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Bayesian community detection

]

Abstract

We introduce a Bayesian estimator of the underlying class structure in the stochastic block
model, when the number of classes is known. The estimator is the posterior mode correspond-
ing to a Dirichlet prior on the class proportions, a generalized Bernoulli prior on the class
labels, and a beta prior on the edge probabilities. We show that this estimator is strongly
consistent when the expected degree is at least of order log? n, where n is the number of nodes
in the network.

4.1 Introduction

The stochastic block model (SBM) (Holland et al., [1983) is a model for network data in
which individual nodes are considered members of classes or communities, and the prob-
ability of a connection occurring between two individuals depends solely on their class
membership. It has been applied to social, biological and communication networks, for ex-
ample in [Park and Bader|(2012), Bickel and Chen|(2009) and |Snijders and Nowickil (1997)
amongst many others. There are many extensions of the SBM for various applications,
including the degree-corrected SBM (Karrer and Newman, 2011} |Zhao et al.|[2012) which
accounts for possible heterogeneity among nodes within the same class, and the mixed-
membership SBM (Airoldi et al.,[2008)), in which the assumption that the classes are disjoint
is removed. These extensions allow for additional modelling flexibility.

Two main SBM research directions are the recovery of the class labels (community
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118 CHAPTER 4. BAYESIAN COMMUNITY DETECTION

detection) and recovery of the remaining model parameters, consisting of the probability
vector generating the class labels, and the class-dependent probabilities of creating an
edge between nodes. In this paper, we focus on community detection, noting that once
strong consistency of a community detection method has been established, consistency of
the natural plug-in estimators for the remaining parameters follows directly by results in
(Channarond et al.l|2012).

A large number of methods for recovering the class labels has been proposed. Those
most closely related to this work are the modularities. Newman and Girvan| (2004) in-
troduced the term modularity for ‘a measure of the quality of a particular division of a
network’. They described one such measure for models in which edges are more likely to
occur within classes than between classes, in which case there is a community structure
in the colloquial sense, although the SBM does not require this assumption. Bickel and
Chen|(2009) studied more general modularities, defining them as functions of the number
of connections between all combinations of classes and the proportion of nodes placed in
each class. They introduced the likelihood modularity, and provided general conditions
under which modularities are consistent. Their method and theory was extended to the
degree-corrected SBM by |Zhao et al|(2012).

Spectral methods for community detection have gained in popularity, and refined re-
sults on error bounds are now available for the SBM and extensions of the SBM, as evi-
denced inRohe et al.|(2011),|Jin|(2015), |Sarkar and Bickel (2015) and|Lei and Rinaldo|(2015)
for example. Many other algorithms have been introduced, most of them currently lacking
formal proofs of consistency. A notable exception is the Largest Gaps algorithm (Chan-
narond et al.||2012), which only takes the degree of each node as its input, and is strongly
consistent under a separability condition.

A Bayesian approach towards recovering the class assignments in the SBM was first
suggested by |Snijders and Nowicki (1997), motivated by computational advantages of
Gibbs sampling over maximum likelihood estimation. They considered two classes and
proposed uniform priors on the class proportions and the edge probabilities. This ap-
proach was extended in (Nowicki and Snijders, 2001) to allow for more classes, with a
Dirichlet prior on the class proportions and beta priors on the edge probabilities. Hofman
and Wiggins| (2008) described a similar Bayesian approach for a special case of the SBM
and suggested a variational approach to overcome the computational issues associated
with maximizing over all possible class assignments.

Bayesian methods for the SBM have barely been studied from a theoretical point of
view, although recent results for parameter recovery by Pati and Bhattacharya (2015), for
detecting the number of communites by Hayashi et al|(2016) and for an empirical Bayes
approach to community detection by Suwan et al.| (2016) are encouraging. In this work,
we provide theoretical results on community detection, establishing that the Bayesian
posterior mode is strongly consistent for the class labels if the expected degree is at least of
order log? n, where n is the number of nodes. This is proven by relating the posterior mode
to the maximizer of the likelihood modularity of Bickel and Chen|(2009). The likelihood
modularity has been claimed to be strongly consistent under the weaker assumption that
the expected degree is of larger order than log n (Bickel and Chenl}|2009; Bickel et al.||2015;
Zhao et al|2012). However, their proof assumes that the likelihood modularity is globally
Lipschitz, while it is only locally so. The Bayesian method is based on a combination
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of likelihood and prior, and for this reason the proof of our main theorem, Theorem
runs into a similar problem. We were able to resolve this only under the slightly stronger
assumption that the expected degree is of larger order than (log n)?. The literature on other
methods for community detection shows that the order logn is sufficient for consistent
detection. However, these results are usually obtained under additional assumptions such
asda restriction to two classes or an ordering of the connection probabilities, and their
implications for the likelihood or Bayesian modularities is unclear. We discuss this and
the relevant literature further following the statement of our main result in Section [4.3.5]

This paper is organized as follows. We introduce the SBM and the associated notation
in Section[4.2] Our main results are in Section[4.3] where we describe the prior and the link
with the likelihood modularity, present the consistency results and discuss the underlying
assumptions, especially those on the expected degree. The method is illustrated on a data
set in Section [4.4} and we conclude with a Discussion in Section[4.5] All proofs are given
in the Appendix.

4.2 The stochastic block model

We introduce the notation and generative model for the SBM with K € {1,2,...} classes.
Consider an undirected random graph with n nodes, numbered 1,2,. .. ,n, and edges en-
coded by the n X n symmetric adjacency matrix (A;;), with entries in {0,1}. Thus A;; = Aj;
is equal to 1 or 0 if the nodes i and j are or are not connected by an edge, respectively. Self-
loops are not allowed, so A;; = 0 for i = 1,...,n. The generative model for the random
graph is:

1. The nodes are randomly labeled with i.i.d. variables Zi,...,Z,, taking values in a
finite set {1,...,K}, according to probabilities 7= = (7y,. .., 7).

2. Given Z = (Zi,...,Zy), the edges are independently generated as Bernoulli vari-
ables with P(A;; = 1| Z) = Pz, z,, for i < j, for a given K X K symmetric matrix
P = (Pap).

The probability vector r is considered fixed, but unknown. Although this is not visible in
the notation, the matrix P may change with n, a case of particular interest being that P
tends to zero, which gives a sparse graph. The order of magnitude of ||P|l.c = max, p Pap
is the same as the order of magnitude of p,, = 3., , Ta7pPqp, the probability of there being
an edge between two randomly selected nodes. The expected degree of a randomly selected
node is A, = (n — 1)p,, and twice the expected total number of edges in the network is
in = n(n = 1)ph.
The likelihood for the model is given by

Aij —Aij Oap(Z a —VYa a(Z
[ 172, = Pzz) =20 [ [z = [ | P @ (1 = Pap) et D=0arD [ ] ), (a1)
i<j i a<b a

where O,p(Z) is the number of edges between nodes labelled a and b by the labelling Z,
Nap(Z) is the maximum number of edges that can be created between nodes labelled a and
b, and n,(Z) is the number of nodes labelled g, and a and b range over {1,2,...,K}.
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More formally, for a given labelling e = (ey,...,e,) € {1,...,K}" of nodes, and class
labels a,b € {1,...,K}, we define

0, (e) Zz] z]l{el—a ej=b}> a#b,
ZI<JAljl {ei=a,ej=b}> 4= b,

na(e np(e), a#b,
nab
sna(e)(na(e) = 1), a=b,
n
ng(e) = 1{e,~=a}~

Since the matrix A is symmetric with zero diagonal by assumption, for a # b the variable
Oap(e) can also be written as ;. ; Aij[1(e,=a,e;=b) + 1{e;=a,e;=b)], Which explains the dif-
ferent appearances of the diagonal and off-diagonal entries. The numbers n,;(e) are equal
to the numbers O, (e) when all A;; are equal to 1. We collect the variables O, (e) and
nap(e) in K X K matrices O(e) and n(e).

