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Introduction

This thesis is composed of papers on four topics: Bayesian theory for the sparse nor-
mal means problem (Chapters 1-3), Bayesian theory for community detection (Chapter 4),
nested model selection (Chapter 5), and the application of competing risk methods in the
presence of time-dependent clustering (Chapter 6). Each topic is brie�y introduced in this
Introduction.

Sparsity and shrinkage priors (Ch. 1 - 3)

A problem is sparse when there are only a few signals amidst a lot of noise. Those signals
are like the proverbial needles in a haystack. The �eld of astronomy contributes many
examples, such as supernovae detection (Clements et al., 2012). Other examples include
the detection of genes associated to a certain disease (Silver et al., 2012) and image com-
pression (Lewis and Knowles, 1992).

The particular sparse problem studied in the �rst three chapters of this thesis is the
sparse normal means problem, also known as the sequence model. In the sparse normal
means problem, a vector Y n ∈ Rn , Y n = (Y1,Y2, . . . ,Yn ), is observed, and assumed to have
been generated according to the following model:

Yi = θi + εi , i = 1, . . . ,n,

where the εi are assumed to be i.i.d. normally distributed with mean zero and known
variance σ 2, and the vector of means θ ∈ Rn is the parameter of interest. The sparsity
assumption takes the form of assuming that θ is nearly black, meaning that almost all
of its entries are zero. The number of nonzero entries in θ is denoted by pn , a number
which is assumed to increase with n, but not as fast as n: pn → ∞,pn = o(n). Other
sparsity assumptions are possible, such as assuming that θ is in a strong or weak `s-ball
for s ∈ (0,2) (Castillo and Van der Vaart, 2012; Johnstone and Silverman, 2004), but we do
not pursue these further here.

The inferential goal can take several forms. Recovery of the parameter θ is one possible
goal, and this is the main focus of Chapters 1 and 2. Uncertainty quanti�cation is a second,
and this is the topic of Chapter 3. A third goal, model selection, is not explored in this
thesis, although the results in Chapter 3 do provide some avenues for further research.

There are many ways to achieve the aforementioned goals. The contributions of this
thesis are in the �eld of frequentist Bayesian theory. The parameter of interest is equipped
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Figure 1: Prior density of κi for τ = 1.

with a prior, which, when combined with the likelihood, leads to a posterior distribution,
aspects of which we use to achieve our goals. We study the properties of the posterior
from a frequentist point of view, meaning that we assume that there is some underlying
true parameter that is generating the data.

The priors proposed for the sparse normal means problem are in general shrinkage
priors, designed to yield many estimates close to or exactly equal to zero. The particular
shrinkage prior studied in this thesis is the horseshoe prior (Carvalho et al., 2010). It has
become popular, due to its good behaviour in simulation studies, and favorable theoretical
properties (e.g. Armagan et al. (2013); Bhattacharya et al. (2014); Carvalho et al. (2010);
Polson and Scott (2012a)). It has intuitive appeal, which can be explained through the
origin of its name. The horseshoe prior is given by

θi | λi ,τ ∼ N (0,σ 2τ 2λ2
i ), λi ∼ C

+ (0,1),

for i = 1, . . . ,n, where C+ (0,1) is the standard half-Cauchy distribution. The parameter
τ is a global parameter, shared by all means, while the parameter λi is a local parameter.
How τ should be set is one of the main topics of Chapters 1 and 3. Regarding the name, if
τ is known, we have the equality:

E[θi | Yi = yi ,τ ] = (1 − E[κi | Yi = yi ,τ ])yi ,

where κi = (1+τ 2λ2
i )
−1, and E[κi | Yi = yi] can be interpreted as the amount of shrinkage

towards zero. A half-Cauchy prior on λi implies a Be( 1
2 ,

1
2 ) prior on κi in the special case

when τ = 1. The horseshoe prior is named after the Be( 1
2 ,

1
2 ) prior, which resembles a

horseshoe (Figure 1).
The intuitive appeal lies in the concentration of mass near zero and one, which caters

to the true signals and the nonzero means respectively. Decreasing τ leads to more prior
mass near one, corresponding to more shrinkage. One of the main contributions of this
thesis is the guideline that optimal recovery (in the minimax sense) can be achieved by
setting τ at most of the order (pn/n)

√
log(n/pn ) (Chapter 1).

In practice, the number pn is unknown and thus there is a need for a procedure that
adapts to the unknown sparsity level. In Chapter 3, two ways of handling τ are considered.
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The �rst is empirical Bayes, where τ is estimated based on the data and the resulting value
plugged into the prior. The second is hierarchical Bayes, where τ receives a hyperprior.
In both cases, recovery of θ is possible at the near-minimax rate, and credible balls are
both honest (they contain the true value with some prescribed probability) and adaptive
(they are as small as possible), under some conditions. In addition, credible intervals are
guaranteed to have good coverage if the underlying signal is either ‘small’ or ‘large’, but
almost surely do not contain the truth if the signal is close to approximately

√
2 logn.

The results of Chapter 1 led to the question what properties of the horseshoe prior
make it so well suited for recovery, and whether it is unique in that regard. The results
from Chapter 2 show that the horseshoe is not that special: many priors in the class of
scale mixtures of normals enjoy the same good behaviour. We provide conditions under
which the posterior contracts at the minimax rate. Recovery of the nonzeroes requires
tails that are at least exponential; recovery of the zeroes requires su�cient mass close
to zero, and not too much mass in the interval [(pn/n) log(n/pn ),1]. Many priors satisfy
these conditions. However, the horseshoe may be special after all, because it represents a
boundary case with respect to the thickness of its tails. This could explain the good cov-
erage properties of the horseshoe’s credible balls. Whether the uncertainty quanti�cation
properties of the horseshoe, as described in Chapter 3, can be generalized to scale mixtures
of normals is an open question.

