
Topics in mathematical and applied statistics
Pas, S.L. van der

Citation
Pas, S. L. van der. (2017, February 28). Topics in mathematical and applied statistics.
Retrieved from https://hdl.handle.net/1887/46454
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/46454
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/46454


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/46454 holds various files of this Leiden University 
dissertation 
 
Author: Pas, S.L. van der 
Title: Topics in mathematical and applied statistics 
Issue Date: 2017-02-28 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/46454
https://openaccess.leidenuniv.nl/handle/1887/1�


1
Posterior concentration of the
horseshoe around nearly black

vectors

Abstract
We consider the horseshoe estimator due to Carvalho et al. (2010) for the multivariate normal
mean model in the situation that the mean vector is sparse in the nearly black sense. We as-
sume the frequentist framework where the data is generated according to a �xed mean vector.
We show that if the number of nonzero parameters of the mean vector is known, the horseshoe
estimator attains the minimax `2 risk, possibly up to a multiplicative constant. We provide
conditions under which the horseshoe estimator combined with an empirical Bayes estimate
of the number of nonzero means still yields the minimax risk. We furthermore prove an upper
bound on the rate of contraction of the posterior distribution around the horseshoe estimator,
and a lower bound on the posterior variance. These bounds indicate that the posterior dis-
tribution of the horseshoe prior may be more informative than that of other one-component
priors, including the Lasso.

This chapter has appeared as S.L. van der Pas, B.J.K. Kleijn and A.W. van der Vaart (2014). The horseshoe
estimator: posterior concentration around nearly black vectors. Electronic Journal of Statistics 8, 2585–2618. The
research leading to these results has received funding from the European Research Council under ERC Grant
Agreement 320637.
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8 CHAPTER 1. THE HORSESHOE ESTIMATOR: POSTERIOR CONCENTRATION

1.1 Introduction

We consider the normal means problem, where we observe a vector Y ∈ Rn , Y = (Y1, . . . ,
Yn ), such that

Yi = θi + εi , i = 1, . . . ,n,

for independent normal random variables εi with mean zero and variance σ 2. The vector
θ = (θ1, . . . ,θn ) is assumed to be sparse, in the ‘nearly black’ sense that the number of
nonzero means

pn := #{i : θi , 0}

is o(n) asn → ∞. A natural Bayesian approach to recovering θ would be to induce sparsity
through a ‘spike and slab’ prior (Mitchell and Beauchamp, 1988), which consists of a mix-
ture of a Dirac measure at zero and a (heavy-tailed) continuous distribution. Johnstone
and Silverman (2004) analyzed an empirical Bayes version of this approach, where the
mixing weight is obtained by marginal maximum likelihood. In the frequentist setup that
the data are generated according to a �xed mean vector, they showed that the empirical
Bayes coordinatewise posterior median attains the minimax rate, in `q norm, q ∈ (0,2], for
mean vectors that are either nearly black or of bounded `p norm, p ∈ (0,2]. Castillo and
Van der Vaart (2012) analyzed a fully Bayesian version, where the proportion of nonzero
coe�cients is modelled by a prior distribution. They identi�ed combinations of priors on
this proportion and on the nonzero coe�cients (the ‘slab’) that yield posterior distribu-
tions concentrating around the underlying mean vector at the minimax rate in `q norm,
q ∈ (0,2], for mean vectors that are nearly black, and in `q norm, q ∈ (0,2) for mean
vectors of bounded weak `p norm, p ∈ (0,q). Other work on empirical Bayes approaches
to the two-group model includes (Efron, 2008; Jiang and Zhang, 2009; Yuan and Lin, 2005).

As a full Bayesian approach with a mixture of a Dirac and a continuous component
may require exploration of a model space of size 2n , implementation on large datasets
is currently impractical, although Castillo and Van der Vaart (2012) present an algorithm
which can compute several aspects of the posterior in polynomial time, provided su�-
cient memory can be allocated. Several authors, including (Armagan et al., 2013; Gri�n
and Brown, 2010), have proposed one-component priors, which model the spike at zero
by a peak in the prior density at this point. For most of these proposals, theoretical justi-
�cation in terms of minimax risk rates or posterior contraction rates is lacking. The Lasso
estimator (Tibshirani, 1996), which arises as the MAP estimator after placing a Laplace
prior with common parameter on each θi , is an exception. It attains close to the mini-
max risk rate in `q , q ∈ [1,2] (Bickel et al. (2009)). It has however been recently shown
that the corresponding full posterior distribution contracts at a much slower rate than the
mode (Castillo et al., 2015). This is undesirable, because this implies that the posterior
distribution cannot provide an adequate measure of uncertainty in the estimate.

In general one would use a posterior distribution both for recovery and for uncertainty
quanti�cation. For the �rst, a measure of centre, such as a median or mode, su�ces. For
the second, one typically employs a credible set, which is de�ned as a central set of pre-
scribed posterior probability. For realistic uncertainty quanti�cation it is necessary that
the posterior contracts to its center at the same rate as the posterior median or mode
approaches the true parameter.
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In this paper we study the posterior distribution resulting from the horseshoe prior,
which is a one-component prior, introduced in (Carvalho et al., 2009, 2010) and expanded
upon in (Polson and Scott, 2012a,b; Scott, 2011). It combines a pole at zero with Cauchy-
like tails. The corresponding estimator does not face the computational issues of the
point mass mixture models. Carvalho et al. (2010) already showed good behaviour of
the horseshoe estimator in terms of Kullback-Leibler risk when the true mean is zero.
Datta and Ghosh (2013) proved some optimality properties of a multiple testing rule in-
duced by the horseshoe estimator. In this paper, we prove that the horseshoe estimator
achieves the minimax quadratic risk, possibly up to a multiplicative constant. We fur-
thermore prove that the posterior variance is of the order of the minimax risk, and thus
the posterior contracts at the minimax rate around the underlying mean vector. These
results are proven under the assumption that the number pn of nonzero parameters is
known. However, we also provide conditions under which the horseshoe estimator com-
bined with an empirical Bayes estimator still attains the minimax rate, when pn is un-
known.

This paper is organized as follows. In Section 1.2, the horseshoe prior is described and
a summary of simulation results is given. The main results, that the horseshoe estima-
tor attains the minimax squared error risk (up to a multiplicative constant) and that the
posterior distribution contracts around the truth at the minimax rate, are stated in Sec-
tion 1.3. Conditions on an empirical Bayes estimator of the key parameter τ such that the
minimax `2 risk will still be obtained are given in Section 1.4. The behaviour of such an
empirical Bayes estimate is compared to a full Bayesian version in a numerical study in
Section 1.5. Section 1.6 contains some concluding remarks. The proofs of the main results
and supporting lemmas are in the appendix.

1.1.1 Notation

We write An � Bn to denote 0 < limn→∞ inf An
Bn
≤ limn→∞ sup An

Bn
< ∞ and An . Bn to

denote that there exists a positive constant c independent of n such that An ≤ cBn . A ∨ B
is the maximum of A and B, and A ∧ B the minimum of A and B. The standard normal
density and cumulative distribution are denoted by ϕ and Φ and we set Φc = 1 − Φ. The
norm ‖ · ‖ will be the `2 norm and the class of nearly black vectors will be denoted by
`0[pn] := {θ ∈ Rn : #(1 ≤ i ≤ n : θi , 0) ≤ pn}.

1.2 The horseshoe prior

In this section, we give an overview of some known properties of the horseshoe estima-
tor which will be relevant to the remainder of our discussion. The horseshoe prior for a
parameter θ modelling an observation Y ∼ N (θ ,σ 2In ) is de�ned hierarchically (Carvalho
et al., 2010):

θi | λi ,τ ∼ N (0,σ 2τ 2λ2
i ), λi ∼ C

+ (0,1),

for i = 1, . . . ,n, where C+ (0,1) is a standard half-Cauchy distribution. The parameter τ is
assumed to be �xed in this paper, rendering the θi independent a priori. The corresponding
density pτ increases logarithmically around zero, while its tails decay quadratically. The
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Figure 1.1: The e�ect of decreasing τ on the priors on κ (left) and θ (middle) and the
posterior mean Tτ (y) (right). The solid line corresponds to τ = 1, the dashed line to
τ = 0.05. Decreasing τ results in a higher prior probability of shrinking the observations
towards zero.

posterior density of θi given λi and τ is normal with mean (1 − κi )yi , where κi = 1
1+τ 2λ2

i
.

Hence, by Fubini’s theorem:

E[θi | yi ,τ ] = (1 − E[κi | yi ,τ ])yi .

The posterior mean E[θ | y,τ ] will be referred to as the horseshoe estimator and denoted
by Tτ (y). The horseshoe prior takes its name from the prior on κi , which is given by:

pτ (κi ) =
τ

π

1
1 − (1 − τ 2)κi

(1 − κi )−
1
2κ
− 1

2
i .

If τ = 1, this reduces to a Be( 1
2 ,

1
2 ) distribution, which looks like a horseshoe. As illustrated

in Figure 1.1, decreasing τ skews the prior distribution on κi towards one, corresponding
to more mass near zero in the prior on θi and a stronger shrinkage e�ect in Tτ (y).

The posterior mean can be expressed as:

Tτ (yi ) = yi


1 −

2Φ1

(
1
2 ,1,

5
2 ; y2

i
2σ 2 ,1 − 1

τ 2

)
3Φ1

(
1
2 ,1,

3
2 ; y2

i
2σ 2 ,1 − 1

τ 2

)

 = yi

∫ 1
0 z

1
2 1
τ 2+(1−τ 2 )z e

y2
i

2σ2 zdz∫ 1
0 z−

1
2 1
τ 2+(1−τ 2 )z e

y2
i

2σ2 zdz

, (1.1)

where Φ1 (α ,β ,γ ;x ,y) denotes the degenerate hypergeometric function of two variables
(Gradshteyn and Ryzhik, 1965).

