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Introduction

This thesis is composed of papers on four topics: Bayesian theory for the sparse nor-
mal means problem (Chapters 1-3), Bayesian theory for community detection (Chapter 4),
nested model selection (Chapter 5), and the application of competing risk methods in the
presence of time-dependent clustering (Chapter 6). Each topic is brie�y introduced in this
Introduction.

Sparsity and shrinkage priors (Ch. 1 - 3)

A problem is sparse when there are only a few signals amidst a lot of noise. Those signals
are like the proverbial needles in a haystack. The �eld of astronomy contributes many
examples, such as supernovae detection (Clements et al., 2012). Other examples include
the detection of genes associated to a certain disease (Silver et al., 2012) and image com-
pression (Lewis and Knowles, 1992).

The particular sparse problem studied in the �rst three chapters of this thesis is the
sparse normal means problem, also known as the sequence model. In the sparse normal
means problem, a vector Y n ∈ Rn , Y n = (Y1,Y2, . . . ,Yn ), is observed, and assumed to have
been generated according to the following model:

Yi = θi + εi , i = 1, . . . ,n,

where the εi are assumed to be i.i.d. normally distributed with mean zero and known
variance σ 2, and the vector of means θ ∈ Rn is the parameter of interest. The sparsity
assumption takes the form of assuming that θ is nearly black, meaning that almost all
of its entries are zero. The number of nonzero entries in θ is denoted by pn , a number
which is assumed to increase with n, but not as fast as n: pn → ∞,pn = o(n). Other
sparsity assumptions are possible, such as assuming that θ is in a strong or weak `s-ball
for s ∈ (0,2) (Castillo and Van der Vaart, 2012; Johnstone and Silverman, 2004), but we do
not pursue these further here.

The inferential goal can take several forms. Recovery of the parameter θ is one possible
goal, and this is the main focus of Chapters 1 and 2. Uncertainty quanti�cation is a second,
and this is the topic of Chapter 3. A third goal, model selection, is not explored in this
thesis, although the results in Chapter 3 do provide some avenues for further research.

There are many ways to achieve the aforementioned goals. The contributions of this
thesis are in the �eld of frequentist Bayesian theory. The parameter of interest is equipped

1
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Figure 1: Prior density of κi for τ = 1.

with a prior, which, when combined with the likelihood, leads to a posterior distribution,
aspects of which we use to achieve our goals. We study the properties of the posterior
from a frequentist point of view, meaning that we assume that there is some underlying
true parameter that is generating the data.

The priors proposed for the sparse normal means problem are in general shrinkage
priors, designed to yield many estimates close to or exactly equal to zero. The particular
shrinkage prior studied in this thesis is the horseshoe prior (Carvalho et al., 2010). It has
become popular, due to its good behaviour in simulation studies, and favorable theoretical
properties (e.g. Armagan et al. (2013); Bhattacharya et al. (2014); Carvalho et al. (2010);
Polson and Scott (2012a)). It has intuitive appeal, which can be explained through the
origin of its name. The horseshoe prior is given by

θi | λi ,τ ∼ N (0,σ 2τ 2λ2
i ), λi ∼ C

+ (0,1),

for i = 1, . . . ,n, where C+ (0,1) is the standard half-Cauchy distribution. The parameter
τ is a global parameter, shared by all means, while the parameter λi is a local parameter.
How τ should be set is one of the main topics of Chapters 1 and 3. Regarding the name, if
τ is known, we have the equality:

E[θi | Yi = yi ,τ ] = (1 − E[κi | Yi = yi ,τ ])yi ,

where κi = (1+τ 2λ2
i )
−1, and E[κi | Yi = yi] can be interpreted as the amount of shrinkage

towards zero. A half-Cauchy prior on λi implies a Be( 1
2 ,

1
2 ) prior on κi in the special case

when τ = 1. The horseshoe prior is named after the Be( 1
2 ,

1
2 ) prior, which resembles a

horseshoe (Figure 1).
The intuitive appeal lies in the concentration of mass near zero and one, which caters

to the true signals and the nonzero means respectively. Decreasing τ leads to more prior
mass near one, corresponding to more shrinkage. One of the main contributions of this
thesis is the guideline that optimal recovery (in the minimax sense) can be achieved by
setting τ at most of the order (pn/n)

√
log(n/pn ) (Chapter 1).

In practice, the number pn is unknown and thus there is a need for a procedure that
adapts to the unknown sparsity level. In Chapter 3, two ways of handling τ are considered.
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The �rst is empirical Bayes, where τ is estimated based on the data and the resulting value
plugged into the prior. The second is hierarchical Bayes, where τ receives a hyperprior.
In both cases, recovery of θ is possible at the near-minimax rate, and credible balls are
both honest (they contain the true value with some prescribed probability) and adaptive
(they are as small as possible), under some conditions. In addition, credible intervals are
guaranteed to have good coverage if the underlying signal is either ‘small’ or ‘large’, but
almost surely do not contain the truth if the signal is close to approximately

√
2 logn.

The results of Chapter 1 led to the question what properties of the horseshoe prior
make it so well suited for recovery, and whether it is unique in that regard. The results
from Chapter 2 show that the horseshoe is not that special: many priors in the class of
scale mixtures of normals enjoy the same good behaviour. We provide conditions under
which the posterior contracts at the minimax rate. Recovery of the nonzeroes requires
tails that are at least exponential; recovery of the zeroes requires su�cient mass close
to zero, and not too much mass in the interval [(pn/n) log(n/pn ),1]. Many priors satisfy
these conditions. However, the horseshoe may be special after all, because it represents a
boundary case with respect to the thickness of its tails. This could explain the good cov-
erage properties of the horseshoe’s credible balls. Whether the uncertainty quanti�cation
properties of the horseshoe, as described in Chapter 3, can be generalized to scale mixtures
of normals is an open question.

An attractive property of the horseshoe is that some of the aspects of its posterior can
be easily and quickly computed, without the need for MCMC. Functions for the horse-
shoe’s posterior mean, posterior variance, the MMLE and credible intervals are available
in the R package ‘horseshoe’ (van der Pas et al., 2016).

Community detection (Ch. 4)

In this chapter, like the previous ones, Bayesian posterior distributions are studied from a
frequentist point of view, but unlike the previous chapters, the theory is for data with a
network structure. The aim is to detect communities in, for example, a social network. The
network is assumed to be generated according to the stochastic block model, in which the
probability of the existence of a connection between two individuals (nodes) only depends
on each individual’s community membership.

We equip all parameters of the stochastic block models with priors, and use the poste-
rior mode as an estimator of the community memberships (MAP-estimation). We call the
resulting estimator the Bayesian modularity, following Bickel et al. (2009). Two instances
are studied. In the �rst, the dense situation, the probabilities of connections between in-
dividuals remain �xed. The second and most complicated situation is the sparse situation,
in which the probability of a connection between two individuals tends to zero as the
network grows in size.

Weak and strong consistency are proven, the former meaning that only a fraction of
the nodes are misclassi�ed, and the latter that none of the nodes are misclassi�ed. The
theorems require the assumption that the expected degree is at least of order log2 n, where
n is the number of nodes in the network. Whether this assumption can be weakened to
an expected degree of order logn remains an open question.
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Nested model selection (Ch. 5)

In Chapter 5, we turn to model selection. The models under consideration are nested
exponential family models. For example, one model could consist of all univariate normal
distributions with unknown mean and unknown variance, while the other model only
contains the standard normal distribution.

Optimality of a model selection criterion can be de�ned in many di�erent ways. Three
of them are discussed in this Chapter: consistency, minimax rate optimality, and robust-
ness to optional stopping. The switch criterion, a new model selection criterion based on
the switch distribution introduced by Van Erven et al. (2012), is evaluated on those three
properties.

Consistency guarantees that if the data is actually generated according to one of the
models, then that model will be selected eventually. minimax rate optimality is a measure
of the accuracy of the parameter estimation step that follows the model selection. mini-
max rate optimality and consistency are mutually exclusive properties (Yang, 2005). The
main contribution of Chapter 5 is that the switch criterion is consistent while missing the
minimax risk by a factor of order log logn, if the criterion is used in combination with
e�cient estimators of the parameters.

The third property, robustness to optional stopping, has attracted attention because
most standard null hypothesis signi�cance tests which output a p-value, do not have this
property (Armitage et al., 1969; Wagenmakers, 2007). In the classical framework, a re-
searcher has to decide the sample size in advance. This guideline is not always adhered to;
in a recent survey of psychologists, approximately 55% of participants admitted to decid-
ing whether to collect more data after looking at their results to see if they were signi�cant
(John et al., 2012). If a criterion is robust to optional stopping, the validity of the results
will not be a�ected by the use of such stopping rules. As discussed in Chapter 5, the switch
criterion is robust to optional stopping, if the null hypothesis is a point hypothesis. Thus,
the switch criterion comes close to achieving all three desirable properties.

Hip arthroplasty data and bilateral patients (Ch. 6)

The �nal chapter of this thesis is on the topic of hip arthroplasty registry data, and is of
a di�erent character than the preceding ones. It is the result of an ongoing collaboration
with Marta Fiocco, Rob Nelissen and Wim Schreurs. The goal is to determine which patient
characteristics are associated with time to revision surgery after hip replacement surgery,
using the data collected by the LROI (Landelijke Registratie Orthopedische Implantaten /
Dutch Arthroplasty Register).

Total hip arthroplasty (THA) is a common procedure in The Netherlands; the LROI
registers approximately 28.000 THAs annually, in most cases following an ostheoarthri-
tis diagnosis (LROI, 2014). After the primary surgery, there may be a need for revision
surgery, which is de�ned as any change (insertion, replacement, and/or removal) of one
or more components of a prosthesis. Revision may be required due to several reasons,
such as mechanical loosening, infection and fracture.

Many patients will have not one, but both hip joints replaced and thus receive bilateral
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prostheses during the postoperative course of their �rst hip or knee arthroplasty. In 2014,
20% of THAs in The Netherlands concerned the placement of a second prosthesis (LROI,
2014). Bilateral patients have been theorized to have di�erent risks of revision compared
to unilateral patients, as the two hips may a�ect each other regarding loosening (Buchholz
et al., 1985). In addition, although the primary diagnosis for surgery may be osteoarthritis,
patients with several total joint arthroplasties within a short time period may re�ect a
di�erent patient population compared to a patient who has only one implant during a,
say, �ve year follow-up.

There are some methodological di�culties in studying bilateral patients. First of all,
the observations contributed by a bilateral patient are dependent. A second complication
is that a patient may become bilateral at any point in time after the �rst surgery. This
makes subgroup analysis problematic, as there is a risk of immortal time bias (e.g. Oscar
winners ‘live longer’ because one needs to be alive to win an Oscar (Sylvestre et al., 2006)).

In addition, any patient may die before experiencing revision of the implant. If this
competing risk of death is not appropriately accounted for, the risk of revision surgery will
be overestimated (Keurentjes et al., 2012; Ranstam et al., 2011). This is especially important
for these analyses given the age of most patients: the average age at index surgery is 69
years for THA (LROI, 2014). In Chapter 6 the aforementioned complications are explained
in detail, and methods that have been proposed to handle them are reviewed. The chapter
is concluded with some preliminary analyses of the LROI data.
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1
Posterior concentration of the
horseshoe around nearly black

vectors

Abstract
We consider the horseshoe estimator due to Carvalho et al. (2010) for the multivariate normal
mean model in the situation that the mean vector is sparse in the nearly black sense. We as-
sume the frequentist framework where the data is generated according to a �xed mean vector.
We show that if the number of nonzero parameters of the mean vector is known, the horseshoe
estimator attains the minimax `2 risk, possibly up to a multiplicative constant. We provide
conditions under which the horseshoe estimator combined with an empirical Bayes estimate
of the number of nonzero means still yields the minimax risk. We furthermore prove an upper
bound on the rate of contraction of the posterior distribution around the horseshoe estimator,
and a lower bound on the posterior variance. These bounds indicate that the posterior dis-
tribution of the horseshoe prior may be more informative than that of other one-component
priors, including the Lasso.

