataset [108] and the Fischer dataset [121] are shown in
Table 2.6. It is clear that binary string descriptors are more efficient than real
valued descriptors in terms of memory requirement. The SIFT descriptor has
the highest time complexity, followed by the BinBoost descriptor. The SURF
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Figure 2.5: Comparison of various descriptors using recall vs 1-precision under
different image degradations. The evaluation results are for the Fischer dataset
[121].

descriptor is more efficient than the SIFT descriptor. However, binary string
descriptors like ORB, BRIEF, BRISK and FREAK perform much faster than
the other local descriptors. Thus, the binary string descriptors ORB, BRIEF,
BRISK and FREAK are more appropriate for real-time applications.

2.6.3 Affine Invariant Evaluation

According to the above performance evaluation, most of the salient point meth-
ods are significantly influenced by affine transformations. As the framework of
fully affine space could improve the accuracy of correspondence matching under
huge viewpoint changes,we evaluate each salient point method in the framework
of fully affine space and employ the proposed K-order NNDR matching strat-
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egy to define the final correspondences. The evaluated salient point methods in
the framework of fully affine space contain SIFT+SIFT (detector+descriptor),
SURF+SURF, SURF+BRIEF, ORB+ORB, BRISK+BRISK, SURF+FREAK,
SURF+BinBoost and SURF+LATCH. We also use randomized KD-trees to es-
tablish an index space and Euclidean distance for real valued descriptor match-
ing. Binary descriptors are matched in a LSH index space with Hamming dis-
tance.

For the extracted local features of salient points in two compared images I and
I’, the obtained set of matches can be defined as:

MI−I′ = {piI ↔ pj
I′} (2.6)

point pj
I′ in image I ′ is the closest neighbor to point piI in image I. We need to

note the situation that the same point in the index space could be the nearest
neighbor to different points in the query space (many-to-one matches), we then
enforce a one-to-one constraint through a cross-check operation. The cross-check
operation starts by building an index space for the local descriptors in the query
image, and searching the k closest neighbors for each point in the reference image.
Then we build the index space for the local descriptors in the reference image,
and find k nearest neighbors for each point in the query image. Only if they

Table 2.4: The Oxford benchmark results [108]. Numerical results summarizing
area under the recall vs. 1-precision curve for different transformations. Higher
results are better.

Descriptor Affine Blur Illumination JPEG Average
SIFT 0.523 0.832 0.892 0.931 0.794
SURF 0.404 0.49 0.774 0.723 0.598
ORB 0.141 0.596 0.844 0.711 0.573

BRISK 0.5 0.716 0.866 0.824 0.727
BRIEF 0.113 0.841 0.864 0.879 0.674
FREAK 0.484 0.735 0.843 0.863 0.731
BinBoost 0.4 0.412 0.83 0.641 0.571
LATCH 0.164 0.697 0.894 0.809 0.641
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Table 2.5: The Fischer benchmark results [121]. Numerical results summarizing
area under the recall vs. 1-precision curve for different transformations. Higher
results are better.

Descriptor Blur+Translation Perspective Rotation Zoom Average
SIFT 0.915 0.776 0.925 0.705 0.83
SURF 0.777 0.702 0.791 0.796 0.766
ORB 0.837 0.556 0.715 0.128 0.559

BRISK 0.902 0.79 0.887 0.85 0.857
BRIEF 0.882 0.606 0.443 0.117 0.41
FREAK 0.893 0.767 0.871 0.763 0.824
BinBoost 0.707 0.735 0.85 0.78 0.768
LATCH 0.859 0.54 0.832 0.1 0.583

satisfy formula (2.7), they can be considered a match.

M = {MI−I′ = {piI ↔ pj
I
′} ∧MI′−I = {pj

I′ ↔ piI}} (2.7)

We use the proposed K-order NNDR matching strategy, replacing the original
NNDR matching strategy, to define the matched correspondences:

C = {piI ↔ pj
I′ |K-order NNDR(piI , p

j

I′ ) < threshold} (2.8)

where K-order NNDR(piI , p
j

I′ ) denotes that two similar descriptors satisfy the K-
order NNDR threshold and (piI , p

j

I′ ) ∈M .

As the salient point extraction in the fully affine space could result in duplicate
correspondences, we eliminate these duplicates according to the spatial distance (2

Table 2.6: Comparison of average description time cost on both two datasets

Method
Feature Memory Oxford Dataset [108] Fischer Dataset [121]

dimensions requirement Average time Average time
(1000 points) cost(s)/5400 cost(s)/6000

SURF+SIFT 128 float 0.488M 4.3 4.8
SURF+SURF 64 float 0.244M 0.24 0.26
SURF+BRIEF 256 bit 0.03M 0.013 0.015
SURF+ORB 256 bit 0.03M 0.015 0.018

SURF+BRISK 512 bit 0.06M 0.028 0.032
SURF+FREAK 512 bit 0.06M 0.02 0.025
SURF+BinBoost 256 bit 0.03M 3.03 3.27
SURF+LATCH 256 bit 0.03M 0.25 0.28
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pixels) of point location in both image. To further determine whether a matched
correspondence is correct or not, each correspondence obtained by the K-order
NNDR is determined as correct only if its corresponding point is geometrically
the closest point within the defined pixel coordinate error, and the final correct
correspondences are evaluated by the ground-truth homography:

Correct_matches = {piI ↔ pj
I
′ |D(H(piI), p

j

I
′ ) < ε} (2.9)

where D(H(piI), p
j

I
′ ) is the position error after the ground-truth homography H

projection for the point in image I, and in all cases, the ε is set as 2 pixels.

Following common practice in evaluation protocols, we use the total number of
correct matches between two compared images as criterion for the evaluation
of correspondences matching. As ASIFT set the NNDR matching threshold to
0.73 × 0.73, we use the same threshold in our K-order NNDR. Moreover, in the
framework of fully affine space, the parameter of tilt t controls the number of
generated synthetic images in the affine space, and we need to note that larger
value of the parameter t leads to higher computational complexity of the frame-
work of fully affine space. For the evaluation, we set the parameter of t to 5,
6, and 7 corresponding to the numbers of the generated synthetic images 27, 41,
and 61, respectively.

2.6.3.1 Parameter of K in K-order NNDR

In this part, we evaluate the impact of size K in the K-order NNDR. The im-
ages under viewpoint changes in the Oxford dataset [108] and the images for
perspective changes in the Fischer dataset [121] are used. The impact of K in
the K-order NNDR is shown in Figure 9. The test is based on the SIFT+SIFT,
where the tilt in the scale space is set to 5. Figure 9 displays that the amount
of correct correspondences shows a tendency to increase when K becomes larger,
and for the SIFT detector with the SIFT descriptor, the K-order NNDR shows
superior results to the original NNDR. Since the increase of magnitude of the
correct correspondence is not significant when K varies from 4 to 6 and larger

44



2.6 Results and Discussions

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

500

1000

1500

2000

2500

3000

3500

4000

#C
or

re
ct

 c
or

re
sp

on
de

nc
es

Perspective transformation (Oxford dataset-graf)
Affine-SIFT-SIFT-NNDR(tilt=5)
Affine-SIFT-SIFT-KNNDR(K=4,tilt=5)
Affine-SIFT-SIFT-KNNDR(K=5,tilt=5)
Affine-SIFT-SIFT-KNNDR(K=6,tilt=5)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

2000

4000

6000

8000

10000

12000

14000

#C
or

re
ct

 c
or

re
sp

on
de

nc
es

Perspective transformation (Oxford dataset-wall)
Affine-SIFT-SIFT-NNDR(tilt=5)
Affine-SIFT-SIFT-KNNDR(K=4,tilt=5)
Affine-SIFT-SIFT-KNNDR(K=5,tilt=5)
Affine-SIFT-SIFT-KNNDR(K=5,tilt=5)

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

2000

4000

6000

8000

10000

12000

#A
ve

ra
ge

 c
or

re
ct

 c
or

re
sp

on
de

nc
es

Perspective transformation (Fischer dataset)
Affine-SIFT-SIFT-NNDR(tilt=5)
Affine-SIFT-SIFT-KNNDR(K=4,tilt=5)
Affine-SIFT-SIFT-KNNDR(K=5,tilt=5)
Affine-SIFT-SIFT-KNNDR(K=6,tilt=5)

Figure 2.6: The demonstration of parameter K in the K-order NNDR (KNNDR)
used in the fully affine space framework.

value of K reduces the efficiency of K-order NNDR, we set K equal to 4 in the
following experiments.

2.6.3.2 Correspondence Matching Using the Framework of Fully Affine
Space

For an objective comparison, we first evaluated the performance of each method
without using the fully affine space framework. Figure 2.7 displays the amount of
correct correspondences on the Oxford dataset, as well as the average numbers of
correct correspondences on the Fischer dataset. It is clear that the SIFT+SIFT
performs best on both datasets, and ORB+ORB, BRISK+BRISK are more sen-
sitive to the affine changes (scale, rotation and perspective changes) than the
other salient point methods. However, when the magnitude of perspective trans-
formation becomes larger, all methods show poor performance.

As all salient point methods can only tolerate a small magnitude of viewpoint
transformation, we apply the fully affine space framework and the proposed K-
order NNDR scheme to evaluate their performance. Figure 2.8, Figure 2.9 and
Figure 2.10 depict the evaluation results for real valued and binary string de-
scriptors. It can be observed that a similar tendency is demonstrated on both
datasets. When comparing the results of salient point methods using the fully
affine space framework with the previous results, the performance has been signif-
icantly improved under large viewpoint transformations. We can note that Affine-

45



2. A COMPREHENSIVE EVALUATION OF SALIENT POINT
METHODS

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

100

200

300

400

500

#C
or

re
ct

 c
or

re
sp

on
de

nc
es

Perspective transformation (Oxford dataset-graf)
SIFT+SIFT
SURF+SURF
ORB+ORB
BRISK+BRISK
SURF+BRIEF
SURF+FREAK
SURF+BinBoost
SURF+LATCH

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

500

1000

1500

2000

2500

#C
or

re
ct

 c
or

re
sp

on
de

nc
es

Perspective transformation (Oxford dataset-wall)

SIFT+SIFT
SURF+SURF
ORB+ORB
BRISK+BRISK
SURF+BRIEF
SURF+FREAK
SURF+BinBoost
SURF+LATCH

1vs2 1vs3 1vs4 1vs5 1vs6
Transformation magnitude

0

500

1000

1500

2000

#A
ve

ra
ge

 c
or

re
ct

 c
or

re
sp

on
de

nc
es

Perspective transformation (Fischer dataset)
SIFT+SIFT
SURF+SURF
ORB+ORB
BRISK+BRISK
SURF+BRIEF
SURF+FREAK
SURF+BinBoost
SURF+LATCH

Figure 2.7: The demonstration of the amount of correct correspondences under
perspective changes for each salient point method without using the fully affine
space framework.
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Figure 2.8: Evaluation results of salient point methods with real valued descriptor.
The fully affine space framework is applied (the tilt varied from 5 to 7), and both
NNDR and K-order NNDR (KNNDR) are compared.

SIFT+SIFT obtained the highest number of correct matches in all cases, and this
is mainly due to the distinctiveness of the SIFT local descriptor. Moreover, the
real valued descriptors are more distinctive than binary string descriptors.

In addition, for the comparison between NNDR and K-order NNDR, the evalua-
tion results show the advantages of the K-order NNDR matching strategy. The
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Figure 2.9: Evaluation results of salient point methods with hand-crafted binary
string descriptor. The fully affine space framework is applied (the tilt varied from
5 to 7), and both NNDR and K-order NNDR (KNNDR) are compared.

K-order NNDR is effective for all the salient point methods. We can observe that

K-order NNDR finds roughly double the number of correct correspondences com-

pared to the original NNDR. Moreover, the results of K-order NNDR with tilt
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Figure 2.10: Evaluation results of salient point methods with supervised learning
based binary string descriptors. The fully affine space framework is applied (the
tilt is varied from 5 to 7), and both NNDR and K-order NNDR (KNNDR) are
compared.

equal to 5 is even much better than NNDR with tilt equal to 7. This means that

K-order NNDR can get high accuracy even at a low computational complexity

of the fully affine space framework. Although the discrimination of binary string

features is insufficient, binary string descriptors using the K-order NNDR can also

offer competitive results compared to real valued descriptors using NNDR.

According to the above evaluation results on both datasets, we can also note that

the original salient point methods failed to find the correct matches under huge

viewpoint changes, but they all get expected performance levels by using the

fully affine space framework and the proposed K-order NNDR matching strategy.

Especially for the BRIEF, ORB, BinBoost and LATCH local descriptors which

are easily influenced by scale, rotation and viewpoint changes, good performance

was obtained for these changes by the framework of fully affine space and K-order

NNDR.
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Table 2.7: The comparison of computational cost and memory requirement in the
framework of fully affine space.

Tilt=5 Tilt=6 Tilt=7
Method Average Average Average Average Average Average

numbers memory numbers memory numbers memory
of points requirement of points requirement of points requirement

Affine-SIFT+SIFT 55635 27.15M 65384 31.9M 74095 36.16M
Affine-SURF+SURF 79341 19.36M 99341 24.24M 119627 29.2M
Affine-SURF+RIFF 79341 21.74M 99341 27.22M 119627 32.77M

Affine-SURF+BRIEF 79341 2.38M 99341 2.98M 119627 3.58M
Affine-ORB+ORB 13314 0.4M 19263 0.58M 25805 0.77M

Affine-BRISK+BRISK 17565 1.05M 20583 1.24M 23066 1.38M
Affine-SURF+FREAK 79341 4.76M 99341 5.96M 119627 7.16M

2.6.3.3 Computational Cost and Memory Requirement

Computational cost and memory requirement are also important to the frame-

work of fully affine space, because they reflect the computational complexity of

the framework as well as the potential for the requirement of real-time systems.

Considering that each salient point method extracts different amounts of local

features in the fully affine space, we evaluated the average number of detected

salient points and average memory requirement per image. The statistical results

are summarized in Table 2.7.