An unanswered question so far has been how τ should be chosen. Intuitively, τ should
be small if the mean vector is very sparse, as the horseshoe prior will then place more of its
mass near zero. By approximating the posterior distribution of τ 2 givenκ = (κ1, . . . ,κn ) in
case a prior on τ is used, Carvalho et al. (2010) show that if most observations are shrunk
near zero, τ will be very small with high probability. They suggest a half-Cauchy prior
on τ . Datta and Ghosh (2013) implemented this prior on τ and their plots of posterior
draws for τ at various sparsity levels indicate the expected relationship between τ and the
sparsity level: the posterior distribution of τ tends to concentrate around smaller values
when the underlying mean vector is sparser. As will be discussed further in the next
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section, the value τ = pn
n (up to a log factor) is optimal in terms of mean square error and

posterior contraction rates.
In case τ is estimated empirically, as will be considered in Section 1.4, the horseshoe

estimator can be computed by plugging this estimate into expression (1.1), thereby avoid-
ing the use of MCMC. Other aspects of the posterior, such as the posterior variance, can be
computed using such a plug-in procedure as well. Polson and Scott (2012a) and Polson and
Scott (2012b) consider computation of the horseshoe estimator based on the representa-
tion in terms of degenerate hypergeometric functions, as these can be e�ciently computed
using converging series of con�uent hypergeometric functions. They report unproblem-
atic computations for τ 2 between 1

1000 and 1000. A second option is to apply a quadrature
routine to the integral representation in (1.1). As the continuity and symmetry ofTτ (y) in
y can be taken advantage of when computing the horseshoe estimator for a large number
of observations, the complexity of these computations mostly depends on the value of τ .
Both approaches will be slower for smaller values of τ . Hence, if we use the (estimated)
sparsity level pn

n (up to a log factor) for τ , the computation of the horseshoe estimator will
be slower if there are fewer nonzero parameters. As noted by Scott (2010), problems arise
in Gibbs sampling precisely when τ is small as well. Hence care needs to be taken with
any computational approach if pn

n is suspected to be very close to zero.
The performance of the horseshoe prior, with additional priors on τ and σ 2, in vari-

ous simulation studies has been very promising. Carvalho et al. (2010) simulated sparse
data where the nonzero components were drawn from a Student-t density and found that
the horseshoe estimator systematically beat the MLE, the double-exponential (DE) and
normal-exponential-gamma (NEG) priors, and the empirical Bayes model due to John-
stone and Silverman (2004) in terms of square error loss. Only when the signal was neither
sparse nor heavy-tailed did the MLE, DE and NEG priors have an edge over the horseshoe
estimator. In similar experiments in (Carvalho et al., 2009; Polson and Scott, 2012a) the
horseshoe prior outperformed the DE prior, while behaving similarly to a heavy-tailed
discrete mixture. In a wavelet-denoising experiment under several noise levels and loss
functions, the horseshoe estimator compared favorably to the discrete wavelet transform
and the empirical Bayes model (Polson and Scott, 2010). Bhattacharya et al. (2012) applied
several shrinkage priors to data with the underlying mean vector consisting of zeroes and
�xed nonzero values and found the posterior median of the horseshoe prior performing
better in terms of squared error than the Bayesian Lasso (BL), the Lasso, the posterior
median of a point mass mixture prior as in (Castillo and Van der Vaart, 2012) and the
empirical Bayes model proposed by Johnstone and Silverman (2004), and comparable to
their proposed Dirichlet-Laplace (DL) prior with parameter 1

n . Results in (Armagan et al.,
2013) are similar. In a second simulation setting, Bhattacharya et al. (2012) generated data
of length n = 1000, with the �rst ten means equal to 10, the next 90 equal to a number
A ∈ {2, . . . ,7} and the remainder equal to zero. In this simulation, the horseshoe prior beat
the BL (except whenA = 2) and the DL prior with parameter 1

n (except whenA = 7), while
performing similarly to the DL prior with parameter 1

2 . It is worthy of note that Koenker
(2014) generated data according to the same scheme and applied the empirical Bayes pro-
cedures due to Martin and Walker (2014) (EBMW) and Koenker and Mizera (2014) (EBKM)
to it. The MSE of EBMW was lower than that of the horseshoe prior forA ∈ {5,6,7}, while
that of EBKM was much lower in all cases.
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1.3 Mean square error and bounds on the posterior vari-
ance

In this section, we study the mean square error of the horseshoe estimator, and the spread
of the posterior distribution, under the assumption that the number of nonzero parameters
pn is known. Theorem 1.1 provides an upper bound on the mean square error, and shows
that for a range of choices of the global parameter τ , the horseshoe estimator attains the
minimax `2 risk, possibly up to a multiplicative constant. Theorem 1.3 states upper bounds
on the rate of contraction of the posterior distribution around the underlying mean vector
and around the horseshoe estimator, again for a range of values of τ . These upper bounds
are equal, up to a multiplicative constant, to the minimax risk. The contraction rate around
the truth is sharp, but this may not be the case for the rate of contraction around the
horseshoe estimator. Theorems 1.4 and 1.5 provide more insight into the spread of the
posterior distribution for various values of τ and indicate that τ = pn

n

√
log(n/pn ) is a good

choice.

Theorem 1.1. Suppose Y ∼ N (θ0,σ
2In ). Then the estimator Tτ (y) satis�es

sup
θ0∈`0[pn]

Eθ0 ‖Tτ (Y ) − θ0‖
2 . pn log 1

τ
+ (n − pn )τ

√
log 1

τ
(1.2)

for τ → 0, as n,pn → ∞ and pn = o(n).

By the minimax risk result in (Donoho et al., 1992), we also have a lower bound:

sup
θ0∈`0[pn]

Eθ0 ‖Tτ (Y ) − θ0‖
2 ≥ 2σ 2pn log n

pn
(1 + o(1)),

as n,pn → ∞ and pn = o(n). The choice τ = (
pn
n )α , for α ≥ 1, leads to an upper bound

(1.2) of order pn log(n/pn ), with (as can be seen from the proof) a multiplicative constant
of at most 4ασ 2. Thus, for this choice of τ , we have:

sup
θ0∈`0[pn]

Eθ0 ‖Tτ (Y ) − θ0‖
2 � pn log n

pn
.

The horseshoe estimator therefore performs well as a point estimator, as it attains the
minimax risk (possibly up to a multiplicative constant of at most 2 for α = 1). This may
seem surprising, as the prior does not include a point mass at zero to account for the
assumed sparsity in the underlying mean vector. Theorem 1.1 shows that the pole at zero
of the horseshoe prior mimics the point mass well enough, while the heavy tails ensure
that large observations are not shrunk too much.

An upper bound on the rate of contraction of the posterior can be obtained through
an upper bound on the posterior variance. The posterior variance can be expressed as:

var(θi | yi ) =
σ 2

yi
Tτ (yi ) − (Tτ (yi ) − yi )

2 + y2
i

8Φ1

(
1
2 ,1,

7
2 ; y2

i
2σ 2 ,1 − 1

τ 2

)
15Φ1

(
1
2 ,1,

3
2 ; y2

i
2σ 2 ,1 − 1

τ 2

) .
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Details on the computation can be found in Lemma 1.10. Using a similar approach as when
bounding the `2 risk, we can �nd an upper bound on the expected value of the posterior
variance.

Theorem 1.2. Suppose Y ∼ N (θ0,σ
2In ). Then the variance of the posterior distribution

corresponding to the horseshoe prior satis�es

sup
θ0∈`0[pn]

Eθ0

n∑
i=1

var(θ0i | Yi ) . pn log 1
τ

+ (n − pn )τ

√
log 1

τ
(1.3)

for τ → 0, as n,pn → ∞ and pn = o(n).

Again, the choice τ = (
pn
n )α , for α ≥ 1 leads to an upper bound (1.3) of the order of

the minimax risk. This result indicates that the posterior contracts fast enough to be able
to provide a measure of uncertainty of adequate size around the point estimate. Theorems
1.1 and 1.2 combined allow us to �nd an upper bound on the rate of contraction of the full
posterior distribution, both around the underlying mean vector and around the horseshoe
estimator.

Theorem 1.3. Under the assumptions of Theorem 1.1, with τ = (
pn
n )α , α ≥ 1:

sup
θ0∈`0[pn]

Eθ0Πτ

(
θ : ‖θ − θ0‖

2 > Mnpn log n

pn

����� Y
)
→ 0, (1.4)

and

sup
θ0∈`0[pn]

Eθ0Πτ

(
θ : ‖θ −Tτ (Y )‖2 > Mnpn log n

pn

����� Y
)
→ 0, (1.5)

for everyMn → ∞ as n → ∞.

Proof. Combine Markov’s inequality with the results of Theorems 1.1 and 1.2 for (1.4), and
only with the result of Theorem 1.2 for (1.5). �

A remarkable aspect of the preceding Theorems is that many choices of τ , such as
τ = (

pn
n )α for any α ≥ 1, lead to an upper bound of the order pn log(n/pn ) on the worst

case `2 risk and posterior contraction rate. The upper bound on the rate of contraction in
(1.4) is sharp, as the posterior cannot contract faster than the minimax rate around the true
mean vector (Ghosal et al., 2000). However, this is not necessarily the case for the upper
bound in (1.5), and for τ = (

pn
n )α with α > 1, the posterior spread may be of smaller order

than the rate at which the horseshoe estimator approaches the underlying mean vector.
Theorems 1.4 and 1.5 provide more insight into the e�ect of choosing di�erent values of
τ on the posterior spread and mean square error.

Theorem 1.4. Suppose Y ∼ N (θ0,σ
2In ), θ0 ∈ `0[pn]. Then the variance of the posterior

distribution corresponding to the horseshoe prior satis�es

inf
θ0∈`0[pn]

Eθ0

n∑
i=1

var(θ0i | Yi ) & (n − pn )τ

√
log 1

τ
(1.6)

for τ → 0 and pn = o(n), as n → ∞. This lower bound is sharp for vectors θ0,n with pn entries
equal to an and the remaining entries equal to zero, if an is such that |an | . 1/

√
log(1/τ ).



14 CHAPTER 1. THE HORSESHOE ESTIMATOR: POSTERIOR CONCENTRATION

Theorem 1.5. SupposeY ∼ N (θ0,n,σ
2In ) and θ0,n ∈ `0[pn] is such thatpn entries are equal

to γ
√

2σ 2 log(1/τ ), γ ∈ (0,1), and all remaining entries are equal to zero. Then:

Eθ0,n ‖Tτ (Y ) − θ0,n ‖
2 � pn log 1

τ
+ (n − pn )τ

√
log 1

τ
, (1.7)

and

Eθ0,n

n∑
i=1

var(θ0,ni | Yi ) � pnτ
(1−γ )2

(
log 1

τ

)γ − 1
2 + (n − pn )τ

√
log 1

τ
, (1.8)

for τ → 0 and pn = o(n), as n → ∞.

Consider τ = (
pn
n )α . Three cases can be discerned:

(i) 0 < α < 1. Lower bound (1.6) may exceed the minimax rate, implying suboptimal
spread of the posterior distribution in the squared `2 sense.

(ii) α = 1. Bounds (1.3) and (1.6) di�er by a factor
√

log(n/pn ), as do (1.7) and (1.8). The
gap can be closed by choosing τ = pn

n

√
log n

pn
.

(iii) α > 1. Bound (1.6) is not very informative, but Theorem 1.5 exhibits a sequence
θ0,n ∈ `0[pn] for which there is a mismatch between the order of the mean square er-
ror and the posterior variance. Bounds (1.7) and (1.8) are of the orders pn (log(1/τ ) +
τ 1−1/α√log(1/τ )) and pn (τ

(1−γ )2 (log(1/τ ))γ −1/2 + τ 1−1/α√log(1/τ )), respectively.
Hence up to logarithmic factors the total posterior variance (1.8) is a factor
τ (1−1/α )∧(1−γ )2 smaller than the square distance of the center of the posterior to the
truth (1.7). For pn ≤ nc for some c > 0, this factor behaves as a power of n.

These observations suggest that τ = pn
n

√
log(n/pn ) is a good choice, because then

(1.2), (1.3), (1.6), (1.7), (1.8) are all of the order pn log(n/pn ), suggesting that the posterior
contracts at the minimax rate around both the truth and the horseshoe estimator.

1.4 Empirical Bayes estimation of τ

A natural follow-up question is how to choose τ in practice, when pn is unknown. As
discussed in Section 1.2, the full Bayesian approach suggested by Carvalho et al. (2010)
performs well in simulations. The analysis of such a hierarchical prior would however
require di�erent tools than the ones we have used so far. An empirical Bayes estimate of
τ would be a natural solution, and allows us in practice to use one of the representations
in (1.1) for computations, instead of an MCMC-type algorithm.