This chapter has appeared as S.L. van der Pas, B.J.K. Kleijn and A.W. van der Vaart (2014). The horseshoe
estimator: posterior concentration around nearly black vectors. Electronic Journal of Statistics 8, 2585–2618. The
research leading to these results has received funding from the European Research Council under ERC Grant
Agreement 320637.

7



8 CHAPTER 1. THE HORSESHOE ESTIMATOR: POSTERIOR CONCENTRATION

1.1 Introduction

We consider the normal means problem, where we observe a vector Y ∈ Rn , Y = (Y1, . . . ,
Yn ), such that

Yi = θi + εi , i = 1, . . . ,n,

for independent normal random variables εi with mean zero and variance σ 2. The vector
θ = (θ1, . . . ,θn ) is assumed to be sparse, in the ‘nearly black’ sense that the number of
nonzero means

pn := #{i : θi , 0}

is o(n) asn → ∞. A natural Bayesian approach to recovering θ would be to induce sparsity
through a ‘spike and slab’ prior (Mitchell and Beauchamp, 1988), which consists of a mix-
ture of a Dirac measure at zero and a (heavy-tailed) continuous distribution. Johnstone
and Silverman (2004) analyzed an empirical Bayes version of this approach, where the
mixing weight is obtained by marginal maximum likelihood. In the frequentist setup that
the data are generated according to a �xed mean vector, they showed that the empirical
Bayes coordinatewise posterior median attains the minimax rate, in `q norm, q ∈ (0,2], for
mean vectors that are either nearly black or of bounded `p norm, p ∈ (0,2]. Castillo and
Van der Vaart (2012) analyzed a fully Bayesian version, where the proportion of nonzero
coe�cients is modelled by a prior distribution. They identi�ed combinations of priors on
this proportion and on the nonzero coe�cients (the ‘slab’) that yield posterior distribu-
tions concentrating around the underlying mean vector at the minimax rate in `q norm,
q ∈ (0,2], for mean vectors that are nearly black, and in `q norm, q ∈ (0,2) for mean
vectors of bounded weak `p norm, p ∈ (0,q). Other work on empirical Bayes approaches
to the two-group model includes (Efron, 2008; Jiang and Zhang, 2009; Yuan and Lin, 2005).

As a full Bayesian approach with a mixture of a Dirac and a continuous component
may require exploration of a model space of size 2n , implementation on large datasets
is currently impractical, although Castillo and Van der Vaart (2012) present an algorithm
which can compute several aspects of the posterior in polynomial time, provided su�-
cient memory can be allocated. Several authors, including (Armagan et al., 2013; Gri�n
and Brown, 2010), have proposed one-component priors, which model the spike at zero
by a peak in the prior density at this point. For most of these proposals, theoretical justi-
�cation in terms of minimax risk rates or posterior contraction rates is lacking. The Lasso
estimator (Tibshirani, 1996), which arises as the MAP estimator after placing a Laplace
prior with common parameter on each θi , is an exception. It attains close to the mini-
max risk rate in `q , q ∈ [1,2] (Bickel et al. (2009)). It has however been recently shown
that the corresponding full posterior distribution contracts at a much slower rate than the
mode (Castillo et al., 2015). This is undesirable, because this implies that the posterior
distribution cannot provide an adequate measure of uncertainty in the estimate.

In general one would use a posterior distribution both for recovery and for uncertainty
quanti�cation. For the �rst, a measure of centre, such as a median or mode, su�ces. For
the second, one typically employs a credible set, which is de�ned as a central set of pre-
scribed posterior probability. For realistic uncertainty quanti�cation it is necessary that
the posterior contracts to its center at the same rate as the posterior median or mode
approaches the true parameter.
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In this paper we study the posterior distribution resulting from the horseshoe prior,
which is a one-component prior, introduced in (Carvalho et al., 2009, 2010) and expanded
upon in (Polson and Scott, 2012a,b; Scott, 2011). It combines a pole at zero with Cauchy-
like tails. The corresponding estimator does not face the computational issues of the
point mass mixture models. Carvalho et al. (2010) already showed good behaviour of
the horseshoe estimator in terms of Kullback-Leibler risk when the true mean is zero.
Datta and Ghosh (2013) proved some optimality properties of a multiple testing rule in-
duced by the horseshoe estimator. In this paper, we prove that the horseshoe estimator
achieves the minimax quadratic risk, possibly up to a multiplicative constant. We fur-
thermore prove that the posterior variance is of the order of the minimax risk, and thus
the posterior contracts at the minimax rate around the underlying mean vector. These
results are proven under the assumption that the number pn of nonzero parameters is
known. However, we also provide conditions under which the horseshoe estimator com-
bined with an empirical Bayes estimator still attains the minimax rate, when pn is un-
known.

This paper is organized as follows. In Section 1.2, the horseshoe prior is described and
a summary of simulation results is given. The main results, that the horseshoe estima-
tor attains the minimax squared error risk (up to a multiplicative constant) and that the
posterior distribution contracts around the truth at the minimax rate, are stated in Sec-
tion 1.3. Conditions on an empirical Bayes estimator of the key parameter τ such that the
minimax `2 risk will still be obtained are given in Section 1.4. The behaviour of such an
empirical Bayes estimate is compared to a full Bayesian version in a numerical study in
Section 1.5. Section 1.6 contains some concluding remarks. The proofs of the main results
and supporting lemmas are in the appendix.

1.1.1 Notation

We write An � Bn to denote 0 < limn→∞ inf An
Bn
≤ limn→∞ sup An

Bn
< ∞ and An . Bn to

denote that there exists a positive constant c independent of n such that An ≤ cBn . A ∨ B
is the maximum of A and B, and A ∧ B the minimum of A and B. The standard normal
density and cumulative distribution are denoted by ϕ and Φ and we set Φc = 1 − Φ. The
norm ‖ · ‖ will be the `2 norm and the class of nearly black vectors will be denoted by
`0[pn] := {θ ∈ Rn : #(1 ≤ i ≤ n : θi , 0) ≤ pn}.

1.2 The horseshoe prior

In this section, we give an overview of some known properties of the horseshoe estima-
tor which will be relevant to the remainder of our discussion. The horseshoe prior for a
parameter θ modelling an observation Y ∼ N (θ ,σ 2In ) is de�ned hierarchically (Carvalho
et al., 2010):

θi | λi ,τ ∼ N (0,σ 2τ 2λ2
i ), λi ∼ C

+ (0,1),

for i = 1, . . . ,n, where C+ (0,1) is a standard half-Cauchy distribution. The parameter τ is
assumed to be �xed in this paper, rendering the θi independent a priori. The corresponding
density pτ increases logarithmically around zero, while its tails decay quadratically. The
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Figure 1.1: The e�ect of decreasing τ on the priors on κ (left) and θ (middle) and the
posterior mean Tτ (y) (right). The solid line corresponds to τ = 1, the dashed line to
τ = 0.05. Decreasing τ results in a higher prior probability of shrinking the observations
towards zero.

posterior density of θi given λi and τ is normal with mean (1 − κi )yi , where κi = 1
1+τ 2λ2

i
.

Hence, by Fubini’s theorem:

E[θi | yi ,τ ] = (1 − E[κi | yi ,τ ])yi .

The posterior mean E[θ | y,τ ] will be referred to as the horseshoe estimator and denoted
by Tτ (y). The horseshoe prior takes its name from the prior on κi , which is given by:

pτ (κi ) =
τ

π

1
1 − (1 − τ 2)κi

(1 − κi )−
1
2κ
− 1

2
i .

If τ = 1, this reduces to a Be( 1
2 ,

1
2 ) distribution, which looks like a horseshoe. As illustrated

in Figure 1.1, decreasing τ skews the prior distribution on κi towards one, corresponding
to more mass near zero in the prior on θi and a stronger shrinkage e�ect in Tτ (y).

The posterior mean can be expressed as:

Tτ (yi ) = yi


1 −

2Φ1

(
1
2 ,1,

5
2 ; y2

i
2σ 2 ,1 − 1

τ 2

)
3Φ1

(
1
2 ,1,

3
2 ; y2

i
2σ 2 ,1 − 1

τ 2

)

 = yi

∫ 1
0 z

1
2 1
τ 2+(1−τ 2 )z e

y2
i

2σ2 zdz∫ 1
0 z−

1
2 1
τ 2+(1−τ 2 )z e

y2
i

2σ2 zdz

, (1.1)

where Φ1 (α ,β ,γ ;x ,y) denotes the degenerate hypergeometric function of two variables
(Gradshteyn and Ryzhik, 1965).

An unanswered question so far has been how τ should be chosen. Intuitively, τ should
be small if the mean vector is very sparse, as the horseshoe prior will then place more of its
mass near zero. By approximating the posterior distribution of τ 2 givenκ = (κ1, . . . ,κn ) in
case a prior on τ is used, Carvalho et al. (2010) show that if most observations are shrunk
near zero, τ will be very small with high probability. They suggest a half-Cauchy prior
on τ . Datta and Ghosh (2013) implemented this prior on τ and their plots of posterior
draws for τ at various sparsity levels indicate the expected relationship between τ and the
sparsity level: the posterior distribution of τ tends to concentrate around smaller values
when the underlying mean vector is sparser. As will be discussed further in the next
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section, the value τ = pn
n (up to a log factor) is optimal in terms of mean square error and

posterior contraction rates.
In case τ is estimated empirically, as will be considered in Section 1.4, the horseshoe

estimator can be computed by plugging this estimate into expression (1.1), thereby avoid-
ing the use of MCMC. Other aspects of the posterior, such as the posterior variance, can be
computed using such a plug-in procedure as well. Polson and Scott (2012a) and Polson and
Scott (2012b) consider computation of the horseshoe estimator based on the representa-
tion in terms of degenerate hypergeometric functions, as these can be e�ciently computed
using converging series of con�uent hypergeometric functions. They report unproblem-
atic computations for τ 2 between 1

1000 and 1000. A second option is to apply a quadrature
routine to the integral representation in (1.1). As the continuity and symmetry ofTτ (y) in
y can be taken advantage of when computing the horseshoe estimator for a large number
of observations, the complexity of these computations mostly depends on the value of τ .
Both approaches will be slower for smaller values of τ . Hence, if we use the (estimated)
sparsity level pn

n (up to a log factor) for τ , the computation of the horseshoe estimator will
be slower if there are fewer nonzero parameters. As noted by Scott (2010), problems arise
in Gibbs sampling precisely when τ is small as well. Hence care needs to be taken with
any computational approach if pn

n is suspected to be very close to zero.
The performance of the horseshoe prior, with additional priors on τ and σ 2, in vari-

ous simulation studies has been very promising. Carvalho et al. (2010) simulated sparse
data where the nonzero components were drawn from a Student-t density and found that
the horseshoe estimator systematically beat the MLE, the double-exponential (DE) and
normal-exponential-gamma (NEG) priors, and the empirical Bayes model due to John-
stone and Silverman (2004) in terms of square error loss. Only when the signal was neither
sparse nor heavy-tailed did the MLE, DE and NEG priors have an edge over the horseshoe
estimator. In similar experiments in (Carvalho et al., 2009; Polson and Scott, 2012a) the
horseshoe prior outperformed the DE prior, while behaving similarly to a heavy-tailed
discrete mixture. In a wavelet-denoising experiment under several noise levels and loss
functions, the horseshoe estimator compared favorably to the discrete wavelet transform
and the empirical Bayes model (Polson and Scott, 2010). Bhattacharya et al. (2012) applied
several shrinkage priors to data with the underlying mean vector consisting of zeroes and
�xed nonzero values and found the posterior median of the horseshoe prior performing
better in terms of squared error than the Bayesian Lasso (BL), the Lasso, the posterior
median of a point mass mixture prior as in (Castillo and Van der Vaart, 2012) and the
empirical Bayes model proposed by Johnstone and Silverman (2004), and comparable to
their proposed Dirichlet-Laplace (DL) prior with parameter 1

n . Results in (Armagan et al.,
2013) are similar. In a second simulation setting, Bhattacharya et al. (2012) generated data
of length n = 1000, with the �rst ten means equal to 10, the next 90 equal to a number
A ∈ {2, . . . ,7} and the remainder equal to zero. In this simulation, the horseshoe prior beat
the BL (except whenA = 2) and the DL prior with parameter 1

n (except whenA = 7), while
performing similarly to the DL prior with parameter 1

