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Posterior concentration of the
horseshoe around nearly black
vectors

Abstract

We consider the horseshoe estimator due to|Carvalho et al|(2010) for the multivariate normal
mean model in the situation that the mean vector is sparse in the nearly black sense. We as-
sume the frequentist framework where the data is generated according to a fixed mean vector.
We show that if the number of nonzero parameters of the mean vector is known, the horseshoe
estimator attains the minimax €, risk, possibly up to a multiplicative constant. We provide
conditions under which the horseshoe estimator combined with an empirical Bayes estimate
of the number of nonzero means still yields the minimax risk. We furthermore prove an upper
bound on the rate of contraction of the posterior distribution around the horseshoe estimator,
and a lower bound on the posterior variance. These bounds indicate that the posterior dis-
tribution of the horseshoe prior may be more informative than that of other one-component
priors, including the Lasso.

This chapter has appeared as S.L. van der Pas, B.JK. Kleijn and A.W. van der Vaart (2014). The horseshoe
estimator: posterior concentration around nearly black vectors. Electronic Journal of Statistics 8, 2585-2618. The
research leading to these results has received funding from the European Research Council under ERC Grant
Agreement 320637.
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1.1 Introduction

We consider the normal means problem, where we observe a vector Y € R", Y = (Y,...,
Y,), such that
Yi:9i+€i’ i=1,...,n,

for independent normal random variables ¢; with mean zero and variance o2. The vector
0 = (6y,...,0,) is assumed to be sparse, in the ‘nearly black’ sense that the number of
nonzero means

pn=#i:0; # 0}

iso(n) asn — co. A natural Bayesian approach to recovering 6 would be to induce sparsity
through a ‘spike and slab’ prior (Mitchell and Beauchampl,1988), which consists of a mix-
ture of a Dirac measure at zero and a (heavy-tailed) continuous distribution. Johnstone
and Silverman| (2004) analyzed an empirical Bayes version of this approach, where the
mixing weight is obtained by marginal maximum likelihood. In the frequentist setup that
the data are generated according to a fixed mean vector, they showed that the empirical
Bayes coordinatewise posterior median attains the minimax rate, in {4 norm, q € (0, 2], for
mean vectors that are either nearly black or of bounded £, norm, p € (0,2]. |Castillo and
Van der Vaart| (2012) analyzed a fully Bayesian version, where the proportion of nonzero
coefficients is modelled by a prior distribution. They identified combinations of priors on
this proportion and on the nonzero coefficients (the ‘slab’) that yield posterior distribu-
tions concentrating around the underlying mean vector at the minimax rate in £4 norm,
q € (0,2], for mean vectors that are nearly black, and in {4 norm, q € (0,2) for mean
vectors of bounded weak £, norm, p € (0,q). Other work on empirical Bayes approaches
to the two-group model includes (Efron}|2008;|Jiang and Zhang} 2009; |Yuan and Lin,|{2005).

As a full Bayesian approach with a mixture of a Dirac and a continuous component
may require exploration of a model space of size 2", implementation on large datasets
is currently impractical, although |Castillo and Van der Vaart|(2012) present an algorithm
which can compute several aspects of the posterior in polynomial time, provided suffi-
cient memory can be allocated. Several authors, including (Armagan et al.l 2013} |Griffin
and Brown, 2010), have proposed one-component priors, which model the spike at zero
by a peak in the prior density at this point. For most of these proposals, theoretical justi-
fication in terms of minimax risk rates or posterior contraction rates is lacking. The Lasso
estimator (Tibshirani, [1996), which arises as the MAP estimator after placing a Laplace
prior with common parameter on each 6;, is an exception. It attains close to the mini-
max risk rate in £y, g € [1,2] (Bickel et al,(2009)). It has however been recently shown
that the corresponding full posterior distribution contracts at a much slower rate than the
mode (Castillo et al., 2015). This is undesirable, because this implies that the posterior
distribution cannot provide an adequate measure of uncertainty in the estimate.

In general one would use a posterior distribution both for recovery and for uncertainty
quantification. For the first, a measure of centre, such as a median or mode, suffices. For
the second, one typically employs a credible set, which is defined as a central set of pre-
scribed posterior probability. For realistic uncertainty quantification it is necessary that
the posterior contracts to its center at the same rate as the posterior median or mode
approaches the true parameter.
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In this paper we study the posterior distribution resulting from the horseshoe prior,
which is a one-component prior, introduced in (Carvalho et al.;|2009,/2010) and expanded
upon in (Polson and Scott} {20124l b; |Scott, 2011). It combines a pole at zero with Cauchy-
like tails. The corresponding estimator does not face the computational issues of the
point mass mixture models. |Carvalho et al|(2010) already showed good behaviour of
the horseshoe estimator in terms of Kullback-Leibler risk when the true mean is zero.
Datta and Ghosh|(2013) proved some optimality properties of a multiple testing rule in-
duced by the horseshoe estimator. In this paper, we prove that the horseshoe estimator
achieves the minimax quadratic risk, possibly up to a multiplicative constant. We fur-
thermore prove that the posterior variance is of the order of the minimax risk, and thus
the posterior contracts at the minimax rate around the underlying mean vector. These
results are proven under the assumption that the number p, of nonzero parameters is
known. However, we also provide conditions under which the horseshoe estimator com-
bined with an empirical Bayes estimator still attains the minimax rate, when p, is un-
known.

This paper is organized as follows. In Section[1.2] the horseshoe prior is described and
a summary of simulation results is given. The main results, that the horseshoe estima-
tor attains the minimax squared error risk (up to a multiplicative constant) and that the
posterior distribution contracts around the truth at the minimax rate, are stated in Sec-
tion[1.3] Conditions on an empirical Bayes estimator of the key parameter 7 such that the
minimax ¢, risk will still be obtained are given in Section The behaviour of such an
empirical Bayes estimate is compared to a full Bayesian version in a numerical study in
Section[L.5 Section[L.6|contains some concluding remarks. The proofs of the main results

and supporting lemmas are in the

1.1.1 Notation

We write A, < B,, to denote 0 < lim,_ e mf 2 < limy—ye0 SUP B" <oand A, < B, to
denote that there exists a positive constant ¢ 1ndependent of n such that A, < ¢B,. AV B
is the maximum of A and B, and A A B the minimum of A and B. The standard normal
density and cumulative distribution are denoted by ¢ and ® and we set ®° = 1 — ®. The
norm || | will be the ¢, norm and the class of nearly black vectors will be denoted by
blpn] ={0eR" :#(1<i<n:0; #0) < p,}.

1.2 The horseshoe prior

In this section, we give an overview of some known properties of the horseshoe estima-
tor which will be relevant to the remainder of our discussion. The horseshoe prior for a
parameter § modelling an observation Y ~ N (0,0?I,) is defined hierarchically (Carvalho
et al., [2010):

91' | /11',7 NN(O,O'ZTZ/l%), /1,' ~C+(0,1),

fori=1,...,n, where C*(0,1) is a standard half-Cauchy distribution. The parameter 7 is
assumed to be fixed in this paper, rendering the ; independent a priori. The corresponding
density p, increases logarithmically around zero, while its tails decay quadratically. The
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Figure 1.1: The effect of decreasing 7 on the priors on x (left) and 6 (middle) and the
posterior mean T,(y) (right). The solid line corresponds to 7 = 1, the dashed line to
7 = 0.05. Decreasing 7 results in a higher prior probability of shrinking the observations
towards zero.

posterior density of 6; given A; and 7 is normal with mean (1 — k;)y;, where k; = ﬁ

Hence, by Fubini’s theorem:

E[0; | yi, 7] = (1 = E[x; | yi, T])y:.

The posterior mean E[6 | y, 7] will be referred to as the horseshoe estimator and denoted
by T;(y). The horseshoe prior takes its name from the prior on k;, which is given by:

1 1 -

(1 - Ki)_zKi

ol

T
pe(ki) = 21- (=),

If r = 1, this reduces to a Be(%, %) distribution, which looks like a horseshoe. As illustrated
in Figure decreasing 7 skews the prior distribution on x; towards one, corresponding
to more mass near zero in the prior on 6; and a stronger shrinkage effect in T, (y).

The posterior mean can be expressed as:

2
vi 1 Hi
2q:'l (%71’%;771_%) folzémezazzdz
T (yi)) =yi|1- T, g Ty 7 , (1.1)
143.% 1_ 1L 1 _1 —L
3(1)1 (27132: 0.291 TZ) j;) z ZWQZU‘EZCIZ

where @1 (a,f,y;x,y) denotes the degenerate hypergeometric function of two variables
(Gradshteyn and Ryzhik,|1965).