By adapting the approach in Paragraph 6.2 in (Johnstone and Silverman, 2004), we can
�nd conditions under which the horseshoe estimator with an empirical Bayes estimate of τ
will still attain the minimax `2 risk. Based on the consideration of Section 1.3, we proceed
with the choices τ = pn

n

√
log(n/pn ) and τ =

pn
n . The former is optimal in the sense

that the posterior spread is of the order of the minimax risk, but the latter has the simple
interpretation of being the proportion of nonzero means, and the di�erence between the
two is only the square root of a log factor.
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Theorem 1.6. Suppose we observe an n-dimensional vector Y ∼ N (θ0,σ
2In ) and we use

Tτ̂ (y) as our estimator of θ0. If τ̂ ∈ (0,1) satis�es the following two conditions for τ = pn
n or

τ =
pn
n

√
log(n/pn ):

1. Pθ0 (̂τ > cτ ) .
pn
n for a constant c ≥ 1 such that τ ≤ 1

c ;

2. There exists a function д : N × N→ (0,1) such that τ̂ ≥ д(n,pn ) with probability one
and − log(д(n,pn ))Pθ0 (̂τ ≤ τ ) . log(n/pn ),

then:
sup

θ0∈`0[pn]
Eθ0 ‖Tτ̂ (Y ) − θ0‖

2 � pn log n

pn
(1.9)

as n,pn → ∞ and pn = o(n). If only the �rst condition can be veri�ed for an estimator τ̂ ,
then sup{ 1

n , τ̂ } will have an `2 risk of at most order pn logn.

The �rst condition requires that τ̂ does not overestimate the fraction pn
n of nonzero

means (up to a log factor) too much or with a too large probability. If pn ≥ 1, as we
have assumed, then it is satis�ed already by τ̂ = 1

n (and c = 1). According to the last
assertion of the theorem, this ‘universal threshold’ yields the rate pn logn (possibly up
to a multiplicative constant). This is equal to the rate of the Lasso estimator with the
usual choice of λ = 2

√
2σ 2 logn (Bickel et al., 2009). However, in the framework where

pn → ∞, the estimator τ̂ = 1
n will certainly underestimate the sparsity level. A more

natural estimator of pn
n is:

τ̂ =
#{|yi | ≥

√
c1σ 2 logn,i = 1, . . . ,n}

c2n
, (1.10)

where c1 and c2 are positive constants. By Lemma 1.13, this estimator satis�es the �rst
condition for τ = pn

n and τ = pn
n

√
log(n/pn ) if c1 > 2,c2 > 1 and pn → ∞ or c1 = 2,c2 > 1

and pn & logn. Thus max{̂τ , 1
n } will also lead to a rate of at most order pn logn under

these conditions. Its behaviour will be explored further in Section 1.5.
The rate can be improved to pn log(n/pn ) if the second condition is met as well, which

ensures that the sparsity level is not underestimated too much or by a too large probability.
As we are not aware of any estimators meeting this condition for all θ0, this condition is
currently mostly of theoretical interest. If the true mean vector is very sparse, in the sense
that there are relatively few nonzero means or the nonzero means are close to zero, there
is not much to be gained in terms of rates by meeting this condition. The extra occurrence
of pn relative to the rate pn logn is of interest only if pn is relatively large. For instance, if
pn � nα for α ∈ (0,1), then pn log(n/pn ) = (1 − α )pn logn, which suggests a decrease of
the proportionality constant in (1.9), particularly if α is close to one. Furthermore, when
pn is large, the constant in (1.9) may be sensitive to the �ne properties of τ̂ , as it depends on
д(n,pn ) (as can be seen in the proof). If τ̂ seriously underestimates the sparsity level, the
corresponding value of д(n,pn ) from the second condition may be so small that the upper
bound on the multiplicative constant before (1.9) becomes very large. Hence in this case,
τ̂ is required to be close to the proportion pn

n (up to a log factor) with large probability in
order to get an optimal rate.
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Datta and Ghosh (2013) warned against the use of an empirical Bayes estimate of τ for
the horseshoe prior, because the estimate might collapse to zero. Their references for this
statement, Scott and Berger (2010) and Bogdan et al. (2008), indicate that they are thinking
of a marginal maximum likelihood estimate of τ . However, an empirical Bayes estimate
of τ does not need to be based on this principle. Furthermore, an estimator that satis�es
the second condition from Theorem 1.6 or that is truncated from below by 1

n , would not
be susceptible to this potential problem.

1.5 Simulation study

A simulation study provides more insight into the behaviour of the horseshoe estimator,
both when using an empirical Bayes procedure with estimator (1.10) and when using the
fully Bayesian procedure proposed by Carvalho et al. (2010) with a half-Cauchy prior on
τ . For each data point, 100 replicates of an n-dimensional vector sampled from aN (θ0, In )
distribution were created, whereθ0 had either 20, 40 or 200 (5%, 10% or 50%) entries equal to
an integerA ranging from 1 to 10, and all the other entries equal to zero. The full Bayesian
version was implemented using the code provided in (Scott, 2010), and the coordinatewise
posterior mean was used as the estimator of θ0. For the empirical Bayes procedure, the
estimator (1.10) was used with c1 = 2 and c2 = 1. Performance was measured by squared
error loss, which was averaged across replicates to create Figure 1.2.

In all settings, both estimators experience a peak in the `2 loss for values of A close to
the ‘universal threshold’ of

√
2 log 400 ≈ 3.5. This is not unexpected, as in the terminol-

ogy of Johnstone and Silverman (2004), the horseshoe estimator is a shrinkage rule, and
while it is not a thresholding rule in their sense, it does have the bounded shrinkage prop-
erty which leads to thresholding-like behaviour. The bounded shrinkage property can be
derived from Lemma 1.9, which yields the following inequality as τ approaches zero:

|Tτ (y) − y | ≤

√
2σ 2 log 1

τ
.

With τ = 1
n , this leads to the ‘universal threshold’ of

√
2σ 2 logn, or with τ = (

pn
n )α , a

‘threshold’ at
√

2ασ 2 log(n/pn ). Based on this property and the proofs of the main results,
we can divide the underlying parameters into three cases:

(i) Those that are exactly or close to zero, where the observations are shrunk close to
zero;

(ii) Those that are larger than the threshold, where the horseshoe estimator essentially
behaves like the identity;

(iii) Those that are close to the ‘threshold’, where the horseshoe estimator is most likely
to shrink the observations too much.

The horseshoe estimator performs well in cases (i) and (ii) due to its pole at zero and its
heavy tails respectively. The hardest parameters to recover from the noise are those that
are close to the threshold, and these are the ones that a�ect the estimation risk the most.
This phenomenon explains the peaks in the graphs of Figure 1.2 around A = 3.5.
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Figure 1.2: Average squared error loss over 100 replicates with underlying mean vectors
of length n = 400 if the nonzero coe�cients are taken equal to A, in case 5% (Figure (a)),
10% (Figure (b)) or 50% (Figure (c)) of the means are equal to a nonzero value A. The solid
line corresponds to empirical Bayes with (1.10), c1 = 2,c2 = 1, the dashed line to full Bayes
with a half-Cauchy prior on τ . Figure (d) displays a histogram of all Gibbs samples of τ
(after the burn-in) of all replicates in the setting τ ∼ C+ (0,1), A = 10, pn = 200.

The full Bayes implementation with a Cauchy prior on τ attains a lower `2 loss around
the universal threshold than the empirical Bayes procedure. This is because estimator
(1.10) counts the number of observations that are above the universal threshold. When
all the nonzero means are close to this threshold, τ̂ may ‘miss’ some of them, thereby
underestimating the sparsity level pn

n and thus leading to overshrinkage.
For values of A well past the universal threshold, the empirical Bayes estimator does

better than the full Bayes version. For such large values of A, the estimator (1.10) will be
equal to the true sparsity level with large probability and hence its good performance is
not unexpected. However, an interesting question is why the full Bayes estimator does
not do as well as the empirical Bayes estimator, especially because the nonzero means
are so far removed from zero that the problem is ‘easy’. This could be due to the choice
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of a half-Cauchy prior for τ : it places no restriction on the possible values of τ and has
such heavy tails that values far exceeding the sparsity level pn

n are possible. This would
lead to undershrinkage of the observations corresponding to a zero mean, which would
be re�ected in the `2 loss. Figure 1.2(d) shows a histogram of all Gibbs samples of τ in
the setting where 50% of the means are set equal to 10. The range of these values is (3.1,
7.3), which is very far away from pn

n =
1
2 . This indicates that a full Bayesian version of

the horseshoe prior could bene�t from a di�erent choice of prior on τ than a half-Cauchy
one, for example one that is restricted to [0,1].

1.6 Concluding remarks

The choice of the global shrinkage parameter τ is critical towards ensuring the right
amount of shrinkage of the observations to recover the underlying mean vector. The value
of τ = pn

n

√
log(n/pn ) was found to be optimal. Theorem 1.6 indicates that quite a wide

range of estimators for τ will work well, especially in cases where the underlying mean
vector is sparse. Of course, it should not come as a surprise that an estimator designed to
recover sparse vectors will work especially well if the truth is indeed sparse. An interest-
ing extension to this work would be to investigate whether the posterior concentration
properties of the horseshoe prior still remain when a hyperprior is placed on τ . The result
that τ = pn

n (up to a log factor) yields optimal rates, together with the simulation results,
suggests that in a fully Bayesian approach, a prior on τ which is restricted to [0,1] may
perform better than the suggested half-Cauchy prior.

The simulation results also indicate that mean vectors with the nonzero means close to
the universal threshold are the hardest to recover. In future simulations involving shrink-
age rules, it would therefore be interesting to study the challenging case where all the
nonzero parameters are at this threshold. The performance of the empirical Bayes esti-
mator (1.10) leaves something to be desired around the threshold. In additional numerical
experiments (not shown), we tried two other estimators of τ . The �rst was the ‘oracle
estimator’ τ̂ = pn

n . For values of the nonzero means well past the ‘threshold’, the be-
haviour of this estimator was very similar to that of (1.10). However, before the threshold,
the squared error loss of the empirical procedure with the oracle estimator was between
that of the full Bayes estimator and empirical Bayes with estimator (1.10). The second
estimator was the mean of the samples of τ from the full Bayes estimator. The resulting
squared error loss was remarkably close to that of the full Bayes estimator, for all values
of the nonzero means. Neither of these two estimators is of much practical use. However,
their range of behaviours suggests room for improvement over the estimator (1.10), and it
would be worthwhile to study more re�ned estimators for τ .

An interesting question is what aspects of the horseshoe prior are truly essential to-
wards optimal posterior contraction properties. Our proofs do not elucidate whether the
pole at zero of the horseshoe prior is required, or if a prior with heavy tails, and in a sense
‘su�cient’ mass at zero would work as well. The failure of the Lasso to concentrate around
the true mean vector at the minimax rate does indicate that heavy tails in itself may not
be su�cient, and adding mass at zero solves this problem (Castillo et al., 2015; Castillo and
Van der Vaart, 2012). It is possible that the pole at zero is inessential, in particular if the
global tuning parameter is chosen carefully, for instance by empirical Bayes. If the tuning
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parameter is chosen by a full Bayes method, the peak may be more essential, depending
on its prior.