Now consider the K X K probability matrix R(e,c) and K probability vector f(e) with
entries

Rap(e,c) Z 1erma.cim fule) = 2@ (4.2)

The row sums of R(e,c) are equal to R(e,c)1 = f(e), while the column sums are equal
to 17R(e,c) = f(c)T. Thus, the matrix R(e,c) can be seen as a coupling of the marginal
probability vectors f(e) and f(c). If e = ¢, then it is diagonal with diagonal f(c) = f(e).
More generally, the matrix can be viewed as measuring the discrepancy between labellings
e and c. This can be precisely measured as half the L;-distance of R(e, c) to its diagonal, as
evidenced by Lemma which is noted in Bickel and Chen|(2009).

For a vector v we denote by Diag(v) the diagonal matrix with diagonal v, and for a
matrix M we denote its diagonal by diag (M).

Lemma 4.1. For every labelling c,e in the K-class stochastic block model:
1 n
n Z:; Iic;e;) = 5IIDiag(f(c)) = R(e, )l

Proof. The diagonal of R(e,c) gives the fractions of labels on which ¢ and e agree. Hence
the left side of the lemma is 1 — Y, Raq(e,c) = X 4(fa(c) — Rga(c)) . The elements of
both K X K matrices Diag(f(c)) and R(e,c) can be viewed as probabilities that add up
to 1. Thus the sum of the differences of the diagonal elements is minus the sum of the
differences of the off-diagonal elements. Because f,(c) > Rgq(e,c) for every a, we have
Ya(fale) — Raale,c)) = Yalfa(c) — Raa(e,c)|. Similarly the off-diagonal elements of
Diag(f(c)), which are zero, are smaller than the off-diagonal elements of R(e,c) and hence
we can add absolute values. Thus the sum over the diagonal is half the sum of the absolute
values of all terms in Diag(f(c)) — R(e,c). O
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4.3 Bayesian approach to community detection

Our main results are presented in this section. We first discuss the choice of prior in
Section[4.3.1} and define the estimator, in Section[4.3.2] The resulting Bayesian modularity
is closely related to the likelihood modularity of Bickel and Chen|(2009). The relationship
is clarified in Section We briefly consider the issue of identifiability in the SBM
in Section and conclude with our main theorem on the strong consistency of the
Bayesian modularity in Section[4.3.5]

4.3.1 The prior

We adopt the Bayesian approach of[Nowicki and Snijders|(2001). We put prior distributions
on the parameters of the stochastic block model with K known, the vector 7 and the matrix
P, yielding a joint probability distribution of (A, Z, z, P). Next we marginalize over 7 and
P as inMcDaid et al(2013), leading to a joint distribution of (A, Z). Finally we “estimate”
the unobserved vector Z by the posterior mode of the conditional distribution of Z given
A. From a frequentist point of view this means that Z is treated as a parameter of the
problem, equipped with a hierarchical prior that chooses first 7 and then Z. Accordingly
we shall change notation from Z to e, reserving Z for the frequentist description of the
stochastic block model in Section[4.2]

The prior on x is a Dirichlet, and independently the P,;, for a < b receive independent
beta priors:

m ~ Dir(a,...,a),

Pay "5 Beta(Bi,By), 1<a<b<K.

This is essentially the same set-up as in Nowicki and Snijders| (2001) and [McDaid et al.
(2013), except that we use a more flexible Beta(f;, f52) instead of a uniform prior on the
P,p. We assume a, 1, f2 > 0.

We complete the Bayesian model by specifying class labels e = (ey,. . .,e,) and edges
A= (Ajj : i <j)through

ej|mP L

r, 1<i<n,

Ajj | m,Pe ind. Bernoulli(P,¢;,), 1<i<j<n.
Abusing notation we write p(e), p(A | e) and p(e | A) for marginal and conditional prob-
ability density functions.

4.3.2 The Bayesian modularity

The Bayesian estimator of the class labels will be the posterior mode, that is:

‘e = argmaxp(e | A).

The posterior mode can be interpreted as a modularity-based estimator in the sense of
Bickel and Chen|(2009), in that it maximizes a function that only depends on the O, (e) and
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the n,(e). This can be seen from the joint density of (4, e), which is found by marginalizing
the likelihood over & and P. The conjugacy between the multinomial and Dirichlet
distributions gives the marginal density of the class assignment e as:

- nato) Hamad ™ [(aK)
ple) = sz l_[ Ta D(a) dm = [(a)KT(n + aK) n fnale) + ). (43)

Here the integral is relative to the Lebesgue measure on the K-dimensional unit simplex
and D(a) = I(a)®X /T(Ka) is the norming constant for the Dirichlet density. Similarly the
conjugacy between the Bernoulli and Beta distributions gives the marginal conditional
density of A given e as:

pi-1 Po—1
P (1= Pgp)’™”
_ 1_[ Oap(e) ng <e)—oah<e>| | ab a
Ale) = pe—-p b dP
p( I ) f[;)’l]K(K+1)/2 L ab ( ab) B(ﬁlsﬂz)

a<b

= g’ WB(Oab(e) + ﬁl’nab(e) - Oab(e) + ﬁz), (4.4)

where B(x,y) = I(x)I(y)/T(x +y) is the beta-function. The joint density of A and e is given
by the product of and (4.4), and n~? times its logarithm is up to a constant that is free
of e equal to

K
QOgp(e) = % Z log B(Ogp(€) + Pr,nap(e) — Ogp(e) + f2) + % ZlogI‘(na(e) +a).

1<a<b<K

This is a modularity in the sense of|Bickel and Chen|(2009), which we define as the Bayesian
modularity. As p(e | A) is proportional to p(e, A), the posterior mode is equal to the class
assignment that maximizes the Bayesian modularity, so the Bayesian estimator is equal
to:

‘e = argmax Qpg(e). (4.5)

e

4.3.3 Similarity to the likelihood modularity

The Bayesian modularity Qp(e) consists of a two parts, originating from the likelihood
and the prior on the classification, respectively. The first part is close to the likelihood
modularity given by

Oap(e) )

nap(e)

Q@)= > naer(

1<a<b<K

where 7(x) = xlog x+(1—x) log(1—x). This criterion, obtained in Bickel and Chen,(2009),
results from replacing in the log conditional likelihood of A given e (the logarithm of
with Z replaced by e and discarding the term involving the parameters 7,) the parameters
P, by their maximum likelihood estimators Py = Ogp(e)/ngp(e). In other words, the
parameters are profiled out rather than integrated out as for the Bayesian modularity. The
corresponding estimator
enr = argmax Qarr(e)
e
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is consistent, and hence one may hope that the Bayesian estimator can be proved consis-
tent by showing that the Bayesian and likelihood modularities are close. This will indeed
be our line of approach, but the execution must be done with care. For instance, the second,
prior part of the Bayesian modularity does play a role in the proof of strong consistency,
although it is negligible when proving weak consistency.

The following lemma links the Bayesian and likelihood modularities.

Lemma 4.2. There exists a constant C such that, for & = {1,...,K}" the set of all possible
labellings:

05(6) - Oare(e) — 0p(e)] < 108"

s

max 2
ecs& n

for
Qp(e) = iz Z naq(e) log(na(e)) — %

ang(e)+|lal>2

Consequently maxeeg|QB(e) - QML(e)| = 0(log n/n).

4.3.4 Identifiability and consistency

A classification eis said to be weakly consistent if the fraction of misclassified nodes tends
to zero (partial recovery), and strongly consistent if the probability of misclassifying any of
the nodes tends to zero (exact recovery). In defining consistency in a precise manner, the
complication of the possible unidentifiability of the labels needs to be dealt with. From the
observed data A we can at best recover the partition of the n nodes in the K classes with
equal labels Z;, but not the values Z1,. . . ,Z,, of the labels, in the set {1,2,...,K}, attached
to the classes. Thus consistency will be up to a permutation of labels.