An unanswered question so far has been how 7 should be chosen. Intuitively, r should
be small if the mean vector is very sparse, as the horseshoe prior will then place more of its
mass near zero. By approximating the posterior distribution of 7% given k = (k1,. . .,k,) in
case a prior on 7 is used,|Carvalho et al.[{(2010) show that if most observations are shrunk
near zero, 7 will be very small with high probability. They suggest a half-Cauchy prior
on 7. [Datta and Ghosh| (2013) implemented this prior on 7 and their plots of posterior
draws for 7 at various sparsity levels indicate the expected relationship between 7 and the
sparsity level: the posterior distribution of 7 tends to concentrate around smaller values
when the underlying mean vector is sparser. As will be discussed further in the next
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section, the value 7 = ‘% (up to a log factor) is optimal in terms of mean square error and

posterior contraction rates.

In case 7 is estimated empirically, as will be considered in Section[1.4] the horseshoe
estimator can be computed by plugging this estimate into expression (1.1), thereby avoid-
ing the use of MCMC. Other aspects of the posterior, such as the posterior variance, can be
computed using such a plug-in procedure as well. [Polson and Scott|(20124) and|Polson and
Scott (2012b) consider computation of the horseshoe estimator based on the representa-
tion in terms of degenerate hypergeometric functions, as these can be efficiently computed
using converging series of confluent hypergeometric functions. They report unproblem-
atic computations for 7% between 3= and 1000. A second option is to apply a quadrature
routine to the integral representation in (L.1). As the continuity and symmetry of T, (y) in
y can be taken advantage of when computing the horseshoe estimator for a large number
of observations, the complexity of these computations mostly depends on the value of 7.
Both approaches will be slower for smaller values of 7. Hence, if we use the (estimated)
sparsity level ’% (up to a log factor) for 7, the computation of the horseshoe estimator will
be slower if there are fewer nonzero parameters. As noted by|Scott|(2010), problems arise
in Gibbs sampling precisely when 7 is small as well. Hence care needs to be taken with

any computational approach if % is suspected to be very close to zero.

The performance of the horseshoe prior, with additional priors on 7 and ¢, in vari-
ous simulation studies has been very promising. (Carvalho et al. (2010) simulated sparse
data where the nonzero components were drawn from a Student-¢ density and found that
the horseshoe estimator systematically beat the MLE, the double-exponential (DE) and
normal-exponential-gamma (NEG) priors, and the empirical Bayes model due to |[John-
stone and Silverman|(2004) in terms of square error loss. Only when the signal was neither
sparse nor heavy-tailed did the MLE, DE and NEG priors have an edge over the horseshoe
estimator. In similar experiments in (Carvalho et al. [2009; Polson and Scott, [20124) the
horseshoe prior outperformed the DE prior, while behaving similarly to a heavy-tailed
discrete mixture. In a wavelet-denoising experiment under several noise levels and loss
functions, the horseshoe estimator compared favorably to the discrete wavelet transform
and the empirical Bayes model (Polson and Scott}|2010). Bhattacharya et al.|(2012) applied
several shrinkage priors to data with the underlying mean vector consisting of zeroes and
fixed nonzero values and found the posterior median of the horseshoe prior performing
better in terms of squared error than the Bayesian Lasso (BL), the Lasso, the posterior
median of a point mass mixture prior as in (Castillo and Van der Vaart| [2012) and the
empirical Bayes model proposed by Johnstone and Silverman| (2004), and comparable to
their proposed Dirichlet-Laplace (DL) prior with parameter % Results in (Armagan et al
2013) are similar. In a second simulation setting, Bhattacharya et al.|(2012) generated data
of length n = 1000, with the first ten means equal to 10, the next 90 equal to a number
A € {2,...,7} and the remainder equal to zero. In this simulation, the horseshoe prior beat
the BL (except when A = 2) and the DL prior with parameter % (except when A = 7), while
performing similarly to the DL prior with parameter % It is worthy of note that Koenker
(2014) generated data according to the same scheme and applied the empirical Bayes pro-
cedures due to|Martin and Walker|(2014) (EBMW) and [Koenker and Mizera|(2014) (EBKM)
to it. The MSE of EBMW was lower than that of the horseshoe prior for A € {5,6,7}, while
that of EBKM was much lower in all cases.
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1.3 Mean square error and bounds on the posterior vari-
ance

In this section, we study the mean square error of the horseshoe estimator, and the spread
of the posterior distribution, under the assumption that the number of nonzero parameters
Pn is known. Theorem[L.1]provides an upper bound on the mean square error, and shows
that for a range of choices of the global parameter 7, the horseshoe estimator attains the
minimax ¢ risk, possibly up to a multiplicative constant. Theorem|[I.3|states upper bounds
on the rate of contraction of the posterior distribution around the underlying mean vector
and around the horseshoe estimator, again for a range of values of 7. These upper bounds
are equal, up to a multiplicative constant, to the minimax risk. The contraction rate around
the truth is sharp, but this may not be the case for the rate of contraction around the
horseshoe estimator. Theorems [1.4| and [1.5| provide more insight into the spread of the
posterior distribution for various values of 7 and indicate that 7 = % vlog(n/pn) is a good
choice.

Theorem 1.1. Suppose Y ~ N (6y,5°I,). Then the estimator T, (y) satisfies

1 1
sup Eg lIT-(Y) - Ol < pnlog - +(n = pn)7r4/log - (1.2)

Ooelo[pn]
fort — 0, asn,p, — oo and p, = o(n).

By the minimax risk result in (Donoho et al.;[1992), we also have a lower bound:

sup  Eg [T, (Y) = 6oll* = 20°pslog —(1 + o(1)),

00 olpn] Pn
as n,p, — oo and p, = o(n). The choice 7 = (%)“, for & > 1, leads to an upper bound
of order p, log(n/p,), with (as can be seen from the proof) a multiplicative constant
of at most 4ac?. Thus, for this choice of 7, we have:

n
sup Eg lIT-(Y) - ENK = p,log —.
Oo€to[pn] Pn

The horseshoe estimator therefore performs well as a point estimator, as it attains the
minimax risk (possibly up to a multiplicative constant of at most 2 for @ = 1). This may
seem surprising, as the prior does not include a point mass at zero to account for the
assumed sparsity in the underlying mean vector. Theorem|[1.1|shows that the pole at zero
of the horseshoe prior mimics the point mass well enough, while the heavy tails ensure
that large observations are not shrunk too much.

An upper bound on the rate of contraction of the posterior can be obtained through
an upper bound on the posterior variance. The posterior variance can be expressed as:

O_Z 8¢)1 (%’15%;y_231_l)
var(0; | yi) = —Te(ys) = (Te(ys) = vi)* +
Yi 15®, (




1.3. MEAN SQUARE ERROR AND BOUNDS ON THE POSTERIOR VARIANCE 13

Details on the computation can be found in Lemma Using a similar approach as when
bounding the ¢; risk, we can find an upper bound on the expected value of the posterior
variance.

Theorem 1.2. Suppose Y ~ N(0,0%I,). Then the variance of the posterior distribution
corresponding to the horseshoe prior satisfies

< 1 [1
sup Eg, Zvar(GOi | Y;) < pnlog - +(n—pp)r4/log - (1.3)

Ooeto[pn] i=1
fort — 0, asn,p, — oo and p,, = o(n).

Again, the choice 7 = (£2)%, for a > 1 leads to an upper bound (L.3) of the order of
the minimax risk. This result indicates that the posterior contracts fast enough to be able
to provide a measure of uncertainty of adequate size around the point estimate. Theorems
[1.1]and[1.2]combined allow us to find an upper bound on the rate of contraction of the full
posterior distribution, both around the underlying mean vector and around the horseshoe
estimator.

Theorem 1.3. Under the assumptions ofTheorem witht = (%)“, a>1:

sup EgII, (9 110 = 6011* > Mpp,log l Y) — 0, (1.4)
Ooelo[pn] Pn
and
sup EgII, (9 10 = To(Y)||? > Mppnlog l Y) -0, (1.5)
Ooelo[pn] Pn

for every M,, — oo asn — oo.

Proof. Combine Markov’s inequality with the results of Theorems[1.1|and|[1.2|for (1.4), and
only with the result of Theorem [1.2]for (L.5). o

A remarkable aspect of the preceding Theorems is that many choices of 7, such as
T = (%)“ for any @ > 1, lead to an upper bound of the order p, log(n/p,) on the worst
case ¢, risk and posterior contraction rate. The upper bound on the rate of contraction in
is sharp, as the posterior cannot contract faster than the minimax rate around the true
mean vector (Ghosal et all|2000). However, this is not necessarily the case for the upper
bound in , and for 7 = (‘%)“ with & > 1, the posterior spread may be of smaller order
than the rate at which the horseshoe estimator approaches the underlying mean vector.
Theorems [1.4] and [1.5) provide more insight into the effect of choosing different values of
7 on the posterior spread and mean square error.