2 . It is worthy of note that Koenker
(2014) generated data according to the same scheme and applied the empirical Bayes pro-
cedures due to Martin and Walker (2014) (EBMW) and Koenker and Mizera (2014) (EBKM)
to it. The MSE of EBMW was lower than that of the horseshoe prior forA ∈ {5,6,7}, while
that of EBKM was much lower in all cases.
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1.3 Mean square error and bounds on the posterior vari-
ance

In this section, we study the mean square error of the horseshoe estimator, and the spread
of the posterior distribution, under the assumption that the number of nonzero parameters
pn is known. Theorem 1.1 provides an upper bound on the mean square error, and shows
that for a range of choices of the global parameter τ , the horseshoe estimator attains the
minimax `2 risk, possibly up to a multiplicative constant. Theorem 1.3 states upper bounds
on the rate of contraction of the posterior distribution around the underlying mean vector
and around the horseshoe estimator, again for a range of values of τ . These upper bounds
are equal, up to a multiplicative constant, to the minimax risk. The contraction rate around
the truth is sharp, but this may not be the case for the rate of contraction around the
horseshoe estimator. Theorems 1.4 and 1.5 provide more insight into the spread of the
posterior distribution for various values of τ and indicate that τ = pn

n

√
log(n/pn ) is a good

choice.

Theorem 1.1. Suppose Y ∼ N (θ0,σ
2In ). Then the estimator Tτ (y) satis�es

sup
θ0∈`0[pn]

Eθ0 ‖Tτ (Y ) − θ0‖
2 . pn log 1

τ
+ (n − pn )τ

√
log 1

τ
(1.2)

for τ → 0, as n,pn → ∞ and pn = o(n).

By the minimax risk result in (Donoho et al., 1992), we also have a lower bound:

sup
θ0∈`0[pn]

Eθ0 ‖Tτ (Y ) − θ0‖
2 ≥ 2σ 2pn log n

pn
(1 + o(1)),

as n,pn → ∞ and pn = o(n). The choice τ = (
pn
n )α , for α ≥ 1, leads to an upper bound

(1.2) of order pn log(n/pn ), with (as can be seen from the proof) a multiplicative constant
of at most 4ασ 2. Thus, for this choice of τ , we have:

sup
θ0∈`0[pn]

Eθ0 ‖Tτ (Y ) − θ0‖
2 � pn log n

pn
.

The horseshoe estimator therefore performs well as a point estimator, as it attains the
minimax risk (possibly up to a multiplicative constant of at most 2 for α = 1). This may
seem surprising, as the prior does not include a point mass at zero to account for the
assumed sparsity in the underlying mean vector. Theorem 1.1 shows that the pole at zero
of the horseshoe prior mimics the point mass well enough, while the heavy tails ensure
that large observations are not shrunk too much.

An upper bound on the rate of contraction of the posterior can be obtained through
an upper bound on the posterior variance. The posterior variance can be expressed as:

var(θi | yi ) =
σ 2

yi
Tτ (yi ) − (Tτ (yi ) − yi )

2 + y2
i

8Φ1

(
1
2 ,1,

7
2 ; y2

i
2σ 2 ,1 − 1

τ 2

)
15Φ1

(
1
2 ,1,

3
2 ; y2

i
2σ 2 ,1 − 1

τ 2

) .
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Details on the computation can be found in Lemma 1.10. Using a similar approach as when
bounding the `2 risk, we can �nd an upper bound on the expected value of the posterior
variance.

Theorem 1.2. Suppose Y ∼ N (θ0,σ
2In ). Then the variance of the posterior distribution

corresponding to the horseshoe prior satis�es

sup
θ0∈`0[pn]

Eθ0

n∑
i=1

var(θ0i | Yi ) . pn log 1
τ

+ (n − pn )τ

√
log 1

τ
(1.3)

for τ → 0, as n,pn → ∞ and pn = o(n).

Again, the choice τ = (
pn
n )α , for α ≥ 1 leads to an upper bound (1.3) of the order of

the minimax risk. This result indicates that the posterior contracts fast enough to be able
to provide a measure of uncertainty of adequate size around the point estimate. Theorems
1.1 and 1.2 combined allow us to �nd an upper bound on the rate of contraction of the full
posterior distribution, both around the underlying mean vector and around the horseshoe
estimator.

Theorem 1.3. Under the assumptions of Theorem 1.1, with τ = (
pn
n )α , α ≥ 1:

sup
θ0∈`0[pn]

Eθ0Πτ

(
θ : ‖θ − θ0‖

2 > Mnpn log n

pn

����� Y
)
→ 0, (1.4)

and

sup
θ0∈`0[pn]

Eθ0Πτ

(
θ : ‖θ −Tτ (Y )‖2 > Mnpn log n

pn

����� Y
)
→ 0, (1.5)

for everyMn → ∞ as n → ∞.

Proof. Combine Markov’s inequality with the results of Theorems 1.1 and 1.2 for (1.4), and
only with the result of Theorem 1.2 for (1.5). �

A remarkable aspect of the preceding Theorems is that many choices of τ , such as
τ = (

pn
n )α for any α ≥ 1, lead to an upper bound of the order pn log(n/pn ) on the worst

case `2 risk and posterior contraction rate. The upper bound on the rate of contraction in
(1.4) is sharp, as the posterior cannot contract faster than the minimax rate around the true
mean vector (Ghosal et al., 2000). However, this is not necessarily the case for the upper
bound in (1.5), and for τ = (

pn
n )α with α > 1, the posterior spread may be of smaller order

than the rate at which the horseshoe estimator approaches the underlying mean vector.
Theorems 1.4 and 1.5 provide more insight into the e�ect of choosing di�erent values of
τ on the posterior spread and mean square error.

Theorem 1.4. Suppose Y ∼ N (θ0,σ
2In ), θ0 ∈ `0[pn]. Then the variance of the posterior

distribution corresponding to the horseshoe prior satis�es

inf
θ0∈`0[pn]

Eθ0

n∑
i=1

var(θ0i | Yi ) & (n − pn )τ

√
log 1

τ
(1.6)

for τ → 0 and pn = o(n), as n → ∞. This lower bound is sharp for vectors θ0,n with pn entries
equal to an and the remaining entries equal to zero, if an is such that |an | . 1/

√
log(1/τ ).
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Theorem 1.5. SupposeY ∼ N (θ0,n,σ
2In ) and θ0,n ∈ `0[pn] is such thatpn entries are equal

to γ
√

2σ 2 log(1/τ ), γ ∈ (0,1), and all remaining entries are equal to zero. Then:

Eθ0,n ‖Tτ (Y ) − θ0,n ‖
2 � pn log 1

τ
+ (n − pn )τ

√
log 1

τ
, (1.7)

and

Eθ0,n

n∑
i=1

var(θ0,ni | Yi ) � pnτ
(1−γ )2

(
log 1

τ

)γ − 1
2 + (n − pn )τ

√
log 1

τ
, (1.8)

for τ → 0 and pn = o(n), as n → ∞.

Consider τ = (
pn
n )α . Three cases can be discerned:

(i) 0 < α < 1. Lower bound (1.6) may exceed the minimax rate, implying suboptimal
spread of the posterior distribution in the squared `2 sense.

(ii) α = 1. Bounds (1.3) and (1.6) di�er by a factor
√

log(n/pn ), as do (1.7) and (1.8). The
gap can be closed by choosing τ = pn

n

√
log n

pn
.

(iii) α > 1. Bound (1.6) is not very informative, but Theorem 1.5 exhibits a sequence
θ0,n ∈ `0[pn] for which there is a mismatch between the order of the mean square er-
ror and the posterior variance. Bounds (1.7) and (1.8) are of the orders pn (log(1/τ ) +
τ 1−1/α√log(1/τ )) and pn (τ

(1−γ )2 (log(1/τ ))γ −1/2 + τ 1−1/α√log(1/τ )), respectively.
Hence up to logarithmic factors the total posterior variance (1.8) is a factor
τ (1−1/α )∧(1−γ )2 smaller than the square distance of the center of the posterior to the
truth (1.7). For pn ≤ nc for some c > 0, this factor behaves as a power of n.

These observations suggest that τ = pn
n

√
log(n/pn ) is a good choice, because then

(1.2), (1.3), (1.6), (1.7), (1.8) are all of the order pn log(n/pn ), suggesting that the posterior
contracts at the minimax rate around both the truth and the horseshoe estimator.

1.4 Empirical Bayes estimation of τ

A natural follow-up question is how to choose τ in practice, when pn is unknown. As
discussed in Section 1.2, the full Bayesian approach suggested by Carvalho et al. (2010)
performs well in simulations. The analysis of such a hierarchical prior would however
require di�erent tools than the ones we have used so far. An empirical Bayes estimate of
τ would be a natural solution, and allows us in practice to use one of the representations
in (1.1) for computations, instead of an MCMC-type algorithm.

By adapting the approach in Paragraph 6.2 in (Johnstone and Silverman, 2004), we can
�nd conditions under which the horseshoe estimator with an empirical Bayes estimate of τ
will still attain the minimax `2 risk. Based on the consideration of Section 1.3, we proceed
with the choices τ = pn

n

√
log(n/pn ) and τ =

pn
n . The former is optimal in the sense

that the posterior spread is of the order of the minimax risk, but the latter has the simple
interpretation of being the proportion of nonzero means, and the di�erence between the
two is only the square root of a log factor.
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Theorem 1.6. Suppose we observe an n-dimensional vector Y ∼ N (θ0,σ
2In ) and we use

Tτ̂ (y) as our estimator of θ0. If τ̂ ∈ (0,1) satis�es the following two conditions for τ = pn
n or

τ =
pn
n

√
log(n/pn ):

1. Pθ0 (̂τ > cτ ) .
pn
n for a constant c ≥ 1 such that τ ≤ 1

c ;

2. There exists a function д : N × N→ (0,1) such that τ̂ ≥ д(n,pn ) with probability one
and − log(д(n,pn ))Pθ0 (̂τ ≤ τ ) . log(n/pn ),

then:
sup

θ0∈`0[pn]
Eθ0 ‖Tτ̂ (Y ) − θ0‖

2 � pn log n

pn
(1.9)

as n,pn → ∞ and pn = o(n). If only the �rst condition can be veri�ed for an estimator τ̂ ,
then sup{ 1

n , τ̂ } will have an `2 risk of at most order pn logn.

