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4
Bayesian community detection

Abstract
We introduce a Bayesian estimator of the underlying class structure in the stochastic block
model, when the number of classes is known. The estimator is the posterior mode correspond-
ing to a Dirichlet prior on the class proportions, a generalized Bernoulli prior on the class
labels, and a beta prior on the edge probabilities. We show that this estimator is strongly
consistent when the expected degree is at least of order log2 n, where n is the number of nodes
in the network.

4.1 Introduction

The stochastic block model (SBM) (Holland et al., 1983) is a model for network data in
which individual nodes are considered members of classes or communities, and the prob-
ability of a connection occurring between two individuals depends solely on their class
membership. It has been applied to social, biological and communication networks, for ex-
ample in Park and Bader (2012), Bickel and Chen (2009) and Snijders and Nowicki (1997)
amongst many others. There are many extensions of the SBM for various applications,
including the degree-corrected SBM (Karrer and Newman, 2011; Zhao et al., 2012) which
accounts for possible heterogeneity among nodes within the same class, and the mixed-
membership SBM (Airoldi et al., 2008), in which the assumption that the classes are disjoint
is removed. These extensions allow for additional modelling �exibility.

Two main SBM research directions are the recovery of the class labels (community
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118 CHAPTER 4. BAYESIAN COMMUNITY DETECTION

detection) and recovery of the remaining model parameters, consisting of the probability
vector generating the class labels, and the class-dependent probabilities of creating an
edge between nodes. In this paper, we focus on community detection, noting that once
strong consistency of a community detection method has been established, consistency of
the natural plug-in estimators for the remaining parameters follows directly by results in
(Channarond et al., 2012).

A large number of methods for recovering the class labels has been proposed. Those
most closely related to this work are the modularities. Newman and Girvan (2004) in-
troduced the term modularity for ‘a measure of the quality of a particular division of a
network’. They described one such measure for models in which edges are more likely to
occur within classes than between classes, in which case there is a community structure
in the colloquial sense, although the SBM does not require this assumption. Bickel and
Chen (2009) studied more general modularities, de�ning them as functions of the number
of connections between all combinations of classes and the proportion of nodes placed in
each class. They introduced the likelihood modularity, and provided general conditions
under which modularities are consistent. Their method and theory was extended to the
degree-corrected SBM by Zhao et al. (2012).

Spectral methods for community detection have gained in popularity, and re�ned re-
sults on error bounds are now available for the SBM and extensions of the SBM, as evi-
denced in Rohe et al. (2011), Jin (2015), Sarkar and Bickel (2015) and Lei and Rinaldo (2015)
for example. Many other algorithms have been introduced, most of them currently lacking
formal proofs of consistency. A notable exception is the Largest Gaps algorithm (Chan-
narond et al., 2012), which only takes the degree of each node as its input, and is strongly
consistent under a separability condition.

A Bayesian approach towards recovering the class assignments in the SBM was �rst
suggested by Snijders and Nowicki (1997), motivated by computational advantages of
Gibbs sampling over maximum likelihood estimation. They considered two classes and
proposed uniform priors on the class proportions and the edge probabilities. This ap-
proach was extended in (Nowicki and Snijders, 2001) to allow for more classes, with a
Dirichlet prior on the class proportions and beta priors on the edge probabilities. Hofman
and Wiggins (2008) described a similar Bayesian approach for a special case of the SBM
and suggested a variational approach to overcome the computational issues associated
with maximizing over all possible class assignments.

Bayesian methods for the SBM have barely been studied from a theoretical point of
view, although recent results for parameter recovery by Pati and Bhattacharya (2015), for
detecting the number of communites by Hayashi et al. (2016) and for an empirical Bayes
approach to community detection by Suwan et al. (2016) are encouraging. In this work,
we provide theoretical results on community detection, establishing that the Bayesian
posterior mode is strongly consistent for the class labels if the expected degree is at least of
order log2 n, wheren is the number of nodes. This is proven by relating the posterior mode
to the maximizer of the likelihood modularity of Bickel and Chen (2009). The likelihood
modularity has been claimed to be strongly consistent under the weaker assumption that
the expected degree is of larger order than logn (Bickel and Chen, 2009; Bickel et al., 2015;
Zhao et al., 2012). However, their proof assumes that the likelihood modularity is globally
Lipschitz, while it is only locally so. The Bayesian method is based on a combination
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of likelihood and prior, and for this reason the proof of our main theorem, Theorem 4.3,
runs into a similar problem. We were able to resolve this only under the slightly stronger
assumption that the expected degree is of larger order than (logn)2. The literature on other
methods for community detection shows that the order logn is su�cient for consistent
detection. However, these results are usually obtained under additional assumptions such
asăa restriction to two classes or an ordering of the connection probabilities, and their
implications for the likelihood or Bayesian modularities is unclear. We discuss this and
the relevant literature further following the statement of our main result in Section 4.3.5.

This paper is organized as follows. We introduce the SBM and the associated notation
in Section 4.2. Our main results are in Section 4.3, where we describe the prior and the link
with the likelihood modularity, present the consistency results and discuss the underlying
assumptions, especially those on the expected degree. The method is illustrated on a data
set in Section 4.4, and we conclude with a Discussion in Section 4.5. All proofs are given
in the Appendix.

4.2 The stochastic block model

We introduce the notation and generative model for the SBM with K ∈ {1,2, . . .} classes.
Consider an undirected random graph with n nodes, numbered 1,2, . . . ,n, and edges en-
coded by the n ×n symmetric adjacency matrix (Ai j ), with entries in {0,1}. ThusAi j = A ji
is equal to 1 or 0 if the nodes i and j are or are not connected by an edge, respectively. Self-
loops are not allowed, so Aii = 0 for i = 1, . . . ,n. The generative model for the random
graph is:

1. The nodes are randomly labeled with i.i.d. variables Z1, . . . ,Zn , taking values in a
�nite set {1, ...,K }, according to probabilities π = (π1, . . . ,πK ).

2. Given Z = (Z1, . . . ,Zn ), the edges are independently generated as Bernoulli vari-
ables with P(Ai j = 1 | Z ) = PZ i ,Z j , for i < j, for a given K × K symmetric matrix
P = (Pab ).

The probability vector π is considered �xed, but unknown. Although this is not visible in
the notation, the matrix P may change with n, a case of particular interest being that P
tends to zero, which gives a sparse graph. The order of magnitude of ‖P ‖∞ = maxa,b Pab
is the same as the order of magnitude of ρn =

∑
a,b πaπbPab , the probability of there being

an edge between two randomly selected nodes. The expected degree of a randomly selected
node is λn = (n − 1)ρn , and twice the expected total number of edges in the network is
µn = n(n − 1)ρn .

The likelihood for the model is given by∏
i< j

P
Ai j
Z iZ j

(1 − PZ iZ j )
1−Ai j

∏
i

πZ i =
∏
a≤b

POab (Z )
ab (1 − Pab )nab (Z )−Oab (Z )

∏
a

π na (Z )
a , (4.1)

where Oab (Z ) is the number of edges between nodes labelled a and b by the labelling Z ,
nab (Z ) is the maximum number of edges that can be created between nodes labelled a and
b, and na (Z ) is the number of nodes labelled a, and a and b range over {1,2, . . . ,K }.
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More formally, for a given labelling e = (e1, . . . ,en ) ∈ {1, . . . ,K }n of nodes, and class
labels a,b ∈ {1, . . . ,K }, we de�ne

Oab (e ) =


∑

i, j Ai j1{e i=a,e j=b }, a , b,∑
i< j Ai j1{e i=a,e j=b }, a = b,

nab (e ) =

na (e )nb (e ), a , b,
1
2na (e ) (na (e ) − 1), a = b,

na (e ) =
n∑
i=1

1{e i=a } .

Since the matrix A is symmetric with zero diagonal by assumption, for a , b the variable
Oab (e ) can also be written as ∑

i< j Ai j[1{e i=a,e j=b } + 1{e j=a,e i=b }], which explains the dif-
ferent appearances of the diagonal and o�-diagonal entries. The numbers nab (e ) are equal
to the numbers Oab (e ) when all Ai j are equal to 1. We collect the variables Oab (e ) and
nab (e ) in K × K matrices O (e ) and n(e ).

Now consider the K × K probability matrix R (e,c ) and K probability vector f (e ) with
entries

Rab (e,c ) =
1
n

n∑
i=1

1{e i=a,c i=b }, fa (e ) =
na (e )

n
. (4.2)

The row sums of R (e,c ) are equal to R (e,c )1 = f (e ), while the column sums are equal
to 1TR (e,c ) = f (c )T . Thus, the matrix R (e,c ) can be seen as a coupling of the marginal
probability vectors f (e ) and f (c ). If e = c , then it is diagonal with diagonal f (c ) = f (e ).
More generally, the matrix can be viewed as measuring the discrepancy between labellings
e and c . This can be precisely measured as half the L1-distance of R (e,c ) to its diagonal, as
evidenced by Lemma 4.1, which is noted in Bickel and Chen (2009).