It is worth noting that Affine-SIFT+SIFT and Affine-SURF+SURF consumed a

huge amount of memory for the salient points detection and descriptor extraction

in the fully affine space. For Affine-SIFT+SIFT and Affine-SURF+SURF, a large

amount of salient points is extracted in the fully affine space framework and it

increases the memory consumption correspondingly. We can also note that the

memory requirement of binary string descriptors is less than that of real valued

features. Moreover, as the performance show that the binary string features

also achieved expected results under major viewpoint changes, integrating binary

string features with K-order NNDR matching strategy in the framework of fully

affine space is a good candidate for real-time systems.
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2.7 Conclusions

In this chapter, we presented a comparison of detectors and descriptors on diverse
image distortions and also evaluated their performance in the framework of fully
affine space. According to the evaluation results, the FAST detector had the high-
est repeatability score compared to the score of other detectors, moreover it had
the least detection time cost per point. Regarding the criterion of recall-precision,
our experiments showed that the descriptors of SIFT, BRISK, and FREAK per-
formed the best as affine invariant descriptors, and the time complexity showed
that the binary descriptors provide very efficient feature description and match-
ing.

In addition, for the special case of finding correspondences, we proposed the K-
order NNDR matching strategy for the correspondences matching in the frame-
work of fully affine space, and the experimental results show that the K-order
NNDR is effective and obtained high accuracy correspondences under challeng-
ing image transformations. Furthermore, Affine-SIFT+SIFT showed the best
performance on the correct correspondences in the framework fully affine space.
When taking into account the computational complexity and memory require-
ment, binary string descriptors using the K-order NNDR matching strategy are
a good trade-off between the accuracy and efficiency.
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Chapter 3

RIFF: Retina-inspired Invariant
Fast Feature Descriptor

In this chapter, we first present the Retina-inspired Invariant Fast Feature, RIFF,
which is designed for invariance under scaling, rotation, and affine image defor-
mations. The RIFF descriptor is based on the comparison of the intensity of
pair-wise pixels over a sampling pattern that has similarities with the human
retina. Then we introduce a strategy to improve accuracy by maximizing the
discriminatory power of the point set. A performance evaluation with regard to
Bag-of-Words based image retrieval on several well-known benchmark datasets
demonstrates that the RIFF descriptor has competitive performance compared
to state-of-the-art descriptors. Additionally, a popular approach from literature
is to use visual words (or Bag-of-Words) constructed from real valued local de-
scriptor (SIFT and SURF). To accommodate large scale data sets, we used an
approximate nearest neighbor (ANN) based clustering approach to both real val-
ued local descriptors and binary string local descriptors (BRIEF, ORB, BRISK,
FREAK, Binboost and LATCH). The results on these test sets reveal that some
of the recent binary string approaches outperform notable descriptors such as
SIFT and SURF.

51



3. RIFF: RETINA-INSPIRED INVARIANT FAST FEATURE
DESCRIPTOR

3.1 Introduction

Efficiently establishing the correspondences between images is very useful for
numerous applications of computer vision, such as content-based image search,
image classification, object tracking, and panorama stitching. Salient point meth-
ods are leading approaches, which have been proven to be effective in many real
world applications.

In using salient points, one typically needs a detector and a descriptor. Detectors
find the locations (e.g., blob, region, or point) in images which typically are in
some way informative. The descriptor gives a model or representation of a local
image region. Prior research of salient points has focused on high repeatability
detectors and robustness under scaling and rotation [108].

The SIFT descriptor [14] is the most popular salient point method. It computes
the Difference-of-Gaussian (DoG) operator in the Gaussian scale space, and as-
signs an orientation and a descriptor to each salient point based on the local gra-
dient histogram. The SURF [12] salient point detector makes use of a box-filter
to achieve efficient extrema detection in the scale space and it performs well with
respect to the criterion of repeatability. The SURF descriptor of each detected
salient point is calculated through summing Haar-wavelet responses in the de-
fined region after orientation alignment. Recent binary string descriptors such as
BRIEF, ORB, BRISK, and FREAK were proposed that have specific advantages
such as low memory requirements as well as computationally efficient matching
using the Hamming distance (bitwise XOR followed by a bit count). BRIEF
[117] first uses Gaussian smoothing on the selected image patch, and creates a
binary string descriptor by the comparison of the intensities of randomly sam-
pled pixel-pairs around the patch center. ORB [118] employs the most efficient
FAST [96] detector to determine the salient points in different layers of an image
pyramid. It use the intensity centroid algorithm to determine the orientation for
each point. The binary string descriptor of ORB is determined similar to BRIEF
and effectively improves the robustness under image rotation and scale changes.
BRISK [16] applies a FAST score as a measure to determine the extreme points
in the image scale pyramid, and generates the descriptor by comparing pair-wise
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intensities over a decreasing density circular sampling pattern. FREAK [17] also
selects pairs of pixels over a decreasing density circular sampling pattern loosely
inspired by the retina and then compares their intensities to form a binary vec-
tor. Both BRISK and FREAK use the sum of local gradients of selected pairs
to estimate the orientation. Moreover, some local binary descriptors based on
a supervised learning scheme also show good performance (BinBoost [123] and
LATCH [124]).

The recently introduced salient point descriptors each have specific strengths.
Some are most restrict to scale changes, whereas others are designed for speed
and/or low memory requirements. Our goal was to design a descriptor which
was optimized to be robust under affine image transformations including rotation
and scaling. In this chapter, we first propose a novel discriminative salient point
descriptor which is named “RIFF” because the sampling pattern is inspired by the
distribution of cones (color vision) that can be observed in the human eye.

Moreover, empirical experiments conducted over the past decade have demon-
strated that one of the most popular and successful approaches towards image
similarity and visual concept analysis is to use salient point algorithms combined
with visual word model and an approximate nearest neighbors (ANN) search
[122]. This is mainly due to the robustness of salient point descriptors under
various geometric transformations and to the introduction of the visual word
model, which significantly improved the search efficiency and the adaptability to
a particular image dataset. Current visual words systems are predominantly built
using salient points algorithms such as SIFT and SURF whose descriptors are real
valued. In contrast to the real valued descriptors, binary string descriptors were
proposed in order to generate and use the feature descriptors in a more efficient
way (e.g., BRIEF, ORB, BRISK, FREAK, BinBoost and LATCH). Another goal
of this chapter is to give insights into the performance and requirements of these
descriptors for large scale image search.

The main contributions of this chapter are as follows:

First, we proposed a salient point descriptor which outperforms current methods
regarding robustness under affine image transformations. Moreover, we proposed
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a measure to rank the generated salient point descriptors so that unstable points
will be rejected and the discriminatory power of the set of descriptors will be
improved. This is useful for speeding up the process of indexing and matching
among a large amount of descriptors and increasing accuracy.

Second, we compared several of the most promising local descriptors on a wide
variety of near duplicate transformations within the visual words paradigm. This
is very important for computer vision applications because each social application
may involve a different set of image transformations. Our results give some insight
into which descriptors would be better or worse candidates in each of these cases.
To our knowledge, this is the first contribution that compares visual word models
generated by recent binary string features and applies on large scale image copy
detection.

Third, we made a comparison of different types of features in terms of feature
extraction and vocabulary generation by measuring, for example, computational
efficiency as well as memory efficiency. This requirements are important because
in some situations speed might be more important than accuracy alone. In addi-
tion we adopted the ANN search to achieve the vocabulary generation.

The rest of the chapter is organized as follows: In Section 3.2, we present the
generation of our RIFF local feature descriptor. In Section 3.3, we describe the
details of the visual word model generation. The datasets and evaluation criteria
in the experiment are described in Section 3.4. The performance results of the
proposed descriptor compared to current state-of-the-art descriptors are shown
in Section 3.5, and finally conclusions are given in Section 3.6.

3.2 Discriminate RIFF Local Descriptor

3.2.1 Retina Sampling Pattern Review

The retina sampling pattern is based on the topology of the human retina as
found in neuroscience research. This research reveals that the spatial distribution
density of cone cells in the retina decreases exponentially with the increasing
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Figure 3.1: Illustration of the density distribution of cones in the human retina.

distance to the center of the fovea. Moreover, it is believed that the image
signals pass through from cone cells to ganglion cells, where the receptive field
of each ganglion cell uses the Difference of Gaussian (DoG) model with various
sizes and that encodes differences into action potentials. Our approach employed
a similar retina sampling pattern, which places different sizes of blocks at the
defined locations in the pattern. The illustration of the cones density can be seen
in Figure 3.1.

Inspired by recent work that use decreasing circular polar densities in diverse
applications ranging from stereo matching to object recognition [16, 17, 125], the
sampling pattern for RIFF in 2D decreases exponentially as shown in Figure 3.2
(a).

3.2.2 Descriptor Generation

3.2.2.1 Orientation Estimation

Given a set of salient points in an image (detected by the salient point detector),
we first position and scale the retina sampling pattern according to the location
and scale information (this is computed by the detector) for each specified point,
and then calculate an orientation for them.

The popular approach for estimating the orientation angle comes from basic
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(a) (b)

Figure 3.2: (a) The 2D exponentials decreasing polar sampling pattern for RIFF
with N=43 points: the red points denote the sampling point locations, the blue
rectangle represents a receptive field, and the size of the rectangle corresponds to
its Gaussian kernel which is used to smooth the intensity values at the sampling
points. (b) The pre-defined pair-wise point comparisons on RIFF for 2 of the 12
axes.

geometry which estimates the orientation using local gradients: �y and �x
and then determine the angle from the arctangent of (�y/�x) (for details see
FREAK [17]). We also estimate the local gradients by pair-wise differences be-
tween equidistant points from the center of the retina sampling pattern.

3.2.2.2 Descriptor Generation

The procedure of RIFF descriptor generation is different from previous salient
point approaches such as BRIEF, ORB, BRISK and FREAK, which compare the
pixel-pair intensities in the sampling pattern to generate a binary string feature.
Our approach first constructs a structure in the retina sampling pattern rotated
by the estimated orientation θ. Let V = [v1, ..., vi, ..., vd] represent a feature vector
of a salient point, where vi is a real value obtained by calculating the difference
of Gaussian smoothed image intensities of pre-defined pairs over the structure.
We defined 6 pair-wise comparisons on each of the 12 axes from the center which
results in the dimension of the descriptor d equal to 72. For clarity, we have
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Figure 3.3: Matches (blue lines), between images after an affine viewpoint change,
found by using the SIFT (OpenCV) salient point approach.

displayed in Figure 3.2 (b) 1 of the 6 pair-wise comparisons on the blue axes and 1
of the 6 pair-wise on the yellow axes where each black curve denotes one pair-wise
comparison. Since we place a block at each sampling point, the integral image
(summed area tables) was used for computational efficiency. It was not necessary
for RIFF to compare the intensity of all possible N × (N − 1)/2 sampling pairs,
which was necessary when calculating the binary string features used in previous
methods. Moreover, the dimension of RIFF is smaller than SIFT, which may
improve the speed of indexing and matching.

3.2.2.3 Discriminative Strategy

Even though location, scale and orientation have been estimated, current salient
point detectors have difficulty with affine viewpoint changes such as depicted
in Figure 3.3. We conducted a small internal study which revealed that local
ambiguities (nearby salient points with similar feature descriptors) are often the
cause of those matching errors.

Thus, our goal was to reduce local ambiguity or to increase local distinctiveness
by eliminating salient points that have similar salient points nearby. We imple-
mented this process by using a ranking scheme to identify stable local features.
In this scheme, we consider a set of salient point descriptors fi, i = 1, 2, . . . ,M ,
a salient point p in the image I and its feature fp. The discriminatory score of
the feature is defined according to the measure of similarity when compared to
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K nearest neighbors in the image.

Dp(p ∈ I) =
K∑
j=1

‖fp − fi‖2 (3.1)

‖.‖2 denotes the Euclidean distance. Intuitively, a higher discriminatory score
demonstrates that the feature of point p is more distinctive than features of near
by other points. The parameter K is set to 2 in the experiment, as it can achieve
a good performance at a very low computational complexity. Furthermore, we
use an exponential function in order to emphasize the discriminative score:

D
′
p(p ∈ I) = exp(−λ · |Dp|) (3.2)

| · | denotes the normalization of Dp (in the range [0, 1]), λ is a weight of discrimi-
native score and set to 6 that can achieve a good performance in the experiment.
We note that after the above process, a smaller D′

p score correlates to more dis-
tinctive feature points, so we can sort these scores and define a threshold to filter
out unstable salient points. The final set is a smaller number of discriminative
features which are more robust to various image transformations, while reduc-
ing required subsequent processing, e.g., descriptor indexing as well as dictionary
learning in large scale image applications.

We set the value of threshold in the NNDR to 0.75, and the homography between
two compared images is estimated by the RANSAC algorithm. In preliminary
tests, RIFF exhibited competitive performance for image copies detection under
affine image transformations in comparison to the popular SIFT, SURF, and
recent FREAK descriptors as shown in Figure 3.4.

3.3 Visual Word Model based Image Search

There are billions of images available on the WWW, scientific databases and
private collections that do not have sufficient annotations for broad and accurate
searching. Moreover, the number of images is ever increasing, and a large number
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(a) RIFF (b) SIFT

(c) SURF (d) FREAK

Figure 3.4: Illustration of descriptor matching. Here RIFF is compared to SIFT,
SURF, and FREAK on an image from a challenge on affine object detection (Graffiti
1-5 proposed by Mikolajczyk and Schmid [108]).

of similar copies exist. These copies can be viewed as transformed versions of the
original images. Since common transformations such as geometric distortions,
compression, crop, and color space changes could easily result in numerous copies
or near-duplicates, it is a major challenge to achieve accurate, time and space
efficient large scale detection of duplicates. Conventional global feature based
image representations (color histogram, textual feature and shape information)
can be used to perform an image search. However, they can not handle complex
image transformations, such as rotation and scale changes. The visual word model
based image representation (BoW [126], Fisher Vector [2] and VLAD [127]) takes
advantage of the high discriminative capability of local descriptors in different
contents and the applicability of different similarity measures to address complex
image changes.

Visual word models, inspired by the field of information retrieval, were established
by the introduction of salient point local descriptors, mainly because those local
descriptors were shown to be invariant to scaling, rotation and noise. A visual
word model represents an image as a histogram of visual words through feature
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quantization and significantly improves the accuracy of image retrieval and object
classification.

Typical implementations [4, 128, 129, 130] of the visual word model start by
detecting salient points or regions from all images in the dataset and generate
a descriptor for each salient point or region. These descriptors can be further
clustered into a vocabulary consisting of visual words where each cluster center
represents a visual word, and the size of the vocabulary is equal to the number of
clusters. Based on salient points extracted as salient image patches, an image is
frequently represented using a histogram according to the occurrence frequency
of each visual word.