To make this precise define, for a given permutation (1,...,K) — (a(1),...,0(K)),
the permutation matrix P, as the matrix with rows

T
€s(1)

T
eo‘(K)’

for ey,. . .,ex the unit vectors in RX. Then pre-multiplication of a matrix by P, permutes
the rows, and post-multiplication by P the columns: P,R is the matrix with jth row
equal to the o(j)th row of R, and RP is the matrix with jth column the & (j)th column of
R. Thus P;R(e,Z) is the matrix that would result if we would permute the labels of the
classes of the assignment e, and P, PPL and P,R(e, Z)P! are the matrices that would result
if we would relabel the classes throughout. Since we cannot recover the labels, the matrix
Ps;R(e,Z) is just as good or bad as R(e, Z) for measuring discrepancy between a labelling e
and the true labelling Z; furthermore, nothing should change if we choose different names
for the classes.
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Thus, taking into account the unidentifiability of the labels, by Lemma an estimator
e is weakly consistent if
IPsR(e, Z) — Diag(f(2))lh — 0,

for some permutation matrix P,. The classification € is said to be strongly consistent if
P(P5R(e,Z) = Diag(f(2))) = 1,

for some permutation matrix P,.

The permutation matrix P, is for large n uniquely defined: if ||(P5);R — Diag(m)|l; <
min, 7, for j = 1,2, then (P;); = (Ps)2. This follows because the assumption implies
that ||(P5); 'Diag(n) — (P,), 'Diag(n)|l; < 2min, 74, by the triangle inequality and the
fact that the L1-norm is invariant under permutations. Furthermore, for P, = (P5)2(Pgs); 1
the left side is ||P,Diag(z) — Diag(n)|l;, which is at least two times the sum of the two
smallest coordinates of 7 if P, # I.

A necessary requirement for consistency is that the classes can be recovered from
the likelihood, i.e. the model parameters must be identifiable. If 7 has strictly positive
coordinates, so that all labels will appear in the data eventually, then as explained in Bickel
and Chen|(2009) an appropriate condition is that P does not have two identical rows. If
7, = 0 for some a, then class a will never be consumed; the identifiability condition
should then be imposed after deleting the ath column from P. Thus, we call the pair (P, )
identifiable if the rows of P are different after removing the columns corresponding to zero
coordinates of 7. Throughout we assume that P is symmetric.

4.3.5 Consistency results and assumptions

We are now ready to present our results on consistency for the Bayesian maximum a
posteriori (MAP) estimator (4.5). Theorem [4.3|shows strong consistency of the Bayesian
estimator if 1,, > (logn)2. The proof rests on a proof of weak consistency under similar
conditions, stated in the appendix as Theorem [4.4]

Recall that p, = 3, j ma7pPap is the probability of a new edge, and A, = (n — 1)p, is
the expected degree of a node.

Theorem 4.3 (strong consistency). (i) If (P,n) is fixed and identifiable with 0 < P < 1
and m > 0 then the MAP classifier'e = arg max, Qg(e) is strongly consistent.

(ii) IfP = p,S, where (S, ) is fixed and identifiable with S > 0 and = > 0, then the MAP
classifier'e = arg max, Qp(e) is strongly consistent if A, > (logn)?.

The theorem distinguishes two cases: is the dense case, Whﬂeis the sparse case. The
second is the most interesting of the two, as it touches on the question how much infor-
mation is required to recover the underlying community structure. Much recent research
effort has gone into determining detection and computational boundaries, in particular
for special cases of the SBM with K = 2 (see e.g. Mossel et al|{(2012), Chen and Xu|(2014),
Abbe et al[(2014) and |Zhang and Zhou|(2015)).

Weakly consistent estimation of the class labels for an arbitrary, but known, number
of classes is possible under the assumption A,, > logn, as this was shown to hold for
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spectral clustering by Lei and Rinaldo|(2015). Strong consistency of maximum likelihood
was shown to hold in the special cases of planted bisection (K = 2 and equal community
sizes) and planted clustering (equal community sizes and P, can take two values) by Abbe
et al{(2014);|Chen and Xu|(2014), again under the assumption A, > log n.|Gao et al.{(2015)
and |Gao et al.| (2016) achieve optimality in different senses, under assumptions on the
average within-community and between-community edge probabilities; |Gao et al,|(2015)
introduce a two-stage procedure which achieves the optimal proportion of misclassified
nodes in a special case where P}, can only take two values, while|Gao et al. (2016)) obtain
minimax rates for the proportion of misclassified nodes in the degree corrected SBM.

Strong consistency of the likelihood modularity for an arbitrary number of classes
K has been claimed under the same assumption 4, > log n (Bickel and Chen}2009), and
those results have been extended to the degree-corrected SBM (Zhao et al.l|2012). However,
these results were obtained by application of an abstract theorem to the special case of the
likelihood modularity, which would require the function 7(x) = xlogx + (1 — x) log(1 —
x), or the function o(x) = xlogx, to be globally Lipschitz. As r and ¢ are only locally
Lipschitz, it is still unclear whether A,, > logn is a sufficient condition for either weakly
or strongly consistent estimation by maximum likelihood. From our proof of Theorem
which proceeds by comparing the Bayesian modularity to the likelihood modularity, it
immediately follows that A,, > (log n)? is certainly sufficient. Given weak consistency the
problem can be reduced to a neighbourhood of the true parameter on which the Lipschitz
condition is reasonable. However, it is precisely our proof of weak consistency that needs
the additional log n factor.

The Largest Gaps algorithm of/Channarond et al.|(2012) is strongly consistent provided
that min g, | ZIk(:l ax(Pak — Ppr)| is at least of order /log n/n, implying that at least one
of the P,y is of the same order, and thus A,, > +/nlogn. This much stronger condition is
not surprising, as the Largest Gaps algorithm only uses the degree of a node and does not
take into account any finer information on the group structure, such as the information
contained in the Oy.

To the best of our knowledge, for K > 2, it remains to be shown that A > logn is
sufficient for strong consistency of any community detection method for the general SBM.
For the minimax rate for the proportion of misclustered nodes in community detection,
when only classes of sizes proportional to n are considered, a phase transition when going
from the case K = 2to K > 3 was observed by|Zhang and Zhou|(2015). Their results show
that if K = 2, communities of the same size are most difficult to distinguish, while if K > 3,
small communities are harder to discover. This shift in the nature of the communities that
are harder to detect may be what has been preventing a general strong consistency result
under the assumption A,, > logn so far.

4.4 Application to the karate club data set

Some options for implementing the Bayesian modularity are given in Section [4.4.1] after
which the results of applying the Bayesian and likelihood modularities to the well-studied
karate club data of|Zachary|(1977) are discussed in Sectionm
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Figure 4.1: Communities detected by the Bayesian modularity when K = 2 (left) and K = 4
(right), with @ = 1 = 2 = 1/2. The polygons contain the two groups the karate club was
split into; the left one is Mr. Hi’s club, the right one is the Officers’ club. The shapes of
the nodes represent the communities selected by the modularities. Figure made using the
igraph package (Csardi and Nepusz, 2006).

4.4.1 Implementation

Two recent works explicitly discuss implementation of Bayesian methods for the SBM.
McDaid et al.| (2013) followed the approach of Nowicki and Snijders| (2001) and added a
Poisson prior on K. After marginalizing over & and P, they employ an allocation sampler
to sample from the joint density of K and z given A, and use the posterior mode to estimate
K. Their algorithm can scale to networks with approximately ten thousand nodes and ten
million edges. |Come and Latouche| (2014), claiming that the algorithm of [McDaid et al.
(2013) suffers from poor mixing properties, propose a greedy inference algorithm for the
same problem. For the karate club data in Section[4.4.2] the network was small enough that
a tabu search (Glover} [1989), run for a number of different initial configurations, yielded
good results. We used a = 1/2 for the Dirichlet prior, and f; = 2 = 1/2 for the beta prior.