For a vector v we denote by Diag(v ) the diagonal matrix with diagonal v , and for a
matrix M we denote its diagonal by diag (M ).

Lemma 4.1. For every labelling c,e in the K-class stochastic block model:

1
n

n∑
i=1

1{c i,e i } =
1
2 ‖Diag( f (c )) − R (e,c )‖1.

Proof. The diagonal of R (e,c ) gives the fractions of labels on which c and e agree. Hence
the left side of the lemma is 1 − ∑

a Raa (e,c ) =
∑

a ( fa (c ) − Raa (c )) . The elements of
both K × K matrices Diag( f (c )) and R (e,c ) can be viewed as probabilities that add up
to 1. Thus the sum of the di�erences of the diagonal elements is minus the sum of the
di�erences of the o�-diagonal elements. Because fa (c ) ≥ Raa (e,c ) for every a, we have∑

a ( fa (c ) − Raa (e,c )) =
∑

a | fa (c ) − Raa (e,c ) |. Similarly the o�-diagonal elements of
Diag( f (c )), which are zero, are smaller than the o�-diagonal elements of R (e,c ) and hence
we can add absolute values. Thus the sum over the diagonal is half the sum of the absolute
values of all terms in Diag( f (c )) − R (e,c ). �
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4.3 Bayesian approach to community detection

Our main results are presented in this section. We �rst discuss the choice of prior in
Section 4.3.1, and de�ne the estimator, in Section 4.3.2. The resulting Bayesian modularity
is closely related to the likelihood modularity of Bickel and Chen (2009). The relationship
is clari�ed in Section 4.3.3. We brie�y consider the issue of identi�ability in the SBM
in Section 4.3.4, and conclude with our main theorem on the strong consistency of the
Bayesian modularity in Section 4.3.5.

4.3.1 The prior
We adopt the Bayesian approach of Nowicki and Snijders (2001). We put prior distributions
on the parameters of the stochastic block model withK known, the vector π and the matrix
P , yielding a joint probability distribution of (A,Z ,π ,P ). Next we marginalize over π and
P as in McDaid et al. (2013), leading to a joint distribution of (A,Z ). Finally we “estimate”
the unobserved vector Z by the posterior mode of the conditional distribution of Z given
A. From a frequentist point of view this means that Z is treated as a parameter of the
problem, equipped with a hierarchical prior that chooses �rst π and then Z . Accordingly
we shall change notation from Z to e , reserving Z for the frequentist description of the
stochastic block model in Section 4.2.

The prior on π is a Dirichlet, and independently the Pab for a ≤ b receive independent
beta priors:

π ∼ Dir(α , . . . ,α ),

Pab
i .i .d .
∼ Beta(β1,β2), 1 ≤ a ≤ b ≤ K .

This is essentially the same set-up as in Nowicki and Snijders (2001) and McDaid et al.
(2013), except that we use a more �exible Beta(β1,β2) instead of a uniform prior on the
Pab . We assume α ,β1,β2 > 0.

We complete the Bayesian model by specifying class labels e = (e1, . . . ,en ) and edges
A = (Ai j : i < j ) through

ei | π ,P
i .i .d .
∼ π , 1 ≤ i ≤ n,

Ai j | π ,P ,e
ind .
∼ Bernoulli(Pe i ,e j ), 1 ≤ i < j ≤ n.

Abusing notation we write p (e ), p (A | e ) and p (e | A) for marginal and conditional prob-
ability density functions.

4.3.2 The Bayesian modularity
The Bayesian estimator of the class labels will be the posterior mode, that is:

ê = argmax
e

p (e | A).

The posterior mode can be interpreted as a modularity-based estimator in the sense of
Bickel and Chen (2009), in that it maximizes a function that only depends on theOab (e ) and
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thena (e ). This can be seen from the joint density of (A,e ), which is found by marginalizing
the likelihood (4.1) over π and P . The conjugacy between the multinomial and Dirichlet
distributions gives the marginal density of the class assignment e as:

p (e ) =

∫
SK

∏
a

π na (e )
a

∏
a π

α−1
a

D (α )
dπ =

Γ(αK )

Γ(α )KΓ(n + αK )

∏
a

Γ(na (e ) + α ). (4.3)

Here the integral is relative to the Lebesgue measure on the K-dimensional unit simplex
and D (α ) = Γ(α )K/Γ(Kα ) is the norming constant for the Dirichlet density. Similarly the
conjugacy between the Bernoulli and Beta distributions gives the marginal conditional
density of A given e as:

p (A | e ) =

∫
[0,1]K (K+1)/2

∏
a≤b

POab (e )
ab (1 − Pab )nab (e )−Oab (e )

∏
a≤b

P
β1−1
ab (1 − Pab )β2−1

B (β1,β2)
dP

=
∏
a≤b

1
B (β1,β2)

B (Oab (e ) + β1,nab (e ) −Oab (e ) + β2), (4.4)

where B (x ,y) = Γ(x )Γ(y)/Γ(x +y) is the beta-function. The joint density ofA and e is given
by the product of (4.3) and (4.4), and n−2 times its logarithm is up to a constant that is free
of e equal to

QB (e ) =
1
n2

∑
1≤a≤b≤K

logB (Oab (e ) + β1,nab (e ) −Oab (e ) + β2) + 1
n2

K∑
a=1

log Γ(na (e ) + α ).

This is a modularity in the sense of Bickel and Chen (2009), which we de�ne as the Bayesian
modularity. As p (e | A) is proportional to p (e,A), the posterior mode is equal to the class
assignment that maximizes the Bayesian modularity, so the Bayesian estimator is equal
to:

ê = argmax
e

QB (e ). (4.5)

4.3.3 Similarity to the likelihood modularity
The Bayesian modularity QB (e ) consists of a two parts, originating from the likelihood
and the prior on the classi�cation, respectively. The �rst part is close to the likelihood
modularity given by

QML (e ) =
1
n2

∑
1≤a≤b≤K

nab (e ) τ
(Oab (e )

nab (e )

)
,

where τ (x ) = x logx + (1−x ) log(1−x ). This criterion, obtained in Bickel and Chen (2009),
results from replacing in the log conditional likelihood of A given e (the logarithm of (4.1)
with Z replaced by e and discarding the term involving the parameters πa) the parameters
Pab by their maximum likelihood estimators P̂ab = Oab (e )/nab (e ). In other words, the
parameters are pro�led out rather than integrated out as for the Bayesian modularity. The
corresponding estimator

êML = argmax
e

QML (e )
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is consistent, and hence one may hope that the Bayesian estimator can be proved consis-
tent by showing that the Bayesian and likelihood modularities are close. This will indeed
be our line of approach, but the execution must be done with care. For instance, the second,
prior part of the Bayesian modularity does play a role in the proof of strong consistency,
although it is negligible when proving weak consistency.

The following lemma links the Bayesian and likelihood modularities.

Lemma 4.2. There exists a constant C such that, for E = {1, . . . ,K }n the set of all possible
labellings:

max
e∈E

����QB (e ) − QML (e ) − QP (e )
���� ≤

C logn
n2 ,

for

QP (e ) =
1
n2

∑
a:na (e )+ bα c≥2

na (e ) log(na (e )) −
1
n
.

Consequently maxe∈E ���QB (e ) − QML (e )
��� = O

(
logn/n

)
.

4.3.4 Identi�ability and consistency

A classi�cation ê is said to be weakly consistent if the fraction of misclassi�ed nodes tends
to zero (partial recovery), and strongly consistent if the probability of misclassifying any of
the nodes tends to zero (exact recovery). In de�ning consistency in a precise manner, the
complication of the possible unidenti�ability of the labels needs to be dealt with. From the
observed data A we can at best recover the partition of the n nodes in the K classes with
equal labels Zi , but not the values Z1, . . . ,Zn of the labels, in the set {1,2, . . . ,K }, attached
to the classes. Thus consistency will be up to a permutation of labels.