Theorem 1.4. Suppose Y ~ N (0y,0°1,), 0y € Co[pn]. Then the variance of the posterior
distribution corresponding to the horseshoe prior satisfies

- 1
inf E Ooi | Yi) 2 (n—pn)T4[/log - 1.6
o A5 Ea, ) var(Bo; | Yi) 2 (1= p)rylog - (16)

i=1
fort — 0 andp, = o(n), asn — co. This lower bound is sharp for vectors 6, ,, with p, entries
equal to a, and the remaining entries equal to zero, if a, is such that |a,| < 1/4/log(1/7).
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Theorem 1.5. SupposeY ~ N (0p.n,021,) and 0y, € Lo[pn] is such that p,, entries are equal
toy\202log(1/7), y € (0,1), and all remaining entries are equal to zero. Then:

1 1
Eg, , IT-(Y) - 60,,,||2 = p,log - +(n—pn)r4/log = (1.7)

n 1
2 r-
Eg,, Zvar(Qo’ni | Y;) = pnr(l_)’) (log %) 2 +(n—pn)T4 /log %, (1.8)

i=1

and

fort — 0 and p, = o(n), asn — .
Consider 7 = (%)”. Three cases can be discerned:

(i) 0 < a < 1. Lower bound (1.6) may exceed the minimax rate, implying suboptimal
spread of the posterior distribution in the squared ¢, sense.

(ii) @ = 1. Bounds and differ by a factor /log(n/p,), as do and (L.8). The
gap can be closed by choosing 7 = % [log Pln.

(iii) @ > 1. Bound (1.6) is not very informative, but Theorem [1.5| exhibits a sequence
0o,n € Co[pn] for which there is a mismatch between the order of the mean square er-
ror and the posterior variance. Bounds and are of the orders p,(log(1/7) +
r1-1e\[log(1/7)) and pn(r~1 (log(1/7))Y /% + -1/« \[log(1/7)), respectively.
Hence up to logarithmic factors the total posterior variance (1.8) is a factor
r(1-1/@A1=1)* smaller than the square distance of the center of the posterior to the
truth (1.7). For p, < n® for some ¢ > 0, this factor behaves as a power of n.

These observations suggest that 7 = ‘%y/log(n/pn) is a good choice, because then
(1.2), (1.3), (1.6), (1.7), (1.8) are all of the order p, log(n/p,), suggesting that the posterior
pnlogin/p g8 g P

contracts at the minimax rate around both the truth and the horseshoe estimator.

1.4 Empirical Bayes estimation of 7

A natural follow-up question is how to choose 7 in practice, when p, is unknown. As
discussed in Section the full Bayesian approach suggested by |Carvalho et al.| (2010)
performs well in simulations. The analysis of such a hierarchical prior would however
require different tools than the ones we have used so far. An empirical Bayes estimate of
7 would be a natural solution, and allows us in practice to use one of the representations
in for computations, instead of an MCMC-type algorithm.

By adapting the approach in Paragraph 6.2 in (Johnstone and Silverman,[2004), we can
find conditions under which the horseshoe estimator with an empirical Bayes estimate of
will still attain the minimax £, risk. Based on the consideration of Section[1.3] we proceed
with the choices 7 = %y/log(n/pn) and 7 = %. The former is optimal in the sense
that the posterior spread is of the order of the minimax risk, but the latter has the simple
interpretation of being the proportion of nonzero means, and the difference between the
two is only the square root of a log factor.
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Theorem 1.6. Suppose we observe an n-dimensional vector Y ~ N (0y,0%1,) and we use
T+ (y) as our estimator of 6y. If T € (0,1) satisfies the following two conditions for t = p_n,, or

= L2 \[log(n/pn):
1 Po,(T>cr) < % for a constant ¢ > 1 such thatt < %,

2. There exists a function g : N X N — (0,1) such that7 > g(n,p,) with probability one
and —1log(g(n,pn))Pg, (T < 7) < log(n/pn),

then: n
sup Eg, ITH(Y) = 6pl1* < pylog — (1.9)
Oo€to[pn] Pn
as n,p, — co and p, = o(n). If only the first condition can be verified for an estimator T,
then sup{ %,?} will have an £, risk of at most order p,, log n.

The first condition requires that 7 does not overestimate the fraction £ — of nonzero
means (up to a log factor) too much or with a too large probability. If p, > 1, as we
have assumed, then it is satisfied already by 7 = % (and ¢ = 1). According to the last
assertion of the theorem, this ‘universal threshold’ yields the rate p, logn (possibly up
to a multiplicative constant). This is equal to the rate of the Lasso estimator with the
usual choice of A = 24/202logn (Bickel et al,| [2009). However, in the framework where
pn — oo, the estimator 7 = % will certainly underestimate the sparsity level. A more
natural estimator of p—n" is

— #lyil = \Jero?logn,i=1,...,n}
T = , (1.10)
con

where c¢; and ¢, are positive constants. By Lemma this estimator satisfies the first
condition for 7 = p" and 7 = 22\flog(n/p,) if ¢; > 2,c, > 1and p,, = 0 orc; = 2,¢; > 1
and p, 2 logn. Thus max{7, --} will also lead to a rate of at most order p, logn under
these conditions. Its behaviour will be explored further in Section [1.5]

The rate can be improved to p, log(n/p,) if the second condition is met as well, which
ensures that the sparsity level is not underestimated too much or by a too large probability.
As we are not aware of any estimators meeting this condition for all 8, this condition is
currently mostly of theoretical interest. If the true mean vector is very sparse, in the sense
that there are relatively few nonzero means or the nonzero means are close to zero, there
is not much to be gained in terms of rates by meeting this condition. The extra occurrence
of p, relative to the rate p, logn is of interest only if p,, is relatively large. For instance, if
pn < n% for a € (0,1), then p, log(n/p,) = (1 — a)p, logn, which suggests a decrease of
the proportionality constant in (1.9), particularly if « is close to one. Furthermore, when
pnislarge, the constant in may be sensitive to the fine properties of 7, as it depends on
g(n,pn) (as can be seen in the proof). If 7 seriously underestimates the sparsity level, the
corresponding value of g(n,p,) from the second condition may be so small that the upper
bound on the multiplicative constant before 9) becomes very large. Hence in this case,
T is required to be close to the proportlon (up to a log factor) with large probability in
order to get an optimal rate.
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Datta and Ghosh|(2013) warned against the use of an empirical Bayes estimate of 7 for
the horseshoe prior, because the estimate might collapse to zero. Their references for this
statement, Scott and Berger|(2010) and Bogdan et al{(2008), indicate that they are thinking
of a marginal maximum likelihood estimate of r. However, an empirical Bayes estimate
of 7 does not need to be based on this principle. Furthermore, an estimator that satisfies
the second condition from Theoremm or that is truncated from below by %, would not
be susceptible to this potential problem.

1.5 Simulation study

A simulation study provides more insight into the behaviour of the horseshoe estimator,
both when using an empirical Bayes procedure with estimator and when using the
fully Bayesian procedure proposed by |Carvalho et al.| (2010) with a half-Cauchy prior on
7. For each data point, 100 replicates of an n-dimensional vector sampled from a N (6,,1,,)
distribution were created, where 6, had either 20, 40 or 200 (5%, 10% or 50%) entries equal to
an integer A ranging from 1 to 10, and all the other entries equal to zero. The full Bayesian
version was implemented using the code provided in (Scott}[2010), and the coordinatewise
posterior mean was used as the estimator of ;. For the empirical Bayes procedure, the
estimator was used with ¢; = 2 and ¢; = 1. Performance was measured by squared
error loss, which was averaged across replicates to create Figure

In all settings, both estimators experience a peak in the ¢ loss for values of A close to
the ‘universal threshold’ of 4/21og 400 ~ 3.5. This is not unexpected, as in the terminol-
ogy of Johnstone and Silverman|(2004), the horseshoe estimator is a shrinkage rule, and
while it is not a thresholding rule in their sense, it does have the bounded shrinkage prop-
erty which leads to thresholding-like behaviour. The bounded shrinkage property can be
derived from Lemma|1.9] which yields the following inequality as 7 approaches zero:

1
IT:(y) — yl < y/2021og —.
T

With 7 = % this leads to the ‘universal threshold’ of /202 logn, or with 7 = (%)“, a

‘threshold’ at y/2ac? log(n/p,). Based on this property and the proofs of the main results,
we can divide the underlying parameters into three cases:

(i) Those that are exactly or close to zero, where the observations are shrunk close to
zero;

(if) Those that are larger than the threshold, where the horseshoe estimator essentially
behaves like the identity;

(iii) Those that are close to the ‘threshold’, where the horseshoe estimator is most likely
to shrink the observations too much.

The horseshoe estimator performs well in cases (i) and (ii) due to its pole at zero and its
heavy tails respectively. The hardest parameters to recover from the noise are those that
are close to the threshold, and these are the ones that affect the estimation risk the most.
This phenomenon explains the peaks in the graphs of Figure[1.2|around A = 3.5.
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Figure 1.2: Average squared error loss over 100 replicates with underlying mean vectors
of length n = 400 if the nonzero coefficients are taken equal to A, in case 5% (Figure (a)),
10% (Figure (b)) or 50% (Figure (c)) of the means are equal to a nonzero value A. The solid
line corresponds to empirical Bayes with , ¢1 = 2,¢; = 1, the dashed line to full Bayes
with a half-Cauchy prior on 7. Figure (d) displays a histogram of all Gibbs samples of 7
(after the burn-in) of all replicates in the setting = ~ C*(0,1), A = 10, p,, = 200.