The �rst condition requires that τ̂ does not overestimate the fraction pn
n of nonzero

means (up to a log factor) too much or with a too large probability. If pn ≥ 1, as we
have assumed, then it is satis�ed already by τ̂ = 1

n (and c = 1). According to the last
assertion of the theorem, this ‘universal threshold’ yields the rate pn logn (possibly up
to a multiplicative constant). This is equal to the rate of the Lasso estimator with the
usual choice of λ = 2

√
2σ 2 logn (Bickel et al., 2009). However, in the framework where

pn → ∞, the estimator τ̂ = 1
n will certainly underestimate the sparsity level. A more

natural estimator of pn
n is:

τ̂ =
#{|yi | ≥

√
c1σ 2 logn,i = 1, . . . ,n}

c2n
, (1.10)

where c1 and c2 are positive constants. By Lemma 1.13, this estimator satis�es the �rst
condition for τ = pn

n and τ = pn
n

√
log(n/pn ) if c1 > 2,c2 > 1 and pn → ∞ or c1 = 2,c2 > 1

and pn & logn. Thus max{̂τ , 1
n } will also lead to a rate of at most order pn logn under

these conditions. Its behaviour will be explored further in Section 1.5.
The rate can be improved to pn log(n/pn ) if the second condition is met as well, which

ensures that the sparsity level is not underestimated too much or by a too large probability.
As we are not aware of any estimators meeting this condition for all θ0, this condition is
currently mostly of theoretical interest. If the true mean vector is very sparse, in the sense
that there are relatively few nonzero means or the nonzero means are close to zero, there
is not much to be gained in terms of rates by meeting this condition. The extra occurrence
of pn relative to the rate pn logn is of interest only if pn is relatively large. For instance, if
pn � nα for α ∈ (0,1), then pn log(n/pn ) = (1 − α )pn logn, which suggests a decrease of
the proportionality constant in (1.9), particularly if α is close to one. Furthermore, when
pn is large, the constant in (1.9) may be sensitive to the �ne properties of τ̂ , as it depends on
д(n,pn ) (as can be seen in the proof). If τ̂ seriously underestimates the sparsity level, the
corresponding value of д(n,pn ) from the second condition may be so small that the upper
bound on the multiplicative constant before (1.9) becomes very large. Hence in this case,
τ̂ is required to be close to the proportion pn

n (up to a log factor) with large probability in
order to get an optimal rate.
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Datta and Ghosh (2013) warned against the use of an empirical Bayes estimate of τ for
the horseshoe prior, because the estimate might collapse to zero. Their references for this
statement, Scott and Berger (2010) and Bogdan et al. (2008), indicate that they are thinking
of a marginal maximum likelihood estimate of τ . However, an empirical Bayes estimate
of τ does not need to be based on this principle. Furthermore, an estimator that satis�es
the second condition from Theorem 1.6 or that is truncated from below by 1

n , would not
be susceptible to this potential problem.

1.5 Simulation study

A simulation study provides more insight into the behaviour of the horseshoe estimator,
both when using an empirical Bayes procedure with estimator (1.10) and when using the
fully Bayesian procedure proposed by Carvalho et al. (2010) with a half-Cauchy prior on
τ . For each data point, 100 replicates of an n-dimensional vector sampled from aN (θ0, In )
distribution were created, whereθ0 had either 20, 40 or 200 (5%, 10% or 50%) entries equal to
an integerA ranging from 1 to 10, and all the other entries equal to zero. The full Bayesian
version was implemented using the code provided in (Scott, 2010), and the coordinatewise
posterior mean was used as the estimator of θ0. For the empirical Bayes procedure, the
estimator (1.10) was used with c1 = 2 and c2 = 1. Performance was measured by squared
error loss, which was averaged across replicates to create Figure 1.2.

In all settings, both estimators experience a peak in the `2 loss for values of A close to
the ‘universal threshold’ of

√
2 log 400 ≈ 3.5. This is not unexpected, as in the terminol-

ogy of Johnstone and Silverman (2004), the horseshoe estimator is a shrinkage rule, and
while it is not a thresholding rule in their sense, it does have the bounded shrinkage prop-
erty which leads to thresholding-like behaviour. The bounded shrinkage property can be
derived from Lemma 1.9, which yields the following inequality as τ approaches zero:

|Tτ (y) − y | ≤

√
2σ 2 log 1

τ
.

With τ = 1
n , this leads to the ‘universal threshold’ of

√
2σ 2 logn, or with τ = (

pn
n )α , a

‘threshold’ at
√

2ασ 2 log(n/pn ). Based on this property and the proofs of the main results,
we can divide the underlying parameters into three cases:

(i) Those that are exactly or close to zero, where the observations are shrunk close to
zero;

(ii) Those that are larger than the threshold, where the horseshoe estimator essentially
behaves like the identity;

(iii) Those that are close to the ‘threshold’, where the horseshoe estimator is most likely
to shrink the observations too much.

The horseshoe estimator performs well in cases (i) and (ii) due to its pole at zero and its
heavy tails respectively. The hardest parameters to recover from the noise are those that
are close to the threshold, and these are the ones that a�ect the estimation risk the most.
This phenomenon explains the peaks in the graphs of Figure 1.2 around A = 3.5.
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Figure 1.2: Average squared error loss over 100 replicates with underlying mean vectors
of length n = 400 if the nonzero coe�cients are taken equal to A, in case 5% (Figure (a)),
10% (Figure (b)) or 50% (Figure (c)) of the means are equal to a nonzero value A. The solid
line corresponds to empirical Bayes with (1.10), c1 = 2,c2 = 1, the dashed line to full Bayes
with a half-Cauchy prior on τ . Figure (d) displays a histogram of all Gibbs samples of τ
(after the burn-in) of all replicates in the setting τ ∼ C+ (0,1), A = 10, pn = 200.

The full Bayes implementation with a Cauchy prior on τ attains a lower `2 loss around
the universal threshold than the empirical Bayes procedure. This is because estimator
(1.10) counts the number of observations that are above the universal threshold. When
all the nonzero means are close to this threshold, τ̂ may ‘miss’ some of them, thereby
underestimating the sparsity level pn

n and thus leading to overshrinkage.
For values of A well past the universal threshold, the empirical Bayes estimator does

better than the full Bayes version. For such large values of A, the estimator (1.10) will be
equal to the true sparsity level with large probability and hence its good performance is
not unexpected. However, an interesting question is why the full Bayes estimator does
not do as well as the empirical Bayes estimator, especially because the nonzero means
are so far removed from zero that the problem is ‘easy’. This could be due to the choice
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of a half-Cauchy prior for τ : it places no restriction on the possible values of τ and has
such heavy tails that values far exceeding the sparsity level pn

n are possible. This would
lead to undershrinkage of the observations corresponding to a zero mean, which would
be re�ected in the `2 loss. Figure 1.2(d) shows a histogram of all Gibbs samples of τ in
the setting where 50% of the means are set equal to 10. The range of these values is (3.1,
7.3), which is very far away from pn

n =
1
2 . This indicates that a full Bayesian version of

the horseshoe prior could bene�t from a di�erent choice of prior on τ than a half-Cauchy
one, for example one that is restricted to [0,1].

1.6 Concluding remarks

The choice of the global shrinkage parameter τ is critical towards ensuring the right
amount of shrinkage of the observations to recover the underlying mean vector. The value
of τ = pn

n

√
log(n/pn ) was found to be optimal. Theorem 1.6 indicates that quite a wide

range of estimators for τ will work well, especially in cases where the underlying mean
vector is sparse. Of course, it should not come as a surprise that an estimator designed to
recover sparse vectors will work especially well if the truth is indeed sparse. An interest-
ing extension to this work would be to investigate whether the posterior concentration
properties of the horseshoe prior still remain when a hyperprior is placed on τ . The result
that τ = pn

n (up to a log factor) yields optimal rates, together with the simulation results,
suggests that in a fully Bayesian approach, a prior on τ which is restricted to [0,1] may
perform better than the suggested half-Cauchy prior.

The simulation results also indicate that mean vectors with the nonzero means close to
the universal threshold are the hardest to recover. In future simulations involving shrink-
age rules, it would therefore be interesting to study the challenging case where all the
nonzero parameters are at this threshold. The performance of the empirical Bayes esti-
mator (1.10) leaves something to be desired around the threshold. In additional numerical
experiments (not shown), we tried two other estimators of τ . The �rst was the ‘oracle
estimator’ τ̂ = pn

n . For values of the nonzero means well past the ‘threshold’, the be-
haviour of this estimator was very similar to that of (1.10). However, before the threshold,
the squared error loss of the empirical procedure with the oracle estimator was between
that of the full Bayes estimator and empirical Bayes with estimator (1.10). The second
estimator was the mean of the samples of τ from the full Bayes estimator. The resulting
squared error loss was remarkably close to that of the full Bayes estimator, for all values
of the nonzero means. Neither of these two estimators is of much practical use. However,
their range of behaviours suggests room for improvement over the estimator (1.10), and it
would be worthwhile to study more re�ned estimators for τ .

An interesting question is what aspects of the horseshoe prior are truly essential to-
wards optimal posterior contraction properties. Our proofs do not elucidate whether the
pole at zero of the horseshoe prior is required, or if a prior with heavy tails, and in a sense
‘su�cient’ mass at zero would work as well. The failure of the Lasso to concentrate around
the true mean vector at the minimax rate does indicate that heavy tails in itself may not
be su�cient, and adding mass at zero solves this problem (Castillo et al., 2015; Castillo and
Van der Vaart, 2012). It is possible that the pole at zero is inessential, in particular if the
global tuning parameter is chosen carefully, for instance by empirical Bayes. If the tuning
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parameter is chosen by a full Bayes method, the peak may be more essential, depending
on its prior.

The horseshoe estimator has the property that its computational complexity depends
on the sparsity level rather than the number of observations. Although there is no point
mass at zero to induce sparsity, it still yields good reconstruction in `2, and a posterior
distribution that contracts at an informative rate. None of the estimates will however be
exactly zero. Variable selection can be performed by applying some sort of thresholding
rule, such as the one suggested in (Carvalho et al., 2010) and analyzed by Datta and Ghosh
(2013). The performance of this thresholding rule in simulations in the two works cited
has been encouraging.
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1.7 Proofs

This section begins with Lemma 1.7, providing bounds on some of the degenerate hy-
pergeometric functions appearing in the posterior mean and posterior variance. This is
followed by two lemmas that are needed for the proofs of Theorems 1.1 and 1.2: Lemma
1.8 provides two upper bounds on the horseshoe estimator and Lemma 1.9 gives a bound
on the absolute value of the di�erence between the horseshoe estimator and an obser-
vation. We then proceed to the proof of Theorem 1.1, after which Lemma 1.10 provides
upper bounds on the posterior variance. These upper bounds are then used in the proof
of Theorem 1.2. The proof of Theorem 1.4 is given next, followed by Lemmas 1.11 and
1.12 supporting the proof of Theorem 1.5. This section concludes with the proofs of The-
orem 1.6 and Lemma 1.13, which both concern the empirical Bayes procedure discussed
in Section 1.4.
Lemma 1.7. De�ne

Ik (y) :=
∫ 1

0
zk

1
τ 2 + (1 − τ 2)z

e
y2

2σ2 zdz.

Then, for a > 1:

I 3
2
(y) ≥

1
5τ

3 + σ 2 τ

y2

(
e

y2

2aσ2 − eτ
2 y2

2σ2

)
+ σ 2
√
ay2

(
e
y2

2σ2 − e
y2

2aσ2

)
, (1.11)

I 1
2
(y) ≥

1
3τ + σ 2

y2

(
e
y2

2σ2 − eτ
2 y2

2σ2

)
, (1.12)

I 1
2
(y) ≤

2
3e

τ 2 y2

2σ2 τ + 2e
y2

2aσ2

(
1
√
a
− τ

)
+ 2
√
aσ 2

y2

(
e
y2

2σ2 − e
y2

2aσ2

)
, (1.13)

I− 1
2
(y) ≥

1
τ

+ eτ
2 y2

2σ2

(
1
τ
−

1
√
τ

)
+ a
√
aσ 2

y2

(
e

y2

2aσ2 − eτ
y2

2σ2

)
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+ σ 2

y2

(
e
y2

2σ2 − e
y2

2aσ2

)
, (1.14)

I− 1
2
(y) ≤

2eτ
2 y2

2σ2

τ
+ 2eτ

y2

2σ2

(
1
τ
−

1
√
τ

)
+ 2e

y2

2aσ2

(
1
√
τ
−
√
a

)
+ 2a
√
aσ 2

y2

(
e
y2

2σ2 − e
y2

2aσ2

)
, (1.15)

where (1.11) and (1.13) hold for τ < 1/
√
a, (1.12) holds for τ < 1, and (1.14) and (1.15) hold

for τ < 1/a.