To make this precise de�ne, for a given permutation (1, . . . ,K ) → (σ (1), . . . ,σ (K )),
the permutation matrix Pσ as the matrix with rows

eTσ (1)
...

eTσ (K ) ,

for e1, . . . ,eK the unit vectors in RK . Then pre-multiplication of a matrix by Pσ permutes
the rows, and post-multiplication by PTσ the columns: PσR is the matrix with jth row
equal to the σ (j )th row of R, and RPTσ is the matrix with jth column the σ (j )th column of
R. Thus PσR (e,Z ) is the matrix that would result if we would permute the labels of the
classes of the assignment e , and PσPPTσ and PσR (e,Z )PTσ are the matrices that would result
if we would relabel the classes throughout. Since we cannot recover the labels, the matrix
PσR (e,Z ) is just as good or bad as R (e,Z ) for measuring discrepancy between a labelling e
and the true labellingZ ; furthermore, nothing should change if we choose di�erent names
for the classes.
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Thus, taking into account the unidenti�ability of the labels, by Lemma 4.1, an estimator
ê is weakly consistent if

‖PσR (̂e,Z ) − Diag( f (Z ))‖1 → 0,

for some permutation matrix Pσ . The classi�cation ê is said to be strongly consistent if

P(PσR (̂e,Z ) = Diag( f (Z ))) → 1,

for some permutation matrix Pσ .
The permutation matrix Pσ is for large n uniquely de�ned: if ‖ (Pσ )jR − Diag(π )‖1 ≤

mina πa , for j = 1,2, then (Pσ )1 = (Pσ )2. This follows because the assumption implies
that ‖ (Pσ )−1

1 Diag(π ) − (Pσ )
−1
2 Diag(π )‖1 ≤ 2 mina πa , by the triangle inequality and the

fact that the L1-norm is invariant under permutations. Furthermore, for Pσ = (Pσ )2 (Pσ )
−1
1

the left side is ‖PσDiag(π ) − Diag(π )‖1, which is at least two times the sum of the two
smallest coordinates of π if Pσ , I .

A necessary requirement for consistency is that the classes can be recovered from
the likelihood, i.e. the model parameters must be identi�able. If π has strictly positive
coordinates, so that all labels will appear in the data eventually, then as explained in Bickel
and Chen (2009) an appropriate condition is that P does not have two identical rows. If
πa = 0 for some a, then class a will never be consumed; the identi�ability condition
should then be imposed after deleting the ath column from P . Thus, we call the pair (P ,π )
identi�able if the rows of P are di�erent after removing the columns corresponding to zero
coordinates of π . Throughout we assume that P is symmetric.

4.3.5 Consistency results and assumptions
We are now ready to present our results on consistency for the Bayesian maximum a
posteriori (MAP) estimator (4.5). Theorem 4.3 shows strong consistency of the Bayesian
estimator if λn � (logn)2. The proof rests on a proof of weak consistency under similar
conditions, stated in the appendix as Theorem 4.4.

Recall that ρn =
∑

a,b πaπbPab is the probability of a new edge, and λn = (n − 1)ρn is
the expected degree of a node.

Theorem 4.3 (strong consistency). (i) If (P ,π ) is �xed and identi�able with 0 < P < 1
and π > 0 then the MAP classi�er ê = arg maxe QB (e ) is strongly consistent.

(ii) If P = ρnS , where (S ,π ) is �xed and identi�able with S > 0 and π > 0, then the MAP
classi�er ê = arg maxe QB (e ) is strongly consistent if λn � (logn)2.

The theorem distinguishes two cases: i is the dense case, while ii is the sparse case. The
second is the most interesting of the two, as it touches on the question how much infor-
mation is required to recover the underlying community structure. Much recent research
e�ort has gone into determining detection and computational boundaries, in particular
for special cases of the SBM with K = 2 (see e.g. Mossel et al. (2012), Chen and Xu (2014),
Abbe et al. (2014) and Zhang and Zhou (2015)).

Weakly consistent estimation of the class labels for an arbitrary, but known, number
of classes is possible under the assumption λn � logn, as this was shown to hold for
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spectral clustering by Lei and Rinaldo (2015). Strong consistency of maximum likelihood
was shown to hold in the special cases of planted bisection (K = 2 and equal community
sizes) and planted clustering (equal community sizes and Pab can take two values) by Abbe
et al. (2014); Chen and Xu (2014), again under the assumption λn � logn. Gao et al. (2015)
and Gao et al. (2016) achieve optimality in di�erent senses, under assumptions on the
average within-community and between-community edge probabilities; Gao et al. (2015)
introduce a two-stage procedure which achieves the optimal proportion of misclassi�ed
nodes in a special case where Pab can only take two values, while Gao et al. (2016) obtain
minimax rates for the proportion of misclassi�ed nodes in the degree corrected SBM.

Strong consistency of the likelihood modularity for an arbitrary number of classes
K has been claimed under the same assumption λn � logn (Bickel and Chen, 2009), and
those results have been extended to the degree-corrected SBM (Zhao et al., 2012). However,
these results were obtained by application of an abstract theorem to the special case of the
likelihood modularity, which would require the function τ (x ) = x logx + (1 − x ) log(1 −
x ), or the function σ (x ) = x logx , to be globally Lipschitz. As τ and σ are only locally
Lipschitz, it is still unclear whether λn � logn is a su�cient condition for either weakly
or strongly consistent estimation by maximum likelihood. From our proof of Theorem
4.3, which proceeds by comparing the Bayesian modularity to the likelihood modularity, it
immediately follows that λn � (logn)2 is certainly su�cient. Given weak consistency the
problem can be reduced to a neighbourhood of the true parameter on which the Lipschitz
condition is reasonable. However, it is precisely our proof of weak consistency that needs
the additional logn factor.

The Largest Gaps algorithm of Channarond et al. (2012) is strongly consistent provided
that mina,b |

∑K
k=1 αk (Pak − Pbk ) | is at least of order

√
logn/n, implying that at least one

of the Pab is of the same order, and thus λn �
√
n logn. This much stronger condition is

not surprising, as the Largest Gaps algorithm only uses the degree of a node and does not
take into account any �ner information on the group structure, such as the information
contained in the Oab .

To the best of our knowledge, for K > 2, it remains to be shown that λ � logn is
su�cient for strong consistency of any community detection method for the general SBM.
For the minimax rate for the proportion of misclustered nodes in community detection,
when only classes of sizes proportional to n are considered, a phase transition when going
from the case K = 2 to K ≥ 3 was observed by Zhang and Zhou (2015). Their results show
that ifK = 2, communities of the same size are most di�cult to distinguish, while ifK ≥ 3,
small communities are harder to discover. This shift in the nature of the communities that
are harder to detect may be what has been preventing a general strong consistency result
under the assumption λn � logn so far.

4.4 Application to the karate club data set

Some options for implementing the Bayesian modularity are given in Section 4.4.1, after
which the results of applying the Bayesian and likelihood modularities to the well-studied
karate club data of Zachary (1977) are discussed in Section 4.4.2.
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●

●

Figure 4.1: Communities detected by the Bayesian modularity whenK = 2 (left) andK = 4
(right), with α = β1 = β2 = 1/2. The polygons contain the two groups the karate club was
split into; the left one is Mr. Hi’s club, the right one is the O�cers’ club. The shapes of
the nodes represent the communities selected by the modularities. Figure made using the
igraph package (Csardi and Nepusz, 2006).

4.4.1 Implementation
Two recent works explicitly discuss implementation of Bayesian methods for the SBM.
McDaid et al. (2013) followed the approach of Nowicki and Snijders (2001) and added a
Poisson prior on K . After marginalizing over π and P , they employ an allocation sampler
to sample from the joint density ofK and z givenA, and use the posterior mode to estimate
K . Their algorithm can scale to networks with approximately ten thousand nodes and ten
million edges. Côme and Latouche (2014), claiming that the algorithm of McDaid et al.
(2013) su�ers from poor mixing properties, propose a greedy inference algorithm for the
same problem. For the karate club data in Section 4.4.2, the network was small enough that
a tabu search (Glover, 1989), run for a number of di�erent initial con�gurations, yielded
good results. We used α = 1/2 for the Dirichlet prior, and β1 = β2 = 1/2 for the beta prior.

4.4.2 Karate club
Zachary (1977) described a karate club which split into two clubs after a con�ict over
the price of the karate lessons. The new club was led by Mr. Hi, the karate teacher of
the original club, while the remainder of the old club stayed under the former O�cers’
rule. The data consists of an adjacency matrix for those 34 individuals who interacted
with other club members outside club meetings and classes. Each of these individuals’
a�liations after the con�ict is known.

The communities selected by the Bayesian modularity for K = 2 and K = 4 are given
in Figure 4.1. In both instances, the tabu search led to nearly the same solution for both the
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Bayesian and likelihood modularities, only di�ering at one node for K = 4, which is not
surprising in light of Lemma 4.2. For K = 2, the results of Bickel and Chen (2009) for this
data set are recovered. For K = 4, the partition in Figure 4.1 yields a higher value of the
likelihood modularity than the partition into four classes found by Bickel and Chen (2009),
and an even higher value is obtained by switching club member 20 to the second-largest
class. This discrepancy is likely due to the heuristic nature of the tabu search algorithm,
and for the same reason, it may be the case that improvement over the partitions found
by the Bayesian modularity in Figure 4.1 are possible.