The full Bayes implementation with a Cauchy prior on 7 attains a lower ¢, loss around
the universal threshold than the empirical Bayes procedure. This is because estimator
(1.10) counts the number of observations that are above the universal threshold. When
all the nonzero means are close to this threshold, 7 may ‘miss’ some of them, thereby
underestimating the sparsity level % and thus leading to overshrinkage.

For values of A well past the universal threshold, the empirical Bayes estimator does
better than the full Bayes version. For such large values of A, the estimator will be
equal to the true sparsity level with large probability and hence its good performance is
not unexpected. However, an interesting question is why the full Bayes estimator does
not do as well as the empirical Bayes estimator, especially because the nonzero means
are so far removed from zero that the problem is ‘easy’. This could be due to the choice
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of a half-Cauchy prior for 7: it places no restriction on the possible values of 7 and has
such heavy tails that values far exceeding the sparsity level % are possible. This would
lead to undershrinkage of the observations corresponding to a zero mean, which would
be reflected in the ¢, loss. Figure shows a histogram of all Gibbs samples of 7 in
the setting where 50% of the means are set equal to 10. The range of these values is (3.1,
7.3), which is very far away from 1% = % This indicates that a full Bayesian version of
the horseshoe prior could benefit from a different choice of prior on 7 than a half-Cauchy

one, for example one that is restricted to [0,1].

1.6 Concluding remarks

The choice of the global shrinkage parameter 7 is critical towards ensuring the right
amount of shrinkage of the observations to recover the underlying mean vector. The value
of r = ‘%Vlog(n/pn) was found to be optimal. Theorem indicates that quite a wide
range of estimators for 7 will work well, especially in cases where the underlying mean
vector is sparse. Of course, it should not come as a surprise that an estimator designed to
recover sparse vectors will work especially well if the truth is indeed sparse. An interest-
ing extension to this work would be to investigate whether the posterior concentration
properties of the horseshoe prior still remain when a hyperprior is placed on 7. The result
that r = % (up to a log factor) yields optimal rates, together with the simulation results,
suggests that in a fully Bayesian approach, a prior on r which is restricted to [0,1] may
perform better than the suggested half-Cauchy prior.

The simulation results also indicate that mean vectors with the nonzero means close to
the universal threshold are the hardest to recover. In future simulations involving shrink-
age rules, it would therefore be interesting to study the challenging case where all the
nonzero parameters are at this threshold. The performance of the empirical Bayes esti-
mator leaves something to be desired around the threshold. In additional numerical
experiments (not shown), we tried two other estimators of 7. The first was the ‘oracle
estimator’ 7 = % For values of the nonzero means well past the ‘threshold’, the be-
haviour of this estimator was very similar to that of (1.10). However, before the threshold,
the squared error loss of the empirical procedure with the oracle estimator was between
that of the full Bayes estimator and empirical Bayes with estimator (1.10). The second
estimator was the mean of the samples of 7 from the full Bayes estimator. The resulting
squared error loss was remarkably close to that of the full Bayes estimator, for all values
of the nonzero means. Neither of these two estimators is of much practical use. However,
their range of behaviours suggests room for improvement over the estimator (1.10), and it
would be worthwhile to study more refined estimators for 7.

An interesting question is what aspects of the horseshoe prior are truly essential to-
wards optimal posterior contraction properties. Our proofs do not elucidate whether the
pole at zero of the horseshoe prior is required, or if a prior with heavy tails, and in a sense
‘sufficient’ mass at zero would work as well. The failure of the Lasso to concentrate around
the true mean vector at the minimax rate does indicate that heavy tails in itself may not
be sufficient, and adding mass at zero solves this problem (Castillo et al.,[2015; Castillo and
Van der Vaart, 2012). It is possible that the pole at zero is inessential, in particular if the
global tuning parameter is chosen carefully, for instance by empirical Bayes. If the tuning
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parameter is chosen by a full Bayes method, the peak may be more essential, depending
on its prior.

The horseshoe estimator has the property that its computational complexity depends
on the sparsity level rather than the number of observations. Although there is no point
mass at zero to induce sparsity, it still yields good reconstruction in £;, and a posterior
distribution that contracts at an informative rate. None of the estimates will however be
exactly zero. Variable selection can be performed by applying some sort of thresholding
rule, such as the one suggested in (Carvalho et al.,[2010) and analyzed by Datta and Ghosh!
(2013). The performance of this thresholding rule in simulations in the two works cited
has been encouraging.
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1.7 Proofs

This section begins with Lemma providing bounds on some of the degenerate hy-
pergeometric functions appearing in the posterior mean and posterior variance. This is
followed by two lemmas that are needed for the proofs of Theorems [1.1|and[1.2} Lemma
provides two upper bounds on the horseshoe estimator and Lemma|[1.9 gives a bound
on the absolute value of the difference between the horseshoe estimator and an obser-
vation. We then proceed to the proof of Theorem after which Lemma provides
upper bounds on the posterior variance. These upper bounds are then used in the proof
of Theorem The proof of Theorem [1.4]is given next, followed by Lemmas and
supporting the proof of Theorem|[L.5 This section concludes with the proofs of The-
orem [.6|and Lemma [1.13] which both concern the empirical Bayes procedure discussed
in Section[1.4]

Lemma 1.7. Define

Then, fora > 1:

1 v ¥ 2 ¥ o? o y?
Liy) 2 -0’ +0°— (ezagz _efzh,z)+ (6202 _eZMZ)’ (L.11)
’ > y Vay?
1 O'2 LZ zyf2
Ly =zgrsgler - e 2“2)7 (1.12)
2 it T 1 oJac? [ o 2
2 3 a y
2 2 2
Lo s et (Lo L), &ar (o et
2 T T \/; yZ
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0.2 42 42
+— (ew2 - eZacrz) , (1.14)
Y
2% 2 2 1
e 2o v
I_1(y) < — 2e" 252 (? - —) + 2e2ac? (— - \/5)
T T
2a\ac? [ ¥ v
+ \/2_ (eza2 - eZaaz) , (1.15)
Y

where and hold for r < 1/+/a, holds fort < 1, and and hold

fort < 1/a.

Proof. Write £ = y?/(20%). We first note that for z > 72, we have z < 72 + (1 — %)z < 2z,
while for z < 72, we have 72 < 72 + (1 — 7%)z < 27%. Hence, we can bound I from above

by:

2

1 T 1
I (y) < _Zf zke»fzdz+f 2K 1eé%dz,
T 0 2

and from below by half of that quantity. We bound the integral over [0,7%] in all cases
by bounding the factor e¢? by 1 or e ¢, For the integral over [r2,1], we first substitute

u = &z, yielding: f:z Zklefzdy = 7K figuk‘le“du. For (1.11) and (1.13), we split the

domain of integration into [7?£, %] and [g, &]. For I%, we bound by:

2 £ 1
1(1 v 3 1 a ; Al
Ii(y) = - _f Z%dZ"LéW%(ng)Ef eldu+§E77 £ f e'du|,
2 2|72 J, oy 2 e
yielding . Similarly, for I 1

£ 1
1 2 : a T2 4
Ii(y) < —zerzgf z gf u_%du+§_% (é) f edu,
2 T 0 2¢ a g

resulting in . The bound is obtained similarly, but without splitting up [7%£, £]
further, by the inequality

1 7 1, (f
Li(y) 2 —f z2dz + =&~ f edu.
2 2T2 0 2 Tzif

For the bounds on I_;, we split up the domain of integration [r2&,&] into [r2E,7E], [T, %]
and [%, £], and then bound by:

DI
QU
N
+

T
|
rolm
o

£
a

11 (7 i 2
I_i(y) 2 - —f z_%dz+§%efsz u_%du+§% d f e“du
2 2 | 2 0 2§ a &
1o f
+ 272 ﬁ e“du],
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yielding (.14), and by:

1 v 1 1 €, 1 £ % 3
I_1(y) < e’ ‘-ff z idz + .ffer‘ff u 2du+&iea f u 2du
: T 0 2¢ &

to find (1.15). O

Lemma 1.8. Ift2 < 1, the posterior mean of the horseshoe prior can be bounded above by:

2
1. T (y) < yez’%f(r), where f is such that f(r) < %

2.
2 2 2 2
%61—22%71__‘_262562 (\LF— ) 2\/50 (e2a —eZaycr )
a
L:(y) <y " >
l+63T2y72( )+ aaz((eZaa —e 2y2)+—2(e20 —8230 7)
T TVt Y

foranya>1andt < %

Proof. We bound the integrals in the numerator and denommator of expression (1.1). For
the first upper bound, we will use the fact that for 0 < z < 1, e202 is bounded below by
1 and above by e 2?72 . The posterior mean can therefore be bounded by:

11 1
i j;) zz 2+(1-72)z

T‘[(y) < yeZch 1 1

Jo 7 =z

dz

= yeie? (1)

where

flr)=— Sk

_ 2
1=z arctan( 1= TZ)

By Shafer’s inequality for the arctangent (Shafer} |1966):

f(o) 1 V1-12 <2 1 <2
T 1-172 Viez? 31+7 3
arctan(TT

which completes the proof for the first upper bound.