Proof. Write ξ = y2/(2σ 2). We �rst note that for z ≥ τ 2, we have z ≤ τ 2 + (1 − τ 2)z ≤ 2z,
while for z ≤ τ 2, we have τ 2 ≤ τ 2 + (1 − τ 2)z ≤ 2τ 2. Hence, we can bound Ik from above
by:

Ik (y) ≤
1
τ 2

∫ τ 2

0
zke ξzdz +

∫ 1

τ 2
zk−1e ξzdz,

and from below by half of that quantity. We bound the integral over [0,τ 2] in all cases
by bounding the factor e ξz by 1 or eτ 2ξ . For the integral over [τ 2,1], we �rst substitute
u = ξz, yielding:

∫ 1
τ 2 z

k−1e ξzdz = ξ −k
∫ ξ
τ 2ξ u

k−1eudu. For (1.11) and (1.13), we split the
domain of integration into [τ 2ξ ,

ξ
a ] and [ ξa ,ξ ]. For I 3

2
, we bound by:

I 3
2
(y) ≥

1
2




1
τ 2

∫ τ 2

0
z

3
2dz + ξ −

3
2 (τ 2ξ )

1
2

∫ ξ
a

τ 2ξ
eudu + ξ −

3
2

(
ξ

a

) 1
2
∫ ξ

ξ
a

eudu


 ,

yielding (1.11). Similarly, for I 1
2
:

I 1
2
(y) ≤

1
τ 2 e

τ 2ξ
∫ τ 2

0
z

1
2dz + ξ −

1
2 e

ξ
a

∫ ξ
a

τ 2ξ
u−

1
2du + ξ −

1
2

(
ξ

a

)− 1
2
∫ ξ

ξ
a

eudu,

resulting in (1.13). The bound (1.12) is obtained similarly, but without splitting up [τ 2ξ ,ξ ]
further, by the inequality

I 1
2
(y) ≥

1
2τ 2

∫ τ 2

0
z

1
2dz + 1

2ξ
−1

∫ ξ

τ 2ξ
eudu .

For the bounds on I− 1
2
, we split up the domain of integration [τ 2ξ ,ξ ] into [τ 2ξ ,τξ ],[τξ , ξa ]

and [ ξa ,ξ ], and then bound by:

I− 1
2
(y) ≥

1
2




1
τ 2

∫ τ 2

0
z−

1
2dz + ξ

1
2 eτ

2ξ
∫ τξ

τ 2ξ
u−

3
2du + ξ

1
2

(
ξ

a

)− 3
2
∫ ξ

a

τξ
eudu

+ ξ
1
2 ξ −

3
2

∫ ξ

ξ
a

eudu


 ,
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yielding (1.14), and by:

I− 1
2
(y) ≤

1
τ 2 e

τ 2ξ
∫ τ 2

0
z−

1
2dz + ξ

1
2 eτξ

∫ τξ

τ 2ξ
u−

3
2du + ξ

1
2 e

ξ
a

∫ ξ
a

τξ
u−

3
2du

+ ξ
1
2

(
ξ

a

)− 3
2
∫ ξ

ξ
a

eudu,

to �nd (1.15). �

Lemma 1.8. If τ 2 < 1, the posterior mean of the horseshoe prior can be bounded above by:

1. Tτ (y) ≤ ye
y2

2σ2 f (τ ), where f is such that f (τ ) ≤ 2
3τ ;

2.

Tτ (y) ≤ y

2
3e
τ 2 y2

2σ2 τ + 2e
y2

2aσ2 ( 1√
a − τ ) + 2

√
aσ 2

y2 (e
y2

2σ2 − e
y2

2aσ2 )

1
τ + eτ

2 y2
2σ2 ( 1

τ −
1√
τ ) + aσ 2√a

y2 (e
y2

2aσ2 − eτ
y2

2σ2 ) + σ 2

y2 (e
y2

2σ2 − e
y2

2aσ2 )

,

for any a > 1 and τ < 1
a .

Proof. We bound the integrals in the numerator and denominator of expression (1.1). For

the �rst upper bound, we will use the fact that for 0 ≤ z ≤ 1, e
y2

2σ2 z is bounded below by

1 and above by e
y2

2σ2 . The posterior mean can therefore be bounded by:

Tτ (y) ≤ ye
y2

2σ2

∫ 1
0 z

1
2 1
τ 2+(1−τ 2 )zdz∫ 1

0 z−
1
2 1
τ 2+(1−τ 2 )zdz

= ye
y2

2σ2 f (τ ),

where

f (τ ) =
τ

1 − τ 2




√
1 − τ 2

arctan
(√

1−τ 2
τ

) − τ

 .

By Shafer’s inequality for the arctangent (Shafer, 1966):

f (τ )

τ
=

1
1 − τ 2




√
1 − τ 2

arctan
(√

1−τ 2
τ

) − τ

 <

2
3

1
1 + τ ≤

2
3 ,

which completes the proof for the �rst upper bound.

For the second inequality, we note that, in the notation of Lemma 1.7,Tτ (y) = y
I 1

2
(y)

I
− 1

2
(y) .

The bounds in Lemma 1.7 yield the stated inequality. �
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Lemma 1.9. For τ 2 < 1, the absolute value of the di�erence between the horseshoe estimator
and an observation y can be bounded by a function h(y,τ ) such that for any c > 2:

lim
τ ↓0

sup
|y |>
√
cσ 2 log 1

τ

h(y,τ ) = 0.

Proof. We assume y > 0 without loss of generality. By a change of variables of x = 1 − z:

|Tτ (y) − y | = y

∫ 1
0 e−

y2

2σ2 xx (1 − x )− 1
2 1

1−(1−τ 2 )xdx∫ 1
0 e−

y2
2σ2 x (1 − x )− 1

2 1
1−(1−τ 2 )xdx

.

By following the proof of Watson’s lemma provided in Miller (2006), we can �nd bounds
on the numerator and denominator of the above expression. First de�ne д(x ) = (1 −
x )−

1
2 1
1−(1−τ 2 )x and note that by Taylor’s theorem, д(x ) = д(0) + xд′(ξx ), where ξx is be-

tween 0 and x . Let s be any number between 0 and 1. Because д′′(x ) is not negative for
x ∈ [0,1), we have that for x ∈ [0,s], s ∈ (0,1): д′(0) ≤ д′(x ) ≤ д′(s ). The numerator can
then be bounded by:∫ 1

0
e−

y2

2σ2 xxд(x )dx =

∫ s

0
e−

y2

2σ2 xxд(0)dx +
∫ s

0
e−

y2

2σ2 xx2д′(ξx )dx

+
∫ 1

s
e−

y2

2σ2 xxд(x )dx

≤
1
y4h1 (y,σ ,s ) + д′(s )

y6 h2 (y,σ ,s ) + 2e−
sy2

2σ2 h3 (τ ),

where h1 (y,σ ,s ) = 4σ 4 − 2σ 2 (sy2 + 2σ 2)e−
sy2

2σ2 , h2 (y,σ ,s ) = 16σ 6 − 2σ 2 (s2y4 + 4sσ 2y2 +

8σ 4)e−
sy2

2σ2 and h3 (τ ) = arctan(
√

1−τ 2
τ )τ −1 (1 − τ 2)−

3
2 − (1 − τ 2)−1. The denominator can

similarly be bounded by:∫ 1

0
e−

y2

2σ2 xд(x )dx =

∫ s

0
e−

y2

2σ2 xд(0)dx +
∫ s

0
e−

y2

2σ2 xxд′(ξx )dx

+
∫ 1

s
e−

y2

2σ2 xд(x )dx

≥
1
y2h4 (y,σ ,s ) + д′(0)

y4 h5 (y,σ ,s ) + 0,

where h4 (y,σ ,s ) = 2σ 2 − 2σ 2e−
sy2

2σ2 and h5 (y,σ ,s ) = 4σ 4 − 2σ 2e−
sy2

2σ2 (sy2 + 2σ 2). Hence:

|Tτ (y) − y | ≤

1
yh1 (y,σ ,s ) + д′ (s )

y3 h2 (y,σ ,s ) + 2y3e−
sy2

2σ2 h3 (τ )

h4 (y,σ ,s ) + д′ (0)
y2 h5 (y,σ ,s )

.

For any �xed τ , this bound tends to zero asy tends to in�nity. If τ → 0, the term containing
h3 (τ ) could potentially diverge. For s = 2

3 and y =
√
cσ 2 log(1/τ ), where c is a positive
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constant, this term displays the following limiting behaviour as τ → 0:

lim
τ ↓0

y3e−
1

3σ2 y
2
h3 (τ ) = lim

τ ↓0

(
cσ 2 log 1

τ

) 3
2
τ

c
3 −1




arctan
(√

1−τ 2
τ

)
(1 − τ 2)

3
2

−
τ

1 − τ 2




=

0 c > 3
∞ otherwise,

because limτ ↓0 arctan(
√

1−τ 2
τ ) (1 − τ 2)−

3
2 = π

2 , limτ ↓0
τ

1−τ 2 = 0 and the factor
(cσ 2 log(1/τ )) 3

2 τ
c
3 −1 tends to zero as τ ↓ 0 if c

3 − 1 > 0 and in�nity otherwise. The
condition c > 3 is related to the choice of s = 2

3 and can be improved to any constant
strictly greater than 2 by choosing s appropriately close to one. Hence, we �nd that the
absolute value of the di�erence between the posterior mean and an observation can be
bounded by a function h(y,τ ) with the desired property. �

Proof of Theorem 1.1

Proof. Suppose that Y ∼ N (θ ,σ 2In ), θ ∈ `0[pn] and p̃n = #{i : θi , 0}. Note that p̃n ≤ pn .
Assume without loss of generality that for i = 1, . . . ,p̃n , θi , 0, while for i = p̃n + 1, . . . ,n,
θi = 0. We split up the expectation Eθ ‖Tτ (Y ) − θ ‖2 into the two corresponding parts:

n∑
i=1
Eθ i (Tτ (Yi ) − θi )

2 =

p̃n∑
i=1
Eθ i (Tτ (Yi ) − θi )

2 +
n∑

i=p̃n+1
E0Tτ (Yi )

2.

We will now show that these two terms can be bounded by p̃n (1 + log 1
τ ) and

(n − p̃n )
√

log(1/τ )τ respectively, up to multiplicative constants only depending on σ , for
any choice of τ such that τ ∈ (0,1).
Nonzero parameters

Denote ζτ =
√

2σ 2 log(1/τ ). We will show

Eθ i (Tτ (Yi ) − θi )
2 . σ 2 + ζ 2

τ . (1.16)

for all nonzero θi , which can be done by bounding supy |Tτ (y) − y |:

Eθ i (Tτ (Yi ) − θi )
2 = Eθ i ((Tτ (Yi ) − Yi ) + (Yi − θi ))

2

≤ 2Eθ i (Yi − θi )2 + 2Eθ i (Tτ (Yi ) − Yi )2

≤ 2σ 2 + 2

sup
y
|Tτ (y) − y |




2

,

Lemma 1.9 yields the following bound on the di�erence between the observation and the
horseshoe estimator: |Tτ (y)−y | ≤ h(y,τ ), whereh(y,τ ) is such that limτ ↓0 sup |y |>cζτ h(y,τ )
= 0 for any c > 1. Combining this with the inequality |Tτ (y) −y | ≤ |y |, we have as τ → 0:

arg max
y
|Tτ (y) − y | . ζτ , (1.17)
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which implies (1.16), as |Tτ (y) | ≤ |y |:

sup
y
|Tτ (y) − y |




2

. ζ 2
τ .