ForK = 2, the communities found by the algorithms do not correspond in the slightest
to the two karate clubs, instead grouping the nodes with the highest degrees, correspond-
ing to Mr. Hi, the president of the original club, and their closest supporters, together.
Incidentally, this partition is the same as the one returned by the Largest Gaps algorithm
of Channarond et al. (2012), which solely uses the degrees of the nodes and discards all
other information.

These bad results are no reason to shelve the Bayesian and likelihood modularities, as
there is no reason to believe that the two karate clubs form communities in the sense of
the stochastic block model. Mr. Hi and the club’s president are clear outliers within their
groups, and neither of the algorithms were designed to be robust to such a phenomenon.
The communities selected by the modularities are communities in the sense that they
form connections within and between the groups in a similar fashion. This sense does not
correspond to the social notion of a community in this setting.

The results for four classes unify the social and stochastic senses of community. The
prominent members of each of the new clubs are placed into two separate, small, commu-
nities. The other members are classi�ed nearly perfectly, with two exceptions. However,
one of those exceptional individuals is the only person described by Zachary (1977) as be-
ing a supporter of the club’s president before the split, who joined Mr. Hi’s club, making
this person’s a�liation up for debate. The second is described as only a weak supporter of
Mr. Hi. The increased number of communities allows for some outliers within the social
communities, and leads to a more detailed understanding of the dynamics within both of
the groups. We essentially recover the two communities, each with a core that is more
connective than the remainder of the nodes.

4.5 Discussion

An advantage of Bayesian modelling is that it does not solely result in an estimator, but
in a full posterior distribution. The posterior mode studied in this paper is but one aspect
of the posterior, and its good behaviour in terms of consistency is encouraging. Further
study into other aspects in the posterior may prove to be fruitful. One possible research
direction would be to use the posterior to quantify uncertainty in the estimate of the class
labels. A second issue that may be resolved by the Bayesian approach is the question of
estimating the number of classes, K . This remains an important open question, as noted
by Bickel and Chen (2009), despite recent attempts (e.g. Saldana et al. (2014), Chen and Lei
(2014) and Wang and Bickel (2015)). By introducing a prior onK , such as the Poisson-prior
suggested by McDaid et al. (2013), the number of communities K can be detected by the
posterior.
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4.6 Proofs

After stating some repeatedly used notation, this appendix starts with the proof of Theo-
rem 4.4, which is a theorem on weak consistency of the Bayesian modularity. It is followed
by a number of supporting Lemmas, after which we proceed to the proof of Theorem 4.3,
and some additional supporting Lemmas.

We write diag (P ) for the diagonal of P if P is a matrix, and Diag( f ) for the diagonal
matrix with diagonal f if f is a vector.

4.6.1 Weak consistency
The following quantities will be used in the course of multiple proofs. The function HP ,
with domain K × K probability matrices, is given by, for τ (u) = u logu + (1−u) log(1−u),

HP (R) =
1
2
∑
a,b

(R1)a (R1)b τ
(
(RPRT )ab
(R1)a (R1)b

)
. (4.6)

For τ0 (u) = u log(u) − u, de�ne

GP (R) =
1
2
∑
a,b

(R1)a (R1)b τ0

( (RPRT )ab
(R1)a (R1)b

)
.

The sums de�ning these functions are over all pairs (a,b) with 1 ≤ a,b ≤ K , unlike the
sums de�ning the modularities QB and QML, which are restricted to a ≤ b.

Theorem 4.4 (weak consistency). (i) If (P ,π ) is �xed and identi�able, then the MAP
classi�er ê = arg maxz QB (e ) is weakly consistent.

(ii) If P = ρnS for ρn → 0, and (S ,π ) is �xed and identi�able, then the MAP classi�er
ê = arg maxz QB (e ) is weakly consistent provided nρn � (logn)2.

Proof. By Lemma 4.2 the Bayesian modularity QB is equivalent to the likelihood mod-
ularity QML up to order (logn)/n. With the notation Õab (e ) = Oab (e ) if a , b, and
Õab (e ) = 2Oab (e ) if a = b, the likelihood modularity is in turn equivalent up to the same
order to

L(e ) =
1

2n2

∑
a,b

na (e )nb (e ) τ
( Õab (e )

na (e )nb (e )

)
. (4.7)

Indeed the terms of QML (e ) for a < b are identical to the sums of the terms of L(e ) for
a < b and a > b, while for a = b the terms of QML (e ) and L(e ) di�er only subtly: the �rst
uses naa (e ) = 1

2na (e ) (na (e ) − 1), where the second uses 1
2na (e )

2. Thus the di�erence is
bounded in absolute value by the sum over a of (where e is suppressed from the notation)

����
n2
a

2n2 τ
(Õaa

n2
a

)
−
na

(
na − 1)
2n2 τ

( Õaa

na (na − 1)

) ���� ≤ 1
2n ‖τ ‖∞ +

n2
a

2n2 l
( Õaa

n2
a (na − 1)

)
.

where l (x ) = x (1∨log(1/x )), in view of Lemma 4.7. We now use thatnal (u/na ) . logna ≤
logn, for 0 ≤ u ≤ 1.
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Combining the preceding, we conclude that

ηn,1 := max
e
|L(e ) − QB (e ) | = O

(
logn
n

)
.

Since QB (̂e ) ≥ QB (Z ), by the de�nition of ê , it follows that L (̂e ) − L(Z ) ≥ −2ηn,1. The
next step is to replace L in this equality by an asymptotic value.

For x equal to a big multiple of (‖P ‖1/2
∞ ∨n

−1/2)/n1/2, the right side of Lemma 4.5 tends
to zero and hence maxeÕ (e ) − E

(
Õ (e ) | Z

)∞/n2 is of this order in probability. We also
have, by Lemma 4.6:

max
e


1
n2E

(
Õ (e ) | Z

)
− R (e,Z )PR (e,Z )T

∞ = max
e

1
n
Diag(R (e,Z )) diag (P )∞ → 0,

as each entry of Diag(R (e,Z )) diag (P ) is bounded above by one. By Lemma 4.7, ���vτ (x/v )−
vτ (y/v )��� ≤ l ( |x −y |), uniformly in v ∈ [0,1], where l (x ) = x (1∨ log(1/x )). It follows that

ηn,2 := max
e

���L(e ) − L(e )��� = oP
(
l
(
‖P ‖1/2

∞ ∨ n−1/2

n1/2

))
,

for
L(e ) =

1
2
∑
a,b

fa (e ) fb (e ) τ
( (R (e,Z )PR (e,Z )T )ab

fa (e ) fb (e )

)
.

Combining this with the preceding paragraph, we conclude that L (̂e ) ≥ L(Z ) − 2(ηn,1 +
ηn,2).

Proof of i. For given δ > 0, let Rδ be the set of all probability matrices R with

min
Pσ

PσR − Diag(RT1)1
≥ δ , and min

a:πa>0
(RT1)a ≥ δ .

Here the minimum is taken over the (�nite) set of all permutation matrices Pσ on K labels.
Furthermore, set

η := inf
R∈Rδ

[
HP

(
Diag(RT1)

)
− HP (R)

]
,

where HP is as de�ned in (4.6). Because Rδ is compact and the maps R 7→ HP (R) and
R 7→ Diag(RT1) are continuous, the in�mum in the display is assumed for some R ∈ Rδ .
Because no R ∈ Rδ can be transformed into a diagonal element by permuting rows and
every R ∈ Rδ has a nonzero element in every column a with πa > 0, Lemma 4.8 shows
that ηn > 0.

Because L(e ) = HP (R (e,Z )) for every e , and R (Z ,Z ) = Diag( f (Z )) = Diag(R (̂e,Z )T1),
we conclude that

HP (Diag(R (̂e,Z )T1)) − HP (R (̂e,Z )) ≤ 2(ηn,1 + ηn,2).

If 2(ηn,1 + ηn,2) is smaller than ηn , then it follows that R (̂e,Z ) cannot be contained in Rδ .
Since R (̂e,Z )T1 = f (Z )

P
→ π , by the law of large numbers, for su�ciently small δ > 0

this must be because R (̂e,Z ) fails the �rst requirement de�ning Rδ . That is, ‖PσR (̂e,Z ) −
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Diag( f (Z ))‖1 ≤ δ for some permutation matrix Pσ . As this is true eventually for any
δ > 0, it follows that minPσ ‖PσR (̂e,Z ) − Diag(π )‖1

P
→ 0.