For the popular real valued local descriptors (e.g., SIFT, SURF), the simple K-
means clustering algorithm can be used to train the visual word vocabulary. The
initialization of cluster centers is first generated by randomly choosing candidates
from the descriptors group. After that, at the beginning of each iteration, the
remaining descriptors are assigned to their closest cluster center. The center can
be updated by the mean value of the assigned descriptors. Euclidean distance is
used as a distance measure in the assignment procedures.

For binary string descriptors, the Hamming distance metric is used. As it only
use bitwise XOR followed by a bit count, it offers a higher matching speed. As
the traditional computation of an average is not suitable for binary features, we
employed an approach named “K-majority” [131] to calculate the mean value of
binary string descriptors.

The K-majority method refines cluster centers based on the statistics of the to-
tal number of 1’s at the same bit position among all the descriptors belong-
ing to the same cluster. Suppose a cluster consist of I binary string features:
Fi, i = 1, 2, ..., I, and we treat a binary feature as F = [bit1, bit2, ..., bitJ ], 1 ≤ j ≤
J , where J denotes the length of binary string feature. The following function
can then be used to update the cluster center.

score(bitj) =
I∑

i=1

Fi(bitj)/I (3.3)
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Center(bitj) =

{
1, if : score(bitj) ≥ 0.5

0, if : score(bitj) < 0.5
(3.4)

Function (3.4) implies that if the number of 1’s is larger than half the number of
total descriptors belonging to the specified cluster, the new value of the same bit
position of the center is set to “1”, otherwise it is set to “0”.

However, it is a challenge to apply the flat K-means or flat K-majority to large
scale vocabulary construction, because it is computationally expensive to perform
clustering in high dimensional spaces. In order to reduce the computational com-
plexity of linear search, an approximate nearest neighbors approach (ANN) was
adopted to assign the labels of optimal cluster centers to descriptors. Compared
with the flat K-means and flat K-majority, ANN-based K-means and K-majority
approaches could effectively reduce the complexity from O(NK) to O(Nlog(K))

during each iteration, where N denotes the number of descriptors, and K is equal
to the number of centers. Considering the different properties of real valued de-
scriptors and binary string descriptors, ANN search is based on a KD-tree index
and a LSH index respectively [132]. The LSH index space is based on multi-probe
LSH, which has the advantage of reduced storage requirements. Once the visual
vocabulary has been obtained, we represent an image as a bag of visual words
according to the popular tf-idf weighting scheme [133]. The tf-idf weighting
scheme can reduce the contributions of common visual words, while at the same
time increasing the contributions of discriminative words. Through building an
index for the image features in the dataset, a ranked list of search results could
be efficiently returned according to the distance similarity with the query image
feature.

3.4 Experimental Results

The experimental environment for the evaluation is an Intel Quad Core i7 Pro-
cessor (2.67GHz), 12GB of RAM, 64-bit OS. The implementations of BinBoost
is from the author, others are implementations from OpenCV. The parameters of
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each salient point method were set to the defaults. We used 8 randomized forests

in the KD-tree index, 20 hash tables in the multi-probe LSH index. Our evalua-

tion implementations are available at: http://press.liacs.nl/researchdownloads/.

3.4.1 Datasets and Evaluation Criteria

The evaluation of visual word based large scale image copy detection is performed

on three image datasets: PASCAL VOC2012 [134], Caltech 256 [135], and MIR

FLICKER 1Million [136]. Moreover, a series of near duplicates were created for

the test. We use mAP (mean Average Precision) as a criterion for the evaluation

of detection accuracy. The transformed duplicates categories generated for the

test mainly include: cropping, content noise, image blur, image compression:

JPEG compression, rotation, scale and affine deformation: rotation + scale +

3D perspective distortion.

Scale change: we resized the original images by changing the scale factors from

20% to 200% with a step size of 20%.

Cropping: starting with a 50 × 50 pixel central region in the image, the width

and height of the cropped area of the image is gradually increased by 10 pixels.

Image compression: JPEG compression copies are produced by setting the

image quality factors in the range from 95% to 5%.

Text noise: images are modified by adding various sizes and colors of text in

the central area.

Image blur: A series of blurred images is created by smoothing the image using

Gaussian smoothing.

Deformation: includes several subsets where image copies (rotation, rotation

together with scale, and viewpoint transformation) are created by rotation as well

as perspective distortion with different angles.

A total number of 1000 images in each dataset are randomly selected as query

images, and 80 duplicates of each query image are generated. Some examples of

each dataset used for evaluation are illustrated in Figure 3.5.
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(a)

(b)

Figure 3.5: Examples from each dataset for the evaluation of salient point meth-
ods. (a) Examples from the VOC, Caltech 256 and MIR datasets. (b) Examples
of generated duplicates: text noise, JPEG compression, image blur, image crop,
rotation and affine transformation, respectively.

3.4.2 Evaluation of Image Copy Detection

In this section, we focus on constructing the visual word vocabulary not only by
using real valued descriptors, but also binary string descriptors. We use ANN
search to efficiently train the vocabulary. We first compared the proposed RIFF
with a number of the most promising salient feature descriptors on a wide variety
of near duplicate transformations within the visual words paradigm. This is the
most important part of this section because each application may involve different
image transformations and our results give some insight into which descriptors
would be better or worse candidates. Then, we made a comparison of different
types of features in terms of feature extraction and vocabulary generation by
measuring indicators of computational efficiency as well as space requirements.
There characteristics are valuable because in some situations speed, for example,
might be more important than accuracy alone.

In order to make an objective comparison of different types of local descriptors, we
also choose to use the same detector for each local descriptor. SURF was applied
as the salient point detector, and we combine the SURF detector with various fea-
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ture descriptors including SIFT, SURF, ORB, BRIEF, BRISK, FREAK, RIFF,
BinBoost and LATCH in the evaluation. The performance of various vocabular-
ies is evaluated in terms of computational efficiency, memory requirements, and
accuracy.

The criterion to estimate the similarity of two images represented by visual words
is via the cosine distance measure. We use mAP (mean Average Precision) as a
criterion to evaluate the performance of search accuracy.

3.4.2.1 Evaluation of Time and Storage

We first focus on the efficiency and space requirements of generating the vocab-
ularies for the different descriptor types. For this evaluation we use the PAS-
CAL VOC dataset. Ten million salient point features were extracted from the
dataset.

Figure 3.6 illustrates the computational efficiency of different types of vocabulary
generation as well as the storage space requirement under different cluster sizes.
The vocabulary generation based on the compared descriptors all reveal an almost
linear growth with increasing vocabulary size. In Figure 3.6 we can see that the
execution time of the vocabulary training stage with real valued descriptors is
nearly 4 times faster than that of binary string features, however, binary type
vocabularies have significantly lower space requirements.

3.4.2.2 Evaluation of Search Accuracy

We evaluated the performance of image copy detection using various visual vocab-
ularies. As all the generated duplicates are added into the datasets, the scale of
PASCAL and Caltech is roughly 10 thousand, and MIRFLICKR contains around
one million. The comparison experiment with different types of vocabulary is
based on varying the vocabulary size.

Overall, the RIFF based visual words model outperformed the other descriptors
on the PASCAL VOC, Caltech 256 and MIRFLICKR-1M datasets as shown in
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Figure 3.7. The mAP score results also demonstrate that binary local descriptor
based visual vocabularies offer good performance. Comparing the evaluation
results on the one million-scale dataset and the results on VOC dataset, there is
no significant mAP score decrease when the data size increased from ten thousand
to more than one million. We can also note that the FREAK descriptor based
vocabulary has better mAP score on average across the three datasets than other
binary string based vocabularies. Below we will discuss how various descriptor
based visual word models performed under the different transformations.

Our goal of this part is to determine the robustness of the visual vocabularies to
various image transformations. As shown in Figure 3.8, RIFF had the best per-
formance on the distortions related to scale, rotation, and affine transformations.
It showed average performance on blurring and showed competitive performance
on the rest of the transformations. When the transformation keeps the struc-
ture in place such as blur and JPEG compression, SIFT has high accuracy but
was outperformed by BRIEF, while BinBoost showed a weakness for the cases
of blur and JPEG compression. We observe that when pictorial information is
added to or deleted from an image copy, SIFT was consistently outperformed by
the other descriptors. Specifically, FREAK performed well on transformations
which deformed the image structure such as affine transformations or combining
rotation with scaling. BRIEF showed particularly poor performance on rota-
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Figure 3.6: Comparison of different descriptors in terms of time efficiency and
space requirements during the training. Both space requirement and training time
show almost linear growth when the size of the vocabulary increases.
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Figure 3.7: Detection accuracy (mAP score) on three datasets (PASCAL VOC,
Caltech 256 and MIRFLICKR). The size of the vocabulary varies from 10000 to
100000.

tion transformations and LATCH showed a poor performance on scale changes.
Note that the affine deformation represents the most difficult category, as the
total number of detected copies is extremely low for all types of compared visual
vocabularies.

According to the copy detection accuracy, the robustness of visual word model
based image representations mainly rely on the capability of the local descriptor.
We can see that the BRIEF descriptor is not rotation and scale invariant, thus,
a visual word model trained on BRIEF is sensitive to rotation and scale changes.
The ORB descriptor makes an improvement in case of the rotation changes when
compared to the BRIEF descriptor, therefor, vocabularies trained on the ORB
descriptors showed better performance than BRIEF. RIFF, BRISK and FREAK
based visual word models have high performance for rotation and scale invari-
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ance, probably because the local descriptors of RIFF, BRISK and FREAK use
circular sampling patterns. The vocabularies trained on new binary string fea-
tures (BRISK and FREAK) and the real valued features (SIFT, SURF and RIFF)
all are scale invariant and robust to JPEG compression and blur noise. For the
category of learning based local descriptors, the learning scheme of BinBoost is
not robust to the JPEG compression and blur noise. LATCH does not use scale
information during the learning process.

3.5 Conclusions

We have proposed a novel salient point descriptor named RIFF which was inspired
by the sampling pattern used by the human eye (we make no claims of biological
relevance). The main contribution of the RIFF descriptor is in constructing the
descriptor so that the discriminatory power is optimized by ranking and deleting
points with low distinctiveness. Our Bag-of-Words image retrieval tests on three
well known datasets, showed RIFF outperforming the other feature descriptors
with respect to robustness to scale, rotation, and affine transformations. Fur-
thermore, we presented a performance evaluation of real valued and binary string
salient point descriptors. The time complexity and space requirements showed
that binary string descriptors are efficient in terms of feature extraction time
and memory usage. Regarding the criterion of the mAP score, the image copy
detection experiments showed some significant strength of binary string local de-
scriptors. FREAK clearly outperformed SIFT on rotation and scale, and affine
transformations. BRIEF had the best accuracy in case of image blur and was
among the best in case of image cropping.
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Figure 3.8: Total number of detected duplicates from different types and different
sizes based vocabularies in each transformation category. The size of vocabulary
varies from 10000 to 100000.
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Chapter 4

Deep Binary Codes for Large Scale
Image Retrieval

Recent studies have shown that image representations built upon deep convolu-
tional layers in Convolutional Neural Networks (CNNs) have strong discriminative
characteristics. In this chapter, we present a novel and effective method to create
compact binary codes (deep binary codes) based on deep convolutional features
for image retrieval. Deep binary codes are generated by comparing the response
from each feature map and the average response across all the feature maps on
the deep convolutional layers. Additionally, a spatial cross-summing strategy is
proposed to directly generate bit-scalable binary codes. As the deep binary codes
on different deep layers can be obtained by passing the image through the CNN
and each of them makes a different contribution to the search accuracy, we then
present a dynamic, on-the-fly late fusion approach where the top N high quality
search scores from deep binary codes are automatically determined online and
fused to further enhance the retrieval precision. Two strengths of the proposed
methods are that the generation of deep binary codes is based on a generic model,
which does not require additional training for new image domains, and that the
dynamic late fusion scheme is query adaptive. Extensive experimental results on
well known benchmarks show that the performance of deep binary codes are com-
petitive with state-of-the-art approaches for large scale image retrieval. Moreover,
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it is shown that the dynamic late fusion scheme substantially enhances the search
accuracy.

4.1 Introduction

Content-based image retrieval aims to find relevant images in an image database
that share a similar appearance with a given query image. This is a challenging
task for large scale visual search, because one must address both the typical
appearance transformations such as changes in perspective, rotation and scale;
and also minimize memory, computational cost, and response time.

Traditional image retrieval systems based on visual word representations mainly
owe their success to locally invariant features and large visual codebooks. The
Bag-of-Words (BoW) [1] approach is usually employed to encode local features
into a histogram according to the occurrence frequency of each visual word. Per-
onnin et al. proposed the Fisher Vector [2]. The visual words in a Fisher Vector
are constructed with a Gaussian mixture model (GMM) where the gradients of
local features corresponding to particular parameters in GMM are summed. The
Fisher Vector image representation is the concatenation of each accumulated gra-
dient. Jegou et al. proposed a Vector of Locally Aggregated Descriptors (VLAD)
[3] to capture more information from the image. VLAD and its variations [4, 5, 6]
are viewed as a type of simplified Fisher Vector, and it accumulates the differ-
ence of each local feature to the visual words and concatenates these accumulated
values to describe an image.

Visual word based approaches are challenging to scale to very large image databases,
as they have significant computational and memory requirements. Hashing tech-
niques, such as iterative quantization (ITQ) [137], locality-sensitive hashing (LSH)
[138], spectral hashing (SH) [23], spherical hashing (SpH) [139], locality-sensitive
hashing from shift-invariant kernels (SKLSH) [20], density sensitive hashing (DSH)
[140] as well as PCA-random rotation (PCA-RR) [137] focus on learning com-
pact yet powerful image representations for efficient large scale visual search.
The basic idea of hashing-based approaches is to construct a hash function to
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map each visual object into a binary string code such that similar visual objects
are mapped into similar binary codes. Unlike the above mentioned hashing ap-
proaches, which seek a linear function to project data into a binary vector, recent
supervised hashing methods based on convolutional neural network (CNN) archi-
tectures [141, 142] seek to learn multiple hierarchical non-linear transformations
to generate distinctive binary codes. However, most state-of-the-art hash func-
tion learning methods require additional training for each new image domain.
This can require significant resources both for assembling the supervised training
data and the learning process.