Parameters equal to zero
We split up the term for the zero means into two parts:

E0Tτ (Y )
2 = E0Tτ (Y )

21 |Y | ≤ζτ + E0Tτ (Y )
21 |Y |>ζτ ,

where ζτ =
√

2σ 2 log(1/τ ). For the �rst term, we have, by the �rst bound in Lemma 1.8:

E0Tτ (Y )
21{ |Y | ≤ζτ } =

∫ ζτ

−ζτ
Tτ (y)

2 1
√

2πσ 2
e−

y2

2σ2 dy

≤

∫ ζτ

−ζτ
y2e

y2

σ2 f (τ )2
1

√
2πσ 2

e−
y2

2σ2 dy =
f (τ )2
√

2πσ 2

∫ ζτ

−ζτ
y2e

y2

2σ2 dy

≤

√
2
π
σ f (τ )2ζτ

1
τ
≤

√
2
π
σ

4
9ζττ . ζττ ,

where the identity d
dyye

y2

2σ2 =
y2

σ 2 e
y2

2σ2 + e
y2

2σ2 was used to bound
∫ ζτ
−ζτ

y2e
y2

2σ2 dy. For the
second term, because |Tτ (y) | ≤ |y | for all y, we have by the identity y2ϕ (y) = ϕ (y) −
d
dy [yϕ (y)], and by Mills’ ratio:

E0Tτ (Y )
21{ |Y |>ζτ } ≤ E0Y

21{ |Y |>ζτ } = 2
∫ ∞

ζτ
σ

σ 2y2ϕ (y)dy

≤ 2σζτϕ
(
ζτ
σ

)
+ 2σ 3

ϕ
( ζτ
σ

)
ζτ

≤ 4σζτϕ
(
ζτ
σ

)
= 4σζτ

1
√

2π
τ ,

where the last inequality holds for ζτ > σ 2. If we apply this inequality and combine this
upper bound with the upper bound on the �rst term, we �nd, for ζτ > σ 2 (corresponding
to τ < e−

σ2
2 ):

E0Tτ (Y )
2 = E0Tτ (Y )

21{ |Y | ≤ζτ } + E0Tτ (Y )
21{ |Y |>ζτ } . ζττ . (1.18)

Hence, for τ < e−
σ2
2 :

n∑
i=pn+1

E0Tτ (Yi )
2 . (n − pn )ζττ . (1.19)

Conclusion
By (1.16) and (1.19), we �nd for τ < e−

σ2
2 :

n∑
i=1
Eθ i (Tτ (Yi ) − θi )

2 . p̃n (1 + ζ 2
τ ) + (n − p̃n )τζτ . �
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Lemma 1.10. The posterior variance when using the horseshoe prior can be expressed as:

var(θ | y) = σ 2

y
Tτ (y) − (Tτ (y) − y)

2 + y2

∫ 1

0
(1 − z)2z−

1
2

1
τ 2 + (1 − τ 2)z

e
y2

2σ2 zdz∫ 1

0
z−

1
2

1
τ 2 + (1 − τ 2)z

e
y2

2σ2 zdz

, (1.20)

and bounded from above by:

1. var(θ | y) ≤ σ 2 + y2;

2. var(θ | y) ≤ ( σ
2

y + y)Tτ (y) −Tτ (y)2.

Proof. As proven in Pericchi and Smith (1992):

var(θ | y) = σ 2 + σ 4 d2

dy2 logm(y) = σ 2 −

(
σ 2m

′(y)

m(y)

)2
+ σ 4m

′′(y)

m(y)
,

where m(y) is the density of the marginal distribution of y. Equality (1.20) can be found
by combining the expressions

m(y) =
1

√
2π 3στ

e−
y2

2σ2

∫ 1

0
z−

1
2

1
1 −

(
1 − 12

τ 2

)
z
e
y2

2σ2 zdz

m′′(y) =
1
y
m′(y) + 1

√
2π 3στ

y2

σ 4 e
−
y2

2σ2

∫ 1

0
z−

1
2 (1 − z)2 1

1 −
(
1 − 1

τ 2

)
z
e
y2

2σ2 zdz

with the equality Tτ (y) = y + σ 2 m′ (y)
m(y) . The �rst upper bound is implied by the property

|Tτ (y) | < |y | and the fact that (1 − z)2 ≤ 1 for z ∈ [0,1]. The second upper bound can be
demonstrated by noting that (1 − z)2 ≤ 1 − z for z ∈ [0,1] and hence:

var(θ | y) ≤ σ 2

y
Tτ (y) − (y −Tτ (y))

2 + y2
(
1 − 1

y
Tτ (y)

)
. �

Proof of Theorem 1.2

Proof. As in the proof of Theorem 1.1 we assume that θi , 0 for i = 1, . . . ,p̃n and θi = 0
for i = p̃n + 1, . . . ,n, where p̃n ≤ pn by assumption. We consider the posterior variances
for the zero and nonzero means separately. Denote ζτ =

√
2σ 2 log(1/τ ).

Nonzero means
By applying the same reasoning as in Lemma 1.9 to the �nal term of var(θ |y) in (1.20),

we can �nd a function h̃(y,t ) such that var(θ |y) ≤ h̃(y,τ ), where h̃(y,τ ) → σ 2 as y → ∞
for any �xed τ . If τ → 0, the function h̃(y,τ ) displays the following limiting behaviour for
any c > 1:

lim
τ ↓0

sup
|y |>cζτ

h̃(y,τ ) = σ 2.
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Hence, as τ → 0: var(θ |y) . σ 2, for any |y | that increases as least as fast as ζτ when τ
decreases. Now suppose |y | ≤ ζτ . Then, by the bound var(θ | y) ≤ σ 2 + y2 from Lemma
1.10, we �nd:

var(θ | y) ≤ σ 2 + ζ 2
τ .

Therefore:
p̃n∑
i=1
Eθ i var(θi | Yi ) . p̃n (1 + ζ 2

τ ). (1.21)

Zero means
By the bound var(θ | y) ≤ σ 2 + y2, we �nd for c ≥ 1:

E0 var(θ | Y )1{ |Y |>cζτ } ≤ 2
∫ ∞

cζτ
(σ 2 + y2)

1
√

2πσ 2
e−

y2

2σ2 dy

= 2σ 2Φc
(
cζτ
σ

)
+ 2

∫ ∞

cζτ
σ

σ 2x2ϕ (x )dx

≤ 4σ 3
ϕ

( cζτ
σ

)
cζτ

+ 2σcζτϕ
(
cζτ
σ

)
.

τ

ζτ
+ ζττ .

For |y | < cζτ , we consider the upper bound var(θ | y) ≤ ( σ
2

y + y)Tτ (y) − Tτ (y)2 from
Lemma 1.10. From this bound, we get var(θ | y) ≤ σ 2

y Tτ (y) + yTτ (y). Hence:

E0 var(θ | Y )1{ |Y | ≤cζτ } ≤ σ 2
∫ cζτ

−cζτ

1
y
Tτ (y)

1
√

2πσ 2
e−

y2

2σ2 dy

+
∫ cζτ

−cζτ
yTτ (y)

1
√

2πσ 2
e−

y2

2σ2 dy. (1.22)

We bound the �rst integral from (1.22) by applying the �rst bound on Tτ (y) from Lemma
1.8:

σ 2
∫ cζτ

−cζτ

1
y
Tτ (y)

1
√

2πσ 2
e−

y2

2σ2 dy ≤ σ 2
∫ cζτ

−cζτ
f (τ )

1
√

2πσ 2
dy

=

√
2σ
π
cζτ f (τ ) . ζττ ,

because f (τ ) ≤ 2
3τ . For the second term in (1.22), we �rst note that the second bound

from Lemma 1.8 can be relaxed to:

Tτ (y) ≤ τy

(
2
3τe

τ 2 y2

2σ2 + 2
√
a
e

y2

2aσ2 + 2
√
aσ 2 1

y2 e
y2

2σ2

)
(1.23)

for any a > 1 and τ < 1
a . By plugging this bound into the second integral of (1.22), we get

three terms, which we will name I1, I2 and I3 respectively. We then �nd, bounding above
by the integral over R instead of [−cζτ ,cζτ ] for I1 and I2:

I1 =
2
3τ

2
∫ cζτ

−cζτ
y2 1
√

2πσ 2
e−(1−τ

2 ) y
2

2σ2 dy ≤
2
3τ

2 σ 2

(1 − τ 2)
3
2
. τ 2.
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I2 =
2
√
a
τ

∫ cζτ

−cζτ
y2 1
√

2πσ 2
e−

a−1
a

y2

2σ2 dy ≤
2aσ 2

(a − 1) 3
2
τ . τ .

I3 = 2
√
aσ 2τ

∫ cζτ

−cζτ

1
√

2πσ 2
dy =

2
√

2acσ
√
π

ζττ . ζττ .

And thus:
n∑

i=p̃n+1
E0 var(θi | Yi ) . (n − p̃n ) (ζτ + τ + 1) τ . (1.24)

Conclusion
By (1.21) and (1.24):

Eθ

n∑
i=1

var(θi | Yi ) . p̃n (1 + ζ 2
τ ) + (n − p̃n ) (ζτ + τ + 1) τ . �

Proof of Theorem 1.4

Proof. By expanding (1 − z)2z− 1
2 = z−

1
2 − 2z 1

2 + z
3
2 , we see that the �nal term in (1.20) is

equal to:

y2 − 2yTτ (y) + y2

∫ 1
0 z

3
2 1
τ 2+(1−τ 2 )z e

y2

2σ2 zdz∫ 1
0 z−

1
2 1
τ 2+(1−τ 2 )z e

y2
2σ2 zdz

.

As Tτ (y)
y is non-negative, we can bound the posterior variance from below by the �nal two

terms in (1.20). By the above equality, this yields the following lower bound:

var(θ | y) ≥ y2
I 3

2
(y)

I− 1
2
(y)
−Tτ (y)

2 = y2



I 3

2
(y)

I− 1
2
(y)
−



I 1

2
(y)

I− 1
2
(y)




2
 ,

where Ik is as in Lemma 1.7. We now use the bounds from Lemma 1.7 with a = 2 and
take ξ equal to c log(1/τ ) for some nonnegative constant c . Then e ξ = 1

τ c and e
ξ
2 = 1

τ
c
2

.
Taking for each bound on Ik , k ∈ { 3

2 ,
1
2 ,−

1
2 }, the term that diverges fastest as τ approaches

zero, we �nd that the lower bound is asymptotically of the order:

2σ 2ξ




1
2
√

2ξ
1
τ c

max
{

2eτξ
τ ,

2
√

2
ξ

1
τ c

} −



√
2
ξ

1
τ c

max{ eτ
2 ξ
τ ,

1
2ξ

1
τ c }




2
 .

For c ≤ 1, this reduces to:
σ 2

2
√

2
e−τξτ 1−c −

4σ 2

ξ
e−2τ 2ξτ 2−2c .