Proof of ii. In view of Lemma 4.9, the number η = ηn , which now depends on n, is
now bounded below by ρn times a positive number that depends on (S ,π ). The preceding
argument goes through provided ηn,1 + ηn,2 is of smaller order than ηn . This leads to
l
(√
ρn/n

)
+ log(n)/n � ρn , or (ρn/n) log2

(
n/(ρn ‖S ‖∞)

)
� ρ2

n . �

Lemma 4.5. Let Õab (e ) = Oab (e ) if a , b, and Õab (e ) = 2Oab (e ) if a = b. For any x > 0,

P
(
max
e

Õ (e ) − E
(
Õ (e ) | Z

)∞ > xn2
)
≤ 2Kn+2e−x

2n2/(8‖P ‖∞+4x/3) .

Proof. This Lemma is adapted from Lemma 1.1 in Bickel and Chen (2009). There are Kn

possible values of e and ‖ · ‖∞ is the maximum of the K2 entries in the matrix. We use
the union bound to pull these maxima out of the probability, giving the factor Kn+2 on the
right. Next it su�ces to bound the tail probability of each variable

Õab (e ) − E
(
Õab (e ) | Z

)
=

∑
i, j

(
Ai j − E(Ai j | Z )

)
(1{ei = a,e j = b} + 1{ei = b,e j = a}).

The nab (e ) variables in this sum are conditionally independent given Z , take values in
[−2,2], and have conditional mean zero given Z and conditional variance bounded by
4 var(Ai j | Z ) ≤ 4PZ iZ j (1 − PZ iZ j ) ≤ 4‖P ‖∞. Thus we can apply Bernstein’s inequality to
�nd that

P
(���Õab (e ) − E

(
Õab (e ) | Z

) ��� > xn2
)
≤ 2e−x2n4/(8nab (e ) ‖P ‖∞+4xn2/3) .

Finally we use the crude bound nab (e ) ≤ n2 and cancel one factor n2. �

Lemma 4.6. De�ne Õab (e ) = Oab (e ) if a , b, and Õab (e ) = 2Oab (e ) if a = b. Then, for
R (e,Z ) as de�ned in (4.2),

E(Õab | Z ) = n
2R (e,Z )PR (e,Z )T − nDiag(R (e,Z ) diag (P )).

Proof. A similar expression, not taking into account the absence of self-loops, appears in
Bickel and Chen (2009).

E(Õab (e ) | Z = c ) =
∑
i,j

Pc i c j1{ei = a,e j = b}

=
∑
a′,b ′

Pa′b ′
∑
i,j

1{ci = a′,c j = b
′}1{ei = a,e j = b}

=
∑
a′,b ′

Pa′b ′
∑
i, j

1{ci = a′,c j = b
′}1{ei = a,e j = b} − δab

∑
a′

Pa′a′1{ci = a′}1{ei = a}

= n2
∑
a′,b ′

Pa′b ′Raa′ (e,c )Rbb ′ (e,c ) − δabn
∑
a′

Pa′a′Raa′ (e,c ).

�
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Lemma 4.7. The function τ : [0,1] → R satis�es |τ (x ) − τ (y) | ≤ l ( |x − y |), for l (x ) =
2x (1 ∨ log(1/x )).

Proof. Write the di�erence between x logx and y logy as |
∫ y
x (1 + log s ) ds |. The function

s 7→ 1 + log s is strictly increasing on [0,1] from −∞ to 1 and changes sign at s = e−1.
Therefore the absolute integral is bounded above by the maximum of

−

∫ |x−y |∧e−1

0
(1 + log s ) ds = −( |x − y | ∧ e−1) log |x − y | ∧ e−1

and ∫ 1

1−|x−y |∨e−1
(1 + log s ) ds ≤ |x − y |.

�

Proof of Lemma 4.2

Proof. The second assertion of the lemma follows from the �rst and the fact that maxe QP (e )
. (logn)/n. It su�ces to prove the �rst assertion.

Recall that the Bayesian modularity is given by

n2QB (e ) =
∑
a≤b

logB
(
Oab (e ) + 1

2 ,nab (e ) −Oab (e ) + 1
2

)
+

∑
a

log Γ(na (e ) + α ). (4.8)

We shall show that the �rst sum on the right is equivalent to QML (e ), and the second sum
is equivalent to QP (e ). We show this by comparing the sums de�ning the various mod-
ularities term by term. For clarity we shall suppress the argument e . We will repeatedly
use the following bound from (Robbins, 1955): for n ∈ N≥1,

Γ(n + 1) =
√

2πnn+1/2e−nean , (4.9)

with (12n+1)−1 ≤ an ≤ (12n)−1, as well as the fact that Γ(s ) is monotone increasing for s ≥
3/2. In addition, we will bound remainder terms by using the inequalityx log((x+c )/x ) ≤ c
for c ≥ 0 and the fact that x log((x − 1)/x ) is bounded for x > 1.

First sum of (4.8).
Upper bound, case 1: Oab , 0 and nab , Oab
We apply (4.9):

logB (Oab + β1,nab −Oab + β2) ≤ log Γ(Oab + bβ1c + 1)Γ(nab −Oab + bβ2c + 1)
Γ(nab + bβ1 + β2c)

= Oab log
(

Oab + bβ1c

nab + bβ1 + β2c − 1

)
+ (nab −Oab ) log

(
nab −Oab + bβ2c

nab + bβ1 + β2c − 1

)
+ (bβ1c + 1/2) log(Oab + bβ1c) + (bβ2c + 1/2) log(nab −Oab + bβ2c)

− (bβ1 + β2c − 1/2) log(nab + bβ1 + β2c − 1) + log
√

2π − bβ1c − bβ2c + bβ1 + β2c − 1
+ αab + βab − γab ,
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where αab ,βab and γab are bounded by constants. By the inequality x log((x + c )/x ) ≤ c
for c ≥ 0, and the fact that x log((x − 1)/x ) is bounded for x > 1, we �nd the upper bound:

logB (Oab + β1,nab −Oab + β2) ≤ nabτ

(
Oab

nab

)
+O (lognab ).

Upper bound, case 2: nab = 1 and Oab = 0 or nab = Oab , or nab = 0
In both cases, the corresponding term of the likelihood modularity vanishes, whereas
the contribution of the Bayesian modularity is either logB (1 + β1,β2), log(β1,1 + β2), or
logB (β1,β2).

Upper bound, case 3: nab ≥ 2 and Oab = 0 or nab = Oab
Again, the corresponding term of the likelihood modularity vanishes. We show the com-
putations for the case nab = Oab ; for the case Oab = 0, switch β1 and β2. By (4.9):

logB (Oab + β1,nab −Oab + β2) = logB (nab + β1,β2) ≤ log Γ(nab + bβ1c + 1)Γ(β2)

Γ(nab + bβ1 + β2c)

= (nab + bβ1c) log
(

nab + bβ1c

nab + bβ1 + β2c

)
+ (1/2) log(nab + bβ1c)

− (bβ1 + β2c + 1/2) log(nab + bβ1 + β2c) + log Γ(β2) + bβ1 + β2c − 1 + δab − ϵab ,

where δab and ϵab are bounded by constants. Arguing as before, the �rst term is bounded,
while the remainder is of order log(nab ). A lower bound is found analogously.

Lower bound The computations for the lower bound are completely analogous, except
that we require Oab + β1 ≥ 2 and nab − Oab + β2 ≥ 2. We study four cases. The cases (1)
Oab ≥ 2 and nab − Oab ≥ 2, (2) nab = 0 and (3) nab > 0 and nab = Oab or Oab = 0 are
similar to cases 1, 2 and 3 respectively of the upper bound. The fourth case isnab−Oab = 1
andOab ≥ 2, orOab = 1 and nab −Oab ≥ 1. In both instances, the likelihood modularity is
equality to a bounded term minus lognab . By similar calculations as before, the Bayesian
modularity is of the order lognab as well.

Conclusion We �nd:∑
a≤b

logB (Oab + β1,nab −Oab + β2) =
∑
a≤b

nabτ

(
Oab

nab

)
+O (logn).

Second sum of (4.8).
We consider three cases. If na + bαc = 0, then α > 0, implies na = 0, in which case
log Γ(na + α ) = log Γ(α ), which is bounded. In case na + bαc = 1, the term log Γ(na + α ) is
equal to either log Γ(1 +α ) or log Γ(α ) and thus bounded as well. For the case na + bαc ≥ 2,
we study the upper bound Γ(na + α ) ≤ Γ(na + bαc + 1) and the lower bound Γ(na + α ) ≥
Γ(na + bαc). By applying (4.9) in both cases, we conclude:∑

a

log Γ(na + α ) =
∑

a:na+ bα c≥2
na logna − n +O (logn).