4.4.2 Karate club

Zachary| (1977) described a karate club which split into two clubs after a conflict over
the price of the karate lessons. The new club was led by Mr. Hi, the karate teacher of
the original club, while the remainder of the old club stayed under the former Officers’
rule. The data consists of an adjacency matrix for those 34 individuals who interacted
with other club members outside club meetings and classes. Each of these individuals’
affiliations after the conflict is known.

The communities selected by the Bayesian modularity for K = 2 and K = 4 are given
in Figure[4.1] In both instances, the tabu search led to nearly the same solution for both the
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Bayesian and likelihood modularities, only differing at one node for K = 4, which is not
surprising in light of Lemma For K = 2, the results of Bickel and Chen|(2009) for this
data set are recovered. For K = 4, the partition in Figure [4.1] yields a higher value of the
likelihood modularity than the partition into four classes found by Bickel and Chen|(2009),
and an even higher value is obtained by switching club member 20 to the second-largest
class. This discrepancy is likely due to the heuristic nature of the tabu search algorithm,
and for the same reason, it may be the case that improvement over the partitions found
by the Bayesian modularity in Figure [4.1|are possible.

For K = 2, the communities found by the algorithms do not correspond in the slightest
to the two karate clubs, instead grouping the nodes with the highest degrees, correspond-
ing to Mr. Hi, the president of the original club, and their closest supporters, together.
Incidentally, this partition is the same as the one returned by the Largest Gaps algorithm
of (Channarond et al.|(2012), which solely uses the degrees of the nodes and discards all
other information.

These bad results are no reason to shelve the Bayesian and likelihood modularities, as
there is no reason to believe that the two karate clubs form communities in the sense of
the stochastic block model. Mr. Hi and the club’s president are clear outliers within their
groups, and neither of the algorithms were designed to be robust to such a phenomenon.
The communities selected by the modularities are communities in the sense that they
form connections within and between the groups in a similar fashion. This sense does not
correspond to the social notion of a community in this setting.

The results for four classes unify the social and stochastic senses of community. The
prominent members of each of the new clubs are placed into two separate, small, commu-
nities. The other members are classified nearly perfectly, with two exceptions. However,
one of those exceptional individuals is the only person described by Zachary|(1977) as be-
ing a supporter of the club’s president before the split, who joined Mr. Hi’s club, making
this person’s affiliation up for debate. The second is described as only a weak supporter of
Mr. Hi. The increased number of communities allows for some outliers within the social
communities, and leads to a more detailed understanding of the dynamics within both of
the groups. We essentially recover the two communities, each with a core that is more
connective than the remainder of the nodes.

4.5 Discussion

An advantage of Bayesian modelling is that it does not solely result in an estimator, but
in a full posterior distribution. The posterior mode studied in this paper is but one aspect
of the posterior, and its good behaviour in terms of consistency is encouraging. Further
study into other aspects in the posterior may prove to be fruitful. One possible research
direction would be to use the posterior to quantify uncertainty in the estimate of the class
labels. A second issue that may be resolved by the Bayesian approach is the question of
estimating the number of classes, K. This remains an important open question, as noted
by Bickel and Chen|(2009), despite recent attempts (e.g. Saldana et al.|(2014),|Chen and Lei
(2014) andWang and Bickel|(2015)). By introducing a prior on K, such as the Poisson-prior
suggested by |[McDaid et al|(2013), the number of communities K can be detected by the
posterior.
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4.6 Proofs

After stating some repeatedly used notation, this appendix starts with the proof of Theo-
rem[4.4] which is a theorem on weak consistency of the Bayesian modularity. It is followed
by a number of supporting Lemmas, after which we proceed to the proof of Theorem [4.3]
and some additional supporting Lemmas.

We write diag (P) for the diagonal of P if P is a matrix, and Diag(f) for the diagonal
matrix with diagonal f if f is a vector.

4.6.1 Weak consistency

The following quantities will be used in the course of multiple proofs. The function Hp,
with domain K X K probability matrices, is given by, for r(u) = ulogu + (1 — u) log(1 —u),

1 (RPRT) 4
Hp(R) = 2 ;;(Rl)a(Rl)b T (m) : (4.6)
For 79(u) = ulog(u) — u, define
1 (RPR")4p
Gr(R) = %;(Rl)a(m)b o Grn i)

The sums defining these functions are over all pairs (a,b) with 1 < a,b < K, unlike the
sums defining the modularities Qp and Qpsr, which are restricted to a < b.

Theorem 4.4 (weak consistency). (i) If (P, ) is fixed and identifiable, then the MAP
classifier'e = arg max, Qg(e) is weakly consistent.

(ii) If P = p,S for p, — 0, and (S,x) is fixed and identifiable, then the MAP classifier
e = arg max, Qp(e) is weakly consistent provided np, > (logn)?.

Proof. By Lemma [4.2) the Bayesian modularity Qg is equivalent to the likelihood mod-
ularity Qur up to order (logn)/n. With the notation Ogp(e) = Ogp(e) if a # b, and
Oup(e) = 204p(e) if a = b, the likelihood modularity is in turn equivalent up to the same
order to _

Oap(e) )

ma(On(@) ) *7)

L) = o 2 nal@m ()

a,b
Indeed the terms of Qu1(e) for a < b are identical to the sums of the terms of L(e) for
a < b and a > b, while for a = b the terms of Q1 (e) and L(e) differ only subtly: the first
uses ngq(e) = %na(e)(na(e) — 1), where the second uses %na(e)z. Thus the difference is
bounded in absolute value by the sum over a of (where e is suppressed from the notation)

n_ﬁr(am)_ na(na_l)r( (5aa )| < i”T”m_'_ n%z l( 5aa )
nNg

2n2 \ n? 2n? ng—1)/17 2n 2n? n(ng — 1)

where [(x) = x(1Vlog(1/x)), in view of Lemma[4.7] We now use that nal(u/ng) < logn, <
logn,for0 <u < 1.
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Combining the preceding, we conclude that

I
nmp=mgmuw—gma|=0(°fﬂ.

Since Qgp(e) > Qp(Z), by the definition of e, it follows that L(e) — L(Z) > —2n,.1. The
next step is to replace L in this equality by an asymptotic value.

For x equal to a big multiple of (||P||&/? v n=1/2)/n'/2, the right side ofLemmatends
to zero and hence max, 5(6) - E(a(e) | Z)”m/n2 is of this order in probability. We also

have, by Lemma

max{|—E(O(e) | Z) - R(e,Z)PR(e,Z)TH = max ~||Diag(R(e, 2)) diag (P)|| . — 0,
e |ln 00 e n o0

as each entry of Diag(R(e, Z)) diag (P) is bounded above by one. By Lemma ‘vr(x/v) -
vr(y/v)‘ < I(]x — y|), uniformly in v € [0,1], where I(x) = x(1 V log(1/x)). It follows that

1/2

P 1z, n—l/Z
Un,Z = n’léiX|L(e) - L(e)‘ = OP(Z(””T))’

for

(R(e’Z)PR(&Z)T)ab)
fa(e) fu(e)

Combining this with the preceding paragraph, we conclude that L(e) > L(Z) — 2(5,.1 +

Nn.2)-
Proof offil For given § > 0, let R be the set of all probability matrices R with

Le) =5 Y fale)fie) o
a,b

min||P,R — Diag(R"1)||, 2 6. and min (R71), > 6.