The horseshoe estimator has the property that its computational complexity depends
on the sparsity level rather than the number of observations. Although there is no point
mass at zero to induce sparsity, it still yields good reconstruction in `2, and a posterior
distribution that contracts at an informative rate. None of the estimates will however be
exactly zero. Variable selection can be performed by applying some sort of thresholding
rule, such as the one suggested in (Carvalho et al., 2010) and analyzed by Datta and Ghosh
(2013). The performance of this thresholding rule in simulations in the two works cited
has been encouraging.
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1.7 Proofs

This section begins with Lemma 1.7, providing bounds on some of the degenerate hy-
pergeometric functions appearing in the posterior mean and posterior variance. This is
followed by two lemmas that are needed for the proofs of Theorems 1.1 and 1.2: Lemma
1.8 provides two upper bounds on the horseshoe estimator and Lemma 1.9 gives a bound
on the absolute value of the di�erence between the horseshoe estimator and an obser-
vation. We then proceed to the proof of Theorem 1.1, after which Lemma 1.10 provides
upper bounds on the posterior variance. These upper bounds are then used in the proof
of Theorem 1.2. The proof of Theorem 1.4 is given next, followed by Lemmas 1.11 and
1.12 supporting the proof of Theorem 1.5. This section concludes with the proofs of The-
orem 1.6 and Lemma 1.13, which both concern the empirical Bayes procedure discussed
in Section 1.4.
Lemma 1.7. De�ne

Ik (y) :=
∫ 1

0
zk

1
τ 2 + (1 − τ 2)z

e
y2

2σ2 zdz.

Then, for a > 1:

I 3
2
(y) ≥

1
5τ

3 + σ 2 τ

y2

(
e

y2

2aσ2 − eτ
2 y2

2σ2

)
+ σ 2
√
ay2

(
e
y2

2σ2 − e
y2

2aσ2

)
, (1.11)

I 1
2
(y) ≥

1
3τ + σ 2

y2

(
e
y2

2σ2 − eτ
2 y2

2σ2

)
, (1.12)

I 1
2
(y) ≤

2
3e

τ 2 y2

2σ2 τ + 2e
y2

2aσ2

(
1
√
a
− τ

)
+ 2
√
aσ 2

y2

(
e
y2

2σ2 − e
y2

2aσ2

)
, (1.13)

I− 1
2
(y) ≥

1
τ

+ eτ
2 y2

2σ2

(
1
τ
−

1
√
τ

)
+ a
√
aσ 2

y2

(
e

y2

2aσ2 − eτ
y2

2σ2

)
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+ σ 2

y2

(
e
y2

2σ2 − e
y2

2aσ2

)
, (1.14)

I− 1
2
(y) ≤

2eτ
2 y2

2σ2

τ
+ 2eτ

y2

2σ2

(
1
τ
−

1
√
τ

)
+ 2e

y2

2aσ2

(
1
√
τ
−
√
a

)
+ 2a
√
aσ 2

y2

(
e
y2

2σ2 − e
y2

2aσ2

)
, (1.15)

where (1.11) and (1.13) hold for τ < 1/
√
a, (1.12) holds for τ < 1, and (1.14) and (1.15) hold

for τ < 1/a.

Proof. Write ξ = y2/(2σ 2). We �rst note that for z ≥ τ 2, we have z ≤ τ 2 + (1 − τ 2)z ≤ 2z,
while for z ≤ τ 2, we have τ 2 ≤ τ 2 + (1 − τ 2)z ≤ 2τ 2. Hence, we can bound Ik from above
by:

Ik (y) ≤
1
τ 2

∫ τ 2

0
zke ξzdz +

∫ 1

τ 2
zk−1e ξzdz,

and from below by half of that quantity. We bound the integral over [0,τ 2] in all cases
by bounding the factor e ξz by 1 or eτ 2ξ . For the integral over [τ 2,1], we �rst substitute
u = ξz, yielding:

∫ 1
τ 2 z

k−1e ξzdz = ξ −k
∫ ξ
τ 2ξ u

k−1eudu. For (1.11) and (1.13), we split the
domain of integration into [τ 2ξ ,

ξ
a ] and [ ξa ,ξ ]. For I 3

2
, we bound by:

I 3
2
(y) ≥

1
2




1
τ 2

∫ τ 2

0
z

3
2dz + ξ −

3
2 (τ 2ξ )

1
2

∫ ξ
a

τ 2ξ
eudu + ξ −

3
2

(
ξ

a

) 1
2
∫ ξ

ξ
a

eudu


 ,

yielding (1.11). Similarly, for I 1
2
:

I 1
2
(y) ≤

1
τ 2 e

τ 2ξ
∫ τ 2

0
z

1
2dz + ξ −

1
2 e

ξ
a

∫ ξ
a

τ 2ξ
u−

1
2du + ξ −

1
2

(
ξ

a

)− 1
2
∫ ξ

ξ
a

eudu,

resulting in (1.13). The bound (1.12) is obtained similarly, but without splitting up [τ 2ξ ,ξ ]
further, by the inequality

I 1
2
(y) ≥

1
2τ 2

∫ τ 2

0
z

1
2dz + 1

2ξ
−1

∫ ξ

τ 2ξ
eudu .

For the bounds on I− 1
2
, we split up the domain of integration [τ 2ξ ,ξ ] into [τ 2ξ ,τξ ],[τξ , ξa ]

and [ ξa ,ξ ], and then bound by:

I− 1
2
(y) ≥

1
2




1
τ 2

∫ τ 2

0
z−

1
2dz + ξ

1
2 eτ

2ξ
∫ τξ

τ 2ξ
u−

3
2du + ξ

1
2

(
ξ

a

)− 3
2
∫ ξ

a

τξ
eudu

+ ξ
1
2 ξ −

3
2

∫ ξ

ξ
a

eudu


 ,
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yielding (1.14), and by:

I− 1
2
(y) ≤

1
τ 2 e

τ 2ξ
∫ τ 2

0
z−

1
2dz + ξ

1
2 eτξ

∫ τξ

τ 2ξ
u−

3
2du + ξ

1
2 e

ξ
a

∫ ξ
a

τξ
u−

3
2du

+ ξ
1
2

(
ξ

a

)− 3
2
∫ ξ

ξ
a

eudu,

to �nd (1.15). �

Lemma 1.8. If τ 2 < 1, the posterior mean of the horseshoe prior can be bounded above by:

1. Tτ (y) ≤ ye
y2

2σ2 f (τ ), where f is such that f (τ ) ≤ 2
3τ ;

2.

Tτ (y) ≤ y

2
3e
τ 2 y2

2σ2 τ + 2e
y2

2aσ2 ( 1√
a − τ ) + 2

√
aσ 2

y2 (e
y2

2σ2 − e
y2

2aσ2 )

1
τ + eτ

2 y2
2σ2 ( 1

τ −
1√
τ ) + aσ 2√a

y2 (e
y2

2aσ2 − eτ
y2

2σ2 ) + σ 2

y2 (e
y2

2σ2 − e
y2

2aσ2 )

,

for any a > 1 and τ < 1
a .

Proof. We bound the integrals in the numerator and denominator of expression (1.1). For

the �rst upper bound, we will use the fact that for 0 ≤ z ≤ 1, e
y2

2σ2 z is bounded below by

1 and above by e
y2

2σ2 . The posterior mean can therefore be bounded by:

Tτ (y) ≤ ye
y2

2σ2

∫ 1
0 z

1
2 1
τ 2+(1−τ 2 )zdz∫ 1

0 z−
1
2 1
τ 2+(1−τ 2 )zdz

= ye
y2

2σ2 f (τ ),

where

f (τ ) =
τ

1 − τ 2




√
1 − τ 2

arctan
(√

1−τ 2
τ

) − τ

 .

By Shafer’s inequality for the arctangent (Shafer, 1966):

f (τ )

τ
=

1
1 − τ 2




√
1 − τ 2

arctan
(√

1−τ 2
τ

) − τ

 <

2
3

1
1 + τ ≤

2
3 ,

which completes the proof for the �rst upper bound.

For the second inequality, we note that, in the notation of Lemma 1.7,Tτ (y) = y
I 1

2
(y)

I
− 1

2
(y) .

The bounds in Lemma 1.7 yield the stated inequality. �



22 CHAPTER 1. THE HORSESHOE ESTIMATOR: POSTERIOR CONCENTRATION

Lemma 1.9. For τ 2 < 1, the absolute value of the di�erence between the horseshoe estimator
and an observation y can be bounded by a function h(y,τ ) such that for any c > 2:

lim
τ ↓0

sup
|y |>
√
cσ 2 log 1

τ

h(y,τ ) = 0.

Proof. We assume y > 0 without loss of generality. By a change of variables of x = 1 − z:

|Tτ (y) − y | = y

∫ 1
0 e−

y2

2σ2 xx (1 − x )− 1
2 1

1−(1−τ 2 )xdx∫ 1
0 e−

y2
2σ2 x (1 − x )− 1

2 1
1−(1−τ 2 )xdx

.

By following the proof of Watson’s lemma provided in Miller (2006), we can �nd bounds
on the numerator and denominator of the above expression. First de�ne д(x ) = (1 −
x )−

1
2 1
1−(1−τ 2 )x and note that by Taylor’s theorem, д(x ) = д(0) + xд′(ξx ), where ξx is be-

tween 0 and x . Let s be any number between 0 and 1. Because д′′(x ) is not negative for
x ∈ [0,1), we have that for x ∈ [0,s], s ∈ (0,1): д′(0) ≤ д′(x ) ≤ д′(s ). The numerator can
then be bounded by:∫ 1

0
e−

y2

2σ2 xxд(x )dx =

∫ s

0
e−

y2

2σ2 xxд(0)dx +
∫ s

0
e−

y2

2σ2 xx2д′(ξx )dx

+
∫ 1

s
e−

y2

2σ2 xxд(x )dx

≤
1
y4h1 (y,σ ,s ) + д′(s )

y6 h2 (y,σ ,s ) + 2e−
sy2

2σ2 h3 (τ ),

where h1 (y,σ ,s ) = 4σ 4 − 2σ 2 (sy2 + 2σ 2)e−
sy2

2σ2 , h2 (y,σ ,s ) = 16σ 6 − 2σ 2 (s2y4 + 4sσ 2y2 +

8σ 4)e−
sy2

2σ2 and h3 (τ ) = arctan(
√

1−τ 2
τ )τ −1 (1 − τ 2)−

3
2 − (1 − τ 2)−1. The denominator can

similarly be bounded by:∫ 1

0
e−

y2

2σ2 xд(x )dx =

∫ s

0
e−

y2

2σ2 xд(0)dx +
∫ s

0
e−

y2

2σ2 xxд′(ξx )dx

+
∫ 1

s
e−

y2

2σ2 xд(x )dx

≥
1
y2h4 (y,σ ,s ) + д′(0)

y4 h5 (y,σ ,s ) + 0,

where h4 (y,σ ,s ) = 2σ 2 − 2σ 2e−
sy2

2σ2 and h5 (y,σ ,s ) = 4σ 4 − 2σ 2e−
sy2

2σ2 (sy2 + 2σ 2). Hence:

|Tτ (y) − y | ≤

1
yh1 (y,σ ,s ) + д′ (s )

y3 h2 (y,σ ,s ) + 2y3e−
sy2

2σ2 h3 (τ )

h4 (y,σ ,s ) + д′ (0)
y2 h5 (y,σ ,s )

.