I (y)
For the second inequality, we note that, in the notation of Lemma T (y) =y*—7= ok

The bounds in Lemma [1.7] yield the stated inequality. O
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Lemma 1.9. Fort? < 1, the absolute value of the difference between the horseshoe estimator
and an observation y can be bounded by a function h(y,t) such that for any c > 2:

lim sup h(y,7) = 0.
wi0 lyl>yco?log &

Proof. We assume y > 0 without loss of generality. By a change of variables of x = 1 — z:

1o _1
fo e 227 x(1—x)"2 dx

1
1-(1-7%)x

dx

|TT (y) - y' =y 2
1 _sz 1 -1 1

ﬁ) e 2o ( - X) : 1-(1-7%)x
By following the proof of Watson’s lemma provided in Miller| (2006), we can find bounds
on the numerator and denominator of the above expression. First define g(x) = (1 -
x)‘% m and note that by Taylor’s theorem, g(x) = ¢g(0) + xg’ (&), where &, is be-
tween 0 and x. Let s be any number between 0 and 1. Because g”’(x) is not negative for
x € [0,1), we have that for x € [0,s], s € (0,1): g’(0) < ¢’(x) < ¢’(s). The numerator can
then be bounded by:

1 42 s 42 s 42
fe_ﬁxxg(x)dxzf e_ﬁxxg(o)dx+f e 202 x%g (£, )dx
0 0 0
1 42
+f e 202 xg(x)dx

g'(s)
y6

1 _sy?
< Ehl(y,o,s) + hy(y,o,s) + 2e” 202 h3(7),
sy?
where h(y,0,s) = 40 — 20%(sy?® + 202)6_#, hy(y,0,s) = 160° — 20%(s%y* + 4so?y? +

_s?
80%)e 207 and hs(7) = arctan( 1 — 72)7!. The denominator can

similarly be bounded by:

Loy S _4 sS4
f e 202xg(x)dx=f e 2a2xg(0)dx+f e 207 xg (£;)dx
0 0 0

2

1 y
+ f e 207 " g(x)dx
S

'(0)
y4

V=) 11 - )

1
> ?hzl(y,a,s) + hs(y,o,s) + 0,

_sy? _sit
where hy(y,0,s) = 202 — 20%e” 207 and hs(y,0,s) = 40* — 202e” 207 (sy? + 252). Hence:

s 2
ihl(y,o,s) + gy(:) ha(y,0,s) + 2y3e_#h3(r)

LA
yZ

IT:(y) —yl <

hy(y,o,s) + hs(y,o,s)

For any fixed 7, this bound tends to zero as y tends to infinity. If z — 0, the term containing

hs(t) could potentially diverge. For s = % and y = y/ca?log(1/7), where c is a positive
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constant, this term displays the following limiting behaviour as 7 — 0:

L 3 arctan( l;fz) .
limy’e 302 ¥ hy(r) = lim (ccr2 log—) r37! — - 5
710 710 T (1- T2)§ 1—-1
_ 0 c¢c>3
oo otherwise,
because lim; g arctan(—‘lf_fz)(l - TZ)_% = %, lim; o= = 0 and the factor

(co?log(1/7))i75 ! tends to zero as 7 | 0 if £ — 1 > 0 and infinity otherwise. The
condition ¢ > 3 is related to the choice of s = % and can be improved to any constant
strictly greater than 2 by choosing s appropriately close to one. Hence, we find that the
absolute value of the difference between the posterior mean and an observation can be
bounded by a function h(y, ) with the desired property. O

Proof of Theorem [1.1]

Proof. Suppose that Y ~ N (0,0%1,,), 0 € {y[pn]) and p, = #{i : 0; # 0}. Note that p,, < p.
Assume without loss of generality that for i = 1,...,p,, 0; # 0, while fori = p, +1,...,n,
6; = 0. We split up the expectation Eg||T,(Y) — 0||? into the two corresponding parts:

n [;n n
D Eo (Te(Y) = 00)° = ) o, (Te(Y) = 0%+ 3 BaTo(Y))"

i=pp+1

We will now show that these two terms can be bounded by p,(1 + log %) and

(n — pn)+/log(1/7)t respectively, up to multiplicative constants only depending on o, for
any choice of 7 such that r € (0,1).

Nonzero parameters

Denote {; = /202 log(1/7). We will show
Eo, (T (Y;) - 6:)* < o + 2. (1.16)

for all nonzero 0;, which can be done by bounding sup,, |T-(y) - yl:

Eo,

i

(T:(Y:) — 0:)* = Bg, (T (Y;) = Yi) + (Y; — 0;))?
< 2B, (Y; — 0:)% + 2B, (T (Y:) — Vi)

2
<20%+2 [sup T (y) - y|) ;
Yy

Lemmal|1.9] yields the following bound on the difference between the observation and the
horseshoe estimator: T, (y)—y| < h(y, ), where h(y, 7) is such that lim, o SUP|y > cl, h(y,7)
= 0 for any ¢ > 1. Combining this with the inequality |T.(y) — y| < |y|, we have as 7 — 0:

argmax [T (y) ~y1 < . (117)
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which implies , as |T:(y)| < lyl:

2
[Sup T (y) - yl] <2
y

Parameters equal to zero
We split up the term for the zero means into two parts:

EoT-(Y)? = BoT-(Y)?*1)y|<¢, + BoTo(Y)*11y|s¢,,

where {; = /202 log(1/1). For the first term, we have, by the first bound in Lemma

{r 2
EoT:(Y)* 1y <z,) = f T:(y)° e 27 dy
- 2o
gr 42 1 42 f(T)z {r ¥
< | Ye () ——==e 2dy = f yrer?dy
fig, V2ro? V2ro? J-¢:
2 1 2 4
< w/—crf(r)zgvf— <y =00t S ety
T T T 9
o y? v

v o . N
where the identity diyye 202 = Zzez0? + e20? was used to bound f_ivr y?ezo7 dy. For the

oZ
second term, because |T,(y)| < |y| for all y, we have by the identity y?¢(y) = $(y) —
diy [yé(y)], and by Mills’ ratio:

EoTr(Y)*1q1y1>) < Bo¥ Lqpy|>z,) = ZLT o’y p(y)dy

le ¢ (%) A 1
< 20(:¢ (;) + 20'3T <40l (;) = 4O'§TET,

where the last inequality holds for {; > o2. If we apply this inequality and combine this
upper bound with the upper bound on the first term, we find, for {; > o2 (corresponding
2

o
tor<e 7))

EoT:(Y)? = BoT: (Y)*1(y|<c.) + BoTr (Y)*1(y)5¢,) S &t (1.18)
Hence, for 7 < e’UTZ:
n
D, BTe(Yi)* < (n=pa)er. (1.19)
i=pp+1

Conclusion

o2
By <| and 4| we find forr < e” 7 :

D o (Te(Yi) = 0:) < pn1+ (D) + (n = )l e
i=1
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Lemma 1.10. The posterior variance when using the horseshoe prior can be expressed as:

[amaret et
2 - 2)° 2 (1oL 9F
o +(1-12)z
var(0 | y) = —Te(y) = (Te(y) - y)* + y*= . .
v f z %—ez?jzdz
0 2+ (1-12)z

, (1.20)

and bounded from above by:
1 var(f | y) < o? +y%;
2. var(0 | y) < ("72 + )T (y) — T-(y)2

Proof. As proven in Pericchi and Smith|(1992):

4 2 1
var(f | y) = 0% + a4dd—y22 log m(y) = o® — (gz ’:1”((5))) t ot ”r’n(;y))’

where m(y) is the density of the marginal distribution of y. Equality can be found
by combining the expressions

1 _2 Y 1 o,
m(y) = e 202 f z i ———  e2:2°dz
V2ot 0

//( ) 1 /( ) yZ y2 fl _%(1 )2 1 ﬁzd
m'(y) = -m'(y “—e 202 z —2)———e2%7°dz
) V2mlot ot 0 1—(1—%)2

with the equality T,(y) = y + o* The first upper bound is implied by the property

m(y)
IT:(y)| < ly| and the fact that (1 — z)? < 1 for z € [0,1]. The second upper bound can be

demonstrated by noting that (1 — z)? < 1 — z for z € [0,1] and hence:

o 1
var(@ ly) < - Te(y) - (v - T:(y))’ +v° (1 - ng(y)) : o
Proof of Theorem[1.2]
Proof. As in the proof of Theorem|[L.1| we assume that 6; # 0 fori = 1,...,p, and 6; = 0
fori = p, +1,...,n, where p, < p, by assumption. We consider the posterior variances
for the zero and nonzero means separately. Denote {; = /202 log(1/71).