The recent CNN based image representation makes use of the transfer property
of a CNN architecture that is pre-trained on a large scale dataset. It has been
shown to provide a highly discriminative descriptor representing an image and
to produce superior performance in various computer vision tasks, such as image
classification, object detection and visual search [58, 143, 144, 145, 146]. Most
of these research projects utilize the outputs from the fully connected layers to
represent images (directly used or followed by PCA reduction [63]). In particular,
visual representations from activations of deep convolutional layers have been
shown to lead to high accuracy for image retrieval in real world image test sets.
This is achieved by processing a max-pooling, spatial max-pooling [64, 147] or
sum-pooling [65] operation on the deep convolutional layers. Better performance
is obtained using deep convolutional features than if the features from the fully
connected layers are used. This is mainly due to the fact that the activations
in each channel of the convolutional layer correspond to receptive fields in the
original image, i.e., having a direct semantic interpretation.

Inspired by the advantages of image representation through aggregating activa-
tions from deep convolutional layers, we propose a novel and efficient approach
to construct bit-scalable binary codes from deep convolutional layers for highly
efficient image retrieval (as shown in Figure 4.1). This idea is mainly based on
the fact that similar visual objects have similar distributions of responses of fea-
ture maps on deep convolutional layers. In this chapter, we propose to generate
the binary code on each convolutional layer according to the comparison between
the response of each feature map and the average response across all the feature
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Figure 4.1: The proposed image retrieval framework. Our method consists of
two main components. The first is the deep binary code generation on each deep
convolutional layer of a pre-trained CNN. In the second component, we propose a
dynamic late fusion scheme to further increase the search precision. Images with
green rectangles are positive results.

maps on the same deep convolutional layer. Additionally, a strategy of spatial
cross-summing is designed to generate bit-scalable deep binary codes. Extensive
experiments on well-known image retrieval benchmarks demonstrate the effec-
tiveness of the proposed binary code representation (referred to as deep binary
codes) and show competitive results compared to state-of-the-art image retrieval
approaches.

The strengths of the proposed deep binary codes are three-fold. First, the deep
binary code is highly efficient regarding computational and memory costs. By
passing a test image through a pre-trained CNN architecture, the compact bi-
nary codes on each deep convolutional layer can easily be generated. Second, the
length of a deep binary code can be controlled by the spatial cross-summing op-
eration. Third, available pre-trained CNN architectures (VGGNet [51], AlexNet
[48] as well as GoogleNet [42]) can be directly employed to generate deep binary
codes.

It is worth to note that during the procedure of passing an image through a
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pre-trained CNN architecture, all the deep binary codes from lower to higher
layers can be obtained. The similarity scores given by deep binary codes from
different layers vary largely. As illustrated in Figure 4.3, for a specific query
image, the average precision score of each deep binary code is different, and it is
difficult to determine in advance which deep binary code is the most robust one.
Thus, we are motivated to investigate how to fuse the search scores returned by
deep binary codes from different layers, to further improve the precision of visual
search. Inspired by the idea proposed by Zhang et al. [148] which demonstrates
that the score curve returned by a good feature shows an “L” shape, while that
returned by a bad feature shows a gradually dropping tendency, the effectiveness
of a feature can be estimated, as it is negatively related to the size of the area
under the normalized and sorted score curve. In this chapter, we propose to
optimize the operation of normalization in Zhang et al.’s method and design a
new unsupervised dynamic late fusion scheme to choose the top N good features
for a given query, and then aggregate the search scores of the top N candidates
to improve the search precision.

The main contributions of this chapter are summarized as follows:

First, this chapter introduces a novel and compact deep binary representation
which is generated from the convolutional layers of pre-trained CNN architec-
tures and investigates the reasons underlying its success. The proposed approach
creates bit-scalable deep binary codes in a data-independent manner in the sense
that it uses a generic transferred model, which does not require additional train-
ing.

Second, image representations based on different pooling operations (such as max-
pooling, average-pooling and sum-pooling) as well as various hashing function
learning methods on the activations of the deep convolutional layers are evaluated.
This results in both insights and a baseline for large scale image retrieval.

Third, the proposed adaptive and unsupervised dynamic (top N) score-level late
fusion scheme is shown to significantly improve the image retrieval accuracy.

The remainder of this chapter is organized as follows. First, we briefly review
related work in Section 4.2. Section 4.3 introduces the details of the proposed deep
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binary codes and the dynamic score-level late fusion scheme. The experimental
results are presented in Section 4.4 and conclusions are given in Section 4.5.

4.2 Related Work

CNN based image representation: deep learning aims to learn higher seman-
tic representations by passing an image into the architecture of a convolutional
neural network [48]. The image features generated from the activations of the
fully connected layers have already demonstrated their good performance in im-
age retrieval tasks. Recent research projects further explore the features from
the deep convolutional layers. Ng et al. [149] treated the channels from one deep
convolutional layer as visual words and encoded them into a feature similar to
a VLAD. Razavian et al. [64] and Azizpour et al. [147] proposed to aggregate
the activations from the last convolutional layers by max-pooling or spatial max-
pooling which show better performance than those from fully connected layers.
Additionally, it was revealed that the image representation by sum-pooling and
PCA whitened on the last convolutional layer leads to much better performance
[65]. Giorgos et al. [150] proposed to extract a set of features by max-pooling
at multiple scales on a deep convolutional layer and subsequently summing the
collected features to describe an image.

Learning based hashing: the existing hash function learning methods can be
classified into two categories: data-independent and data-dependent. LSH [138]
is a representative data-independent method which proposed to use random pro-
jections to map data into binary codes. SKLSH [20] is an extension of LSH which
extends Euclidean distance to other distances. For the data-dependent categories,
the method of SH [23] was presented to obtain balanced binary codes by solving
a spectral graph partitioning problem. ITQ [137] creates binary codes by simul-
taneously maximizing the variance of each bit and minimizing the quantization
error. SpH [139] was proposed to preserve the data locality relationship to keep
neighbors in the input space as neighbors in the Hamming space. CNN based
hashing methods with supervisory information in the form of class labels have
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been further developed by Lai et al. [141] and Zhao et al. [142], which opti-
mize the CNN architecture based on a loss function to preserve binary semantic
similarity of the data. Compared with the hashing-based learning methods, the
proposed deep binary codes achieved competitive and even better performance
without requiring training data and supervisory information.

Late fusion approaches: Late fusion approaches fuse the search results from
different features or different methods to increase the search accuracy. Nandaku-
mar et al. [151] proposed a framework which optimally combines the genuine
match scores through the likelihood ratio calculation. Zhang et al. [152] pro-
posed a graph-based query specific fusion method where multiple retrieval lists
obtained by different methods are merged and re-ranked by a graph model. Zheng
et al. [148] proposed to determine the weight of different search scores based on
the fact that the quality of a feature has a negative relationship to the area under
the normalized score curve. Our proposed method is similar to [148], however the
difference is that our late fusion approach only combines the search scores from
the top N high quality features, without requiring expensive offline calculations
for different features.

4.3 Proposed Approach

4.3.1 Generating Deep Binary Codes

In this section, we describe how to generate the deep binary codes. This starts
with a pooling operation, which calculates a summary statistic (such as max-
pooling, sum-pooling, multi-scale-max-pooling or multi-scale-sum-pooling) over
a local spatial region on the deep convolutional layers. The main motivation
behind the use of pooling is to promote invariance to local input transformations
(such as translation, occlusion and truncation of the local stimulus), which could
greatly improve the effectiveness of the deep convolutional layer representation.
This is due to fact that the resulting outputs by pooling are invariant to their
spatial location within the pooling region. This is particularly important for the
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Figure 4.2: The intra feature map distribution between relevant images and ir-
relevant images. Relevant images have similar distributions and the peak values
appear at the same positions, which results in similar deep binary codes.

performance of image search where local image transformations obfuscate object
identity. An additional advantage of the pooling operation is that it reduces the
spatial resolution, resulting in a lower-dimensional image representation.

Consider a pre-trained CNN architecture with L deep convolutional layers, and
a given input image I. We pass I through the pre-trained network where the
obtained feature maps can be denoted as F̄i = {Fi,j} with i = 1...L, j = 1...Ci,
where the Fi,j is equal to the jth feature map at the ith deep convolutional layer
and Ci is equal to the number of channels (or convolutional kernels) of deep layer
i. Assume that Fi,j has size Wi × Hi × Ci, where Wi and Hi are the width
and height of each channel, respectively. We further associate each cell in the
feature map from the ith layer with a spatial coordinate (x, y) and the response
at this position fi(x, y). Then, the image representation by max-pooling on a
deep convolutional layer can be described as follows:

V̄i = [V̄Fi,1
...V̄Fi,j

...V̄Fi,Ci
]where V̄Fi,j

= max
x,y∈Fi,j

(fi(x, y)) (4.1)

The max-pooling operation encodes the local maximum response from each fea-
ture map and leads to a compact feature vector with its dimension equal to the

76



4.3 Proposed Approach

number of feature maps.

In contrast to max-pooling which only makes use of the local maximum response
in the feature map, sum-pooling encodes all the responses into the feature vector.
Sum-pooling on activations from a deep convolutional layer can be calculated as
follows:

V̂i = [V̂Fi,1
...V̂Fi,j

...V̂Fi,Ci
], V̂Fi,j

=

Hi∑
x=1

Wi∑
y=1

fi(x, y) (4.2)

As the activations from the convolutional layers can be interpreted as local fea-
tures corresponding to particular original image regions, the simple max-pooling
and sum-pooling do not consider the spatial and location information of the ac-
tivations in the feature map, hence the generated feature vectors are only trans-
lation invariant. Furthermore, as the local regions appear at various scales in the
images, the scheme of multi-scale-pooling on feature maps is utilized to capture
information at different scales. In this way the image representation could be
robust to scale transformations. Let R denote a region in a feature map, then the
extracted feature in this region by pooling can be constructed as follows:

Vi,R = [VFi,1,R
...VFi,j,R

...VFi,Ci,R
], VFi,j,R

= P
x,y∈R

| fi(x, y) | (4.3)

Vi = [VFi,1
...VFi,j

...VFi,Ci
], VFi,j

=
∑

R∈Fi,j

Vi,R (4.4)

The function P | · | can be max-pooling, sum-pooling or average-pooling on the
region R. R is a square region of the feature map with width (height) from
1 to min(Wi, Hi). The extracted features from multiple scale regions are then
summed, and subsequently l2-normalized to represent the image.

We further observe that: for a pair of similar images, the feature maps with
a high response appear at almost the same index positions on the deep layer
(referred to as intra feature map distribution), as shown in Figure 4.2. Based
on this observation, we propose to convert the image representation on the deep
convolutional layers into binary codes Bi = [BFi,1

...BFi,j
...BFi,Ci

]. This binary
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code is constructed by comparing the response from each feature map with the
average response across all the feature maps:

BFi,j
=

{
1, if VFi,j

≥ average(Vi)

0, if VFi,j
< average(Vi)

(4.5)

Thus, the image representation by the deep convolutional layers is converted into
binary codes in an unsupervised and training data independent way. Moreover,
these binary codes have low memory requirements and allow for fast matching
using the Hamming distance, hence binary codes are very suitable for large scale
image search.

4.3.2 Spatial Cross-Summing

Based on the pre-trained CNN architecture, the bit-length of the deep binary
codes is preset according to the number of feature maps in the deep layers. In
real-world applications, binary codes with different bit-lengths allow researchers
to make trade-offs between accuracy and efficiency. For example, real-time sys-
tems and devices with limited computational and storage resources require low
dimensional binary codes, while higher dimensional binary codes are more appro-
priate for increased accuracy. The conventional PCA-operation is data-dependent
and is not suitable for the generation of bit-scalable deep binary codes. To ad-
dress these issues, we propose a spatial cross-summing strategy to create compact
and bit-scalable deep binary codes from deep-layer features.

For a given deep-layer feature Vi with length Ci, the objective is to generate a
bit-scalable deep binary code with length n, n = Ci/2

m, and m = 1, . . . , log2(Ci).
This procedure starts by generating the deep-layer feature with length n by
a spatial cross-summing strategy. For example, let n = Ci/4, then V2n

i =

Vi[1, 2, ..., 2n]+Vi[Ci, Ci−1, ..., 2n+1], and Vn
i = V2n

i [1, 2, ..., n]+V2n
i [2n, 2n−

1, ..., n+1]. Finally, the deep binary code Bi is calculated using Formula (4.5) on
the vector Vn

i . Algorithm 1 formalizes the procedure of bit-scalable deep binary
code generation.
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Algorithm 1 : Bit-scalable deep binary codes generation

Input: the ith deep-layer image feature: Vi with length Ci, and n = Ci/2
m, gives

m ∈ N ≥ 1

Output: deep binary codes B with n bits
1: X ⇐ Ci/2, V ⇐ Vi

2: while X 
= n do
3: bit⇐ X, l ⇐ length(V )

4: Va ⇐ [V1, V2, · · · , Vbit],Vb ⇐ [Vl, Vl−1, · · ·Vl−bit+1]

5: V′ = Va +Vb

6: X ⇐ X/2, V ⇐ V′

7: end while
8: Deep binary code B generation of size n bits
9: for all Vbit in V and Bbit in B do

10: if Vbit ≥ average(V) then
11: Bbit ⇐ 1

12: else
13: Bbit ⇐ 0

14: end if
15: end for
16: return B of size n bits

4.3.3 Dynamic Late Fusion

Another advantage of the proposed binary string representation is that the deep

binary codes on different layers could all be generated by passing the input image

through the pre-trained CNN just once, without additional re-feeding operations.

Moreover, different deep binary codes make different contributions to the image

search. As illustrated in Figure 4.3, the deep binary code from the conv5 layer

gives a higher average precision score than that from the pool5 layer. Thus, the

critical issue is how to automatically measure and compare the quality of each

deep binary code, since no supervision and relevance feedback are available online,

and the only accessible information is the search scores returned by different deep

binary codes. Therefore, we aim to exploit these search scores to improve the
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Figure 4.3: The deep binary codes from pool3, conv5 and pool5 are employed to
obtain three sorted search scores respectively, where the code from conv5 produces
good performance (AP =0.95) and has a smaller area under the curve than those
from pool3 and pool5. Note that the curve from pool3 goes beneath that from
pool5 after the marked yellow line (which needs to be avoided).

retrieval performance.