For any �xed τ , this bound tends to zero asy tends to in�nity. If τ → 0, the term containing
h3 (τ ) could potentially diverge. For s = 2

3 and y =
√
cσ 2 log(1/τ ), where c is a positive
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constant, this term displays the following limiting behaviour as τ → 0:

lim
τ ↓0

y3e−
1

3σ2 y
2
h3 (τ ) = lim

τ ↓0

(
cσ 2 log 1

τ

) 3
2
τ

c
3 −1




arctan
(√

1−τ 2
τ

)
(1 − τ 2)

3
2

−
τ

1 − τ 2




=

0 c > 3
∞ otherwise,

because limτ ↓0 arctan(
√

1−τ 2
τ ) (1 − τ 2)−

3
2 = π

2 , limτ ↓0
τ

1−τ 2 = 0 and the factor
(cσ 2 log(1/τ )) 3

2 τ
c
3 −1 tends to zero as τ ↓ 0 if c

3 − 1 > 0 and in�nity otherwise. The
condition c > 3 is related to the choice of s = 2

3 and can be improved to any constant
strictly greater than 2 by choosing s appropriately close to one. Hence, we �nd that the
absolute value of the di�erence between the posterior mean and an observation can be
bounded by a function h(y,τ ) with the desired property. �

Proof of Theorem 1.1

Proof. Suppose that Y ∼ N (θ ,σ 2In ), θ ∈ `0[pn] and p̃n = #{i : θi , 0}. Note that p̃n ≤ pn .
Assume without loss of generality that for i = 1, . . . ,p̃n , θi , 0, while for i = p̃n + 1, . . . ,n,
θi = 0. We split up the expectation Eθ ‖Tτ (Y ) − θ ‖2 into the two corresponding parts:

n∑
i=1
Eθ i (Tτ (Yi ) − θi )

2 =

p̃n∑
i=1
Eθ i (Tτ (Yi ) − θi )

2 +
n∑

i=p̃n+1
E0Tτ (Yi )

2.

We will now show that these two terms can be bounded by p̃n (1 + log 1
τ ) and

(n − p̃n )
√

log(1/τ )τ respectively, up to multiplicative constants only depending on σ , for
any choice of τ such that τ ∈ (0,1).
Nonzero parameters

Denote ζτ =
√

2σ 2 log(1/τ ). We will show

Eθ i (Tτ (Yi ) − θi )
2 . σ 2 + ζ 2

τ . (1.16)

for all nonzero θi , which can be done by bounding supy |Tτ (y) − y |:

Eθ i (Tτ (Yi ) − θi )
2 = Eθ i ((Tτ (Yi ) − Yi ) + (Yi − θi ))

2

≤ 2Eθ i (Yi − θi )2 + 2Eθ i (Tτ (Yi ) − Yi )2

≤ 2σ 2 + 2

sup
y
|Tτ (y) − y |




2

,

Lemma 1.9 yields the following bound on the di�erence between the observation and the
horseshoe estimator: |Tτ (y)−y | ≤ h(y,τ ), whereh(y,τ ) is such that limτ ↓0 sup |y |>cζτ h(y,τ )
= 0 for any c > 1. Combining this with the inequality |Tτ (y) −y | ≤ |y |, we have as τ → 0:

arg max
y
|Tτ (y) − y | . ζτ , (1.17)
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which implies (1.16), as |Tτ (y) | ≤ |y |:

sup
y
|Tτ (y) − y |




2

. ζ 2
τ .

Parameters equal to zero
We split up the term for the zero means into two parts:

E0Tτ (Y )
2 = E0Tτ (Y )

21 |Y | ≤ζτ + E0Tτ (Y )
21 |Y |>ζτ ,

where ζτ =
√

2σ 2 log(1/τ ). For the �rst term, we have, by the �rst bound in Lemma 1.8:

E0Tτ (Y )
21{ |Y | ≤ζτ } =

∫ ζτ

−ζτ
Tτ (y)

2 1
√

2πσ 2
e−

y2

2σ2 dy

≤

∫ ζτ

−ζτ
y2e

y2

σ2 f (τ )2
1

√
2πσ 2

e−
y2

2σ2 dy =
f (τ )2
√

2πσ 2

∫ ζτ

−ζτ
y2e

y2

2σ2 dy

≤

√
2
π
σ f (τ )2ζτ

1
τ
≤

√
2
π
σ

4
9ζττ . ζττ ,

where the identity d
dyye

y2

2σ2 =
y2

σ 2 e
y2

2σ2 + e
y2

2σ2 was used to bound
∫ ζτ
−ζτ

y2e
y2

2σ2 dy. For the
second term, because |Tτ (y) | ≤ |y | for all y, we have by the identity y2ϕ (y) = ϕ (y) −
d
dy [yϕ (y)], and by Mills’ ratio:

E0Tτ (Y )
21{ |Y |>ζτ } ≤ E0Y

21{ |Y |>ζτ } = 2
∫ ∞

ζτ
σ

σ 2y2ϕ (y)dy

≤ 2σζτϕ
(
ζτ
σ

)
+ 2σ 3

ϕ
( ζτ
σ

)
ζτ

≤ 4σζτϕ
(
ζτ
σ

)
= 4σζτ

1
√

2π
τ ,

where the last inequality holds for ζτ > σ 2. If we apply this inequality and combine this
upper bound with the upper bound on the �rst term, we �nd, for ζτ > σ 2 (corresponding
to τ < e−

σ2
2 ):

E0Tτ (Y )
2 = E0Tτ (Y )

21{ |Y | ≤ζτ } + E0Tτ (Y )
21{ |Y |>ζτ } . ζττ . (1.18)

Hence, for τ < e−
σ2
2 :

n∑
i=pn+1

E0Tτ (Yi )
2 . (n − pn )ζττ . (1.19)

Conclusion
By (1.16) and (1.19), we �nd for τ < e−

σ2
2 :

n∑
i=1
Eθ i (Tτ (Yi ) − θi )

2 . p̃n (1 + ζ 2
τ ) + (n − p̃n )τζτ . �
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Lemma 1.10. The posterior variance when using the horseshoe prior can be expressed as:

var(θ | y) = σ 2

y
Tτ (y) − (Tτ (y) − y)

2 + y2

∫ 1

0
(1 − z)2z−

1
2

1
τ 2 + (1 − τ 2)z

e
y2

2σ2 zdz∫ 1

0
z−

1
2

1
τ 2 + (1 − τ 2)z

e
y2

2σ2 zdz

, (1.20)

and bounded from above by:

1. var(θ | y) ≤ σ 2 + y2;

2. var(θ | y) ≤ ( σ
2

y + y)Tτ (y) −Tτ (y)2.

Proof. As proven in Pericchi and Smith (1992):

var(θ | y) = σ 2 + σ 4 d2

dy2 logm(y) = σ 2 −

(
σ 2m

′(y)

m(y)

)2
+ σ 4m

′′(y)

m(y)
,

where m(y) is the density of the marginal distribution of y. Equality (1.20) can be found
by combining the expressions

m(y) =
1

√
2π 3στ

e−
y2

2σ2

∫ 1

0
z−

1
2

1
1 −

(
1 − 12

τ 2

)
z
e
y2

2σ2 zdz

m′′(y) =
1
y
m′(y) + 1

√
2π 3στ

y2

σ 4 e
−
y2

2σ2

∫ 1

0
z−

1
2 (1 − z)2 1

1 −
(
1 − 1

τ 2

)
z
e
y2

2σ2 zdz

with the equality Tτ (y) = y + σ 2 m′ (y)
m(y) . The �rst upper bound is implied by the property

|Tτ (y) | < |y | and the fact that (1 − z)2 ≤ 1 for z ∈ [0,1]. The second upper bound can be
demonstrated by noting that (1 − z)2 ≤ 1 − z for z ∈ [0,1] and hence:

var(θ | y) ≤ σ 2

y
Tτ (y) − (y −Tτ (y))

2 + y2
(
1 − 1

y
Tτ (y)

)
. �

Proof of Theorem 1.2

Proof. As in the proof of Theorem 1.1 we assume that θi , 0 for i = 1, . . . ,p̃n and θi = 0
for i = p̃n + 1, . . . ,n, where p̃n ≤ pn by assumption. We consider the posterior variances
for the zero and nonzero means separately. Denote ζτ =

√
2σ 2 log(1/τ ).

Nonzero means
By applying the same reasoning as in Lemma 1.9 to the �nal term of var(θ |y) in (1.20),

we can �nd a function h̃(y,t ) such that var(θ |y) ≤ h̃(y,τ ), where h̃(y,τ ) → σ 2 as y → ∞
for any �xed τ . If τ → 0, the function h̃(y,τ ) displays the following limiting behaviour for
any c > 1:

lim
τ ↓0

sup
|y |>cζτ

h̃(y,τ ) = σ 2.
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Hence, as τ → 0: var(θ |y) . σ 2, for any |y | that increases as least as fast as ζτ when τ
decreases. Now suppose |y | ≤ ζτ . Then, by the bound var(θ | y) ≤ σ 2 + y2 from Lemma
1.10, we �nd:

var(θ | y) ≤ σ 2 + ζ 2
τ .

Therefore:
p̃n∑
i=1
Eθ i var(θi | Yi ) . p̃n (1 + ζ 2

τ ). (1.21)

Zero means
By the bound var(θ | y) ≤ σ 2 + y2, we �nd for c ≥ 1:

E0 var(θ | Y )1{ |Y |>cζτ } ≤ 2
∫ ∞

cζτ
(σ 2 + y2)

1
√

2πσ 2
e−

y2

2σ2 dy

= 2σ 2Φc
(
cζτ
σ

)
+ 2

∫ ∞

cζτ
σ

σ 2x2ϕ (x )dx

≤ 4σ 3
ϕ

( cζτ
σ

)
cζτ

+ 2σcζτϕ
(
cζτ
σ

)
.

τ

ζτ
+ ζττ .

For |y | < cζτ , we consider the upper bound var(θ | y) ≤ ( σ
2

y + y)Tτ (y) − Tτ (y)2 from
Lemma 1.10. From this bound, we get var(θ | y) ≤ σ 2

y Tτ (y) + yTτ (y). Hence:

E0 var(θ | Y )1{ |Y | ≤cζτ } ≤ σ 2
∫ cζτ

−cζτ

1
y
Tτ (y)

1
√

2πσ 2
e−

y2

2σ2 dy

+
∫ cζτ

−cζτ
yTτ (y)

1
√

2πσ 2
e−

y2

2σ2 dy. (1.22)

We bound the �rst integral from (1.22) by applying the �rst bound on Tτ (y) from Lemma
1.8:

σ 2
∫ cζτ

−cζτ

1
y
Tτ (y)

1
√

2πσ 2
e−

y2

2σ2 dy ≤ σ 2
∫ cζτ

−cζτ
f (τ )

1
√

2πσ 2
dy

=

√
2σ
π
cζτ f (τ ) . ζττ ,

because f (τ ) ≤ 2
3τ . For the second term in (1.22), we �rst note that the second bound

from Lemma 1.8 can be relaxed to:

Tτ (y) ≤ τy

(
2
3τe

τ 2 y2

2σ2 + 2
√
a
e

y2

2aσ2 + 2
√
aσ 2 1

y2 e
y2

2σ2

)
(1.23)

for any a > 1 and τ < 1
a . By plugging this bound into the second integral of (1.22), we get

three terms, which we will name I1, I2 and I3 respectively. We then �nd, bounding above
by the integral over R instead of [−cζτ ,cζτ ] for I1 and I2:

I1 =
2
3τ

2
∫ cζτ

−cζτ
y2 1
√

2πσ 2
e−(1−τ

2 ) y
2

2σ2 dy ≤
2
3τ

2 σ 2

(1 − τ 2)
3
2
. τ 2.
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I2 =
2
√
a
τ

∫ cζτ

−cζτ
y2 1
√

2πσ 2
e−

a−1
a

y2

2σ2 dy ≤
2aσ 2

(a − 1) 3
2
τ . τ .