Nonzero means

By applying the same reasoning as in Lemma.to the final term of var(@ly) in
we can find a function h(y,t) such that var(0|y) < h(y,t), where h(y,r) —otasy > o
for any fixed r. If r — 0, the function h(y, 7) displays the following limiting behaviour for
anyc > 1:

lim sup h(y, ) = o
0 y|>eg,
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Hence, as 7 — 0: var(fly) < o2, for any |y| that increases as least as fast as {; when
decreases. Now suppose |y| < ;. Then, by the bound var(d | y) < o2 + y* from Lemma

11.10| we find:

var(0 | y) < o + {2

Therefore:

ﬁn
D B, var(6; | Y) < pa(1+ 2). (1.21)
i=1

Zero means
By the bound var(0 | y) < o2 + y* we find for ¢ > 1:

1 2

Eq var(0 | Y)l{|y|>c§r} < Zf (0'2 +y2) e_zli?dy
24 27102
2&C CgT ® 2.2
=20°] - 2 s d(x)dx
¢ clr
< 40’ (cgf ) +20¢lr¢ (%) <=+l
For |y| < ¢{;, we consider the upper bound var(8 | y) < ‘772 + )T:(y) — T, (y)? from

Lemma From this bound, we get var(0 | y) < %ZTT (y) + yT(y). Hence:

) clr 1 1 2
Eovar(0 | Y)1yjy|<cz,) S 0 f -T.(y) e 7dy
—c; Y 2o
f% ()——e i (1.22)
+ yTT y e 202 y, 1.22
—cls V2mo?

We bound the first integral from by applying the first bound on T, (y) from Lemma

L8
er q 1 e o 1
o [ inw =Ty <ot [ o ——dy
- Y V2ro? —clr V2ro?

= \/?Cé”ff(f) < (e,

because f(r) < %T. For the second term in 1| we first note that the second bound
from Lemma [1.8| can be relaxed to:

2 4 2 4 1 4
T.(y) < “re’ 2% + —erac? + 2\ac’ e’ 1.23
(y) ry(3r Vi Vac " ) (1.23)
foranya > landr < % By plugging this bound into the second integral of li we get
three terms, which we will name I;, I and I5 respectively. We then find, bounding above
by the integral over R instead of [-c{7,c{;] for I; and L:

e ;
Il = Efzfc yz;ei(li‘[z)%dy <
3 —cZr V2mo?

2
2 g

T —— % < 1'2.
(1-1%):

w N



1.7. PROOFS 27

2 cér 1 a1 v 2ac?
L=—1 y2 e @ 22dy < S
Va J-c, 2ol (a—1)2

e 2V2aco
L= 2\/502'[[ dy = (t s,
—cZr V2mo? \r

And thus: .
D7 Bovar(0; 1 Vi) € (n=fn) (e + T+ 1) 7. (124)
i=pp+1
Conclusion
By (L21) and (23
Engar(@i|Yi)sﬁn(1+§§)+(n—ﬁn)(g"r+T+1)T. m|
i=1
Proof of Theorem[1.4]

Proof. By expanding (1 — z)2z77 =z~ 3 — 223 + 27, we see that the final term in is
equal to:

13 1
2 2
J;) z T2+(1—T2)Ze o2 dz

Y — 2T (y) + ¥

z

1
— Z
0 2+(1-72)z ez’ dZ

(NI

As I ;y) is non-negative, we can bound the posterior variance from below by the final two
terms in (1.20). By the above equality, this yields the following lower bound:

P e i N UA |
ar T = B ’
\% Yy 2y I_%(y) y y I_%(y) I_l(y)

where I is as in Lemma[I.7, We now use the bounds from Lemma [1.7] with a = 2 and

£

take & equal to clog(1/7) for some nonnegatlve constant c. Then e¢ = F andez = l% .
T

Taking for each bound on Iy, k € {2 Sr 3o —% }, the term that diverges fastest as 7 approaches

zero, we find that the lower bound is asymptotically of the order:
11 V21
T¢ c
20'2§ Ak - fz 5:
max{@,z‘?ﬁﬁ} max{<—=, L L}

For ¢ < 1, this reduces to:

U_Ze—rgl_l—c _ 4;‘28—2r2§1_2—2c.
2V2 ¢
The second term is negligible compared to the first. Hence, we will use the term
%e‘rgrl_c as our lower bound on var( | y) for y = ++4/2co?log(1/7r) = vc{,, where
+ = y/202log(1/7). To find the lower bound on )}, Eg, var(¢; | Y;), we only need to

consider the parameters equal to zero:
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Z B, var(0; | Y;) = (n = pa)Eo var(6; | Y) 1y, <.} (1.25)

i=1

By the substitution x = y?/{%,dy = Zyoe 'l:;fi):/ﬂdx, we find:

& g2 2o 1 2
Eyvar(9; | Yi)1[|Yi|S§ri > 2[ Tt & e‘mdy
0 2‘/_ 2mo?
1 'rx

2 i1l (1.26)

"R wE AR

where in the last step, we used 7™ > 77 > e¢ forx € [0,1],7 € (0,1]. By plugging this
into (1.25), we find that as 7 — 0:

D Bo,var(6; | ) 2 (n = pa)is, (127)

i=1

finishing the proof for the first statement of the theorem.

We now consider 0 such that §; = a, fori =1,...,p,,and §; =0fori =p, +1,...,n,
and assume without loss of generality that a,, > 0. We wish to find conditions on a, such
that the lower bound is sharp (up to a constant factor). Denoting {; = /202 log(1/7),
as before, it is sufficient if we can find a,, such that Ey,—,, var(8; | Y;) < 7, because in
combination with the bound (1.24), this will yield 3.7 Eg, var(6; | Y;) < nr{,, which
is of the same order as , as pp, = o(n). Sufficient conditions on a, can be found by
adapting the proof for the zero means’ case of Theorem-

We first consider |y;| > {;. By the first bound of Lemma|1.10

Eg, var(0; | Yi)1{v,|>¢,) <f (c®+y )\/2_2
no

—{r _(y-an)?
+f (c®+y )\/2_2 202 dy. (1.28)
oo o

The first integral from can be split into two parts by splitting up the factor o2 + y?,
the first of which can be bounded, by substituting x = (y—a,)/o and applying Mills’ ratio:

" — c {r —an o3 é',[_an
sz(g,an)/o¢(X)dx_Uzq)( = )ng—anqs( > ) (1.29)

The second of these integrals is, by y? = (y — a,)* — @’ + 2a,y, equal to:

°°( )2 1 _(y—a2n>2 p 5 f‘” 1 _<y—azn>2 p
y—ap e 2 dy—a e 2?2 dy
e 2no "Jo V2ro?

© 1 _(=an?
+ap y e zo? dy. (1.30)
4

- 2o
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The second integral of can be bounded from below by zero, and the third from above
by a,Eyg,Y; = a%. Again substituting x = (y — a,)/o yields the following upper bound on
({1.30): o2 f(?r—an)/o x2P(x)dx + a?. Now using the equality x2¢(x) = ¢(x) — d%[xg{)(x)]
and again Mills’ ratio, and combining with (1.29), we find the following upper bound on
the first integral from (1.28):

20

gf_an¢(§f;an)+0'(§T—an)¢(§r ”)+ai. (1.31)

By substituting x = —y in the second integral from (1.28) and then applying the same
inequalities to it as to the first integral, the following bound is obtained:

¢(§r;an)+o_(§f+an)¢(§r n). (1.32)

3

207

{r+ay

This bound does not include a term a?, because in the step equivalent to (1.30) - the identity
y*“n)z

y? = (y+a,)?—a? —2ya, is used, and thus only the integral f§ (y+an)? \/27 202 dy

needs to be bounded in that step. Eg, var(0 | Y)1{jy|>¢,) can thus be bounded by the sum
of (1.31) and (1.32). The factor ¢(({; + a,)/0) can be bounded from above by ¢( {T/O' =

§2 _LG {ran a'l {ran
7/V2m. The factor ¢(({; — an)/o) is equal to Fe T20le 20%€ 0 = me T2%e o .
Hence we arrive at the following upper bound:
o 20° i ran 202 5
e — + ap|e z%e o + +(;+a +ay. 1.33
Var |:(§T_an b= n) gr+an & n| " ( )

If a, < 1/, then e 207 e(; = 0(1) and {; = a, = O({;), yielding an upper bound on

(1.33) of order ;.
We now consider |y;| < {;. We use the second bound of Lemma

) e 1 1 _(y-an)?
Eg, var(0; | Y)1(y,j<¢,) < 0 =T:(y) 2o? dy
- Y 2ro?
+2f§TT() L sy (134)
o yi-\y € y. .
e V2ro?