The authors of [148] show that the curve of a sorted search score returned by

a good feature appears to have an “L” shape and the curve returned by a bad

feature shows a gradually decreasing tendency. Furthermore, they showed that

the size of the area under the sorted score curve can be used as an indicator to

identify the quality of the features. Motivated by this, we fuse the search scores

from the top N good deep binary codes.

For a specific query image I, together with a set of deep binary codes Bi, i = 1...L,

we can use the Hamming distance to measure similarity. Note that in case of the

Hamming distance higher similarity corresponds to a lower value. We use a

modified Hamming distance H̄I = K − HI such that H̄I has a higher value for

higher similarity. Here K is the size of the deep binary code and the sorted search

score based on the modified Hamming distance returned by one deep binary code

is represented by Si. We further use max-min normalization on the sorted search

scores returned by the modified Hamming distance, so that relevant images for a
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query give a max score equal to 1, while irrelevant images give a score of 0.

S̄i =
Si −min(Si)

max(Si)−min(Si)
(4.6)

The size of the area under the curve S̄i is calculated as:

areai =
M∑
j=1

S̄i,j (4.7)

where M denotes the top M nearest neighbors in each search score. We introduce
the parameter M ,to prevent the situation where the sorted curve from a good
feature may go under that from a bad search score for a large M (as shown
in Figure 4.3, the marked yellow line). This parameter controls the size of the
area, and it is set as 400 in the experiments. Clearly, the calculated size of the
area under each normalized score curve can be used to select the top N high
quality features. We further assign an adaptive weight value to each of the top
N scores:

weighti =
1

areai
(4.8)

Finally, the fused search score from high quality deep binary codes is calculated
as follows:

Score =
N∑
i=1

(Si × weighti) (4.9)

The proposed dynamic (top N) score-level late fusion scheme is adaptive and the
quality of the deep binary code is automatically measured in an unsupervised
manner. Clearly, it does not need any offline computation, thus the late fusion
scheme is compatible with dynamic databases and suitable for large scale image
search.

4.4 Experiments and Setup

In this section, we construct experiments and present the performance of our
proposed image representation based on deep binary codes as well as the dynamic
late fusion scheme in image retrieval.
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The VGG network (VGGNet) [51] is employed to generate the deep binary codes
(without fine-tuning). The deep convolutional layers: pool3, pool4, conv5 and
pool5 from the VGGNet architecture are examined and the activations extraction
from each deep convolutional layer is implemented using Caffe [153]. All images
are resized to 224×224 before passing through the CNN network. The dimensions
and the number of feature maps of the examined deep layers are summarized in
Table 4.1. Max-pooling, sum-pooling, multi-scale-max-pooling, and multi-scale-
sum-pooling are utilized to transform the activations from the feature maps to
deep convolutional features, which are referred to as MP, SP, MSMP and MSSP,
respectively. The deep binary codes are accordingly referred to as BMP, BSP,
BMSMP and BMSSP. The cosine similarity measure is used to compare two
images represented by their deep convolutional features (floating point values),
while the Hamming distance is employed to compare the similarity based on the
proposed deep binary codes (a binary string).

The experimental environment for the evaluation is a computer with an i7 CPU,
64GB of RAM, and an NVIDIA K40.

The source code of our bit-scalable deep binary codes and dynamic late fusion
are released online at: http://press.liacs.nl/researchdownloads/.

Convolutional layer
The size of
feature map

The number of
feature maps

pool3 28× 28 256
pool4 14× 14 512
conv5 14× 14 512
pool5 7× 7 512

Table 4.1: Overview of the deep convolutional layers.

4.4.1 Datasets

We evaluate the performance of the deep binary code and the dynamic late fusion
scheme on four publicly available datasets: INRIA Holidays [154], Oxford5K [122],
UKbench [40] and MIRFLICKR 1M [136].
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INRIA Holidays: this dataset consists of 1491 personal holiday photos that
can be divided into 500 image groups, where the first image of each group is the
query. The retrieval performance is measured in terms of mean Average Precision
(mAP).

Oxford5K: this is a dataset composed of 5062 images which are downloaded from
Flickr by searching 11 buildings or landmarks associated with Oxford. There are a
total of 55 queries corresponding to 11 buildings and the performance is measured
using mAP over the queries.

UKbench: a total of 10200 images are contained in this dataset, divided into
2550 groups. Each image is taken as the query in turn. The performance is
measured by the average recall of the top four ranked images, referred to as N-S
score.

MIRFLICKR 1M: this dataset includes one million images which are randomly
retrieved from Flickr. We use this dataset to test the scalability of our deep binary
code.

4.4.2 Evaluation of Deep Convolutional Feature Represen-
tation

We first evaluate the performance using deep convolutional representations (MP,
SP, MSMP and MSSP), where the feature vectors generated by the operations of
MP, SP, MSMP and MSSP are l2-normalized. Table 4.2 summarizes the perfor-
mance of the deep convolutional representations on each examined layer. For the
single-scale pooling process, we observe that the sum-pooling operation achieves a
better performance than max-pooling, while the multi-scale pooling scheme out-
performs the single-scale operation. In general, the scheme of MSMP obtained
the best search scores on each of the four benchmark datasets. It is also worth
noting that the search precision from the lower layers to higher layers reveals an
increasing trend, and the deep convolutional features on pool5 outperform fea-
tures taken from other layers. This is mainly because each activation from higher
deep layers correspond to a larger local region in the original image than those
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from a lower deep layer, hence more semantic information is represented at a high
deep layer.

Dataset Deep feature pool3 pool4 conv5 pool5

Holiday dataset (mAP score)

MP 57.24 71.40 78.50 79.27
SP 65.23 75.49 76.37 79.17

MSMP 67.22 76.91 80.24 80.65
MSSP 64.40 74.80 76.18 78.81

Oxford5K dataset (mAP score)

MP 22.67 31.70 46.38 49.03
SP 31.68 47.28 54.73 56.55

MSMP 33.74 49.39 57.39 58.05
MSSP 32.57 50.29 54.48 57.18

UKbench dataset (N-S score)

MP 2.7 3.34 3.72 3.73
SP 2.95 3.47 3.7 3.73

MSMP 3.04 3.54 3.74 3.75
MSSP 2.94 3.46 3.66 3.7

Table 4.2: The performance of various deep convolutional features on image re-
trieval on the benchmark datasets. The accuracy is measured by the mAP score for
the Holiday and Oxford5K datasets and the N-S score for the UKbench dataset.

4.4.3 Performance of Deep Binary Codes

We further test the image retrieval accuracy of the proposed deep binary codes
on the benchmark datasets and the results are displayed in Table 4.3. The results
demonstrate the effectiveness of the deep binary codes. We can see that the deep
binary codes from the same layer generated using SP, MSMP and MSSP have
similar performance on each dataset, and they all give better results than the
representation based on MP. Compared to the performance of the deep convolu-
tional features in Table 4.2, the dimensions of deep binary code are significantly
reduced from 256 float values (2048 bytes of memory) to 256 bits (32 bytes of
memory) on pool3 layer and 512 float values (4096 bytes) to 512 bits (64 bytes)
on pool4, conv5, and pool5 layers, respectively. Meanwhile, the computation-
time cost of the cosine similarity between two deep convolutional features (512
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float values) is 0.14ms, while the comparison of the Hamming distance measure
between two deep binary codes (512 bits) costs 0.007ms computation-time. The
performance of deep binary codes is very competitive to deep convolutional fea-
tures on the Holiday and UKbench datasets, which verifies that the deep binary
codes have significant advantages with respect to speed/storage trade-off over
the deep convolutional features, especially in the case of large scale image search.

Dataset Deep feature pool3 pool4 conv5 pool5

Holiday dataset (mAP score)

BMP 45.02 63.32 70.98 71.05
BSP 59.47 73.04 74.52 75.5

BMSMP 60.47 73.79 74.83 74.69
BMSSP 57.78 73.82 72.94 74.65

Oxford5K dataset (mAP score)

BMP 21.4 33.93 43.13 42.59
BSP 29.78 46.54 49.26 49.92

BMSMP 29.1 46.68 48.93 49.55
BMSSP 29.3 47.26 50.33 50.45

UKbench dataset (N-S score)

BMP 2.26 3.1 3.54 3.56
BSP 2.83 3.41 3.62 3.64

BMSMP 2.85 3.45 3.63 3.64
BMSSP 2.84 3.42 3.59 3.62

Table 4.3: The performance of various deep binary codes on image retrieval based
on four benchmark datasets. The accuracy is measured by mAP score for the
Holiday and Oxford5K datasets and N-S score for the UKbench dataset.

4.4.4 Comparison with Hashing Learning Approaches

In the research literature, the closest related competitive algorithms are the un-
supervised hashing learning methods [20, 23, 137, 138, 139, 140]. Specifically, to
make a trade-off towards accuracy, efficiency and storage requirements in large
scale image retrieval, hash function learning methods map deep convolutional
features to binary string representations. In this section, we evaluate the per-
formance of bit-scalable deep binary codes by comparing them with seven unsu-
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Method
Holiday dataset (mAP)

pool3 (bits) pool4 (bits) conv5 (bits) pool5 (bits)
256 128 64 512 256 128 512 256 128 512 256 128

BMSMP 59.86 54.17 42.33 73.91 71.42 64.32 74.79 70.77 65 75.32 72.22 64.67

LSH 44.48 34.13 23.64 69.42 59.93 53.33 71.57 66.75 58.49 69.47 67.69 57.82
SKLSH 37.2 25.74 23.37 64.62 53.93 39.32 67.78 60.7 46.56 66.97 60.53 47.17

ITQ 39.73 27.63 15.7 71.99 64.2 52.07 74.26 70.39 63.72 74.5 72 64.15
PCAH 12.05 18.11 26.4 37.98 48.3 48.17 46.56 62.48 62.96 44.14 60.49 62.65

SH 57.9 52.81 41.39 71.52 69.61 63.96 72.48 70.1 64.75 71.29 72.05 64.44
PCA-RR 43.98 28.78 30.82 68.29 64 53.13 73.17 69.69 64.02 72.71 70.66 64.05

DSH 53.02 46.24 37.84 63.9 60.7 53.5 66.32 60.84 55.5 67.99 63.86 57.31

Table 4.4: Comparison with various unsupervised hash function learning methods
on the Holiday dataset.

Method
Oxford dataset (mAP)

pool3 (bits) pool4 (bits) conv5 (bits) pool5 (bits)
256 128 64 512 256 128 512 256 128 512 256 128

BMSMP 29.1 22.6 19.06 46.68 40.71 35.41 48.93 48.02 41.45 49.55 47.36 40.51
LSH 21.35 15.84 4.21 40.57 30.33 23.4 47.2 46.07 39.85 48.72 44.78 33.51

SKLSH 16.32 14.04 7.52 39.45 26.88 23.98 46.47 38.53 29.75 50.15 39.96 33.6
ITQ 12.44 7.17 6.55 42.36 34.67 21.98 48.42 47.99 41.29 48.8 47.3 40.99

PCAH 10.6 12.13 7.01 20.27 23.9 27.08 33.17 37.77 37.58 35.08 41.54 38.45
SH 24.31 22.25 17.01 44.73 40.21 34.84 48.64 47.31 41.44 49.17 48.4 42.84

PCA-RR 17.56 16.76 13.01 38.59 31.4 27.39 48.9 47.91 39.53 49.14 47.07 40.49
DSH 21.89 20.22 17.75 32.2 28.25 2.43 40.78 37.58 30.6 43.32 38.06 28.78

Table 4.5: Comparison with various unsupervised hash function learning methods
on the Oxford5k dataset.

pervised hash function learning methods. The compared approaches include two
categories: data-independent methods (LSH and SKLSH) and data-dependent
methods (ITQ, PCAH, SH, PCA-RR and DSH). The implementation of these
methods are provided by the authors. Considering that the image representation
based on MSMP achieves the best performance (as the results demonstrated in
Table 4.2) and in order to make an objective comparison, all evaluated hashing
learning methods map the deep convolutional features generated by using the
MSMP operation. Moreover, different sizes of binary representations are evalu-
ated.

Table 4.4, 4.5 and 4.6 illustrate the search accuracy of all the evaluated approaches
on the benchmark datasets with different numbers of bits. We observe that deep
binary codes from deep convolutional layers pool3, pool4 and conv5 give better
results than the other hashing learning methods. The deep binary codes with
different bit sizes from all examined layers obtained the best results on both the
Holiday and UKbench datasets. The deep binary codes with 512, 256 and 128
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Method
UKbench dataset (N-S score)

pool3 (bits) pool4 (bits) conv5 (bits) pool5 (bits)
256 128 64 512 256 128 512 256 128 512 256 128

BMSMP 2.6 2.6 2.18 3.46 3.31 2.66 3.64 3.47 3.2 3.65 3.48 3.21

LSH 2.39 1.76 1.16 3.31 3.0 2.41 3.50 3.32 2.97 3.52 3.32 2.94
SKLSH 2.18 1.74 0.84 3.15 2.76 2.18 3.39 3.10 2.51 3.38 3.04 2.58

ITQ 1.78 0.89 0.33 3.22 2.82 2.19 3.54 3.4 3.11 3.55 3.41 3.12
PCAH 1.59 1.61 1.48 2.77 2.64 2.35 3.42 3.38 3.19 3.41 3.38 3.18

SH 2.6 2.58 2.12 3.43 3.21 2.65 3.58 3.45 3.11 3.59 3.45 3.18
PCA-RR 2.40 2.06 1.45 3.31 3.08 2.63 3.54 3.43 3.19 3.56 3.42 3.15

DSH 2.42 2.18 1.92 3.03 2.84 2.61 3.41 3.21 2.91 3.41 3.25 2.99

Table 4.6: Comparison with various unsupervised hash function learning methods
on the UKbench dataset.

bits on pool5 show competitive performance to SKLSH and SH on the Oxford5K
dataset. Regarding the data-dependent hash function learning approaches, the
computational complexity and the time-cost will be significantly increased when
the amount of training data becomes large. The deep binary code does not
suffer from this issue because it does not need retraining. Furthermore, it shows
its competitiveness and in some cases even better performance on image search
compared to the hash function learning approaches.