Py 1 a:mwg >0

Here the minimum is taken over the (finite) set of all permutation matrices P, on K labels.
Furthermore, set

n:= inf [Hp(Diag(R"1)) - Hp(R)].

inf
ReRs
where Hp is as defined in (4.6). Because Rs is compact and the maps R — Hp(R) and
R + Diag(R”1) are continuous, the infimum in the display is assumed for some R € Rs.
Because no R € Rs can be transformed into a diagonal element by permuting rows and
every R € R has a nonzero element in every column a with 7, > 0, Lemma [4.8/ shows
that n,, > 0.
Because L(e) = Hp(R(e, Z)) for every e, and R(Z,Z) = Diag(f(Z)) = Diag(R(e,Z2)71),
we conclude that

Hp(Diag(R(e,;Z2) 1)) — Hp(R(€,2)) < 2(n1 + Nn.2)-

If 2(5p1 + Mn2) is smaller than n, then it follows that R(e, Z) cannot be contained in Rs.

Since R(e;Z)T1 = f(2) L 7, by the law of large numbers, for sufficiently small § > 0
this must be because R(e, Z) fails the first requirement defining Rs. That is, ||P,R(e, Z) —



130 CHAPTER 4. BAYESIAN COMMUNITY DETECTION

Diag(f(Z))|l; < 8 for some permutation matrix P,. As this is true eventually for any

& > 0, it follows that minp_ ||P5R(e,Z) — Diag(n)ll; 5 0.

Proof of il In view of Lemma the number n = n,, which now depends on n, is
now bounded below by p,, times a positive number that depends on (S, ). The preceding
argument goes through provided 1,1 + nn2 is of smaller order than n,. This leads to

[(\pnln) +log(n)/n < pu, or (pu/n) log* (n/(pullSlis)) < P} 0

Lemma 4.5. Let 5ab(€) = Ogp(e) ifa# b, and 5ab(€) =20g4p(e) ifa=0b. Foranyx > 0,
]P’(maxna(e) _E(5(e) IZ)H S xnz) < 9K "*2p=X"n? /(8] Pllw+dx/3)
e o0

Proof. This Lemma is adapted from Lemma 1.1 in Bickel and Chen|(2009). There are K"
possible values of e and || - || is the maximum of the K? entries in the matrix. We use
the union bound to pull these maxima out of the probability, giving the factor K*2 on the
right. Next it suffices to bound the tail probability of each variable

5ab(e) - E(aab(e) | Z) = Z(Aij -E(A;j | Z))(l{e,- =a,ej = b} + 1{e; = b,e; = a}).
i,j

The ngp(e) variables in this sum are conditionally independent given Z, take values in
[-2,2], and have conditional mean zero given Z and conditional variance bounded by
4var(A;j | Z) < 4Pz,z,(1 - Pz,z;) < 4||P|lw. Thus we can apply Bernstein’s inequality to
find that

a(e) ~E(Oup(e) 1 Z)| > xnz) < 2= X1 /(8n4p()|Pllo+4xn? /3)

P(5

Finally we use the crude bound n,;(e) < n? and cancel one factor n?. O

Lemma 4.6. Define Oap(e) = Ogp(e) ifa # b, and Oap(e) = 204 (e) ifa =b. Then, for
R(e,Z) as defined in (4.2),

E(5ab | Z) = n’R(e,Z)PR(e,Z)T — nDiag(R(e, Z) diag (P)).

Proof. A similar expression, not taking into account the absence of self-loops, appears in
Bickel and Chen! (2009).

E(Oap(e) | Z =) = )" Pe,e,1es = a.e; = b

i#)
= Z Py Z Hc; =a',c; =b'}1{e; = a,e; = b}
a’,b’ i#j
=ZPabfZ {ei=d'.c; =b'}1{e; =a.e; = b} - abzpaa’lcl—a}{ =aj
a’,b’
=n Z Py Raar(e,c)Rpp (e,c) aanPa’a’Raa (e,c).
a’,b’
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Lemma 4.7. The function t : [0,1] — R satisfies |v(x) — 7(y)| < I(Ix — yl), for I(x) =
2x(1 V log(1/x)).

Proof. Write the difference between x log x and ylogy as | fxy(l +log s) ds|. The function
s > 1+ logs is strictly increasing on [0,1] from —co to 1 and changes sign at s = e

Therefore the absolute integral is bounded above by the maximum of

1

[x—ylAe”
—f (1+logs)ds = —(lx —y| Ae V) loglx —y| Ae!
0
and
1
f (1+logs)ds < |x —yl.
1-|x—y|ve!
O
Proof of Lemmal4.2]

Proof. The second assertion of the lemma follows from the first and the fact that max, Qp(e)
< (log n)/n. It suffices to prove the first assertion.
Recall that the Bayesian modularity is given by

n?Qp(e) = Z log B (Oqp(e) + L.nap(e) — Oap(e) + 1) Zlogr(na(e) +a).  (4.8)

a<b

We shall show that the first sum on the right is equivalent to Qs (e), and the second sum
is equivalent to Qp(e). We show this by comparing the sums defining the various mod-
ularities term by term. For clarity we shall suppress the argument e. We will repeatedly
use the following bound from (Robbins} 1955): for n € N,

[(n+1) = V2zn™/2e e, (4.9)

with (12n+1)7! < a, < (12n)71, as well as the fact that I{s) is monotone increasing for s >
3/2. In addition, we will bound remainder terms by using the inequality x log((x+c)/x) < c
for ¢ > 0 and the fact that x log((x — 1)/x) is bounded for x > 1.

First sum of (4.8).
Upper bound, case 1: Oqp # 0 and ngp # Ogyp

We apply (4.9):

I‘(Oab + Lﬁl_] + l)r(nab - ab + LﬁZ.] + 1)
108B(Out * Prstan = Oan o) = log [ + i+ Fo))

_ Oab + LﬁlJ _ ab — ab + I.ﬁZJ

= Oalog (nab + [ f1+fa] -1 +(nap = Oap) log (nab + [ f1+fa] -1

+ (LB +1/2)10g(0gp + L 1)) + (LB2) + 1/2) log(nap — Ogp + L B2])

— (Lp1 + Bl — 1/2) log(nap + LBy + B2l — 1) +log Var — [ Bi] = Lol + L1 + ol — 1

+ Qgp + ﬁab ~ Yab>
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where a4p, Bap and y,p are bounded by constants. By the inequality x log((x + ¢)/x) < ¢
for ¢ > 0, and the fact that x log((x — 1)/x) is bounded for x > 1, we find the upper bound:

ab

0]
logB(Oab + ﬂhnab = Ogp + ﬁz) < ngpt ( n

ab

) +O0(logngp).

Upper bound, case 2: ngp =1 and Ogp = 0 orngp = Ogp, 0orngp =0
In both cases, the corresponding term of the likelihood modularity vanishes, whereas
the contribution of the Bayesian modularity is either log B(1 + f1, f2), log(f1,1 + f2), or
log B(f1. B2):

Upper bound, case 3: ngp > 2 and Ogp = 0 orngp = Ogp
Again, the corresponding term of the likelihood modularity vanishes. We show the com-
putations for the case n,, = Og4p; for the case O,y = 0, switch f; and f,. By :

I(n, I
logB(Ogp + Pranap — Oap + f2) = log B(nap + f1.f2) < log (;(: : EﬁE/J}:j/)?zj/)gZ)
Nap + LP1]

= (nap + LB1]) log (m) +(1/2) log(nap + LP1])
= (Lp1 + Bo] +1/2) log(nap + LB1 + P2l) + logI(B2) + LB1 + P2l — 1+ 8ap — €aps

where 8,5 and €, are bounded by constants. Arguing as before, the first term is bounded,
while the remainder is of order log(n,p). A lower bound is found analogously.