2
Applying inequality %Tf(y) < %Tez% from Lemma [1.8[ to the first integral yields the
bound:
V2o v 2 _(y-an? V20 @ g any V2o angr
— exle 200 dy=—=r1e 207 f 2 dy < ——r7e” 2022 e o .
N YT 3vm I N e
If a, < 1/{;, we have a,{; = O(1) and thus this term will be of order 7{;. For the second
integral from (1.34), we use bound . This leads to three integrals to be bounded, I, I,
en I3.

o 2 2 "n é/‘r _ 1 (
L = ——z'zel 72 202 yze 202 /(1-72)

V27T3 _gr

an 2
1—72) dy
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2 2 d o a
< Zelrot — —  |g?y M |2,
3 (1-172)3/2 1-12

2 2
an g‘r — 1 __a_
I = 20 Te (b-1)202 f yPe 2@t (y-5%2n)
\/a Vz” ’gr
2
2 a \3/2 a
< —e 207 g7 ( ) (0'2 + ai) T.
Vb a-1 a-1
2vac® (4 S _man? 2V2a0® _ah anix

I; = T exle 202 dy < e 22e of 1(;.
T ! -
I1,I; and Is will all be of no larger order than 7, if a, < 1/{;. |

Lemma 1.11. Forallk € R, fly uketdu = y*e¥(1+ O(1/y)), asy — oo.

Proof. For k = 0, the statement is immediate. By integration by parts the integral is seen
to be equal to y¥e¥ — e — fly ku*~'e“du. For k # 0, the latter integral is bounded above by

y/2 y
k| f (1Vy/2) tetdu + |k| f (y/2 vV y) e du.
1 y/2
This is further bounded above by a multiple of (1 V yK~1)e¥/2 + yk—1ey. i

Lemma 1.12. Let Iy be as in Lemma There exist functions Ry with
SUP; /4<y<al, [Ri(y)] = 0 fork > 0 and k = —%, such that,

1 k 2 2 42
zk<y>=(f2"f “dz+ ;eiﬂ)uﬂk(y)), fork >0,
0

1+z

20° 4

- « 1 2 i .\
é(y)=(f lfo Faal e )(1 R_1(y)).

Proof. We split the integral in the definition of I} over the intervals [0,7%] and [r2,1]. The
first interval contributes, uniformly in yr — 0,

I

r? k, Lz 72 k
zFe2s z
————dz = ——————dz(1+0(1
j; 2+ (1-1%)2 fo 2+ (1-1%)2 ( 1)

B i 1 uk
= 7.'2 L ?dl{ (1 +O(1)), (135)

1-12)u

by the substitution u = z/7%. The integral tends to fol % du, by the dominated conver-
gence theorem, for any k > —1. The second interval contributes, with the substitution
u = (y*/20%)z:

2

y k 4
U zkezo?? i 20° 1 207 uke¥ p
s T2+ (1-1%)2 T\ e, ¥ 2 AW
T ) T 1 5T +(1-1%)u
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In the second integral the argument satisfies u > 1, and hence u/((y?r?/(20%)+(1-1?%)) —
1, uniformly in 4 and yr — 0. Hence

ko
20'2) chrz uke® ( o ) e
— — du
(yz 1 zy—r2+(1—r y?

2

ezlclr22 (1+0(1))

asy — oo, by Lemma For the first integral we separately consider the cases k > 0 and

k=-1/2.Ifk > 0, then fol uk-letdy converges, and hence, by the dominated convergence
theorem, uniformly in yz — 0,

2 u 2 2 k 1
( d ) f _  du-— (iz) f ukle¥dy.
= (1-1%u y 0

If k = —1/2, then we substitute v = 20%u/(r%y?) and rewrite the integral as
_1 202 1 ﬁ _1
202\ [ vzezo? O [P\ 7E 1 ™ o172
< f vr e rY dv:—f Y do(1+0(1)).
y 1 1+(1-1%)v \ 202 )y 1+v
This combines with the integral (1.35). |
Proof of Theorem [1.5]

Proof. Denote {; = 4/20%1og(1/7) and assume that 0; = y{; fori = 1,...,p, and 6; = 0
fori =p, +1,...,n. We prove by proving that there exists a positive constant c;(y)
such that

Booye, Te(V) = e 770 e () (1 + o(1)). (1.36)
If holds, we have, by Jensen’s inequality:

Pn
D Bo (Te(Y) = 0)% = pa(r U (2 ei(y) = v ) 2 pal, (137)
i=1
as 7 — 0. In addition, we have T, (y) = yIl (y)/I_;(y). For |y| = v/20%clog(1/1), with
2
¢ > 1, the lower bound (1.12) on 11 (y) behaves as (o 2/yz)ezy7 while the upper bound

onl_: 1 (y) behaves as (2avao?/y? )eZcr as ¢ — 0. Therefore, for |y| > {;, we have
TT(y) > y. Thus, we can bound by:

S BT 2 (0 pa)Bone T (V) Ty 2 () [ 56y

i=pp+1
= (- p) [ﬁ $y)dy + %ds(%)] > (-t ()
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1
=(n—-pp)—1¢;. (1.38)
n '—2” T
By combining the lower bounds (1.37) and (1.38) with the upper bound (1.2), we arrive at
[1.7). For the posterior variance, we already have Zimpp var(0; | Yi) < (n — pn)tl; by
1.24) and (1.26). Expression (1.8) can therefore be proven by showing that there exists a
positive constant c,(y) such that:

Egoye, var(0 | Y) = 17077 ey () (1 + 0(1)). (1.39)

Proof of (1.36)
The expected value Eg-,¢, T (Y) is equal to

i
S e L&y (y+(-ni
E[f_w +f—§; +f37)({,+y)1;(§r+y)¢( = )dy. (1.40)

We shall show that the first and third integrals are negligible, while the second gives the
approximation in (1.36). On the domain of the second integral, we have {; /4 < {;+y < 4,
so we can apply Lemma [1.12[to see that this integral is asymptotic to

o

y2yle
1 f3§r Csz(gr + y)2 +20% 20? ¢ (y + (1 - Y)gr)dy’ (1.41)
o

i cily + £o)? + 202" 007

where ¢; = fooo z712(1 - z) 'dzand ¢, = fol 212(1 - 2)"'dz. On [~ /2,3, ]:

+(1-v) c a/2-y?s2
cartr + (L) < 2 yre
_64C2

P22,

var
so (1.41) is asymptotic to:

véry
o

O(r) + 2L f N (O
e

2m

dy.

g vyl
T o(y+ ()% + 20% 2o ’

By the substitution u = {;y — 202 log{;, the remaining integral is equal to, with a, =
2
—& _202log{; and b, = 3{? - 20 log {;:

ﬂ
Z_C’T(W)Zifbf (Cr + {7 (u + 202 log r))e @ Y
Var Gedac (G G 207 Tog [7)? + 202 (R IR L)

2022

[ Ll; ZY

NZ_“To—y)Zif _Geetl
Ver {r Jwo (c1 + 20%€7) 2
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by the dominated convergence theorem. This yields the approximation in (1.36), with

00 yu _u
ci(y) = (20/V2r f_w eo? [(c; + 20%e<% )du.
For the first integral in (1.40), we use bound 1 from Lemma and obtain a bound on
its absolute value equal to

o (D gy

(r
2 2 2
__ 2 _aw f I 8 < 0P EE ety
= T +y|e 2 dysT ¢ e =7 ,  (1.42)
3V2no —00 i

where the last inequality follows by integration by parts. This is of much smaller order
than the second integral from (1.40). In the third integral of (1.40), we bound I 1 (=
)/L% (¢{r +y) by 1, giving the upper bound

LN —y+(1_Y)§T) (3§r+(1—}/)§1): L ey
Gf%@f y)¢( = dy<¢ . =

by Mills’ ratio. This is also of much smaller order than the second integral from (1.40),
thus concluding the proof of (L.36).

Proof of
By expanding the term (1—z)? in the numerator of the final term of (1.20), the posterior
variance can be seen to be equal to:
01 - o Ly L[Lw (L) )
var(0 | y) = +y |11 .
I_1(y) Li(y) (1)

Because I 1 (y)/1_s (y) can be interpreted as the mean of the density proportional to z —

z712e¥" z/(Zc’z)/(r +(1-1%)z), and I3 (y)/I_1 (y) as the second moment, it follows that the
term in square brackets in (1.43) is nonnegative. By (1.43), we write:

I1(¢z +y) (y+(1— V) )d
16 +y) /

2 3¢z
" é [f f f ] (& +y)°
L&y (LG+y y+(1-y)
[I_;(§T+y) [I_;(§T+y)] }qs(f) dy. (1.44)

The first term in ( is as , except without the factor ({; + y). Following the same
steps as the proof of , we see that it is smaller than a multiple of ¢! times the bound
on 1i so it is of the order {3 731(-1) The first and third integrals of the second term
of (1.44) are also negligible. For the first, we use that the expression in square brackets
is nonnegatlve and bounded above by I3 3 (y)/I1_: (y) which in turn is bounded above by

Eg=y¢, var(0 | Y) = af
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I% (y)/I_% (y). We bound as in (1.42), with the difference that the leading factor is ({; + y)?

instead of ({; +y). This leads to the order ¢ .7(=Y**¥ much smaller than the claimed rate.
For the third integral, we can bound the term in square brackets by 1 and use Mills’ ratio
to see that it is of the order §TT(4_V)2.