The second term is negligible compared to the �rst. Hence, we will use the term
σ 2

2
√

2e
−τξτ 1−c as our lower bound on var(θ | y) for y = ±

√
2cσ 2 log(1/τ ) =

√
cζτ , where

ζτ =
√

2σ 2 log(1/τ ). To �nd the lower bound on ∑n
i=1 Eθ i var(θi | Yi ), we only need to

consider the parameters equal to zero:
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n∑
i=1
Eθ i var(θi | Yi ) ≥ (n − pn )E0 var(θi | Yi )1{ |Yi | ≤ζτ } . (1.25)

By the substitution x = y2/ζ 2
τ ,dy =

σ
√

log(1/τ )
√

2x dx , we �nd:

E0 var(θi | Yi )1{ |Yi | ≤ζτ } ≥ 2
∫ ζτ

0

σ 2

2
√

2
e−τ

y2

2σ2 τ
1− y

2

ζ 2
τ

1
√

2πσ 2
e−

y2

2σ2 dy

=
σ

4
√
π
τζτ

∫ 1

0

τ τx
√
x
dx ≥

σ

2
√
π
e−

1
e τζτ , (1.26)

where in the last step, we used τ τx ≥ τ τ ≥ e−
1
e for x ∈ [0,1],τ ∈ (0,1]. By plugging this

into (1.25), we �nd that as τ → 0:

n∑
i=1
Eθ i var(θi | Yi ) & (n − pn )τζτ , (1.27)

�nishing the proof for the �rst statement of the theorem.
We now consider θ such that θi = an for i = 1, . . . ,pn , and θi = 0 for i = pn + 1, . . . ,n,

and assume without loss of generality that an > 0. We wish to �nd conditions on an such
that the lower bound (1.27) is sharp (up to a constant factor). Denoting ζτ =

√
2σ 2 log(1/τ ),

as before, it is su�cient if we can �nd an such that Eθ i=an var(θi | Yi ) . τζτ , because in
combination with the bound (1.24), this will yield ∑n

i=1 Eθ i var(θi | Yi ) . nτζτ , which
is of the same order as (1.27), as pn = o(n). Su�cient conditions on an can be found by
adapting the proof for the ‘zero means’ case of Theorem 1.2.

We �rst consider |yi | > ζτ . By the �rst bound of Lemma 1.10:

Eθ i var(θi | Yi )1{ |Yi |>ζτ } ≤
∫ ∞

ζτ
(σ 2 + y2)

1
√

2πσ 2
e−

(y−an )2

2σ2 dy

+
∫ −ζτ

−∞

(σ 2 + y2)
1

√
2πσ 2

e−
(y−an )2

2σ2 dy. (1.28)

The �rst integral from (1.28) can be split into two parts by splitting up the factor σ 2 + y2,
the �rst of which can be bounded, by substituting x = (y−an )/σ and applying Mills’ ratio:

σ 2
∫ ∞

(ζτ −an )/σ
ϕ (x )dx = σ 2Φc

(
ζτ − an

σ

)
≤

σ 3

ζτ − an
ϕ

(
ζτ − an

σ

)
. (1.29)

The second of these integrals is, by y2 = (y − an )
2 − a2

n + 2any, equal to:∫ ∞

ζτ
(y − an )

2 1
√

2πσ 2
e−

(y−an )2

2σ2 dy − a2
n

∫ ∞

ζτ

1
√

2πσ 2
e−

(y−an )2

2σ2 dy

+ an

∫ ∞

ζτ
y

1
√

2πσ 2
e−

(y−an )2

2σ2 dy. (1.30)



1.7. PROOFS 29

The second integral of (1.30) can be bounded from below by zero, and the third from above
by anEθ iYi = a2

n . Again substituting x = (y − an )/σ yields the following upper bound on
(1.30): σ 2

∫ ∞
(ζτ −an )/σ

x2ϕ (x )dx + a2
n . Now using the equality x2ϕ (x ) = ϕ (x ) − d

dx [xϕ (x )]
and again Mills’ ratio, and combining with (1.29), we �nd the following upper bound on
the �rst integral from (1.28):

2σ 3

ζτ − an
ϕ

(
ζτ − an

σ

)
+ σ (ζτ − an )ϕ

(
ζτ − an

σ

)
+ a2

n . (1.31)

By substituting x = −y in the second integral from (1.28) and then applying the same
inequalities to it as to the �rst integral, the following bound is obtained:

2σ 3

ζτ + an
ϕ

(
ζτ + an
σ

)
+ σ (ζτ + an )ϕ

(
ζτ + an
σ

)
. (1.32)

This bound does not include a term a2
n , because in the step equivalent to (1.30), the identity

y2 = (y +an )2 −a2
n − 2yan is used, and thus only the integral

∫ ∞
ζτ
(y +an )2 1√

2πσ 2 e
−

(y+an )2

2σ2 dy

needs to be bounded in that step. Eθ i var(θ | Y )1{ |Y |>ζτ } can thus be bounded by the sum
of (1.31) and (1.32). The factor ϕ ((ζτ + an )/σ ) can be bounded from above by ϕ (ζτ /σ ) =

τ/
√

2π . The factor ϕ ((ζτ − an )/σ ) is equal to 1√
2π e

−
ζ 2
τ

2σ2 e−
a2
n

2σ2 e
ζτ an
σ = τ√

2π e
−

a2
n

2σ2 e
ζτ an
σ .

Hence we arrive at the following upper bound:

σ
√

2π

[(
2σ 2

ζτ − an
+ ζτ − an

)
e−

a2
n

2σ2 e
ζτ an
σ + 2σ 2

ζτ + an
+ ζτ + an

]
τ + a2

n . (1.33)

If an . 1/ζτ , then e−
a2
n

2σ2 e
ζτ an
σ = O (1) and ζτ ± an = O (ζτ ), yielding an upper bound on

(1.33) of order τζτ .
We now consider |yi | ≤ ζτ . We use the second bound of Lemma 1.10:

Eθ i var(θi | Yi )1{ |Yi | ≤ζτ } ≤ σ 2
∫ ζτ

−ζτ

1
y
Tτ (y)

1
√

2πσ 2
e−

(y−an )2

2σ2 dy

+ σ 2
∫ ζτ

−ζτ
yTτ (y)

1
√

2πσ 2
e−

(y−an )2

2σ2 dy. (1.34)

Applying inequality 1
yTτ (y) ≤

2
3τe

y2

2σ2 from Lemma 1.8 to the �rst integral yields the
bound:
√

2σ
3
√
π
τ

∫ ζτ

−ζτ
e
y2

2σ2 e−
(y−an )2

2σ2 dy =

√
2σ

3
√
π
τe−

a2
n

2σ2

∫ ζτ

−ζτ
e
any
σ2 dy ≤

√
2σ

3
√
π
τe−

a2
n

2σ2 2ζτe
an ζτ
σ2 .

If an . 1/ζτ , we have anζτ = O (1) and thus this term will be of order τζτ . For the second
integral from (1.34), we use bound (1.23). This leads to three integrals to be bounded, I1, I2
en I3.

I1 =
σ
√

2π
2
3τ

2e
τ 2

1−τ 2
a2
n

2σ2

∫ ζτ

−ζτ
y2e

− 1
2σ2 /(1−τ 2 )

(
y− an

1−τ 2
)2

dy
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≤
2
3e

τ 2
1−τ 2

a2
n

2σ2
σ 2

(1 − τ 2)3/2

(
σ 2 +

a2
n

1 − τ 2

)
τ 2.

I2 =
2σ
√
a
√

2π
τe

a2
n

(b−1)2σ2

∫ ζτ

−ζτ
y2e

− 1
2σ2 a

a−1
(y− a

a−1 an )
2

≤
2
√
b
e

a2
n

(b−1)2σ2 σ 2
( a

a − 1

)3/2 (
σ 2 + a

a − 1a
2
n

)
τ .

I3 =
2
√
aσ 3
√

2π
τ

∫ ζτ

−ζτ
e
y2

2σ2 e−
(y−an )2

2σ2 dy ≤
2
√

2aσ 3
√
π

e−
a2
n

2σ2 e
an ζτ
σ2 τζτ .

I1, I2 and I3 will all be of no larger order than τζτ if an . 1/ζτ . �

Lemma 1.11. For all k ∈ R,
∫ y

1 ukeudu = ykey (1 + O (1/y)), as y → ∞.

Proof. For k = 0, the statement is immediate. By integration by parts the integral is seen
to be equal to ykey − e −

∫ y
1 kuk−1eudu. For k , 0, the latter integral is bounded above by

|k |

∫ y/2

1
(1 ∨ y/2)k−1eudu + |k |

∫ y

y/2
(y/2 ∨ y)k−1eudu .

This is further bounded above by a multiple of (1 ∨ yk−1)ey/2 + yk−1ey . �

Lemma 1.12. Let Ik be as in Lemma 1.7. There exist functions Rk with
supζτ /4≤y≤4ζτ |Rk (y) | → 0 for k > 0 and k = − 1

2 , such that,

Ik (y) =

(
τ 2k

∫ 1

0

zk

1 + z
dz + 2σ 2

y2 e
y2

2σ2

)
(1 + Rk (y)) , for k > 0,

I− 1
2
(y) =

(
τ −1

∫ ∞

0

1
√
z (1 + z)

dz + 2σ 2

y2 e
y2

2σ2

) (
1 + R− 1

2
(y)

)
.

Proof. We split the integral in the de�nition of Ik over the intervals [0,τ 2] and [τ 2,1]. The
�rst interval contributes, uniformly in yτ → 0,

∫ τ 2

0

zke
y2

2σ2 z

τ 2 + (1 − τ 2)z
dz =

∫ τ 2

0

zk

τ 2 + (1 − τ 2)z
dz (1 + o(1))

= τ 2k
∫ 1

0

uk

1 + (1 − τ 2)u
du (1 + o(1)), (1.35)

by the substitution u = z/τ 2. The integral tends to
∫ 1

0
uk
1+u du, by the dominated conver-

gence theorem, for any k > −1. The second interval contributes, with the substitution
u = (y2/2σ 2)z:

∫ 1

τ 2

zke
y2

2σ2 z

τ 2 + (1 − τ 2)z
dz =

(
2σ 2

y2

)k 

∫ 1

y2
2σ2 τ 2

+
∫ y2

2σ2

1




ukeu

y2

2σ 2 τ 2 + (1 − τ 2)u
du .
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In the second integral the argument satis�esu ≥ 1, and henceu/((y2τ 2/(2σ 2)+ (1−τ 2)) →
1, uniformly in u and yτ → 0. Hence(

2σ 2

y2

)k ∫ y2

2σ2

1

ukeu

y2

2σ 2 τ 2 + (1 − τ 2)u
du �

(
2σ 2

y2

)k ∫ y2

2σ2

1
uk−1eudu

�
2σ 2

y2 e
y2

2σ2 (1 + o(1))

asy → ∞, by Lemma 1.11. For the �rst integral we separately consider the cases k > 0 and
k = −1/2. Ifk > 0, then

∫ 1
0 uk−1eudu converges, and hence, by the dominated convergence

theorem, uniformly in yτ → 0,(
2σ 2

y2

)k ∫ 1

τ 2 y2
2σ2

ukeu

y2

2σ 2 τ 2 + (1 − τ 2)u
du →

(
2σ 2

y2

)k ∫ 1

0
uk−1eudu .

If k = −1/2, then we substitute v = 2σ 2u/(τ 2y2) and rewrite the integral as

(
2σ 2

y2

)− 1
2
∫ 2σ2

τ 2y2

1

v−
1
2 e

τ 2y2

2σ2 v

1 + (1 − τ 2)v

(
τ 2y2

2σ 2

)− 1
2

dv =
1
τ

∫ ∞

1

v−1/2

1 +v dv (1 + o(1)).