Lower bound The computations for the lower bound are completely analogous, except
that we require Ogp, + 1 = 2 and ngp — Ogp + P2 = 2. We study four cases. The cases (1)
Ogp 2 2and ngp — Ogp = 2,(2) ngp = 0and (3) ngp > 0 and ngp = Ogp or Ogp = 0 are
similar to cases 1, 2 and 3 respectively of the upper bound. The fourth caseisn,, —Oqp = 1
and Ogp > 2,0r Oyp = 1and ngp —Ogp > 1. In both instances, the likelihood modularity is
equality to a bounded term minus log n,5. By similar calculations as before, the Bayesian
modularity is of the order log n,j as well.

Conclusion We find:

o
" 10g B(Oas + frona = Oup + i) = 3 na,,f( “b) + 0(logn).
Nap

a<b a<b a

Second sum of (4.8).
We consider three cases. If n, + L] = 0, then & > 0, implies n, = 0, in which case
logT(n, + a) = log I(a), which is bounded. In case n, + [a] = 1, the term log I(n, + @) is
equal to either log I(1 + ) or log I'(«) and thus bounded as well. For the case n, + La] > 2,
we study the upper bound I'(n, + @) < I(n, + La] + 1) and the lower bound I'(n, + @) >
I(ng + La]). By applying in both cases, we conclude:

Z log(n, + @) = Z nglogn, — n+ O(logn).
a

ang+lal>2
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Lemma 4.8. For any probability matrix R,
Hp(R) < Hp(Diag(R" 1)). (4.10)

Furthermore, if (P, ) is identifiable and the columns of R corresponding to positive coordi-
nates of  are not identically zero, then the inequality is strict unless P, R is a diagonal matrix
for some permutation matrix P,.

Proof. This Lemma is related to the proof that the likelihood modularity is consistent given
in Bickel and Chen| (2009). This proof however rests on their incorrect Lemma 3.1, and
thus we provide full details on how the argument can be adapted to avoid the use of their
Lemma 3.1 altogether.

For R a diagonal matrix the numbers (RPR”),5/(R1)4(R1); reduce to P,j. Conse-
quently, by the definition of Hp,

p(Diag(f)) Z fafs 7(Pap) (4.11)
For a general matrix R, by inserting the definition of r,
_ T 1o -FPRDab.
T (RPRT)qp
+ 3 ((RD(RD)s - (RPRM)4p) log(l - M).
a

a,b

Because (R1)4(R1), — (RPRT)4, = (R(1 — P)RT),p, with 1 the (K X K)-matrix with all
coordinates equal to 1, we can rewrite this as

(RPRT) 4 (RPRT)qy,
; aZb,Raa’Rbb/[ a'b’ log (R1)o(R1)p +(1- Pa’b’)l()g(l - (Rl)a(Rl)b)]'

By the information inequality for two-point measures, the expressions in square brackets
becomes bigger when (RPRT),;/(R1)4(R1), is replaced by P, with a strict increase
unless these two numbers are equal. After making this substitution the terms in square
brackets becomes 7(P, ), and we can exchange the order of the two (double) sums and
perform the sum on (a,b) to write the resulting expression as

D (R"1)w (RTD)p(Pasy) = Hp(Diag(R"1)).
a’,b’

This proves the first assertion (4.10) of the lemma.
If R attains equality, then also for every permutation matrix P, by the equality Hp(P,R)
= Hp(R) and the fact that (P,R)T1 = RT1, we have

Hp(P,R) = Hp (Diag((PJR)Tl)). (4.12)

We shall show that if R satisfies this equality and PR has a positive diagonal, then P,R
is in fact diagonal. Furthermore, we shall show that there exists P, such that PR has a
positive diagonal.
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Fix some (P, ), that maximizes the number of positive diagonal elements of P,R over
all permutation matrices P, and denote R = (P,),R. Because the information inequality
is strict, the preceding argument shows that can be true for P, = (Py)n, (giving
PR = R) only if

(RPRT)ab

P 'y = ==,
VT (R1)4(R1),

whenever R, Rppr > 0. (4.13)
Denote the matrix on the right of the equality by Q.

If R has a completely positive diagonal, then we can choose a = a’ and b = b’ and find
from equation (4.13), that P, = Qgp, for every a,b. If also R,er > 0, then we can also
choose b = b’ and find that P, = Qgp, for every b. Thus the ath and a’th rows of P are
identical. Since all rows of P are different by assumption, it follows that no a # a’ with
Rua > 0 exists.

If R does not have a fully positive diagonal, then the submatrix of R obtained by delet-
ing the rows and columns corresponding to positive diagonal elements must be the zero
matrix, since otherwise we might permute the remaining rows and create an additional
nonzero diagonal element, contradicting that (P, ),, already maximized this number. If I
and € are the sets of indices of zero and nonzero diagonal elements, then the preceding
observation is that R;; is zero for every i,j € I. If & > 0, then we need to consider only R
with nonzero columns. For i € I a nonzero element in the ith column of R must be located
in the rows with label in I°: for every i € I there exists k; € I° with Rg,; > 0. Then, for
i,jel,

(1) fora=k;, b =kj, a’ =i, b’ = j, equation (4.13) implies Ok;k; = Pij.

(2) fora=k;,belfa =i b =b, equation implies Qk,» = Pip.

(3) fora=k;,belf a =k; b =b,equation implies Qk,» = Pk,p-
We combine these three assertions to conclude that, for a,i € I and b € I¢,

1) (2)
Pui = Pig = Qkik, = Pik, = Prois

(2) (3)
Pap = Qkov = Proop.

Together these imply that the ath and the k,th row of P are equal. Since by assumption
they are not (if 7 > 0), this case can actually not exist (i.e. k = 0).

Finally if 7, = 0 for some a, then we follow the same argument, but we match only
every column i € I with 7; > 0 to a row k; € I°. By the assumption on R such k; exist,
and the construction results in two rows of P that are identical in the coordinates with
g > 0. O

Lemma 4.9. For any fixed (K X K)-matrix P with elements in [0, 1], uniformly in probability
matrices R, as p, — 0,

pl (Hpnp(Diag(RTI)) - Hpnp(R)) - Gp(Diag(R" 1)) - Gp(R). (4.14)

n
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Furthermore, if (P, ) is identifiable and the columns of R corresponding to positive coordi-
nates of 7 are not identically zero, then the right side is strictly positive unless SR is a diagonal
matrix for some permutation matrix S.

Proof. From the fact that (1 — u)log(1 — u) + u| < u?, for 0 < u < 1, it can be verified
that, |p;; 17 (pnu) — (u log pn + To(u))| < pn — 0, uniformly in 0 < u < 1. It follows that,
uniformly in R,

(RPRT)qp

R E) * O

1
- Hp,p(R) = logpn 3 (RPR )ap + 3 (R1)a(RD )y
n a,b a,b

The first term on the right is equal to log p,(RT1)TP(RT1), and hence is the same for R
and Diag(R71). Thus this term cancels on taking the difference to form the left side of
(4.14), and hence follows.