4.4.5 Evaluation of the Late Fusion Scheme

In this section, we verify the effectiveness of the proposed dynamic top N score-
level late fusion approach. Both binary string features and float value features
are evaluated.
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Figure 4.4: The search accuracy for different values of N . Four search scores from
each of the compared methods are used, and most of them obtain the best fused
score at value 3.
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Method Holiday dataset Oxford5K dataset UKbench dataset
(mAP score) (mAP score) (N-S score)
Best Fused Best Fused Best Fused

BMSMP 75.32 80.3 49.55 53.04 3.65 3.71
LSH 71.57 77.17 48.72 51.53 3.52 3.63

SKLSH 67.78 75.27 50.15 54.27 3.39 3.59
ITQ 74.5 77.85 48.8 50.75 3.55 3.61

PCAH 46.56 55.54 35.08 39.15 3.42 3.59
SH 72.48 79.52 49.17 54.17 3.59 3.68

PCA-RR 73.17 77.84 49.14 52.43 3.56 3.65
DSH 67.99 72.52 43.32 45.12 3.41 3.45

Table 4.7: The comparison of each evaluated method on image retrieval accuracy
with and without top N score-level late fusion (N = 3).

The impact of the parameter N . First, we construct experiments to validate
the influence of parameter N introduced in Formula (4.9). The normalized and
sorted search scores from the deep binary codes generated by the operations of
sum-pooling, max-pooling, multi-scale-sum-pooling and multi-scale-max-pooling
on deep convolutional layers pool3, pool4, conv5 and pool5 are used. The dy-
namic late fusion for the deep binary codes is based on Formula (4.9) and the
search accuracy on each test dataset is depicted in Figure 4.4. We find that the
fusion accuracy from each search score increases steadily with N , while slightly
decreasing at position top4. All the fused search scores show peak values at po-
sition top3, therefore, we set N equal to λ − 1, where λ is the number of fused
features.

Then, we compare the retrieval performance of the binary string representation
with the dynamic late fusion framework to the retrieval performance of the bi-
nary string representation without the dynamic late fusion framework. The deep
binary codes and learned binary codes by hash functions are evaluated, and 256
bits on pool3, 512 bits on pool4, conv5 and pool5 are used in this comparison.
The comparison results are shown in Table 4.7, “Best” denotes the best accuracy
of each method from deep convolutional layers, “Fused” denotes that the search
score is obtained using the dynamic late fusion scheme. We find that the search
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accuracy is significantly increased after the top3 late fusion. The deep binary
codes obtain the best fused scores on the Holiday and UKbench datasets and
show competitive results on the Oxford5K dataset. Moreover, the fused scores
also show competitive performance when compared to deep convolutional fea-
tures.

Comparison with other fusion schemes. In order to further verify the
strength of our late fusion method, we evaluate the dynamic late fusion scheme
on some search scores using real valued features and compare the retrieval accu-
racy with two state-of-the-art late fusion schemes: graph model late fusion [152]
and query-adaptive late fusion [148]. The comparison is carried out on the Holi-
day and UKbench datasets, and using the features of BoW (a 20K visual words
histogram generated from rootSIFT [104] local descriptors and the tf-idf weight
scheme), GIST [155] (a 512-dimensional global GIST descriptor), CNN [153] (a
4096-dimensional feature extracted from the first fully connected layer in the Alex
CNN architecture), RAND (a global descriptor generated through multiplying by
a random transform matrix) and HS (a 1000-dimensional HSV color histogram),
respectively. The implementation of search scores on the Holiday and UKbench
datasets from the five category features are offered by [156].

Formula (4.9) fuses the sorted search scores from binary string features using the
Hamming distance to measure the similarity. We then modified it in Formula
(4.10) to satisfy the distribution of search scores from float value features (BoW,
GIST, CNN, HS and RAND) when using the cosine distance to measure the
similarity. The N in Formula (4.10) is set to 4, because the number of search
scores is 5 and we should set it equal to 5− 1 = 4.

Score =
N∏
i=1

(Si)
weighti (4.10)

For graph model late fusion and query-adaptive late fusion, we use the code re-
leased from the papers [152] and [148] respectively. In order to make an objective
comparison, the parameter M in Formula (4.7) is set to 400 such that it is equal
to the corresponding parameter in the query-adaptive late fusion scheme. On
the Holidays dataset, our late fusion scheme outperforms graph model fusion and
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Method Holiday dataset UKbench dataset
(mAP score) (N-S score)

Graph model [152] 81.04 3.82
Query-adaptive [148] 87.98 3.84

Ours 88.61 3.84

Table 4.8: Results on benchmarks with different fusion methods. We compare our
method with Graph Fusion [152] and Query-adaptive [148] approaches.

the query-adaptive method. On the UKbench dataset, our result is equal to the

query-adaptive method and better than graph model fusion. The comparison

results further illustrate that the proposed dynamic top N late fusion method is

effective for the search scores from both the binary string representation and the

real valued representation.

4.4.6 Performance on Large Scale Image Search

In order to evaluate the performance of deep binary codes on large scale im-

age search, we further perform large-scale experiments by combining the MIR-

FLICKR 1M dataset with the Holiday, Oxford5K, and UKbench datasets. The

deep binary codes as well as the binary codes learned by hash functions with a bit

size of 256 on pool3, and a bit size of 512 on pool4, conv5 and pool5 are utilized

for the evaluation. The accuracy results and the average time-cost of learning the

hash function are summarised in Table 4.9. On each of the datasets with more

than one million images, the deep binary code obtains the best accuracy with and

without the dynamic late fusion scheme. This is further showing that the deep

binary code is suitable for large scale image search and the dynamic late fusion

scheme could significantly improve the search accuracy without requiring offline

calculation.

90



4.4 Experiments and Setup

Method Holiday+1M Oxford5K+1M UKbench+1M Learning
(mAP) (mAP) (mAP) time cost

Best Fused Best Fused Best Fused average(s)
BMSMP 71.76 77.19 49.18 52.04 90.48 91.56 -

LSH 60.68 69.26 44.24 47.3 83.26 87.36 -
SKLSH 55.33 66.99 46.1 51.18 79.79 87.19 -

ITQ 57.47 64.32 43.31 44.75 83.02 86.23 1120
PCAH 64.71 72.45 46.7 49.95 83.92 89.01 125

SH 64.3 73.98 46.08 50.38 86.4 90.28 1500
PCA-RR 61.91 70.27 45.44 49.38 85.44 88.77 190

DSH 52.13 59.13 38.8 39.8 76.98 78.69 400

Table 4.9: Comparison of the accuracy of each evaluated method for large scale
image retrieval with and without top N score-level late fusion (N = 3), score-level
late fusion (N = 3), and the time-cost of learning the hashing function.

Method #dimensions Holiday dataset Oxford5K dataset Ukbench dataset
(mAP score) (mAP score) (mAP score/N-S score)

VLAD+RootSift [4] 128float 62.5 44.8 –/–
VLAD+CSurf [157] 128float 73.8 29.3 83.0/–
mVLAD+Surf [157] 128float 71.8 38.7 87.5/–

FV+T-embedding [158] 128float 61.7 43.3 85.0/–
FV+T-embedding [158] 256float 65.7 47.2 86.3/–

Sum pooling+PCAW [65] 256float 80.2 58.9 –/3.65
Max pooling+l1 dist [64] 256float 71.6 53.53 84.2/–
Deep fully connected [63] 256float 74.9 43.5 –/3.42

Deep fully connected+finetune [63] 256float 78.9 55.7 –/3.56
BMSMP 512bit 74.83 49.55 90.78/3.65
FBMSMP 1792bit 80.3 53.1 92.15/3.71

Table 4.10: Comparison with state-of-the-art compact image representations on
three benchmark datasets. FBMSMP denotes deep binary codes after applying
dynamic top N late fusion.

Method #Dim Memory cost Holiday+Flicker 1M Oxford5K+Flicker 1M Ukbench+Flicker 1M
(Flicker 1M) (mAP score) (mAP score) (mAP score)

VLAD+RootSift[4] 128float 0.48G 37.8 – –
Geometric+VLAD[6] 128float 0.48G 60.7 43.8 –

BMSMP 512bit 0.06G 71.76 49.18 90.48
FBMSMP 1792bit 0.24G 77.19 52.04 91.56

Table 4.11: Comparison with state-of-the-art compact image representations on
large scale dataset. FBMSMP denotes deep binary codes after applying dynamic
top N late fusion.
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4.4.7 Comparison with state-of-the-art

We then compare the image retrieval results from deep binary codes with some
other important state-of-the-art low dimensional image features. The results are
from the papers [64] and [65], and the comparison is displayed in Table 4.10 and
Table 4.11. Note that, the size of deep binary codes is 256-bit on pool3, 512-bit on
pool4, conv5 and pool5. The results show that our deep binary codes outperform
hand-crafted image representations, such as VLAD and Fisher Vector, and even
outperform some recent CNN-based features. Moreover, after applying the top
N late fusion scheme on the deep binary codes, the performance has been further
improved.

4.5 Conclusions

In this chapter, we proposed a novel image representation called deep binary codes
which have several important advantages over deep convolutional feature repre-
sentations, as they can be calculated using a generic transferred model and there-
fore do not require additional training unlike many of the competitive algorithms
from the research literature. The experimental results on well-known datasets
as well as a large scale dataset show that deep binary codes are competitive
to state-of-the-art approaches and can significantly reduce memory requirements
and computational costs for large scale image search. Second, the dynamic late
fusion scheme estimates the quality of each feature in a query-adaptive manner
which highlights the strengths of score-level fusion without needing supervision
and offline calculations. In our experiments the dynamic late fusion scheme gave
consistent improvements in accuracy.
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Chapter 5

Comparison of Information Loss
Architectures in CNNs

Recent advances in image classification have been achieved by the application of
deep Convolutional Neural Networks (CNNs). Pooling and sub-sampling opera-
tions in the CNNs lead to invariance to local transformations, but result in loss
of accuracy. In this chapter, we propose a novel deep neural network called the
“Weighted Integration Architecture Network” (WIAN) that can effectively recover
the information loss due to the pooling operations in the CNNs. The proposed
WIAN reuses the information from the previous layers in the network and as-
signs a weight matrix to each layer; and then integrates them to further enhance
the image classification performance. Two weight value generation schemes are
investigated: the first one is calculated according to the responses or entropy in
the layer, and the second one is an adaptive learning scheme. Exhaustive experi-
ments on four standard benchmark datasets (CIFAR-10, CIFAR-100, MNIST and
SVHN) demonstrate the effectiveness and improved performance of the proposed
WIAN.
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5.1 Introduction

Prior to convolutional neural networks, the commonly and widely used approaches
in image classification were using the Bags-of-Words (BoW) model [159]. This
type of model first encodes the local features from the salient regions in the
image as a histogram of quantized visual words, and then feeds the histogram
into a SVM classifier [160]. This method is a type of orderless statistics that
incorporates spatial geometry into the BoW representation. Lazebnik et al. [77]
integrated a spatial pyramid framework into the BoW feature generation, that
counts the number of visual words inside a set of image sub-regions instead of the
whole image region. This procedure was further improved by using sparse coding
optimization for the construction of a visual vocabulary [161], obtaining the best
performance on the ImageNet 1000-class classification problem. The approaches
based on the visual word model can be viewed as zero order statistics (i.e., counts
of visual words), and discard a lot of valuable information of the image. The
Fisher Vector image representation introduced by Perronnin et al. [162] overcame
this issue and extracted first and second order statistics by employing the Fisher
Kernel [163], achieving state-of-the-art image classification results.

Recently, a significant performance gain on the task of image classification has
been made with deep convolutional neural networks (CNNs) [164, 165]. This
is mainly due to their ability to learn rich high level image representations as
opposed to hand-designed low-level features, as well as the availability of very
large and more comprehensive training data.

Traditional convolutional neural networks used for image classification consist of
several stacked convolutional layers (optionally followed by a normalization layer
and a pooling layer), fully connected layers and a softmax layer (a classifier) on
the top. Convolutional layers take the inner product of a linear filter and the
underlying receptive field followed by a nonlinear activation function at every
local region of the input. The outputs from each convolutional layer are called
feature maps. The fully connected layer has connections to all individual acti-
vations in the feature maps from the previous layer and the resulting vector can
be fed into the softmax layer for classification (as shown in Figure 5.1). Variants
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of this basic design are proposed to improve the performance of the network.
Most recent methods increase the depth of the CNN architecture as well as the
width of each layer to enhance the performance [47, 166]. However, increasing
the depth of CNNs brings the issue of vanishing gradients and over-fitting during
the optimization of the network, especially if the number of labeled examples
in the training set is limited. Several useful technologies are employed to ad-
dress the issue of over-fitting: data augmentation which increases the number of
training samples when using a small dataset, pre-training which initializes the
networks with pre-trained parameters rather than randomly set parameters, and
dropout which randomly omits half of the feature detectors, aims to prevent com-
plex co-adaptations on the training data and enhance the generalization ability.
The architecture of GoogleNet [42] is designed such that the depth and width of
the network is increased while the computational budget is keep constant. The
Network-in-Network (NIN) is an approach proposed by Lin et al. [47] that re-
places the linear convolution by a nonlinear convolution function to enhance the
abstraction ability of the neural network. Deeply supervised networks [167] focus
on the importance of minimizing the output classification error while reducing
the prediction error of each individual layer. A Siamese network [168] is trained
with a pairwise loss function that minimizes the distance between the same class
and maximizes the distance between different classes. A similar triplet network
[169] employs the triplet ranking loss function to preserve relative similarity re-
lations.

In this chapter, we propose a novel architecture called Weighted Integration Ar-
chitecture Network (WIAN) to boost the performance of image classification.
WIAN starts by reshaping the convolutional layers to the same shape by a con-
volution operation, and normalizes each reshaped convolutional layers to the same
scale. WIAN automatically learns a weight value matrix using an adaptive learn-
ing scheme or using the responses or entropy on each reshaped and normalized
convolutional layer. Then these convolutional layers are multiplied by the as-
signed weight matrixes respectively, and finally combined into a single layer by
element-wise summing, as illustrated in Figure 5.3. The main contributions of
WIAN are as follows:
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First, the weight matrix learning scheme for each layer is adaptive.

Second, the integration layer can effectively recover the spatial information loss
caused by the pooling operation and improve the accuracy of image classifica-
tion.