�
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Lemma 4.8. For any probability matrix R,

HP (R) ≤ HP (Diag(RT1)
)
. (4.10)

Furthermore, if (P ,π ) is identi�able and the columns of R corresponding to positive coordi-
nates of π are not identically zero, then the inequality is strict unless PσR is a diagonal matrix
for some permutation matrix Pσ .

Proof. This Lemma is related to the proof that the likelihood modularity is consistent given
in Bickel and Chen (2009). This proof however rests on their incorrect Lemma 3.1, and
thus we provide full details on how the argument can be adapted to avoid the use of their
Lemma 3.1 altogether.

For R a diagonal matrix the numbers (RPRT )ab/(R1)a (R1)b reduce to Pab . Conse-
quently, by the de�nition of HP ,

HP
(
Diag( f )

)
=

∑
a,b

fa fb τ (Pab ). (4.11)

For a general matrix R, by inserting the de�nition of τ ,

HP (R) =
∑
a,b

(RPRT )ab log (RPRT )ab
(R1)a (R1)b

+
∑
a,b

(
(R1)a (R1)b − (RPRT )ab

)
log

(
1 − (RPRT )ab

(R1)a (R1)b

)
.

Because (R1)a (R1)b − (RPRT )ab = (R (1 − P )RT )ab , with 1 the (K × K )-matrix with all
coordinates equal to 1, we can rewrite this as∑

a,b

∑
a′,b ′

Raa′Rbb ′

[
Pa′b ′ log (RPRT )ab

(R1)a (R1)b
+ (1 − Pa′b ′ ) log

(
1 − (RPRT )ab

(R1)a (R1)b

)]
.

By the information inequality for two-point measures, the expressions in square brackets
becomes bigger when (RPRT )ab/(R1)a (R1)b is replaced by Pa′b ′ , with a strict increase
unless these two numbers are equal. After making this substitution the terms in square
brackets becomes τ (Pa′b ′ ), and we can exchange the order of the two (double) sums and
perform the sum on (a,b) to write the resulting expression as∑

a′,b ′
(RT1)a′ (RT1)b ′τ (Pa′b ′ ) = HP

(
Diag(RT1)

)
.

This proves the �rst assertion (4.10) of the lemma.
IfR attains equality, then also for every permutation matrix Pσ , by the equalityHP (PσR)

= HP (R) and the fact that (PσR)T1 = RT1, we have

HP (PσR) = HP
(
Diag((PσR)T1)

)
. (4.12)

We shall show that if R satis�es this equality and PσR has a positive diagonal, then PσR
is in fact diagonal. Furthermore, we shall show that there exists Pσ such that PσR has a
positive diagonal.
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Fix some (Pσ )m that maximizes the number of positive diagonal elements of PσR over
all permutation matrices Pσ , and denote R̄ = (Pσ )mR. Because the information inequality
is strict, the preceding argument shows that (4.12) can be true for Pσ = (Pσ )m (giving
PσR = R̄) only if

Pa′b ′ =
(R̄PR̄T )ab

(R̄1)a (R̄1)b
, whenever R̄aa′R̄bb ′ > 0. (4.13)

Denote the matrix on the right of the equality by Q .
If R̄ has a completely positive diagonal, then we can choose a = a′ and b = b ′ and �nd

from equation (4.13), that Pab = Qab , for every a,b. If also R̄aa′ > 0, then we can also
choose b = b ′ and �nd that Pa′b = Qab , for every b. Thus the ath and a′th rows of P are
identical. Since all rows of P are di�erent by assumption, it follows that no a , a′ with
R̄aa′ > 0 exists.

If R̄ does not have a fully positive diagonal, then the submatrix of R̄ obtained by delet-
ing the rows and columns corresponding to positive diagonal elements must be the zero
matrix, since otherwise we might permute the remaining rows and create an additional
nonzero diagonal element, contradicting that (Pσ )m already maximized this number. If I
and I c are the sets of indices of zero and nonzero diagonal elements, then the preceding
observation is that R̄i j is zero for every i, j ∈ I . If π > 0, then we need to consider only R
with nonzero columns. For i ∈ I a nonzero element in the ith column of R̄ must be located
in the rows with label in I c : for every i ∈ I there exists ki ∈ I c with R̄k i i > 0. Then, for
i, j ∈ I ,

(1) for a = ki , b = k j , a′ = i , b ′ = j, equation (4.13) implies Qk ik j = Pi j .

(2) for a = ki , b ∈ I c , a′ = i , b ′ = b, equation (4.13) implies Qk ib = Pib .

(3) for a = ki , b ∈ I c , a′ = ki , b ′ = b, equation (4.13) implies Qk ib = Pk ib .

We combine these three assertions to conclude that, for a,i ∈ I and b ∈ I c ,

Pai = Pia
(1)
= Qk ika

(2)
= Pika = Pka i ,

Pab
(2)
= Qkab

(3)
= Pkab .

Together these imply that the ath and the kath row of P are equal. Since by assumption
they are not (if π > 0), this case can actually not exist (i.e. k = 0).

Finally if πa = 0 for some a, then we follow the same argument, but we match only
every column i ∈ I with πi > 0 to a row ki ∈ I c . By the assumption on R such ki exist,
and the construction results in two rows of P that are identical in the coordinates with
πa > 0. �

Lemma 4.9. For any �xed (K ×K )-matrix P with elements in [0,1], uniformly in probability
matrices R, as ρn → 0,

1
ρn

(
HρnP (Diag(RT1)

)
− HρnP (R)

)
→ GP (Diag(RT1)

)
−GP (R). (4.14)
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Furthermore, if (P ,π ) is identi�able and the columns of R corresponding to positive coordi-
nates of π are not identically zero, then the right side is strictly positive unless SR is a diagonal
matrix for some permutation matrix S .

Proof. From the fact that |(1 − u) log(1 − u) + u | ≤ u2, for 0 ≤ u ≤ 1, it can be veri�ed
that, ���ρ−1

n τ (ρnu) −
(
u log ρn + τ0 (u)

) ��� ≤ ρn → 0, uniformly in 0 ≤ u ≤ 1. It follows that,
uniformly in R,

1
ρn

HρnP (R) = log ρn
∑
a,b

(RPRT )ab +
∑
a,b

(R1)a (R1)bτ0

( (RPRT )ab
(R1)a (R1)b

)
+O (ρn ).

The �rst term on the right is equal to log ρn (RT1)TP (RT1), and hence is the same for R
and Diag(RT1). Thus this term cancels on taking the di�erence to form the left side of
(4.14), and hence (4.14) follows.

The right side of (4.14) is nonnegative, because the left side is, by Lemma 4.8. This fact
can also be proved directly along the lines of the proof of Lemma 4.8, as follows. Write

GP (R) =
∑
a,b

∑
a′,b ′

Raa′Rbb ′
[
Pa′b ′ log (RPRT )ab

(R1)a (R1)b
−

(RPRT )ab
(R1)a (R1)b

]
.

By the information inequality for two Poisson distributions the term in square brackets
becomes bigger if (RPRT )ab/(R1)a (R1)b is replaced by Pa′b ′ . It then becomes τ0 (Pa′b ′ ) and
the double sum on (a,b) can be executed to see that the resulting bound isGP

(
Diag(RT1)

)
.

Furthermore, the inequality is strictly unless (4.13) holds, with R̄ = R. Since alsoGP (PσR) =
GP (R), for every permutation matrix Pσ , the �nal assertion of the lemma is proved by
copying the proof of Lemma 4.8. �

4.6.2 Strong consistency
We need slightly adapted versions of the function HP , given by, with δab equal to 1 or 0 if
a = b or not,

HP,n (R) =
1
2
∑
a,b

(R1)a
(
(R1)b − δab/n

)
τ
( (RPRT )ab − δab ∑

k PkkRka/n

(R1)a
(
(R1)b − δab/n

) )
. (4.15)

For given functions tab : [0,1]→ R, let X (e ) be the K × K matrix with entries

Xab (e ) = tab

(Õab (e )

n2

)
− tab

(
E(Õab (e ) | Z )

n2

)
. (4.16)

Proof of Theorem 4.3 [strong consistency]

Proof. i. By Theorem 4.4, ê is weakly consistent, and hence with probability tending to
one it belongs to the set of classi�cations e such that the fractions f (e ) are close to π ,
and the matrices R (e,Z ) are close to Diag(π ) after the appropriate permutation of the
labels (that is, of rows of R (e,Z )). Therefore, it is no loss of generality to assume that ê
is restricted to this set. By Lemmas 4.5 and 4.6, the matrices Õ (e )/n2 are then close to
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R (e,Z )PR (e,Z )T → Diag(π )PDiag(π ), and hence are bounded away from zero and one if
P has this property.