The right side of is nonnegative, because the left side is, by Lemma[4.8] This fact
can also be proved directly along the lines of the proof of Lemma [4.8] as follows. Write

) (RPRT)a,  (RPRT)g
GP(R) = ; ‘;,Raa’Rbb’ [Pa’b’ log (Rl)a(Rl)b - (Rl)a(Rl)b]

By the information inequality for two Poisson distributions the term in square brackets
becomes bigger if (RPRT),5/(R1)4(R1)} is replaced by P,/p. It then becomes 7 (Py/3) and
the double sum on (a, b) can be executed to see that the resulting bound is Gp <Diag(RT1)).
Furthermore, the inequality is strictly unless holds, with R = R. Since also Gp(P,R) =
Gp(R), for every permutation matrix P, the final assertion of the lemma is proved by
copying the proof of Lemma [4.8] i

4.6.2 Strong consistency

We need slightly adapted versions of the function Hp, given by, with d,j equal to 1 or 0 if
a = b or not,

1 RPRT) 44 — 84 PiRia/n
Hpa(R) = 3 3 (RUa((R1)y — 8 /n) r F ot~ Oat i Picltial) =y 1)
a,b (Rl)a((Rl)b - 5ab/n)
For given functions t,p : [0,1] — R, let X(e) be the K X K matrix with entries
5a e E 5,1 e)| Z
Xah(e) = tab(%) - tab(%)- (4-16)

Proof of Theorem [4.3|[strong consistency]

Proof. |ii By Theorem ‘e is weakly consistent, and hence with probability tending to
one it belongs to the set of classifications e such that the fractions f(e) are close to r,
and the matrices R(e,Z) are close to Diag(r) after the appropriate permutation of the
labels (that is, of rows of R(e,Z)). Therefore, it is no loss of generality to assume that e
is restricted to this set. By Lemmas [4.5(and ‘ the matrices O(e)/n? are then close to
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R(e,Z)PR(e,Z)T — Diag(r)PDiag(r), and hence are bounded away from zero and one if
P has this property.

If e and Z differ at m nodes, then e belongs to the set of e with ||R(Z,Z) — R(e,Z)|l; =
m(2/n), by Lemma4.1] In that case Qp(e) > Qp(Z), for some e in this set, and hence by
LemmaQML(e) - OmL(Z) + Qp(e) — Qp(Z) = —n,, for some 7, of order (log n)/n?. It
follows that:

[QML(e) HPn( (e, ))] - [QML(Z) _HP,n(R(Z7Z))]
> Hp o (R(Z,2)) = Hp.n(R(e,2)) = 1Qp(€) = Qp(Z)| = 1. (4.17)

The first term on the right is bounded below by a multiple of m/n, by Lemmas [4.10]and[4.1]
Because (x +a)logx — (y+a)logy = fy (logs+ (s +a)/s) ds is bounded in absolute value
by a multiple of |x — y|log(x Vy),if « > 0 and x,y > 0, the second term —|Qp(e) — Qp(Z)|

is bounded below by a multiple of m(logn)/n?, for some positive constant C,, which is
of smaller order than m/n. We conclude that the left side of is bounded below by
Cim/n. The left side is Za,b(Xab(e) - Xab(Z)), for X defined in and ¢ the function
with coordinates t,,(0) = f4(e) (fb(e) - 5ab/n)r(o/fa(e)(fb(e) - 5ab/n)). Because we
restrict e to classifications such that O, (e)/nqp(e) and f;(e) fp () are bounded away from
zero and one, only the values of the function 7 on an open interval strictly within (0,1)

matter. On any such interval 7 has uniformly bounded derivatives, and hence the bound
of Lemma [4.13is valid. Thus we find that

Pr( (i:e;+Z;)= m) < Pr( sup ”X(e) —X(Z)“oo > Cl—m)

e#t(ize;#Z;)<m n

< Km(n)ecmz/(mIIPllm/n+m/n)

m
< emlog(Kne/m)—clmn

The sum of the right side overm =1,...,n tends to zero.

We follow the proof for L but in ( use that Hp, n(R(Z Z)) - Hp,,,(R(e,Z)) >
pnClR(Z,Z)-R(e,2)|; = pnCZm/n byLemma- [4.12] Since p,, > (log n)/n by assumption,
we have that the contribution m(log n)/n? of Qp(e) — Qp(Z) is still negligible and hence
pnC2m/n is a lower bound for the left side of (4.17). As a bound on the left side of the
preceding display, we then obtain

n n
Z Km(n)ecngan/(mpn/n+pnm/n) < Z emlog(Kne/m)fqpnmn.
m <
m=1
This sum tends to zero provided that np, > logn. O

Lemma 4.10. If P is fixed and symmetric and every pair of rows of P is different and 0 <
P <1 andr > 0, then, for sufficiently small § > 0,

Hp,,(Diag(R" 1)) - Hp n(R)
lim inf inf -
n—oo 0<|R- Dlag m)||<8 ||D1ag(RT1) - R”

> 0. (4.18)
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Proof. We can reparametrize the K X K matrices R by the pairs (R”1,R — Diag(R1)),
consisting of the K vector f = R71 and the K x K matrix R — Diag(R” 1). The latter matrix
is characterized by having nonnegative off-diagonal elements and zero column sums, and
can be represented in the basis consisting of all K X K matrices App, for b # b’, defined
by: (App)prer = —1, (App )y = 1 and (Appr)aer = 0, for all other entries (a,a’), i.e. the
b’th column of Ay has a 1 in the bth coordinate and a —1 on the b’th coordinate and
all its other columns are zero. Given any matrix R > 0 the matrix R — Diag(R 1) can be
decomposed as
R - Diag(RTl) = Z Avpr Dppr,
b#b’

for Appr = Rppr > 0. Since every Ay has exactly one nonzero off-diagonal element, which
isequal to 1, and in a different location for each b # b, the sum of the off-diagonal elements
of the matrix on the right side is }}}, ; Apr. Because the sum of all its elements is zero, it
follows that its sum of absolute elements is given by ||R — Diag(RT1)|l; = 2 X5 Appr-

Thus we obtain a further reparametrization R < (f,A), in which R = Diag(f) +
Dbzt AbbrAppr. For given P, f and n, define the function

G = Hp.n(Diag(f) + 3" Ao ).
b#b’
Then we would like to show that there exists C such that

Hp,n(Diag(R"1)) - Hpn(R) _ G(0) - G(})

- = >C>0,
IR — Diag(RT1)|l; 2 Y bt Aobr

for every f in a neighbourhood of , 1in a neighbourhood of 0 intersected with {A : A > 0},
and every sufficiently large n. The numerator in the quotient is f(0) — f (1) for the function
f(s) = G(sA). Writing this difference in the form — f’(0) — fol (f’(s) - f’(O)) ds gives that
the numerator is equal to

—VG(0)T2 - f 1 (VG(s2) - VG(0))) " ds 2. (4.19)
0

It suffices to show that the first term is bounded below by a multiple of ||A||; and that the
second is negligible relative to the first, as n — co, uniformly in f in a neighbourhood of
s and A in a neighbourhood of 0 intersected with {A : A > 0}. Thus it is sufficient to show
first that for every coordinate A, of A minus the partial derivative of G at A = 0 with
respect to App is bounded away from 0, as n — oo uniformly in f, and second that every
partial derivative is equicontinuous at A = 0 uniformly in f and large n.

We have

ROPROYT) = bawea)]
G<A>=%Zfaw(fm—5aaf/n)r(( Jag = Sere ) e

a,a’ fa(A) (fa’(A) - 6aa//n)

for

f)=f+ ZAbb’(Abb’l),

bb’
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R(1) = Diag(f) + Z App Dppr,

b#b’
= ZpkkRak(/l) = Paafa + Z Py Ao (8ab — Sapr)-
k b#b’
By a lengthy calculation, given in Lemma[4.11]
2 6o = = 3 FuK(PavIPas) + —K (P Poo) (421)
Y |[A=0 = _ a ab’llfab on b’ 1bb)s .

for K(pllq) = plog(p/q) + (1 — p) log((l -p)/(1 - q)) the Kullback-Leibler divergence
between the Bernoulli distributions with success probabilities p and g. The numbers f, are
bounded away from zero for f sufficiently close to x, and hence so is 3, faK(Pap|[Pas),
unless the bth and b’th column of P are identical. The whole expression is bounded below
by the minimum over (b,b’) of these numbers minus (2n) ! times the maximum of the
numbers K(Py || Ppp), and hence is positive and bounded away from zero for sufficiently
large n.