We are left with the middle integral of the second term of (1.44). On the domain of
this integral, by Lemma|1.12

Is (gf + y) C3T4(§ + y)z + 20'2e yzgffé?r
: = - (1+0(1)),

212yle
I‘%(évT *Y) c1(dr +y)% + Zazey zf,yzg

where ¢3 = fol 232(1 + z)7'dz, and ¢; is as in (1.41). We see that I%(y)/L%(y) and
I ! (y)/I 1 (y) are asymptotic to the same function on this domain. Since A/(A+B)—A?%/(A+
B)? = AB/(A + B)?, it follows that up to O(r), the middle integral is asymptotic to
y?+2ylr
1 c1(r +y)*20%e 207 y+ (1 -y
_f (e +y)— )dy

oJ & ( yz+2y(7)2¢( o

e1(Le +y)? + 20% o

véry
_ 2(701 T(17Y)Z 3¢z (gr + y)4e o2

dy.

c1({r +y)% + 20%e” 202
We substitute u = {;y — 202 log {; to reduce this to

du

2ocs o L scietlonls (g g s 20 log L)) e O
—T = 2 u 2
Ver Sr J-SFa0tlonle (e(fr + {7 (u + 202 log 17))? + 20% 22 2)

0o .2

_ 200 T(l_y)zlf teo? Y
u\2
Var gr —co (Cl§3+202§§egz)

o Y4 u
This is asymptotic to expression (1.39), with c;(y) = (20¢1/V27) f_m eo? [(ci+20%e 7% )2du.
O

Proof of Theorem/[1.6

Proof. Suppose that Y ~ N (0,0%1,), 0 € {o[p,]. We adapt the approach in Paragraph 6.2
in (Johnstone and Silverman, 2004). We first derive the following inequality for events A
such that 7 > 7 holds with probability one on A:

Eo(T2(Y:) — 0:)*14 < 2Bo(T2(Y;) — Yi)*14 + 2Eo(Y; — 6:)*14
< 2Bgl214 + 20°E9Z% 14 (1.45)
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where was used in the second line, and Z follows a standard normal distribution. If
A s such that 7 > 7 holds with probability one on A, we can use the inequality {5 < {; if
T > 7 to find:

Eo(T=(Y;) — 0:)*14 < 20°Py(A) + 20°E9Z*14, (1.46)

We now consider the nonzero and zero parameters separately. For both cases, we split
up the expected ¢, loss as follows:

Eo(T=(Y;) — 0:) = Eg(T=(Y:) — 0:)*1i7ncr) + Bo(To(Y7) — 0:)* 1 i7<cr)

and then bound each of terms on the right hand side. For the nonzero means, we take
¢ = 1, while for the zero means, we consider ¢ > 1. Note that for {7 to be well-defined, we
need 7 < 1 and consequently, when we consider 7 > ¢, we must have ¢t < 1.

Nonzero means

By (1.46), we find:
EQ(T’T‘(YI‘) - 91‘)21{?>T} S Zé(? + 20'2. (147)

If7 < 1, the inequality év/rz\ < {? needed for does not hold. For this case, we assume
that T > g(n,p,) with probability one, for some function g(n,p,), corresponding to {7 <

\-20%log g(n,p,). Then we find by :

Eo(T=(Y:) — 0:)* 7<) S 2Bol21 7,y + 207

< —402log(g(n,pn))Po(T < T) + 20°. (1.48)
By and , we have for 6; # 0:
Eg(Tz(Y:) - 0:)* 5 1+ {2 —log(g(n,pa))Po(7 < 7). (1.49)

Zero means
We first establish an inequality for Eg[Z%14], where A is an event and Z a standard
normal random variable. By Young’s inequality, we have for any positive x and y:

x y
xysf(es—l)ds+f log(s+1)ds =e¢*—x—1+(y+1)log(y+1) —y.
0 0

By this inequality combined with the inequality log(y + 1) < y, we have:

) 2
E¢Z*14 < cdEyg [ezc - ZT - 1] +cdPy(A) (élog (é + 1) - é) .

With ¢ = 3 and d = Py(A), we find:

EgZ*14 < (3V3 - 4)Pg(A) + 3Py (A) log (1 ’ ﬁ)

1
< 5Py(A) log (1 + m) . (1.50)
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By (1.46) and (1.50), we get for any ¢ > 1 such that cr < 1:
Eg(T#(Y:) = 0:)*1(z5cr) S 2{7Pg (T > c1)

1
+ 100'2P9 (?> CT) lOg (1 + m) . (151)

Now suppose T < ¢t for some ¢ > 1 such that ¢z < 1. First note that |T, (y)| increases
monotonically in 7, as is clear from

22
T:(y:) =E[(1 —xi)y;i | yi,7] = E [1+—rzl)@yi ' yi,r} )
Because sign(T#(y;)) = sign(T.,(y;)) and 0 < |Tz(y;)| < |Te(yi)|, we have:
(Te(ys) = 6)° < max{67, (Tec (y:) = 0:)%) < 67 + (Ter (y2) — 6™

Hence:
EQ(T?(Yi) - ei)zl{?gcr} < 912 + EH(TCT(YI') - ‘91')2«
And thus, by , we have for 6; = 0:

EQ(T’T‘(Y,') — Gi)zl[?gcr] S gCTCT S éVTT. (1.52)
Combining and , we find:
1
E@T?(Yi)z < {TT + gfpg (?> CT) + Pg (?> CT) log (1 + W) . (1.53)

Conclusion
We can now bound the expected ¢, loss. We assume that 6; # 0 fori = 1,...,p, and
0; =0fori=p,+1,...,n where p, < p,. By combining (1.49) and (1.53), we find:

EglIT=(Y) = 011° < pn (1+ 2 = log(g(n,pn))Po(F < 7)) + (n = pn){ct

~ 1
+ (n—p,,)]?g (?> CT) (§3+10g (1+ m)) . (154)
The function x log(1 + %) is monotonically increasing in x for x € [0,1]. Hence, with the
choice 7 = 1% ort = ‘% log(n/py), the conditions stated in the theorem are sufficient

for to be bounded by the minimax squared error rate in the worst case.

If an estimator 7 satisfies only the first condition, then sup{ %,’f} satisfies the second
condition with — log g(n,p,) = log n. By the assumption p, — co, we have Py (sup{ %,’ﬂ >
c%) < Py(r > c%). Plugging this into inequality yields an ¢, risk of at most order
pnlogn. O

Lemma 1.13. Suppose Y; ~ N (0;,6%),i = 1,...,pp and Y; ~ N(0,0%),i = pp +1,...,n

and define
. #lyil =2 yero?logn,i=1,...,n}

T
Ccaon

for somecy; > 1. ThenPy(7 > 1) < ‘% as pp,n — o, p, = o(n) ifc; > 2, orc; = 2 and

pn Slogn fort = ‘% ort = %\/log(n/pn).
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Proof. We only need to consider Po(T > %), as we assume p, = o(n) and thus, for

large n, Py(T > %wllog(n/pn)) < Po(r > %). Define A; = {lyi| > +Jcio?logn},i =

1,...,n. Fori = p, +1,...,n, 14, follows a Bernoulli distribution with parameter q,, =
20°(4/c1 log n), which by Mills’ ratio can be bounded from above by /cli”(log n)’% n"T.

For X ~ Bin(n,p), we have the bound P(X > k) < (%)k as a consequence of Theorem 1
in (Chernoff} |1952). Hence:

(Cz*l)pn+l
b ) e(n = pu)gn
P9(7> )SP"[_Z 1a; > (e 1)‘D"]S((cz—l)pnn)
5 (CZ_l)Pn+l
< [ 2e ! ! 1‘?) . (1.55)

e n
arm (2= pn+1,flogn

The inequality Po(7 > £2) < £2 holds if —log Pe(t > £2) > log Pln + ¢ holds for some
positive constant c. The negative logarithm of bound is:

1 17T 1 c
((c2 = 1)pn+1) (5 log 217 +log((ca — 1)pn + 1) + 3 loglogn + (?1 - 1) log n) .

For ¢; = 2, this quantity will exceed log Pin if pp 2 logn. If ¢; > 2, we require ((cz — 1)pn +
1)(5 = 1) > 1, which is certainly satisfied if p, — . mi
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