If ê and Z di�er at m nodes, then ê belongs to the set of e with ‖R (Z ,Z ) − R (e,Z )‖1 =
m(2/n), by Lemma 4.1. In that case QB (e ) ≥ QB (Z ), for some e in this set, and hence by
Lemma 4.2 QML (e ) −QML (Z ) +QP (e ) −QP (Z ) ≥ −ηn , for some ηn of order (logn)/n2. It
follows that:[

QML (e ) − HP,n
(
R (e,Z )

)]
−

[
QML (Z ) − HP,n

(
R (Z ,Z )

)]
≥ HP,n

(
R (Z ,Z )

)
− HP,n

(
R (e,Z )

)
− |QP (e ) − QP (Z ) | − ηn . (4.17)

The �rst term on the right is bounded below by a multiple ofm/n, by Lemmas 4.10 and 4.1.
Because (x +α ) logx − (y +α ) logy =

∫ y
x (log s + (s +α )/s ) ds is bounded in absolute value

by a multiple of |x −y | log(x ∨y), if α ≥ 0 and x ,y > 0, the second term −|QP (e ) −QP (Z ) |
is bounded below by a multiple of m(logn)/n2, for some positive constant C2, which is
of smaller order than m/n. We conclude that the left side of (4.17) is bounded below by
C1m/n. The left side is ∑

a,b

(
Xab (e ) − Xab (Z )

)
, for X de�ned in (4.16) and t the function

with coordinates tab (o) = fa (e )
(
fb (e ) − δab/n

)
τ
(
o/fa (e )

(
fb (e ) − δab/n

))
. Because we

restrict e to classi�cations such thatOab (e )/nab (e ) and fa (e ) fb (e ) are bounded away from
zero and one, only the values of the function τ on an open interval strictly within (0,1)
matter. On any such interval τ has uniformly bounded derivatives, and hence the bound
of Lemma 4.13 is valid. Thus we �nd that

Pr
(
#(i : êi , Zi ) =m

)
≤ Pr

(
sup

e:#(i:e i,Z i )≤m

X (e ) − X (Z )∞ ≥
C1m

n

)
. Km

(
n

m

)
e−cm

2/(m ‖P ‖∞/n+m/n)

≤ em log(Kne/m)−c1mn .

The sum of the right side overm = 1, . . . ,n tends to zero.
ii. We follow the proof for i, but in (4.17) use that HP,n

(
R (Z ,Z )

)
− HP,n

(
R (e,Z )

)
≥

ρnC‖R (Z ,Z )−R (e,Z )‖1 ≥ ρnC2m/n, by Lemma 4.12. Since ρn � (logn)/n by assumption,
we have that the contribution m(logn)/n2 of QP (e ) − QP (Z ) is still negligible and hence
ρnC2m/n is a lower bound for the left side of (4.17). As a bound on the left side of the
preceding display, we then obtain

n∑
m=1

Km
(
n

m

)
e−c2ρ2

nm
2/(mρn /n+ρnm/n) ≤

n∑
m=1

em log(Kne/m)−c3ρnmn .

This sum tends to zero provided that nρn � logn. �

Lemma 4.10. If P is �xed and symmetric and every pair of rows of P is di�erent and 0 <
P < 1 and π > 0, then, for su�ciently small δ > 0,

lim inf
n→∞

inf
0< ‖R−Diag(π ) ‖<δ

HP,n
(
Diag(RT1)

)
− HP,n (R)

‖Diag(RT1) − R‖
> 0. (4.18)
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Proof. We can reparametrize the K × K matrices R by the pairs (RT1,R − Diag(RT1)),
consisting of the K vector f = RT1 and the K ×K matrix R−Diag(RT1). The latter matrix
is characterized by having nonnegative o�-diagonal elements and zero column sums, and
can be represented in the basis consisting of all K × K matrices ∆bb ′ , for b , b ′, de�ned
by: (∆bb ′ )b ′b ′ = −1, (∆bb ′ )bb ′ = 1 and (∆bb ′ )aa′ = 0, for all other entries (a,a′), i.e. the
b ′th column of ∆bb ′ has a 1 in the bth coordinate and a −1 on the b ′th coordinate and
all its other columns are zero. Given any matrix R ≥ 0 the matrix R − Diag(RT1) can be
decomposed as

R − Diag(RT1) =
∑
b,b ′

λbb ′∆bb ′ ,

for λbb ′ = Rbb ′ ≥ 0. Since every ∆bb ′ has exactly one nonzero o�-diagonal element, which
is equal to 1, and in a di�erent location for eachb , b, the sum of the o�-diagonal elements
of the matrix on the right side is ∑

b,b ′ λbb ′ . Because the sum of all its elements is zero, it
follows that its sum of absolute elements is given by ‖R − Diag(RT1)‖1 = 2 ∑

b,b ′ λbb ′ .
Thus we obtain a further reparametrization R ↔ ( f ,λ), in which R = Diag( f ) +∑

b,b ′ λbb ′∆bb ′ . For given P , f and n, de�ne the function

G (λ) = HP,n

(
Diag( f ) +

∑
b,b ′

λbb ′∆bb ′

)
.

Then we would like to show that there exists C such that

HP,n (Diag(RT1)) − HP,n (R)

‖R − Diag(RT1)‖1
=
G (0) −G (λ)

2 ∑
b,b ′ λbb ′

≥ C > 0,

for every f in a neighbourhood of π , λ in a neighbourhood of 0 intersected with {λ : λ ≥ 0},
and every su�ciently largen. The numerator in the quotient is f (0)− f (1) for the function
f (s ) = G (sλ). Writing this di�erence in the form − f ′(0) −

∫ 1
0

(
f ′(s ) − f ′(0)

)
ds gives that

the numerator is equal to

−∇G (0)Tλ −
∫ 1

0

(
∇G (sλ) − ∇G (0))

)T
ds λ. (4.19)

It su�ces to show that the �rst term is bounded below by a multiple of ‖λ‖1 and that the
second is negligible relative to the �rst, as n → ∞, uniformly in f in a neighbourhood of
π and λ in a neighbourhood of 0 intersected with {λ : λ ≥ 0}. Thus it is su�cient to show
�rst that for every coordinate λbb ′ of λ minus the partial derivative of G at λ = 0 with
respect to λbb ′ is bounded away from 0, as n → ∞ uniformly in f , and second that every
partial derivative is equicontinuous at λ = 0 uniformly in f and large n.

We have

G (λ) =
1
2

∑
a,a′

fa (λ)
(
fa′ (λ) − δaa′/n

)
τ
( (
R (λ)PR (λ)T

)
aa′
− δaa′ea (λ)/n

fa (λ)
(
fa′ (λ) − δaa′/n

) )
, (4.20)

for

f (λ) = f +
∑
bb ′

λbb ′ (∆bb ′1),
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R (λ) = Diag( f ) +
∑
b,b ′

λbb ′∆bb ′ ,

ea (λ) =
∑
k

PkkRak (λ) = Paa fa +
∑
b,b ′

Pb ′b ′λbb ′ (δab − δab ′ ).

By a lengthy calculation, given in Lemma 4.11,

∂

∂λbb ′
G (λ) |λ=0 = −

∑
a

faK (Pab ′ ‖Pab ) + 1
2nK (Pb ′b ′ ‖Pbb ), (4.21)

for K (p‖q) = p log(p/q) + (1 − p) log
(
(1 − p)/(1 − q)

)
the Kullback-Leibler divergence

between the Bernoulli distributions with success probabilitiesp and q. The numbers fa are
bounded away from zero for f su�ciently close to π , and hence so is ∑

a faK (Pab ′ ‖Pab ),
unless the bth and b ′th column of P are identical. The whole expression is bounded below
by the minimum over (b,b ′) of these numbers minus (2n)−1 times the maximum of the
numbers K (Pb ′b ′ ‖Pbb ), and hence is positive and bounded away from zero for su�ciently
large n.

To verify the equicontinuity of the partial derivatives we can compute these explicitly
at λ and take their limit as n → ∞. We omit the details of this calculation. However, we
note that every term of G (λ) is a �xed function of the quadratic forms in λ(

fa +
∑
bb ′

λbb ′ (∆bb ′1)a
) (
fa′ +

∑
bb ′

λbb ′ (∆bb ′1)a′ − δaa′/n
)
, (4.22)((

Diag( f ) +
∑
b,b ′

λbb ′∆bb ′
)
P
(
Diag( f ) +

∑
b,b ′

λbb ′∆
T
bb ′

))
aa′

−
δaa′

2n
(
Paa fa +

∑
b,b ′

Pb ′b ′λbb ′ (δab − δab ′ )
)
. (4.23)

These forms are obviously smooth in λ, and their dependence and that of their derivatives
on n is seen to vanish as n → ∞. For f and λ restricted to neighbourhoods of π and 0,
the values of the quadratic forms are restricted to a domain in which the transformation
mapping them into G (λ) is continuously di�erentiable. Thus the desired equicontinuity
follows by the chain rule. �

Lemma 4.11. The partial derivatives of the function G at 0 de�ned by (4.20) are given by
(4.21).