To verify the equicontinuity of the partial derivatives we can compute these explicitly
at A and take their limit as n — co. We omit the details of this calculation. However, we
note that every term of G(A) is a fixed function of the quadratic forms in A

(fa+ Z Apy (Bppr1)a) (far + Z Apy (D by ) ar = Saar /1), (4.22)
b b
((Diag(f) + Z Abb'Abb' D1ag(f Z Appr g, )
b#b’ b#b’ aa
- %(Paafa + Z Py iy App (Sab = 5ab’))' (4.23)

b#b’

These forms are obviously smooth in A, and their dependence and that of their derivatives
on n is seen to vanish as n — oco. For f and A restricted to neighbourhoods of 7 and 0,
the values of the quadratic forms are restricted to a domain in which the transformation
mapping them into G(A) is continuously differentiable. Thus the desired equicontinuity
follows by the chain rule. ]

Lemma 4.11. The partial derivatives of the function G at 0 defined by are given by
(4.21).
Proof. For given differentiable functions u and v the map € — u(e)r(v(e)/u(e)) has

derivative v’ log(v/(u - v)) —u’ log(u/(u - v)). We apply this for every given pair (a,a’)
to the functions u and v obtained by taking A3 in and equal to € and all other
coordinates of A equal to zero. Then

u(O) = fa(fa’ = Sqar/n),

U(O) = fa(fa’ - 6aa’/n)Paa”
u'(O) = (Abb'l)a(fa’ - (Saa’/n) + fa(Abb’l)a'
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v'(0) = (AppP)aa far + fa(DppP)ara — (Saar /M) Py (8ab — Sapr)-

It follows that v(0) /(1(0) — v(0)) = Paar/(1 — Paur), and u(0)/(u(0) — v(0)) = 1/(1 — Pau).
Hence in view of the partial derivative in is equal to

Z[v’(o)log Pa;' —u'(0) log

aza’ 1- aa’ l_Paa’

We combine this with the equalities

0 ifa¢ {b,b'}, 0 ifa¢ {b,b'},
(App)g=q-1 ifa=", (App'Plaw = { —Ppror ifa=10,
1 ifa=>b, Py o ifa="nb.

O

Lemma 4.12. IfS is fixed and symmetric, every pair of rows of S is different and S > 0 and
7 > 0 coordinatewise, then there exists C > 0 such that, for sufficiently small § > 0 and any
pnl0,

Hy,s.n(Diag(RT 1)) = Hy,5.n(R)
lim inf inf - = >C.
n—oo 0<||R-Diag(7)[ <8 pnlDiag(RT 1) — R||

Proof. In the notation of the proof of Lemma[4.10] we must now show that G(0) — G(1) >
CpaullAlly, as n — oo, uniformly in f in a neighbourhood of 7, and A in a positive neigh-
bourhood of 0. As in that proof we write G(0) — G(A) in the form and see that it
suffices that the partial derivatives of G at 0 divided by p, tend to negative limits, and that
”VG(/I) - VG(O)H/pn becomes uniformly small as A is close enough to zero.

The partial derivative at 0 with respect to A5, is given in (4.21), where we must replace
P by p,S. Since the scaled Kullback-Leibler divergence p,'K(p,s||pnt) of two Bernoulli
laws converges to the Kullback-Leibler divergence Ky(s||t) = slog(s/t) + t — s between
two Poisson laws of means s and ¢, as p, — 0, it follows that for p, — 0, uniformly in f,

1 90
Pn OApy

G()ja=0 — = Z faKo(SaplSap)-

The right side is strictly negative by the assumption that every pair of rows of S differ in
at least one coordinate.

If P = p,S, then the function A - v(1) given in takes the form v = p,vs, for
vs defined in the same way but with S replacing P. The function u given in does
not depend on P or S. Using again that the derivative of the map € — u(e)r(v(e)/u(e))
is given by v’ log(v/(u - v)) —u'log (u/(u - v)), we see that the partial derivative with
respect to App of the (a,a’) term in the sum defining G takes the form

’ PnUs ’
log 2% _ o — 2%
Pnts 08— PUSs vk PnUs

= pnvglog pn — pnvglog(vs/u) — (pavs — u') log(1 — ppvs/u).



140 CHAPTER 4. BAYESIAN COMMUNITY DETECTION

Here u and Vs are as in (4.22)) and (4.23) (with P replaced by S), and depend on (a,a’). From
the fact that the column sums of the matrices R(1) do not depend on A, we have that

Z[(R(MSR(A)T)M,—‘S‘;“';Pkw(mk] RA)T1SR()"1 ZPkaR(A)ak

a,a’

is constant in A. This shows that }, ,»v5 = 0 and hence the contribution of the term
pnvg log py to the partial derivatives of G vanishes. The term —(p,v—u’) log(1-ppvs/u)
can be expanded as (p,v — u')pnvs/u up to O(p?), uniformly in f and A. Since these are

equicontinuous functions of 4, it follows that p, 1(VG(/I) - VG(O)) becomes arbitrarily
small if A varies in a sufficiently small neighbourhood of 0. ]

Lemma 4.13. There exists a constant ¢ > 0 such that for X(e) as in (4.16)), for every twice
differentiable functionst,p : [0,1] = R with ||t} o V [It], llo < 1, and every x > 0,

sznz
Pr( max “X(e) —X(Z)H > x) < 6(”)Km+ze_mp|m/n+x.
e#(e;£Z;)<m ©0 m

Proof. Given Z there are at most (,':1) groups of m candidate nodes that can be assigned
to have e; # Z;, and the label of each node can be chosen in at most K — 1 ways. Thus
conditioning the probability on Z, we can use the union bound to pull out the maximum
over e, giving a sum of fewer than (:l)K ™ terms. Next we pull out the norm giving another

factor K2. It suffices to combine this with a tail bound for a single variable X, (e) —
Xa,b(Z). Write ¢t for t, p.
Assume for simplicity of notation that e; = Z;, for i > m, and decompose

ab(e) [ Z Atjle,—a ej=b + Z Aijleiza,ejzb

i<mor j<m i>mand j>m

=: Sl + 52.

Let Ogp(Z)/n* =: S| +S,, with the same variable S, be the corresponding decomposition if
e is changed to Z, and then decompose, where the expectation signs E denote conditional
expectations given Z,

Xap(e) — Xap(Z)
= (1(S1 + S2) — t(BSy + ESy)) — (£(S] + So) — t(BS] + ESy))
=t(S; + S5) — t(ES; + S2)
+ (1(BS1 + Sp) — t(BS; + BS)) — (¢(ES] + S;) — t(ES] + ESy))
+ t(ES; + S3) — t(S] + S2)

The first and third terms on the far right can be bounded above in absolute value by ||t/ ||«
times the increment. To estimate the second term we write it as

1 1
(S, — ES,)(ES; — ES)) f f t"(uS + (1 - w)ES, + vES; + (1 - v)ES]) du do.
0 0
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Since the first and second derivatives of t are uniformly bounded by 1, it follows that

Xab(e) —Xa;,(Z)‘ < |S; — ESq| + 1Sz — ESz| |ES; — ES;| + |S; — ES;|.

The variable S; — ES; is a sum of fewer than 2mn independent variables, each with con-
ditional mean zero, bounded above by 1/n? and of variance bounded above by ||P||e/n*.
Therefore Bernstein’s inequality gives that

B(1S) — Sy > %) < o= 3 X/ @mnl|Plls /nt+x/(3n)

This is as the exponential factor in the bound given by the lemma, for appropriate c. The
variable S; — ES{ can be bounded similarly. Furthermore [ES; — ES]| < 4mn/n® = 4m/n,
and S, — BS, is the sum of fewer than n? variables as before, so that

1

P(|52 — ES;| [ES; - ES]| > x) < e~ 2(xn/(@m)?[(n* Pl /n*+xn/(12mn?))

The exponent has a similar form as before, except for an additional factor n/m > 1. ]
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