I3 = 2
√
aσ 2τ

∫ cζτ

−cζτ

1
√

2πσ 2
dy =

2
√

2acσ
√
π

ζττ . ζττ .

And thus:
n∑

i=p̃n+1
E0 var(θi | Yi ) . (n − p̃n ) (ζτ + τ + 1) τ . (1.24)

Conclusion
By (1.21) and (1.24):

Eθ

n∑
i=1

var(θi | Yi ) . p̃n (1 + ζ 2
τ ) + (n − p̃n ) (ζτ + τ + 1) τ . �

Proof of Theorem 1.4

Proof. By expanding (1 − z)2z− 1
2 = z−

1
2 − 2z 1

2 + z
3
2 , we see that the �nal term in (1.20) is

equal to:

y2 − 2yTτ (y) + y2

∫ 1
0 z

3
2 1
τ 2+(1−τ 2 )z e

y2

2σ2 zdz∫ 1
0 z−

1
2 1
τ 2+(1−τ 2 )z e

y2
2σ2 zdz

.

As Tτ (y)
y is non-negative, we can bound the posterior variance from below by the �nal two

terms in (1.20). By the above equality, this yields the following lower bound:

var(θ | y) ≥ y2
I 3

2
(y)

I− 1
2
(y)
−Tτ (y)

2 = y2



I 3

2
(y)

I− 1
2
(y)
−



I 1

2
(y)

I− 1
2
(y)




2
 ,

where Ik is as in Lemma 1.7. We now use the bounds from Lemma 1.7 with a = 2 and
take ξ equal to c log(1/τ ) for some nonnegative constant c . Then e ξ = 1

τ c and e
ξ
2 = 1

τ
c
2

.
Taking for each bound on Ik , k ∈ { 3

2 ,
1
2 ,−

1
2 }, the term that diverges fastest as τ approaches

zero, we �nd that the lower bound is asymptotically of the order:

2σ 2ξ




1
2
√

2ξ
1
τ c

max
{

2eτξ
τ ,

2
√

2
ξ

1
τ c

} −



√
2
ξ

1
τ c

max{ eτ
2 ξ
τ ,

1
2ξ

1
τ c }




2
 .

For c ≤ 1, this reduces to:
σ 2

2
√

2
e−τξτ 1−c −

4σ 2

ξ
e−2τ 2ξτ 2−2c .

The second term is negligible compared to the �rst. Hence, we will use the term
σ 2

2
√

2e
−τξτ 1−c as our lower bound on var(θ | y) for y = ±

√
2cσ 2 log(1/τ ) =

√
cζτ , where

ζτ =
√

2σ 2 log(1/τ ). To �nd the lower bound on ∑n
i=1 Eθ i var(θi | Yi ), we only need to

consider the parameters equal to zero:
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n∑
i=1
Eθ i var(θi | Yi ) ≥ (n − pn )E0 var(θi | Yi )1{ |Yi | ≤ζτ } . (1.25)

By the substitution x = y2/ζ 2
τ ,dy =

σ
√

log(1/τ )
√

2x dx , we �nd:

E0 var(θi | Yi )1{ |Yi | ≤ζτ } ≥ 2
∫ ζτ

0

σ 2

2
√

2
e−τ

y2

2σ2 τ
1− y

2

ζ 2
τ

1
√

2πσ 2
e−

y2

2σ2 dy

=
σ

4
√
π
τζτ

∫ 1

0

τ τx
√
x
dx ≥

σ

2
√
π
e−

1
e τζτ , (1.26)

where in the last step, we used τ τx ≥ τ τ ≥ e−
1
e for x ∈ [0,1],τ ∈ (0,1]. By plugging this

into (1.25), we �nd that as τ → 0:

n∑
i=1
Eθ i var(θi | Yi ) & (n − pn )τζτ , (1.27)

�nishing the proof for the �rst statement of the theorem.
We now consider θ such that θi = an for i = 1, . . . ,pn , and θi = 0 for i = pn + 1, . . . ,n,

and assume without loss of generality that an > 0. We wish to �nd conditions on an such
that the lower bound (1.27) is sharp (up to a constant factor). Denoting ζτ =

√
2σ 2 log(1/τ ),

as before, it is su�cient if we can �nd an such that Eθ i=an var(θi | Yi ) . τζτ , because in
combination with the bound (1.24), this will yield ∑n

i=1 Eθ i var(θi | Yi ) . nτζτ , which
is of the same order as (1.27), as pn = o(n). Su�cient conditions on an can be found by
adapting the proof for the ‘zero means’ case of Theorem 1.2.

We �rst consider |yi | > ζτ . By the �rst bound of Lemma 1.10:

Eθ i var(θi | Yi )1{ |Yi |>ζτ } ≤
∫ ∞

ζτ
(σ 2 + y2)

1
√

2πσ 2
e−

(y−an )2

2σ2 dy

+
∫ −ζτ

−∞

(σ 2 + y2)
1

√
2πσ 2

e−
(y−an )2

2σ2 dy. (1.28)

The �rst integral from (1.28) can be split into two parts by splitting up the factor σ 2 + y2,
the �rst of which can be bounded, by substituting x = (y−an )/σ and applying Mills’ ratio:

σ 2
∫ ∞

(ζτ −an )/σ
ϕ (x )dx = σ 2Φc

(
ζτ − an

σ

)
≤

σ 3

ζτ − an
ϕ

(
ζτ − an

σ

)
. (1.29)

The second of these integrals is, by y2 = (y − an )
2 − a2

n + 2any, equal to:∫ ∞

ζτ
(y − an )

2 1
√

2πσ 2
e−

(y−an )2

2σ2 dy − a2
n

∫ ∞

ζτ

1
√

2πσ 2
e−

(y−an )2

2σ2 dy

+ an

∫ ∞

ζτ
y

1
√

2πσ 2
e−

(y−an )2

2σ2 dy. (1.30)
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The second integral of (1.30) can be bounded from below by zero, and the third from above
by anEθ iYi = a2

n . Again substituting x = (y − an )/σ yields the following upper bound on
(1.30): σ 2

∫ ∞
(ζτ −an )/σ

x2ϕ (x )dx + a2
n . Now using the equality x2ϕ (x ) = ϕ (x ) − d

dx [xϕ (x )]
and again Mills’ ratio, and combining with (1.29), we �nd the following upper bound on
the �rst integral from (1.28):

2σ 3

ζτ − an
ϕ

(
ζτ − an

σ

)
+ σ (ζτ − an )ϕ

(
ζτ − an

σ

)
+ a2

n . (1.31)

By substituting x = −y in the second integral from (1.28) and then applying the same
inequalities to it as to the �rst integral, the following bound is obtained:

2σ 3

ζτ + an
ϕ

(
ζτ + an
σ

)
+ σ (ζτ + an )ϕ

(
ζτ + an
σ

)
. (1.32)

This bound does not include a term a2
n , because in the step equivalent to (1.30), the identity

y2 = (y +an )2 −a2
n − 2yan is used, and thus only the integral

∫ ∞
ζτ
(y +an )2 1√

2πσ 2 e
−

(y+an )2

2σ2 dy

needs to be bounded in that step. Eθ i var(θ | Y )1{ |Y |>ζτ } can thus be bounded by the sum
of (1.31) and (1.32). The factor ϕ ((ζτ + an )/σ ) can be bounded from above by ϕ (ζτ /σ ) =

τ/
√

2π . The factor ϕ ((ζτ − an )/σ ) is equal to 1√
2π e

−
ζ 2
τ

2σ2 e−
a2
n

2σ2 e
ζτ an
σ = τ√

2π e
−

a2
n

2σ2 e
ζτ an
σ .

Hence we arrive at the following upper bound:

σ
√

2π

[(
2σ 2

ζτ − an
+ ζτ − an

)
e−

a2
n

2σ2 e
ζτ an
σ + 2σ 2

ζτ + an
+ ζτ + an

]
τ + a2

n . (1.33)

If an . 1/ζτ , then e−
a2
n

2σ2 e
ζτ an
σ = O (1) and ζτ ± an = O (ζτ ), yielding an upper bound on

(1.33) of order τζτ .
We now consider |yi | ≤ ζτ . We use the second bound of Lemma 1.10:

Eθ i var(θi | Yi )1{ |Yi | ≤ζτ } ≤ σ 2
∫ ζτ

−ζτ

1
y
Tτ (y)

1
√

2πσ 2
e−

(y−an )2

2σ2 dy

+ σ 2
∫ ζτ

−ζτ
yTτ (y)

1
√

2πσ 2
e−

(y−an )2

2σ2 dy. (1.34)

Applying inequality 1
yTτ (y) ≤

2
3τe

y2

2σ2 from Lemma 1.8 to the �rst integral yields the
bound:
√

2σ
3
√
π
τ

∫ ζτ

−ζτ
e
y2

2σ2 e−
(y−an )2

2σ2 dy =

√
2σ

3
√
π
τe−

a2
n

2σ2

∫ ζτ

−ζτ
e
any
σ2 dy ≤

√
2σ

3
√
π
τe−

a2
n

2σ2 2ζτe
an ζτ
σ2 .

If an . 1/ζτ , we have anζτ = O (1) and thus this term will be of order τζτ . For the second
integral from (1.34), we use bound (1.23). This leads to three integrals to be bounded, I1, I2
en I3.

I1 =
σ
√

2π
2
3τ

2e
τ 2

1−τ 2
a2
n

2σ2

∫ ζτ

−ζτ
y2e

− 1
2σ2 /(1−τ 2 )

(
y− an

1−τ 2
)2

dy
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≤
2
3e

τ 2
1−τ 2

a2
n

2σ2
σ 2

(1 − τ 2)3/2

(
σ 2 +

a2
n

1 − τ 2

)
τ 2.

I2 =
2σ
√
a
√

2π
τe

a2
n

(b−1)2σ2

∫ ζτ

−ζτ
y2e

− 1
2σ2 a

a−1
(y− a

a−1 an )
2

≤
2
√
b
e

a2
n

(b−1)2σ2 σ 2
( a

a − 1

)3/2 (
σ 2 + a

a − 1a
2
n

)
τ .

I3 =
2
√
aσ 3
√

2π
τ

∫ ζτ

−ζτ
e
y2

2σ2 e−
(y−an )2

2σ2 dy ≤
2
√

2aσ 3
√
π

e−
a2
n

2σ2 e
an ζτ
σ2 τζτ .

I1, I2 and I3 will all be of no larger order than τζτ if an . 1/ζτ . �

Lemma 1.11. For all k ∈ R,
∫ y

1 ukeudu = ykey (1 + O (1/y)), as y → ∞.

Proof. For k = 0, the statement is immediate. By integration by parts the integral is seen
to be equal to ykey − e −

∫ y
1 kuk−1eudu. For k , 0, the latter integral is bounded above by

|k |

∫ y/2

1
(1 ∨ y/2)k−1eudu + |k |

∫ y

y/2
(y/2 ∨ y)k−1eudu .

This is further bounded above by a multiple of (1 ∨ yk−1)ey/2 + yk−1ey . �

Lemma 1.12. Let Ik be as in Lemma 1.7. There exist functions Rk with
supζτ /4≤y≤4ζτ |Rk (y) | → 0 for k > 0 and k = − 1

2 , such that,

Ik (y) =

(
τ 2k

∫ 1

0

zk

1 + z
dz + 2σ 2

y2 e
y2

2σ2

)
(1 + Rk (y)) , for k > 0,

I− 1
2
(y) =

(
τ −1

∫ ∞

0

1
√
z (1 + z)

dz + 2σ 2

y2 e
y2

2σ2

) (
1 + R− 1

2
(y)

)
.