Proof. For given di�erentiable functions u and v the map ϵ 7→ u (ϵ )τ
(
v (ϵ )/u (ϵ )

)
has

derivative v ′ log
(
v/(u −v )

)
−u ′ log

(
u/(u −v )

)
. We apply this for every given pair (a,a′)

to the functionsu andv obtained by taking λbb ′ in (4.22) and (4.23) equal to ϵ and all other
coordinates of λ equal to zero. Then

u (0) = fa ( fa′ − δaa′/n),

v (0) = fa ( fa′ − δaa′/n)Paa′ ,

u ′(0) = (∆bb ′1)a ( fa′ − δaa′/n) + fa (∆bb ′1)a′
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v ′(0) = (∆bb ′P )aa′ fa′ + fa (∆bb ′P )a′a − (δaa′/n)Pb ′b ′ (δab − δab ′ ).

It follows thatv (0)/(u (0) − v (0)) = Paa′/(1 − Paa′ ), andu (0)/(u (0) − v (0)) = 1/(1 − Paa′ ).
Hence in view of (4.15) the partial derivative in (4.21) is equal to∑

a,a′

[
v ′(0) log Paa′

1 − Paa′
− u ′(0) log 1

1 − Paa′

]
.

We combine this with the equalities

(∆bb ′1)a =


0 if a < {b,b ′},
−1 if a = b ′,
1 if a = b,

(∆bb ′P )aa′ =


0 if a < {b,b ′},
−Pb ′a′ if a = b ′,
Pb ′a′ if a = b .

�

Lemma 4.12. If S is �xed and symmetric, every pair of rows of S is di�erent and S > 0 and
π > 0 coordinatewise, then there exists C > 0 such that, for su�ciently small δ > 0 and any
ρn ↓ 0,

lim inf
n→∞

inf
0< ‖R−Diag(π ) ‖<δ

HρnS,n
(
Diag(RT1)

)
− HρnS,n (R)

ρn ‖Diag(RT1) − R‖
≥ C .

Proof. In the notation of the proof of Lemma 4.10 we must now show that G (0) −G (λ) ≥
Cρn ‖λ‖1, as n → ∞, uniformly in f in a neighbourhood of π , and λ in a positive neigh-
bourhood of 0. As in that proof we write G (0) − G (λ) in the form (4.19) and see that it
su�ces that the partial derivatives ofG at 0 divided by ρn tend to negative limits, and that∇G (λ) − ∇G (0)/ρn becomes uniformly small as λ is close enough to zero.

The partial derivative at 0 with respect to λbb ′ is given in (4.21), where we must replace
P by ρnS . Since the scaled Kullback-Leibler divergence ρ−1

n K (ρns‖ρnt ) of two Bernoulli
laws converges to the Kullback-Leibler divergence K0 (s‖t ) = s log(s/t ) + t − s between
two Poisson laws of means s and t , as ρn → 0, it follows that for ρn → 0, uniformly in f ,

1
ρn

∂

∂λbb ′
G (λ) |λ=0 → −

∑
a

faK0 (Sab ′ ‖Sab ).

The right side is strictly negative by the assumption that every pair of rows of S di�er in
at least one coordinate.

If P = ρnS , then the function λ 7→ v (λ) given in (4.23) takes the form v = ρnvS , for
vS de�ned in the same way but with S replacing P . The function u given in (4.22) does
not depend on P or S . Using again that the derivative of the map ϵ 7→ u (ϵ )τ

(
v (ϵ )/u (ϵ )

)
is given by v ′ log

(
v/(u − v )

)
− u ′ log

(
u/(u − v )

)
, we see that the partial derivative with

respect to λbb ′ of the (a,a′) term in the sum de�ning G takes the form

ρnv
′
S log ρnvS

u − ρvS
− u ′ log u

u − ρnvS

= ρnv
′
S log ρn − ρnv ′S log(vS/u) − (ρnv

′
S − u

′) log(1 − ρnvS/u).
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Hereu andVS are as in (4.22) and (4.23) (with P replaced by S), and depend on (a,a′). From
the fact that the column sums of the matrices R (λ) do not depend on λ, we have that∑

a,a′

[
(R (λ)SR (λ)T )aa′ −

δaa′

n

∑
k

PkkR (λ)ak
]
= R (λ)T1SR (λ)T1 −

∑
k

Pkk
∑
a

R (λ)ak

is constant in λ. This shows that ∑
a,a′ v

′
S = 0 and hence the contribution of the term

ρnv
′
S log ρn to the partial derivatives ofG vanishes. The term −(ρnv ′S −u

′) log(1−ρnvS/u)
can be expanded as (ρnv ′S −u

′)ρnvS/u up to O (ρ2
n ), uniformly in f and λ. Since these are

equicontinuous functions of λ, it follows that ρ−1
n

(
∇G (λ) − ∇G (0)

)
becomes arbitrarily

small if λ varies in a su�ciently small neighbourhood of 0. �

Lemma 4.13. There exists a constant c > 0 such that for X (e ) as in (4.16), for every twice
di�erentiable functions ta,b : [0,1]→ R with ‖t ′a,b ‖∞ ∨ ‖t

′′
a,b ‖∞ ≤ 1, and every x > 0,

Pr
(

max
e:#(e i,Z i )≤m

X (e ) − X (Z )∞ > x
)

≤ 6
(
n

m

)
Km+2e−

cx2n2
m ‖P ‖∞ /n+x .

Proof. Given Z there are at most
(
n
m

)
groups of m candidate nodes that can be assigned

to have ei , Zi , and the label of each node can be chosen in at most K − 1 ways. Thus
conditioning the probability on Z , we can use the union bound to pull out the maximum
over e , giving a sum of fewer than

(
n
m

)
Km terms. Next we pull out the norm giving another

factor K2. It su�ces to combine this with a tail bound for a single variable Xa,b (e ) −
Xa,b (Z ). Write t for ta,b .

Assume for simplicity of notation that ei = Zi , for i > m, and decompose

1
n2Oab (e ) =

1
n2

[ ∑
i≤m or j≤m

Ai j1e i=a,e j=b +
∑

i>m and j>m

Ai j1e i=a,e j=b
]

=: S1 + S2.

LetOab (Z )/n
2 =: S ′1 +S2, with the same variable S2, be the corresponding decomposition if

e is changed to Z , and then decompose, where the expectation signs E denote conditional
expectations given Z ,

Xab (e ) − Xab (Z )

=
(
t (S1 + S2) − t (ES1 + ES2)

)
−

(
t (S ′1 + S2) − t (ES

′
1 + ES2)

)
= t (S1 + S2) − t (ES1 + S2)

+
(
t (ES1 + S2) − t (ES1 + ES2)

)
−

(
t (ES ′1 + S2) − t (ES

′
1 + ES2)

)
+ t (ES ′1 + S2) − t (S

′
1 + S2)

The �rst and third terms on the far right can be bounded above in absolute value by ‖t ′‖∞
times the increment. To estimate the second term we write it as

(S2 − ES2) (ES1 − ES
′
1)

∫ 1

0

∫ 1

0
t ′′

(
uS2 + (1 − u)ES2 +vES1 + (1 − v )ES ′1

)
du dv .
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Since the �rst and second derivatives of t are uniformly bounded by 1, it follows that

���Xab (e ) − Xab (Z )
��� ≤ |S1 − ES1 | + |S2 − ES2 | |ES1 − ES

′
1 | + |S ′1 − ES ′1 |.

The variable S1 − ES1 is a sum of fewer than 2mn independent variables, each with con-
ditional mean zero, bounded above by 1/n2 and of variance bounded above by ‖P ‖∞/n4.
Therefore Bernstein’s inequality gives that

P
(
|S1 − ES1 | > x

)
≤ e−

1
2 x

2/(2mn ‖P ‖∞/n4+x/(3n2 )) .

This is as the exponential factor in the bound given by the lemma, for appropriate c . The
variable S ′1 − ES

′
1 can be bounded similarly. Furthermore |ES1 − ES

′
1 | ≤ 4mn/n2 = 4m/n,

and S2 − ES2 is the sum of fewer than n2 variables as before, so that

P
(
|S2 − ES2 | |ES1 − ES

′
1 | > x

)
≤ e−

1
2 (xn/(4m))2/(n2 ‖P ‖∞/n4+xn/(12mn2 )) .

The exponent has a similar form as before, except for an additional factor n/m ≥ 1. �
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