An attractive property of the horseshoe is that some of the aspects of its posterior can
be easily and quickly computed, without the need for MCMC. Functions for the horse-
shoe’s posterior mean, posterior variance, the MMLE and credible intervals are available
in the R package ‘horseshoe’ (van der Pas et al., 2016).

Community detection (Ch. 4)

In this chapter, like the previous ones, Bayesian posterior distributions are studied from a
frequentist point of view, but unlike the previous chapters, the theory is for data with a
network structure. The aim is to detect communities in, for example, a social network. The
network is assumed to be generated according to the stochastic block model, in which the
probability of the existence of a connection between two individuals (nodes) only depends
on each individual’s community membership.

We equip all parameters of the stochastic block models with priors, and use the poste-
rior mode as an estimator of the community memberships (MAP-estimation). We call the
resulting estimator the Bayesian modularity, following Bickel et al. (2009). Two instances
are studied. In the �rst, the dense situation, the probabilities of connections between in-
dividuals remain �xed. The second and most complicated situation is the sparse situation,
in which the probability of a connection between two individuals tends to zero as the
network grows in size.

Weak and strong consistency are proven, the former meaning that only a fraction of
the nodes are misclassi�ed, and the latter that none of the nodes are misclassi�ed. The
theorems require the assumption that the expected degree is at least of order log2 n, where
n is the number of nodes in the network. Whether this assumption can be weakened to
an expected degree of order logn remains an open question.
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Nested model selection (Ch. 5)

In Chapter 5, we turn to model selection. The models under consideration are nested
exponential family models. For example, one model could consist of all univariate normal
distributions with unknown mean and unknown variance, while the other model only
contains the standard normal distribution.

Optimality of a model selection criterion can be de�ned in many di�erent ways. Three
of them are discussed in this Chapter: consistency, minimax rate optimality, and robust-
ness to optional stopping. The switch criterion, a new model selection criterion based on
the switch distribution introduced by Van Erven et al. (2012), is evaluated on those three
properties.

Consistency guarantees that if the data is actually generated according to one of the
models, then that model will be selected eventually. minimax rate optimality is a measure
of the accuracy of the parameter estimation step that follows the model selection. mini-
max rate optimality and consistency are mutually exclusive properties (Yang, 2005). The
main contribution of Chapter 5 is that the switch criterion is consistent while missing the
minimax risk by a factor of order log logn, if the criterion is used in combination with
e�cient estimators of the parameters.

The third property, robustness to optional stopping, has attracted attention because
most standard null hypothesis signi�cance tests which output a p-value, do not have this
property (Armitage et al., 1969; Wagenmakers, 2007). In the classical framework, a re-
searcher has to decide the sample size in advance. This guideline is not always adhered to;
in a recent survey of psychologists, approximately 55% of participants admitted to decid-
ing whether to collect more data after looking at their results to see if they were signi�cant
(John et al., 2012). If a criterion is robust to optional stopping, the validity of the results
will not be a�ected by the use of such stopping rules. As discussed in Chapter 5, the switch
criterion is robust to optional stopping, if the null hypothesis is a point hypothesis. Thus,
the switch criterion comes close to achieving all three desirable properties.

Hip arthroplasty data and bilateral patients (Ch. 6)

The �nal chapter of this thesis is on the topic of hip arthroplasty registry data, and is of
a di�erent character than the preceding ones. It is the result of an ongoing collaboration
with Marta Fiocco, Rob Nelissen and Wim Schreurs. The goal is to determine which patient
characteristics are associated with time to revision surgery after hip replacement surgery,
using the data collected by the LROI (Landelijke Registratie Orthopedische Implantaten /
Dutch Arthroplasty Register).

Total hip arthroplasty (THA) is a common procedure in The Netherlands; the LROI
registers approximately 28.000 THAs annually, in most cases following an ostheoarthri-
tis diagnosis (LROI, 2014). After the primary surgery, there may be a need for revision
surgery, which is de�ned as any change (insertion, replacement, and/or removal) of one
or more components of a prosthesis. Revision may be required due to several reasons,
such as mechanical loosening, infection and fracture.

Many patients will have not one, but both hip joints replaced and thus receive bilateral
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prostheses during the postoperative course of their �rst hip or knee arthroplasty. In 2014,
20% of THAs in The Netherlands concerned the placement of a second prosthesis (LROI,
2014). Bilateral patients have been theorized to have di�erent risks of revision compared
to unilateral patients, as the two hips may a�ect each other regarding loosening (Buchholz
et al., 1985). In addition, although the primary diagnosis for surgery may be osteoarthritis,
patients with several total joint arthroplasties within a short time period may re�ect a
di�erent patient population compared to a patient who has only one implant during a,
say, �ve year follow-up.

There are some methodological di�culties in studying bilateral patients. First of all,
the observations contributed by a bilateral patient are dependent. A second complication
is that a patient may become bilateral at any point in time after the �rst surgery. This
makes subgroup analysis problematic, as there is a risk of immortal time bias (e.g. Oscar
winners ‘live longer’ because one needs to be alive to win an Oscar (Sylvestre et al., 2006)).

In addition, any patient may die before experiencing revision of the implant. If this
competing risk of death is not appropriately accounted for, the risk of revision surgery will
be overestimated (Keurentjes et al., 2012; Ranstam et al., 2011). This is especially important
for these analyses given the age of most patients: the average age at index surgery is 69
years for THA (LROI, 2014). In Chapter 6 the aforementioned complications are explained
in detail, and methods that have been proposed to handle them are reviewed. The chapter
is concluded with some preliminary analyses of the LROI data.
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