Proof. We split the integral in the de�nition of Ik over the intervals [0,τ 2] and [τ 2,1]. The
�rst interval contributes, uniformly in yτ → 0,

∫ τ 2

0

zke
y2

2σ2 z

τ 2 + (1 − τ 2)z
dz =

∫ τ 2

0

zk

τ 2 + (1 − τ 2)z
dz (1 + o(1))

= τ 2k
∫ 1

0

uk

1 + (1 − τ 2)u
du (1 + o(1)), (1.35)

by the substitution u = z/τ 2. The integral tends to
∫ 1

0
uk
1+u du, by the dominated conver-

gence theorem, for any k > −1. The second interval contributes, with the substitution
u = (y2/2σ 2)z:

∫ 1

τ 2

zke
y2

2σ2 z

τ 2 + (1 − τ 2)z
dz =

(
2σ 2

y2

)k 

∫ 1

y2
2σ2 τ 2

+
∫ y2

2σ2

1




ukeu

y2

2σ 2 τ 2 + (1 − τ 2)u
du .
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In the second integral the argument satis�esu ≥ 1, and henceu/((y2τ 2/(2σ 2)+ (1−τ 2)) →
1, uniformly in u and yτ → 0. Hence(

2σ 2

y2

)k ∫ y2

2σ2

1

ukeu

y2

2σ 2 τ 2 + (1 − τ 2)u
du �

(
2σ 2

y2

)k ∫ y2

2σ2

1
uk−1eudu

�
2σ 2

y2 e
y2

2σ2 (1 + o(1))

asy → ∞, by Lemma 1.11. For the �rst integral we separately consider the cases k > 0 and
k = −1/2. Ifk > 0, then

∫ 1
0 uk−1eudu converges, and hence, by the dominated convergence

theorem, uniformly in yτ → 0,(
2σ 2

y2

)k ∫ 1

τ 2 y2
2σ2

ukeu

y2

2σ 2 τ 2 + (1 − τ 2)u
du →

(
2σ 2

y2

)k ∫ 1

0
uk−1eudu .

If k = −1/2, then we substitute v = 2σ 2u/(τ 2y2) and rewrite the integral as

(
2σ 2

y2

)− 1
2
∫ 2σ2

τ 2y2

1

v−
1
2 e

τ 2y2

2σ2 v

1 + (1 − τ 2)v

(
τ 2y2

2σ 2

)− 1
2

dv =
1
τ

∫ ∞

1

v−1/2

1 +v dv (1 + o(1)).

This combines with the integral (1.35). �

Proof of Theorem 1.5

Proof. Denote ζτ =
√

2σ 2 log(1/τ ) and assume that θi = γζτ for i = 1, . . . ,pn and θi = 0
for i = pn + 1, . . . ,n. We prove (1.7) by proving that there exists a positive constant c1 (γ )
such that

Eθ=γζτTτ (Y ) = τ
(1−γ )2ζ

2γ −2
τ c1 (γ ) (1 + o(1)). (1.36)

If (1.36) holds, we have, by Jensen’s inequality:
pn∑
i=1
Eθ i (Tτ (Yi ) − θi )

2 ≥ pn (τ
(1−γ )2ζ

2γ −2
τ c1 (γ ) − γζτ )

2 & pnζ
2
τ , (1.37)

as τ → 0. In addition, we have Tτ (y) = yI 1
2
(y)/I− 1

2
(y). For |y | =

√
2σ 2c log(1/τ ), with

c > 1, the lower bound (1.12) on I 1
2
(y) behaves as (σ 2/y2)e

y2

2σ2 , while the upper bound

(1.15) on I− 1
2
(y) behaves as (2a

√
aσ 2/y2)e

y2

2σ2 , as τ → 0. Therefore, for |y | > ζτ , we have
Tτ (y) & y. Thus, we can bound by:

n∑
i=pn+1

Eθ iTτ (Yi )
2 ≥ (n − pn )Eθ=0Tτ (Y )

21{ |Y |>ζτ } & (n − pn )

∫ ∞

ζτ
σ

y2ϕ (y)dy

= (n − pn )



∫ ∞

ζτ
σ

ϕ (y)dy + ζτ
σ
ϕ

(
ζτ
σ

)
 & (n − pn )ζτϕ

(
ζτ
σ

)



32 CHAPTER 1. THE HORSESHOE ESTIMATOR: POSTERIOR CONCENTRATION

= (n − pn )
1
√

2π
τζτ . (1.38)

By combining the lower bounds (1.37) and (1.38) with the upper bound (1.2), we arrive at
(1.7). For the posterior variance, we already have ∑n

i=pn+1 var(θi | Yi ) � (n − pn )τζτ by
(1.24) and (1.26). Expression (1.8) can therefore be proven by showing that there exists a
positive constant c2 (γ ) such that:

Eθ=γζτ var(θ | Y ) = τ (1−γ )2ζ 2γ −1
τ c2 (γ ) (1 + o(1)). (1.39)

Proof of (1.36)
The expected value Eθ=γζτTτ (Y ) is equal to

1
σ



∫ −

ζτ
2

−∞

+
∫ 3ζτ

−
ζτ
2

+
∫ ∞

3ζτ


 (ζτ + y)

I 1
2
(ζτ + y)

I− 1
2
(ζτ + y)ϕ

(
y + (1 − γ )ζτ

σ

)
dy. (1.40)

We shall show that the �rst and third integrals are negligible, while the second gives the
approximation in (1.36). On the domain of the second integral, we have ζτ /4 ≤ ζτ+y ≤ 4ζτ ,
so we can apply Lemma 1.12 to see that this integral is asymptotic to

1
σ

∫ 3ζτ

−
ζτ
2

(ζτ + y) c2τ
2 (ζτ + y)2 + 2σ 2e

y2+2yζτ
2σ2

c1 (y + ζτ )2 + 2σ 2e
y2+2yζτ

2σ2

ϕ

(
y + (1 − γ )ζτ

σ

)
dy, (1.41)

where c1 =
∫ ∞

0 z−1/2 (1 − z)−1dz and c2 =
∫ 1

0 z1/2 (1 − z)−1dz. On [−ζτ /2,3ζτ ]:

c2τ
2 (ζτ + y)2ϕ

(
y + (1 − γ )ζτ

σ

)
≤

c2
√

2π
τ 2 (4ζτ )3e

(1/2−γ )2 ζ 2
τ

2σ2

=
64c2
√

2π
ζ 3
τ τ

2−(1/2−γ )2 ,

so (1.41) is asymptotic to:

O (τ ) + 2σ
√

2π
e−

(1−γ )2 ζ 2
τ

2σ2

∫ 3ζτ

−
ζτ
2

(ζτ + y)e
γζτ y
σ2

c1 (y + ζτ )2 + 2σ 2e
y2+2yζτ

2σ2

dy.

By the substitution u = ζτy − 2σ 2 log ζτ , the remaining integral is equal to, with aτ =

−
ζ 2
τ
2 − 2σ 2 log ζτ and bτ = 3ζ 2

τ − 2σ 2 log ζτ :

2σ
√

2π
τ (1−γ )

2 1
ζτ

∫ bτ

aτ

(ζτ + ζ −1
τ (u + 2σ 2 log ζτ ))e

γu
σ2 ζ

2γ
τ

c1 (ζτ + ζ −1
τ (u + 2σ 2 log ζτ ))2 + 2σ 2e

u
σ2 ζ 2

τ e
(u+2σ 2 log ζτ )2

2σ 2ζ 2
τ

du

∼
2σ
√

2π
τ (1−γ )

2 1
ζτ

∫ ∞

−∞

ζτe
γu
σ2 ζ

2γ
τ

(c1 + 2σ 2e
u
σ2 )ζ 2

τ

du,
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by the dominated convergence theorem. This yields the approximation in (1.36), with
c1 (γ ) = (2σ/

√
2π )

∫ ∞
−∞

e
γu
σ2 /(c1 + 2σ 2e

u
σ2 )du.

For the �rst integral in (1.40), we use bound 1 from Lemma 1.8, and obtain a bound on
its absolute value equal to

1
σ

∫ −
ζτ
2

−∞

|ζτ + y |τe
(ζτ +y)2

2σ2 ϕ

(
y + (1 − γ )ζτ

σ

)
dy

=
2

3
√

2πσ
τ (1−γ )

2
∫ −

ζτ
2

−∞

|ζτ + y |e
γζτ y
σ2 dy . τ (1−γ )

2
e−

γζ 2
τ

2σ2 = τ (1−γ )
2+γ , (1.42)

where the last inequality follows by integration by parts. This is of much smaller order
than the second integral from (1.40). In the third integral of (1.40), we bound I 1

2
(ζτ +

y)/I− 1
2
(ζτ + y) by 1, giving the upper bound

1
σ

∫ ∞

3ζτ
(ζτ + y)ϕ

(
y + (1 − γ )ζτ

σ

)
dy . ϕ

(
3ζτ + (1 − γ )ζτ

σ

)
=

1
√

2π
τ 4−γ ,

by Mills’ ratio. This is also of much smaller order than the second integral from (1.40),
thus concluding the proof of (1.36).

Proof of (1.39)
By expanding the term (1−z)2 in the numerator of the �nal term of (1.20), the posterior

variance can be seen to be equal to:

var(θ | y) = σ 2
I 1

2
(y)

I− 1
2
(y)

+ y2

I 3

2
(y)

I− 1
2
(y)
−



I 1

2
(y)

I− 1
2
(y)




2
. (1.43)

Because I 1
2
(y)/I− 1

2
(y) can be interpreted as the mean of the density proportional to z →

z−1/2ey
2z/(2σ 2 )/(τ 2 + (1−τ 2)z), and I 3

2
(y)/I− 1

2
(y) as the second moment, it follows that the

term in square brackets in (1.43) is nonnegative. By (1.43), we write:

Eθ=γζτ var(θ | Y ) = σ
∫ I 1

2
(ζτ + y)

I− 1
2
(ζτ + y)ϕ

(
y + (1 − γ )ζτ

σ

)
dy

+ 1
σ



∫ −

ζτ
2

−∞

+
∫ 3ζτ

−
ζτ
2

+
∫ ∞

3ζτ


 (ζτ + y)2

·

I 3

2
(ζτ + y)

I− 1
2
(ζτ + y) −



I 1

2
(ζτ + y)

I− 1
2
(ζτ + y)




2
ϕ

(
y + (1 − γ )ζτ

σ

)
dy. (1.44)

The �rst term in (1.44) is as (1.40), except without the factor (ζτ + y). Following the same
steps as the proof of (1.36), we see that it is smaller than a multiple of ζ −1

τ times the bound
on (1.40), so it is of the order ζ 2γ −3

τ τ (1−γ )
2 . The �rst and third integrals of the second term

of (1.44) are also negligible. For the �rst, we use that the expression in square brackets
is nonnegative and bounded above by I 3

2
(y)/I− 1

2
(y), which in turn is bounded above by
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I 1
2
(y)/I− 1

2
(y). We bound as in (1.42), with the di�erence that the leading factor is (ζτ +y)2

instead of (ζτ +y). This leads to the order ζττ (1−γ )
2+γ , much smaller than the claimed rate.