The remainder of this chapter is organized as follows: we make a review of related
work on the recovery of spatial information loss in Section 5.2. Section 5.3 gives
an overview of convolutional neural networks for image classification. Section 5.4
provides a detailed description of the proposed Weighted Integration Architecture
Network (WIAN). Section 5.5 presents the experimental results, and conclusions
are given in Section 5.6.

5.2 Related Work

In CNNs, a convolutional layer is usually followed by a pooling operation. The
pooling operation reduces the spatial resolution by computing a summary statis-
tic over a local spatial region (typically a max or average operation). The main
motivation behind the use of pooling is to promote invariance to local input trans-
formations (such as translation, occlusion and truncation of the local stimulus).
This is mainly due to the fact that the resulting outputs after pooling show invari-
ance to the spatial location within the pooling region. Hence, the pooling layer is
particularly important for the performance of image classification where local im-
age transformations may obfuscate the object identity. Additionally, the pooling
layer plays a vital role in preventing over-training while reducing computational
complexity for the task of image classification. However, these invariance achieved
by pooling come at the price of loss of accurate spatial information. Several re-
search efforts attempt to make up for the loss caused by the pooling operation.
A commonly used method is cascaded convolutional neural network. Sun et al.
[170] proposed to use cascaded convolutional networks to improve the accuracy
of facial landmarks detection and Toshev et al. [71] applied the cascaded convo-
lutional network to the human pose estimation. Tompson et al. [75] designed a
heat-map regression model to refine the locations of human body joints. Yang
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Figure 5.1: The architecture of a standard deep Convolutional Neural Network
(CNN) used for image classification.

et al. [171] designed a DAG-CNN which extracts multi-scale features across each

layer in the CNN and further integrates them for image classification. Inspired

by the architecture of DAG-CNNs, the proposed WIAN automatically learns a

weight matrix for each of previous layers and then integrates them for image

classification. Thereby, the WIAN could improve the performance of the CNN.

5.3 Convolutional Neural Networks Classification

Considering a standard CNN architecture, as depicted in Figure 5.1, there are N

convolutional layers, denoted as C1,..., CN . Each convolutional layer is followed

by a pooling layer denoted as P 1,..., PN , respectively. The objective of training

a traditional CNN is to maximize the probability of the correct class, which is

achieved by minimizing the softmax loss function. For a specific training set

which includes m images: {(I(i), L(i)); i = 1, ...,m}, where I(i) is the ith image

and L(i) ∈ {1, ..., K} is the class label. Let {x(i)j ; j = 1, ..., K} be the output of

the activation j in the last fully connected layer, then the probability that the

label of I(i) is j is given by

p
(i)
j =

exp(x
(i)
j )∑K

j=1 exp(x
(i)
j )

(5.1)
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The output of the fully connected layer is then fed into the softmax layer which
aims to minimize the following loss function:

Jθ = − 1

n
[

n∑
i=1

K∑
j=1

1{L(i) = j} log(p(i)j )] (5.2)

where 1{.} is the indicator function. Standard back-propagation is utilized to op-
timize the parameters of the network by computing the derivatives of the defined
loss function.

Additionally, the success of AlexNet [48] suggests that the features emerging at
the fully connected layers of a CNN trained for image classification can serve as
good descriptors, when for example, using a SVM classifier for image classifica-
tion.

5.4 Integration Architecture Network

As the architecture of standard CNNs did not take into account the information
loss caused by the pooling operation, in this section, we explore several useful
practices to integrate the information from the previous convolutional layers to
recover the accuracy loss in CNNs. Performance evaluation results demonstrate
that the integration of information from the previous convolutional layers could
effectively increase the performance of image classification.

5.4.1 Concatenate Architecture Network

Inspired by the architecture of GoogleNet, a simple and effective way to train
a high quality CNN is to concatenate the previous convolutional layer into a
new layer. The illustration of the concatenate architecture network (CONCAT)
is shown in Figure 5.2. In this architecture, we first reshape the convolutional
layers in the CNN into the same shape by applying a convolution operation. These
reshaped layers are normalized into the same scale and concatenated together.
The fully connected layer takes all outputs of neurons in the concatenated layers
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Figure 5.2: The illustration of the concatenate network (CONCAT). Each convo-
lutional layer is reshaped and normalized, and concatenated in one layer for further
processing.

Figure 5.3: The architecture of the proposed Integration Architecture Networks.
The layers are integrated by element-wise max, average or sum operations, re-
spectively. The resulting network is called Max Integration Architecture Network
(MIAN), Average Integration Architecture Network (AIAN) and Sum Integration
Architecture Network (SIAN), respectively.

as input to every single neuron it has. Finally the output from the fully connected
layer is fed into the softmax loss function optimizing classification.

5.4.2 Weighted Integration Architecture Network

The concatenate operation significantly increases the width of the integration
layer, which means a larger number of parameters are stored in this layer. How-
ever, a large amount of parameters results in high storage requirements, and
also it makes the network susceptible to over-fitting, especially if the amount of
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Figure 5.4: The architecture of the proposed Weighted Integration Architecture
Network (WIAN). A weight matrix is assigned to each integration layer.

labeled data in the training set is small. Additionally, because of the existing
redundant information between two adjacent layers, we propose to integrate the
previous convolutional layers (reshaped to the same dimensions by a convolution
operation and subsequently normalized) by applying element-wise max, average
or sum operations, as depicted in Figure 5.3. The resulting network architectures
are named the Max Integration Architecture Network (MIAN), the Average In-
tegration Architecture Network (AIAN) and the Sum Integration Architecture
Network (SIAN), respectively. Furthermore, we propose an adaptive method to
integrate the previous convolutional layers, which assigns to each previous convo-
lutional layer a weight matrix, respectively, and then combine them by element-
wise summing (as shown in Figure 5.4). Two weight schemes are explored in this
section, one relies on the responses or entropy of the convolutional layer and the
other one is based on an adaptive weight learning method.

Responses based weight scheme: as shown in Figure 5.4, for the given N

convolutional layers in the network, we denote the feature maps from layer Cn

as F n, n = 1, ..., N . These feature maps can be represented as a vector with
dimension wn × hn × cn, where wn and hn are the width and height of each
individual feature map, and cn denotes the number of feature maps of layer Cn.
We further associate each unit of a feature map with a spatial coordinate (x, y)

and the activation of this unit by a(x, y). The response value of each feature map
is calculated as rc =

∑wn

x=1

∑hn

y=1 a(x, y), c = 1, ..., cn. The response value of each
layer is computed as Rn =

∑cn

c=1 r
c. The weight value in the weight matrix of
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each layer is defined as:

weightnR =
Rn∑N
n=1R

n
(5.3)

Entropy based weight scheme: we further employ entropy information [172]
on each convolutional layer to define a weight value. The activation of each
unit a(x, y) in the feature map can be treated as a state pi, and the entropy of
each feature map is computed by ec =

∑wn

x=1

∑hn

y=1(pi × log pi), c = 1, ..., cn. The
entropy of each layer is computed as En =

∑ck

c=1 e
c. The weight value in the

weight matrix of each layer is then defined as:

weightnE =
En∑N
n=1E

n
(5.4)

For the responses or entropy based weight scheme, each unit in the weight matrix
is assigned the same value of response or entropy calculated from each layer, thus,
the weight matrix of responses or entropy based weight scheme can be reduced
to one single weight value.

Finally, the activation value of each unit an+1(x, y) in the integration layer is
calculated using the following formula:

an+1(x, y) =
N∑

n=1

weightn × an(x, y) (5.5)

Note that, in the specific case that the weight value from each layer is equal to
1/N , the scheme becomes equal to the scheme of AIAN. If the weight from each
layer is equal to 1, the scheme becomes equal to the scheme of SIAN.

Adaptive weight learning scheme: we further investigate an adaptive weight
learning scheme in this chapter. Different from the responses or entropy based
scheme where each unit in the weight matrix share the same weight value, the
adaptive weight learning scheme assigns to each of the integrated layer a weight
matrix. The initial values in each weight matrix are set to 1/k, where k is the
number of integrated layers. Then each unit in the weight matrix is automatically
updated during each iteration of the CNN training. Let weightn(x,y) be the value
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of each unit in the weight matrix of the nth layer, then the integrated value of
each unit an+1(x, y) in the integration layer is calculated as:

an+1(x, y) =
N∑

n=1

weightn(x,y) × an(x, y) (5.6)

5.5 Experimental Results

The proposed WIAN is implemented using Caffe [153]. The experimental envi-
ronment is consisted of a computer with an i7 processor, 32GB RAM, and an
NVIDIA TITANX. The network is trained using mini-batches of size 100 with-
out data augmentation. The training process starts from the initial weights and
learning rates, and it continues until the accuracy on the training set stops im-
proving. Then the learning rates are lowered by a factor of 10 according to an
epoch schedule determined on the validation set. The source code of WIAN is
available at: http://press.liacs.nl/researchdownloads/.

5.5.1 Datasets

We evaluate the performance of WIAN on four benchmark datasets: CIFAR-10
[164], CIFAR-100 [164], MNIST [8] and SVHN [173].

CIFAR-10: the CIFAR-10 dataset is constructed for object recognition. It is
composed of 10 object classes, with 6000 images per class. 50000 images are
selected for training, and the remaining 10000 images are used for testing. Each
image is given in the RGB-format with size 32× 32 pixels.

CIFAR-100: the CIFAR-100 dataset is similar to the CIFAR-10 dataset (both
use the same image size and format), except that the CIFAR-100 contains 100
classes with 600 images per class. CIFAR-100 also uses 50000 images for training
and the remaining 10000 images for testing.

MNIST: the MNIST dataset consists of images of hand written digits which are
28× 28 pixels in size. There are 60000 training images and 10000 testing images
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in total. For this experiment, all images of the dataset have been resized to a
fixed resolution of 32× 32 pixels.

SVHN: the Street View House Numbers (SVHN) dataset is a collection of house
numbers in the Google Street View images. It is composed of over 600000 color
images with a fixed resolution of 32× 32 pixels.

5.5.2 Details of Weighted Integration Architecture

The architecture of the network in the evaluation contains three convolutional
layers, followed by Rectified Linear Unit (RELU) normalization and pooling op-
erations, as well as a fully connected layer and a softmax classifier on top. More-
over, in order to integrate the previous convolution layers into one layer, we first
convolute them to the same shape, normalize them into the same scale and then
combine them.

According to the parameter configuration of each layer, the architecture of the
WIAN in the performance evaluation can be described concisely by layer notations
with the following layer sizes (CONV denotes the convolutional layer, RELU
denotes the rectified linear unit layer, POOL denotes the pooling layer, and FC
denotes the fully connected layer):

INPUT (32× 32× 3)

CONV 1(32× 32× 32) → RELU1 → POOL1(16× 16× 32)

CONV 2(16× 16× 32) → RELU2 → POOL2(8× 8× 32)

CONV 3(8× 8× 64) → RELU3 → POOL3(4× 4× 64)

CONV 1 → CONV 1_1(4× 4× 64)

CONV 2 → CONV 2_1(4× 4× 64)

CONV 3 → CONV 3_1(4× 4× 64)

CONV 1_1 + CONV 2_1 + CONV 3_1 + POOL3 → FC → Softmax
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Methods CIFAR-10 CIFAR-100 MNIST SVHN
WIAN(responses) 83.92 55.84 99.65 95.21
WIAN(entropy) 83.86 55.25 99.58 94.95

WIAN(adaptive learning) 83.15 54.25 99.55 94.6
MIAN 82.75 54.2 99.4 94.55
AIAN 82.9 54.1 99.46 94.68
SIAN 82.6 53.9 99.3 94.52

CONCAT [42] 83.3 55.06 99.51 94.94
CNNs [48] 81.5 53.5 99.3 94.15

Table 5.1: The performance comparison of different convolutional neural network
architectures on the four benchmark datasets, CIFAR-10, CIFAR-100, MNIST and
SVHN. The number in the table denotes the accuracy of image classification.

5.5.3 Evaluation Results

We present the performance of our proposed WIAN (three weight schemes are
evaluated, the first one is based on responses, the second one relies on entropy
information and the third one is an adaptive weight learning scheme) and make
a comprehensive comparison with general CNNs, Max Integration Architecture
Networks (MIAN), Average Integration Architecture Networks (AIAN), Sum Inte-
gration Architecture Networks (SIAN) as well as the directly concatenate (CON-
CAT) of the previous convolutional layers in the CNN architecture. The concate-
nation operation is similar to the inception module in GoogleNet [42]. A softmax
loss function is employed to predict the classification accuracy. The evaluation
results of the classification accuracy are listed in Table 5.1.

It turns out that the evaluated integration schemes (WIAN, MIAN, AIAN, SIAN
and CONCAT) all achieve improved performance when compared to general
CNNs. The WIAN (based on responses, entropy and adaptive weight learning
on each layer in the CNN) show much better results than the other approaches.
WIAN based on the weight calculated according to the responses on each layer
shows the best performance on all the benchmarks. The integration schemes of
MIAN, AIAN and SIAN show similar results on the test datasets.
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Figure 5.5: The comparison of the classification error among several possible
architectures on the four benchmark datasets.

Additionally, we further investigate the behaviours of the testing error during

each epoch in the CNN training. The performance of WIAN (responses), AIAN,

CONCAT and the general CNNs are evaluated. The graphs depicted in Figure 5.5

show that WIAN (responses) reaches the smallest testing error faster than others.
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This further demonstrates that the weighted integration of previous convolutional
layers can boost the performance of the network.

5.6 Conclusions

In this chapter, we propose to reuse the information encoded in previous layers
in the network to recover the precision loss due to the pooling operation in the
CNN. We present a novel Weighted Integration Architecture Network (WIAN) to
enhance the performance of CNN based image classification, where each layer is
multiplied by a weight matrix generated according to the responses or entropy of
the layer, adaptive learning and then element-wise summed together. The eval-
uation results demonstrated that the WIAN can yield high accuracy on image
classification, and WIAN shows better performance than the scheme that employs
direct concatenation, and the schemes employing max, average and sum integra-
tion of the previous convolutional layers in the CNN architecture. Moreover,
WIAN based on the weight value calculated according to the responses on each
layer is more robust than WIAN based on entropy value as well as the adaptive
learning scheme.
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis, we focus on large scale visual search. The topic of large scale vi-
sual search has seen a steady train of improvements in performance over the last
decade. In this task, given a query image containing a specific object or scene,
the goal is to return the images containing the same object or scene that may be
captured from different viewpoints, under changed illumination and maybe oc-
cluded. The Bag-of-Words model was originally proposed for document retrieval.
The introduction of salient point methods has made this model applicable to the
image domain where it translates to the visual word model. General salient point
methods involve a detector and a descriptor. The detector locates the salient
regions in the image and the descriptor encodes discriminative information in the
salient region into a local feature. Based on the salient point method, an image
can be transformed into a collection of local feature vectors, which can be viewed
as prototypes of words in text. The visual word model has been the state-of-the-
art for many computer vision applications. It has greatly advanced the research
of instance retrieval in the past ten years, and many improvements have been
proposed.