For the third integral, we can bound the term in square brackets by 1 and use Mills’ ratio
to see that it is of the order ζττ (4−γ )

2 .
We are left with the middle integral of the second term of (1.44). On the domain of

this integral, by Lemma 1.12:

I 3
2
(ζτ + y)

I− 1
2
(ζτ + y) =

c3τ
4 (ζτ + y)2 + 2σ 2e

y2+2yζτ
2σ2

c1 (ζτ + y)2 + 2σ 2e
y2+2yζτ

2σ2

(1 + o(1)),

where c3 =
∫ 1

0 z3/2 (1 + z)−1dz, and c1 is as in (1.41). We see that I 3
2
(y)/I− 1

2
(y) and

I 1
2
(y)/I− 1

2
(y) are asymptotic to the same function on this domain. SinceA/(A+B)−A2/(A+

B)2 = AB/(A + B)2, it follows that up to O (τ ), the middle integral is asymptotic to

1
σ

∫ 3ζτ

−
ζτ
2

(ζτ + y)2 c1 (ζτ + y)22σ 2e
y2+2yζτ

2σ2(
c1 (ζτ + y)2 + 2σ 2e

y2+2yζτ
2σ2

)2ϕ

(
y + (1 − γ )ζτ

σ

)
dy

=
2σc1
√

2π
τ (1−γ )

2
∫ 3ζτ

−
ζτ
2

(ζτ + y)4e
γζτ y
σ2(

c1 (ζτ + y)2 + 2σ 2e
y2+2ζτ y

2σ2

)2dy.

We substitute u = ζτy − 2σ 2 log ζτ to reduce this to

2σc1
√

2π
τ (1−γ )

2 1
ζτ

∫ 3ζ 2
τ −2σ 2 log ζτ

−
ζ 2
τ
2 −2σ 2 log ζτ

(ζτ + ζ −1
τ (u + 2σ 2 log ζτ ))4e

γu
σ2 ζ

2γ
τ(

c1 (ζτ + ζ −1
τ (u + 2σ 2 log ζτ ))2 + 2σ 2e

u
σ2 ζ 2

τ

)2du

∼
2σc1
√

2π
τ (1−γ )

2 1
ζτ

∫ ∞

−∞

ζ 4
τ e

γu
σ2 ζ

2γ
τ(

c1ζ
2
τ + 2σ 2ζ 2

τ e
u
σ2

)2du .

This is asymptotic to expression (1.39), with c2 (γ ) = (2σc1/
√

2π )
∫ ∞
−∞

e
γu
σ2 /(c1+2σ 2e

u
σ2 )2du.

�

Proof of Theorem 1.6

Proof. Suppose that Y ∼ N (θ ,σ 2In ), θ ∈ `0[pn]. We adapt the approach in Paragraph 6.2
in (Johnstone and Silverman, 2004). We �rst derive the following inequality for events A
such that τ̂ > τ holds with probability one on A:

Eθ (Tτ̂ (Yi ) − θi )
21A ≤ 2Eθ (Tτ̂ (Yi ) − Yi )21A + 2Eθ (Yi − θi )21A
. 2Eθζ 2

τ̂ 1A + 2σ 2EθZ
21A (1.45)
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where (1.17) was used in the second line, and Z follows a standard normal distribution. If
A is such that τ̂ > τ holds with probability one on A, we can use the inequality ζ τ̂ < ζτ if
τ̂ > τ to �nd:

Eθ (Tτ̂ (Yi ) − θi )
21A . 2ζ 2

τ Pθ (A) + 2σ 2EθZ
21A, (1.46)

We now consider the nonzero and zero parameters separately. For both cases, we split
up the expected `2 loss as follows:

Eθ (Tτ̂ (Yi ) − θi )
2 = Eθ (Tτ̂ (Yi ) − θi )

21{τ̂ >cτ } + Eθ (Tτ̂ (Yi ) − θi )21{τ̂ ≤cτ },

and then bound each of terms on the right hand side. For the nonzero means, we take
c = 1, while for the zero means, we consider c ≥ 1. Note that for ζ τ̂ to be well-de�ned, we
need τ̂ ≤ 1 and consequently, when we consider τ̂ > cτ , we must have cτ < 1.

Nonzero means
By (1.46), we �nd:

Eθ (Tτ̂ (Yi ) − θi )
21{τ̂ >τ } . 2ζ 2

τ + 2σ 2. (1.47)

If τ̂ ≤ τ , the inequality ζ 2
τ̂ ≤ ζ

2
τ needed for (1.46) does not hold. For this case, we assume

that τ̂ ≥ д(n,pn ) with probability one, for some function д(n,pn ), corresponding to ζ τ̂ ≤√
−2σ 2 logд(n,pn ). Then we �nd by (1.45):

Eθ (Tτ̂ (Yi ) − θi )
21{τ̂ ≤τ } . 2Eθζ 2

τ̂ 1{τ̂ ≤τ } + 2σ 2

≤ −4σ 2 log(д(n,pn ))Pθ (̂τ ≤ τ ) + 2σ 2. (1.48)

By (1.47) and (1.48), we have for θi , 0:

Eθ (Tτ̂ (Yi ) − θi )
2 . 1 + ζ 2

τ − log(д(n,pn ))Pθ (̂τ ≤ τ ). (1.49)

Zero means
We �rst establish an inequality for Eθ [Z 21A], where A is an event and Z a standard

normal random variable. By Young’s inequality, we have for any positive x and y:

xy ≤

∫ x

0
(e s − 1)ds +

∫ y

0
log(s + 1)ds = ex − x − 1 + (y + 1) log(y + 1) − y.

By this inequality combined with the inequality log(y + 1) < y, we have:

EθZ
21A ≤ cdEθ

[
e
Z2
c −

Z 2

c
− 1

]
+ cdPθ (A)

( 1
d

log
( 1
d

+ 1
)
−

1
d

)
.

With c = 3 and d = Pθ (A), we �nd:

EθZ
21A ≤ (3

√
3 − 4)Pθ (A) + 3Pθ (A) log

(
1 + 1
Pθ (A)

)
< 5Pθ (A) log

(
1 + 1
Pθ (A)

)
. (1.50)
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By (1.46) and (1.50), we get for any c ≥ 1 such that cτ < 1:

Eθ (Tτ̂ (Yi ) − θi )
21{τ̂ >cτ } . 2ζ 2

τ Pθ (̂τ > cτ )

+ 10σ 2Pθ (̂τ > cτ ) log
(
1 + 1
Pθ (̂τ > cτ )

)
. (1.51)

Now suppose τ̂ ≤ cτ for some c ≥ 1 such that cτ < 1. First note that |Tτ (y) | increases
monotonically in τ , as is clear from

Tτ (yi ) = E[(1 − κi )yi | yi ,τ ] = E
[

τ 2λ2
i

1 + τ 2λ2
i
yi

����� yi ,τ
]
.

Because sign(Tτ̂ (yi )) = sign(Tcτ (yi )) and 0 ≤ |Tτ̂ (yi ) | ≤ |Tcτ (yi ) |, we have:

(Tτ̂ (yi ) − θi )
2
≤ max{θ 2

i , (Tcτ (yi ) − θi )
2} ≤ θ 2

i + (Tcτ (yi ) − θi )
2.

Hence:
Eθ (Tτ̂ (Yi ) − θi )

21{τ̂ ≤cτ } ≤ θ 2
i + Eθ (Tcτ (Yi ) − θi )2.

And thus, by (1.18), we have for θi = 0:

Eθ (Tτ̂ (Yi ) − θi )
21{τ̂ ≤cτ } . ζcτcτ . ζττ . (1.52)

Combining (1.51) and (1.52), we �nd:

EθTτ̂ (Yi )
2 . ζττ + ζ 2

τ Pθ (̂τ > cτ ) + Pθ (̂τ > cτ ) log
(
1 + 1
Pθ (̂τ > cτ )

)
. (1.53)

Conclusion
We can now bound the expected `2 loss. We assume that θi , 0 for i = 1, . . . ,p̃n and

θi = 0 for i = p̃n + 1, . . . ,n, where p̃n ≤ pn . By combining (1.49) and (1.53), we �nd:

Eθ ‖Tτ̂ (Y ) − θ ‖
2 . p̃n

(
1 + ζ 2

τ − log(д(n,pn ))Pθ (̂τ ≤ τ )
)

+ (n − p̃n )ζττ

+ (n − p̃n )Pθ (̂τ > cτ )

(
ζ 2
τ + log

(
1 + 1
Pθ (̂τ > cτ )

))
. (1.54)

The function x log(1 + 1
x ) is monotonically increasing in x for x ∈ [0,1]. Hence, with the

choice τ = pn
n or τ = pn

n

√
log(n/pn ), the conditions stated in the theorem are su�cient

for (1.54) to be bounded by the minimax squared error rate in the worst case.
If an estimator τ̂ satis�es only the �rst condition, then sup{ 1

n , τ̂ } satis�es the second
condition with − logд(n,pn ) = logn. By the assumption pn → ∞, we have Pθ (sup{ 1

n , τ̂ } >

c
pn
n ) ≤ Pθ (̂τ > c

pn
n ). Plugging this into inequality (1.54) yields an `2 risk of at most order

pn logn. �

Lemma 1.13. Suppose Yi ∼ N (θi ,σ
2),i = 1, . . . ,pn and Yi ∼ N (0,σ 2),i = pn + 1, . . . ,n

and de�ne

τ̂ =
#{|yi | ≥

√
c1σ 2 logn,i = 1, . . . ,n}

c2n

for some c2 > 1. Then Pθ (̂τ > τ ) .
pn
n as pn,n → ∞, pn = o(n) if c1 > 2, or c1 = 2 and

pn . logn for τ = pn
n or τ = pn

n

√
log(n/pn ).
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Proof. We only need to consider Pθ (̂τ > pn
n ), as we assume pn = o(n) and thus, for

large n, Pθ (̂τ > pn
n

√
log(n/pn )) ≤ Pθ (̂τ > pn

n ). De�ne Ai = {|yi | ≥
√
c1σ 2 logn},i =

1, . . . ,n. For i = pn + 1, . . . ,n, 1Ai follows a Bernoulli distribution with parameter qn =
2Φc (

√
c1 logn), which by Mills’ ratio can be bounded from above by

√
2

c1π
(logn)− 1

2n−
c1
2 .

For X ∼ Bin(n,p), we have the bound P(X ≥ k ) ≤ (
enp
k )k as a consequence of Theorem 1

in (Cherno�, 1952). Hence:

Pθ

(̂
τ >

pn
n

)
≤ Pθ




n∑
i=pn+1

1Ai > (c2 − 1)pn


 ≤

(
e (n − pn )qn
(c2 − 1)pn + 1

) (c2−1)pn+1

≤



√

2e2

c1π

1
(c2 − 1)pn + 1

1√
logn

n1− c1
2



(c2−1)pn+1

. (1.55)

The inequality Pθ (̂τ > pn
n ) .

pn
n holds if − logPθ (̂τ > pn

n ) ≥ log n
pn

+ c holds for some
positive constant c . The negative logarithm of bound (1.55) is:

((c2 − 1)pn + 1)
( 1

2 log c1π

2e2 + log((c2 − 1)pn + 1) + 1
2 log logn +

(c1
2 − 1

)
logn

)
.

For c1 = 2, this quantity will exceed log n
pn

if pn & logn. If c1 > 2, we require ((c2 − 1)pn +
1) ( c1

2 − 1) ≥ 1, which is certainly satis�ed if pn → ∞. �
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