One important aspect in the visual word model is the degree to which the salient
point methods are invariant to image translation, scaling, and rotation, as well
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as partially invariant to illumination changes, and robust to local geometric dis-

tortion. In Chapter 2, we presented a comparison of the existing salient point

detectors and descriptors on diverse image distortions. These comparative exper-

imental studies can benefit researchers in choosing an appropriate detector and

descriptor for different computer vision applications. According to the evalua-

tion results, we find that the FAST detector had the highest repeatability score

compared to other detectors, moreover it had the lowest detection time-cost per

point. Regarding the criterion of recall-precision, our experiments showed that

the descriptors of SIFT, BRISK, and FREAK were the best performing affine

invariant descriptors. Furthermore, evaluation of the time complexity showed

that the binary descriptors are efficient with respect to feature description and

matching.

Existing salient points methods tend to perform poorly to viewpoint changes. In

Chapter 3, we presented the Retina-inspired Invariant Fast Feature, RIFF, which

was designed for invariance to scale, rotation, and affine image deformations.

The RIFF descriptor is based on pair-wise comparisons over a sampling pattern

loosely based on the sampling pattern seen in the human retina and introduces

a method for improving accuracy by maximizing the discriminatory power of the

point set. The main contribution of the RIFF descriptor is in constructing the

descriptor, where the discriminative power is optimized by ranking and deleting

points with low distinctiveness. In our Bag-of-Words image retrieval tests on

three well known datasets, RIFF outperformed the other feature descriptors with

respect to invariance to scale, rotation, and affine transformations. Furthermore,

we presented a performance evaluation of real valued and binary string salient

point descriptors. The time complexity and space requirements showed that

binary string descriptors are efficient in terms of feature extraction time and

memory usage. With respect to the criterion of the mAP score, the image copy

detection experiments showed some significant strength of binary string local

descriptors: FREAK clearly outperformed SIFT on invariance to rotation, scale,

and affine transformations; BRIEF had the best accuracy testing invariance to

image blur and was among the best in robustness to cropping.
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In recent years, the focus on image search has shifted from the visual word model
to deep Convolutional Neural Networks (CNNs) features. The CNN is a hierar-
chical structure that has been shown to outperform hand-crafted features in a
number of vision tasks, such as object detection, image segmentation, and classi-
fication. The power of CNNs mainly comes from the large number of parameters
and the use of large scale datasets with rich annotations. Using the features
extracted from CNN models, researchers have reported competitive performance
compared to the classic visual word model. In Chapter 4, we proposed a novel
image representation called deep binary codes which have important advantages
over deep convolutional feature representations, as they can be calculated using
a generic transferred model and therefore do not require additional training. The
experimental results on well-known datasets as well as a large scale dataset show
that deep binary codes are competitive to state-of-the-art approaches and can sig-
nificantly reduce memory and computational costs for large scale image search.
Moreover, in Chapter 5, we proposed to reuse the information in the previous
layers in the network to recover the precision loss due to the pooling operation
in the CNN. The presented Weighted Integration Architecture Network (WIAN)
can enhance the power of the CNN model.

6.2 Future Work

In the future, we will try to improve our work in the following directions:

Convolutional neural networks based local descriptor generation: The
generation of effective local image descriptors plays an important role in the
applications of computer vision involving baseline stereo vision, structure from
motion, visual words based image search, image classification and object detec-
tion, etc. The existing schemes of local descriptor generation can be categorized
into hand-crafted or automatically learned schemes. Recent work focuses more
on automatic learning of local descriptors. Learning based schemes usually op-
timize an objective function to generate robust and distinctive local descriptor.
In particular, the most common objective functions are designed to minimize the
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distance between the descriptors from the same 3D location (scale and location)
or same class label extracted under varying imaging conditions and different view-
points, and maximize the distance between patches from different 3D locations or
different class labels. Concurrently, the automatically learning schemes of local
descriptors based on deep convolutional neural networks have recently made dra-
matic progress. A Siamese network trained with a pair-wise loss ranking function
and a triplet network trained with a triplet loss ranking function that also min-
imizes the distance (in the embedded space) between patches of the same labels
and maximizes the distance between patches of different labels are used to auto-
matically learn high performance local descriptors. However, all these methods
suffer from huge training complexity, because they directly train CNNs using the
pair-wise or triplet list, the length of which scales with the quadratic or cubic
with the number of images in the training dataset. Therefore, it is important to
further develop techniques to address huge training complexity while maintaining
the robustness of the learned local descriptors. Another issue we need to address
is the limitation of training data. The typical solution is to generate more train-
ing data from existing data using data augmentation schemes, such as scaling,
rotating and cropping. Hence, it is important to further develop techniques for
generating or collecting more comprehensive training data, which could make
the networks learn better features that are robust to various changes, such as
geometric transformations, and occlusion.

Convolutional neural networks based high level image representation:
The outputs from the fully connected layer in the CNN are mostly used as image
representation. However, the image representation from a fully connected layer
suffers from the lack of description of local patterns, which is especially critical
when occlusions or truncations exist in the images. With respect to the sensi-
tivity to local stimulus, CNN features from the bottom or intermediate layers
have shown promising performance. These discriminatively trained convolutional
kernels respond to specific visual patterns that evolve from bottom to top layers.
While capturing local activations, the intermediate features are less invariant to
image translations. Compared to the pooling operation, which is usually utilized
to map the intermediate features into global feature, one promising direction for
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future research is to find more efficient ways to convert the intermediate features

into low dimensional and high distinctiveness image representations, in order to

avoid the information loss caused by pooling operations. Second, it is known that

the top layers in CNNs are sensitive to semantics, while intermediate layers are

specific to local patterns. For the image representation, we can obtain multiple

layer features in the pre-trained CNN through one feed-forward step. It is not

trivial to predict which layers are superior. Therefore, the fusion of the features

from multiple layers is a good practice to further improve the accuracy of image

search. Moreover, we can also fuse the features from different models to represent

the image.

Convolutional neural networks based deep hash learning: In order to

achieve efficient large scale image search, the high performance of the supervised

deep hashing model appears to be promising. The first direction is to increase

the ability to generalize by increasing the width or depth of the networks, for ex-

ample, the width and depth of the CNN models in the literature [42, 51]. Larger

networks could normally bring higher quality performance, but have the danger

of over-fitting and require very large computational resources. A second direc-

tion is to define a good loss ranking function. As the commonly used pair-wise

loss functions and triplet loss functions employ Euclidean distance to measure the

similarity in the input space, we can replace the Euclidean distance with different

similarity metrics for different input spaces. Moreover, we can also incorporate

constraint information from the input space to the loss functions. A third di-

rection towards more powerful models is to design more specific deep networks.

Currently, almost all of the CNN-based schemes adopt a shared network for their

predictions, which may not be distinctive enough. The study by Ouyang et al.

[174] has verified that object-level annotation is superior to image-level annota-

tion for object detection. This can be viewed as a kind of specific deep network

that just focuses on the object region rather than the whole image. Another issue

we need to note is that in some situations the amount of the annotated data is

insufficient and it could result in over-fitting during the training of the CNN.

Semi-supervised deep hashing makes use of the labeled data together with the
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unlabeled data and may be able to overcome this limitation in the CNN training.
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English Summary

With the ever-growing amount of image data on the web, much attention has been
devoted to large scale image search. It is one of the most challenging problems
in computer vision for several reasons. First, it must address various appearance
transformations such as changes in perspective, rotation and scale existing in the
huge amount of image data. Second, it needs to minimize memory requirements
and computational cost when generating image representations. Finally, it needs
to construct an efficient index space and a suitable similarity measure to reduce
the response time to the users. This thesis aims to provide robust image repre-
sentations that are less sensitive to above mentioned appearance transformations
and are suitable for large scale image retrieval.

Early approaches, the Bag-of-Words (BoW) model and its variants, have domi-
nated the research on large scale image retrieval. The pipeline of BoW for image
retrieval mainly consists of three steps: (i) salient point feature extraction; (ii)
visual vocabulary generation; (iii) BoW based feature encoding. In each step,
many efforts have been made to achieve state-of-the-art performance on large
scale image search.

First, we investigated the strengths and weaknesses of the existing salient point
detectors and descriptors on diverse image distortions. The comparative experi-
mental studies we presented can support researchers in choosing an appropriate
detector and descriptor to generate the BoW based image representation.

Compared to the real valued local descriptors, binary string local descriptors have
the advantage of low memory requirements and efficient matching via Hamming
distance. We further proposed to use the “K-majority” cluster method with ANN
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search to generate a BoW image representation based on binary string local de-
scriptors. The evaluation results showed that the binary string descriptor based
BoW model has low memory requirements for vocabulary storage and competi-
tive performance compared with real valued local descriptor based BoW image
representation.

Since the existing salient point methods are sensitive to viewpoint or perspective
changes, we further proposed a novel salient point descriptor named RIFF. RIFF
is generated according to pair-wise intensity comparisons over a sampling pattern
inspired by the human retina. The evaluation results showed that the RIFF based
BoW image representations outperformed other feature descriptors with respect
to invariance to scale, rotation, and viewpoint transformations.

More recently, image representations generated by the convolutional neural net-
works (CNNs) have demonstrated their high performance compared to the state-
of-the-art for image retrieval. In this thesis, we explored both real valued and
binary string image representations based on feature maps from the layers within
CNNs. In addition, we presented a fusion scheme to further improve image search
accuracy. Moreover, we designed a more powerful CNN architecture to improve
the robustness of CNN models.

Finally, although this thesis makes a substantial number of contributions to large
scale image retrieval, we also presented additional challenges and future research
based on the contributions in this thesis.
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Met de al maar groeiende hoeveelheid visuele data op het web is er veel aandacht
besteed aan het grootschalig zoeken naar afbeeldingen. Er zijn verschillende re-
denen waarom dit een van de grote uitdagingen op het gebied van computer
vision is. Allereerst moet er rekening gehouden worden met visuele transfor-
maties zoals perspectief, rotatie en schaling die zijn toegepast op afbeeldingen
uit deze enorme hoeveelheid data. Ten tweede is het noodzakelijk de vereiste ho-
eveelheid geheugen en rekenkracht te minimaliseren die bij het genereren van de
afbeeldingsrepresentaties nodig is. Tenslotte moet er een efficiënte index-ruimte
en een geschikte afstands maat gecreëerd worden om wachttijd van de gebruiker
te verkleinen. Deze scriptie beoogt robuuste afbeeldingsrepresentaties te leveren
die minder gevoelig zijn voor de hiervoor genoemde visuele transformaties en
geschikt zijn voor het grootschalig zoeken naar afbeeldingen.

Al langer bestaande technieken zoals het Bag-of-Words (BoW) model en haar
varianten domineren het onderzoek naar grootschalig zoeken naar afbeeldingen.
Het process van BoW bestaat voornamelijk uit drie stappen: (i) salient point
feature extraction, (ii) visual vacabulary generation, (iii) het op BoW gebaseerde
feature encoding. Veel onderzoek heeft zich gericht op het bereiken van de state-
of-the-art prestaties voor grootschalig zoeken naar afbeeldingen.

Als een eerste stap onderzoeken we de sterke en zwakke punten van de bestaande
salient point detectoren en descriptoren op diverse verdraaiingen van afbeeldin-
gen. De gepresenteerde vergelijkende experimenten kunnen onderzoekers bijstaan
in het selecteren van een passende detector en descriptor voor het genereren van
een op BoW gebaseerde representatie van afbeeldingen.

135



NEDERLANDSE SAMENVATTING

Vergeleken met locale descriptoren van reële getallen hebben locale discriptoren
bestaande uit een binaire getallenreeks het voordeel weinig geheugen nodig te
hebben en efficiënt vergeleken te kunnen worden met behulp van de Hamming-
afstand. Verder stellen we voor om de “K-majority” cluster methode met ANN-
search te gebruiken voor het genereren van BoW afbeeldingsrepresentaties gebaseerd
op locale descriptoren van binaire getallenreeksen. De evaluatie-resultaten laten
zien dat deze aanpak weinig geheugen gebruikt voor vocabulaire opslag en com-
petetief presteert vergeleken met BoW afbeeldingsrepresentaties gebaseerd op
locale descriptoren van reële getallen.

Aangezien bestaande salient point methodes gevoelig zijn voor de kijkhoek en ve-
randeringen in perspectief stellen we ook een nieuwe salient point descriptor voor,
RIFF genaamd. RIFF wordt gegenereerd op basis van paarsgewijze intensiteits-
vergelijkingen tussen selectie-patronen geïnspireerd door de patronen van het
menselijke netvlies. De evaluatie hiervan laat zien dat de op RIFF gebaseerde
BoW afbeeldingsrepresentaties andere kenmerkbeschrijvingen met betrekking tot
schaal, rotatie en kijkhoek transformaties weet te overtreffen.

Recentelijk hebben afbeeldingsrepresentaties gegeneerd aan de hand van convolu-
tional neural networks (CNNs) laten zien goed te presenteren ten opzichte van de
state-of-the-art als het gaat om het zoeken naar afbeeldingen. In deze scriptie on-
derzoeken we reëel-waardige en binaire representaties van afbeeldingen gebaseerd
op feature maps uit de lagen van de CNNs, en presenteren we een fusie-schema
om de nauwkeurigheid bij het zoeken naar afbeeldingen verder te verbeteren.
Daarnaast ontwerpen we een krachtigere CNN-architectuur om de robuustheid
van CNN modellen te verbeteren.

Tenslotte, ondanks de substantiële bijdragen van deze scriptie op het gebied van
het grootschalig zoeken naar afbeeldingen, presenteren we verdere uitdagingen
en nieuwe onderzoeksrichtingen naar aanleiding van de bijdragen uit dit proef-
schrift.
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