This combines with the integral (1.35). �

Proof of Theorem 1.5

Proof. Denote ζτ =
√

2σ 2 log(1/τ ) and assume that θi = γζτ for i = 1, . . . ,pn and θi = 0
for i = pn + 1, . . . ,n. We prove (1.7) by proving that there exists a positive constant c1 (γ )
such that

Eθ=γζτTτ (Y ) = τ
(1−γ )2ζ

2γ −2
τ c1 (γ ) (1 + o(1)). (1.36)

If (1.36) holds, we have, by Jensen’s inequality:
pn∑
i=1
Eθ i (Tτ (Yi ) − θi )

2 ≥ pn (τ
(1−γ )2ζ

2γ −2
τ c1 (γ ) − γζτ )

2 & pnζ
2
τ , (1.37)

as τ → 0. In addition, we have Tτ (y) = yI 1
2
(y)/I− 1

2
(y). For |y | =

√
2σ 2c log(1/τ ), with

c > 1, the lower bound (1.12) on I 1
2
(y) behaves as (σ 2/y2)e

y2

2σ2 , while the upper bound

(1.15) on I− 1
2
(y) behaves as (2a

√
aσ 2/y2)e

y2

2σ2 , as τ → 0. Therefore, for |y | > ζτ , we have
Tτ (y) & y. Thus, we can bound by:

n∑
i=pn+1

Eθ iTτ (Yi )
2 ≥ (n − pn )Eθ=0Tτ (Y )

21{ |Y |>ζτ } & (n − pn )

∫ ∞

ζτ
σ

y2ϕ (y)dy

= (n − pn )



∫ ∞

ζτ
σ

ϕ (y)dy + ζτ
σ
ϕ

(
ζτ
σ

)
 & (n − pn )ζτϕ

(
ζτ
σ

)
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= (n − pn )
1
√

2π
τζτ . (1.38)

By combining the lower bounds (1.37) and (1.38) with the upper bound (1.2), we arrive at
(1.7). For the posterior variance, we already have ∑n

i=pn+1 var(θi | Yi ) � (n − pn )τζτ by
(1.24) and (1.26). Expression (1.8) can therefore be proven by showing that there exists a
positive constant c2 (γ ) such that:

Eθ=γζτ var(θ | Y ) = τ (1−γ )2ζ 2γ −1
τ c2 (γ ) (1 + o(1)). (1.39)

Proof of (1.36)
The expected value Eθ=γζτTτ (Y ) is equal to

1
σ



∫ −

ζτ
2

−∞

+
∫ 3ζτ

−
ζτ
2

+
∫ ∞

3ζτ


 (ζτ + y)

I 1
2
(ζτ + y)

I− 1
2
(ζτ + y)ϕ

(
y + (1 − γ )ζτ

σ

)
dy. (1.40)

We shall show that the �rst and third integrals are negligible, while the second gives the
approximation in (1.36). On the domain of the second integral, we have ζτ /4 ≤ ζτ+y ≤ 4ζτ ,
so we can apply Lemma 1.12 to see that this integral is asymptotic to

1
σ

∫ 3ζτ

−
ζτ
2

(ζτ + y) c2τ
2 (ζτ + y)2 + 2σ 2e

y2+2yζτ
2σ2

c1 (y + ζτ )2 + 2σ 2e
y2+2yζτ

2σ2

ϕ

(
y + (1 − γ )ζτ

σ

)
dy, (1.41)

where c1 =
∫ ∞

0 z−1/2 (1 − z)−1dz and c2 =
∫ 1

0 z1/2 (1 − z)−1dz. On [−ζτ /2,3ζτ ]:

c2τ
2 (ζτ + y)2ϕ

(
y + (1 − γ )ζτ

σ

)
≤

c2
√

2π
τ 2 (4ζτ )3e

(1/2−γ )2 ζ 2
τ

2σ2

=
64c2
√

2π
ζ 3
τ τ

2−(1/2−γ )2 ,

so (1.41) is asymptotic to:

O (τ ) + 2σ
√

2π
e−

(1−γ )2 ζ 2
τ

2σ2

∫ 3ζτ

−
ζτ
2

(ζτ + y)e
γζτ y
σ2

c1 (y + ζτ )2 + 2σ 2e
y2+2yζτ

2σ2

dy.

By the substitution u = ζτy − 2σ 2 log ζτ , the remaining integral is equal to, with aτ =

−
ζ 2
τ
2 − 2σ 2 log ζτ and bτ = 3ζ 2

τ − 2σ 2 log ζτ :

2σ
√

2π
τ (1−γ )

2 1
ζτ

∫ bτ

aτ

(ζτ + ζ −1
τ (u + 2σ 2 log ζτ ))e

γu
σ2 ζ

2γ
τ

c1 (ζτ + ζ −1
τ (u + 2σ 2 log ζτ ))2 + 2σ 2e

u
σ2 ζ 2

τ e
(u+2σ 2 log ζτ )2

2σ 2ζ 2
τ

du

∼
2σ
√

2π
τ (1−γ )

2 1
ζτ

∫ ∞

−∞

ζτe
γu
σ2 ζ

2γ
τ

(c1 + 2σ 2e
u
σ2 )ζ 2

τ

du,
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by the dominated convergence theorem. This yields the approximation in (1.36), with
c1 (γ ) = (2σ/

√
2π )

∫ ∞
−∞

e
γu
σ2 /(c1 + 2σ 2e

u
σ2 )du.

For the �rst integral in (1.40), we use bound 1 from Lemma 1.8, and obtain a bound on
its absolute value equal to

1
σ

∫ −
ζτ
2

−∞

|ζτ + y |τe
(ζτ +y)2

2σ2 ϕ

(
y + (1 − γ )ζτ

σ

)
dy

=
2

3
√

2πσ
τ (1−γ )

2
∫ −

ζτ
2

−∞

|ζτ + y |e
γζτ y
σ2 dy . τ (1−γ )

2
e−

γζ 2
τ

2σ2 = τ (1−γ )
2+γ , (1.42)

where the last inequality follows by integration by parts. This is of much smaller order
than the second integral from (1.40). In the third integral of (1.40), we bound I 1

2
(ζτ +

y)/I− 1
2
(ζτ + y) by 1, giving the upper bound

1
σ

∫ ∞

3ζτ
(ζτ + y)ϕ

(
y + (1 − γ )ζτ

σ

)
dy . ϕ

(
3ζτ + (1 − γ )ζτ

σ

)
=

1
√

2π
τ 4−γ ,

by Mills’ ratio. This is also of much smaller order than the second integral from (1.40),
thus concluding the proof of (1.36).

Proof of (1.39)
By expanding the term (1−z)2 in the numerator of the �nal term of (1.20), the posterior

variance can be seen to be equal to:

var(θ | y) = σ 2
I 1

2
(y)

I− 1
2
(y)

+ y2

I 3

2
(y)

I− 1
2
(y)
−



I 1

2
(y)

I− 1
2
(y)




2
. (1.43)

Because I 1
2
(y)/I− 1

2
(y) can be interpreted as the mean of the density proportional to z →

z−1/2ey
2z/(2σ 2 )/(τ 2 + (1−τ 2)z), and I 3

2
(y)/I− 1

2
(y) as the second moment, it follows that the

term in square brackets in (1.43) is nonnegative. By (1.43), we write:

Eθ=γζτ var(θ | Y ) = σ
∫ I 1

2
(ζτ + y)

I− 1
2
(ζτ + y)ϕ

(
y + (1 − γ )ζτ

σ

)
dy

+ 1
σ



∫ −

ζτ
2

−∞

+
∫ 3ζτ

−
ζτ
2

+
∫ ∞

3ζτ


 (ζτ + y)2

·

I 3

2
(ζτ + y)

I− 1
2
(ζτ + y) −



I 1

2
(ζτ + y)

I− 1
2
(ζτ + y)




2
ϕ

(
y + (1 − γ )ζτ

σ

)
dy. (1.44)

The �rst term in (1.44) is as (1.40), except without the factor (ζτ + y). Following the same
steps as the proof of (1.36), we see that it is smaller than a multiple of ζ −1

τ times the bound
on (1.40), so it is of the order ζ 2γ −3

τ τ (1−γ )
2 . The �rst and third integrals of the second term

of (1.44) are also negligible. For the �rst, we use that the expression in square brackets
is nonnegative and bounded above by I 3

2
(y)/I− 1

2
(y), which in turn is bounded above by
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I 1
2
(y)/I− 1

2
(y). We bound as in (1.42), with the di�erence that the leading factor is (ζτ +y)2

instead of (ζτ +y). This leads to the order ζττ (1−γ )
2+γ , much smaller than the claimed rate.

For the third integral, we can bound the term in square brackets by 1 and use Mills’ ratio
to see that it is of the order ζττ (4−γ )

2 .
We are left with the middle integral of the second term of (1.44). On the domain of

this integral, by Lemma 1.12:

I 3
2
(ζτ + y)

I− 1
2
(ζτ + y) =

c3τ
4 (ζτ + y)2 + 2σ 2e

y2+2yζτ
2σ2

c1 (ζτ + y)2 + 2σ 2e
y2+2yζτ

2σ2

(1 + o(1)),

where c3 =
∫ 1

0 z3/2 (1 + z)−1dz, and c1 is as in (1.41). We see that I 3
2
(y)/I− 1

2
(y) and

I 1
2
(y)/I− 1

2
(y) are asymptotic to the same function on this domain. SinceA/(A+B)−A2/(A+

B)2 = AB/(A + B)2, it follows that up to O (τ ), the middle integral is asymptotic to

1
σ

∫ 3ζτ

−
ζτ
2

(ζτ + y)2 c1 (ζτ + y)22σ 2e
y2+2yζτ

2σ2(
c1 (ζτ + y)2 + 2σ 2e

y2+2yζτ
2σ2

)2ϕ

(
y + (1 − γ )ζτ

σ

)
dy

=
2σc1
√

2π
τ (1−γ )

2
∫ 3ζτ

−
ζτ
2

(ζτ + y)4e
γζτ y
σ2(

c1 (ζτ + y)2 + 2σ 2e
y2+2ζτ y

2σ2

)2dy.

We substitute u = ζτy − 2σ 2 log ζτ to reduce this to

2σc1
√

2π
τ (1−γ )

2 1
ζτ

∫ 3ζ 2
τ −2σ 2 log ζτ

−
ζ 2
τ
2 −2σ 2 log ζτ

(ζτ + ζ −1
τ (u + 2σ 2 log ζτ ))4e

γu
σ2 ζ

2γ
τ(

c1 (ζτ + ζ −1
τ (u + 2σ 2 log ζτ ))2 + 2σ 2e

u
σ2 ζ 2

τ

)2du

∼
2σc1
√

2π
τ (1−γ )

2 1
ζτ

∫ ∞

−∞

ζ 4
τ e

γu
σ2 ζ

2γ
τ(

c1ζ
2
τ + 2σ 2ζ 2

τ e
u
σ2

)2du .

This is asymptotic to expression (1.39), with c2 (γ ) = (2σc1/
√

2π )
∫ ∞
−∞

e
γu
σ2 /(c1+2σ 2e

u
σ2 )2du.

�

Proof of Theorem 1.6

Proof. Suppose that Y ∼ N (θ ,σ 2In ), θ ∈ `0[pn]. We adapt the approach in Paragraph 6.2
in (Johnstone and Silverman, 2004). We �rst derive the following inequality for events A
such that τ̂ > τ holds with probability one on A:

Eθ (Tτ̂ (Yi ) − θi )
21A ≤ 2Eθ (Tτ̂ (Yi ) − Yi )21A + 2Eθ (Yi − θi )21A
. 2Eθζ 2

τ̂ 1A + 2σ 2EθZ
21A (1.45)
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where (1.17) was used in the second line, and Z follows a standard normal distribution. If
A is such that τ̂ > τ holds with probability one on A, we can use the inequality ζ τ̂ < ζτ if
τ̂ > τ to �nd:

Eθ (Tτ̂ (Yi ) − θi )
21A . 2ζ 2

τ Pθ (A) + 2σ 2EθZ
21A, (1.46)

We now consider the nonzero and zero parameters separately. For both cases, we split
up the expected `2 loss as follows:

Eθ (Tτ̂ (Yi ) − θi )
2 = Eθ (Tτ̂ (Yi ) − θi )

21{τ̂ >cτ } + Eθ (Tτ̂ (Yi ) − θi )21{τ̂ ≤cτ },

and then bound each of terms on the right hand side. For the nonzero means, we take
c = 1, while for the zero means, we consider c ≥ 1. Note that for ζ τ̂ to be well-de�ned, we
need τ̂ ≤ 1 and consequently, when we consider τ̂ > cτ , we must have cτ < 1.

Nonzero means
By (1.46), we �nd:

Eθ (Tτ̂ (Yi ) − θi )
21{τ̂ >τ } . 2ζ 2

τ + 2σ 2. (1.47)

If τ̂ ≤ τ , the inequality ζ 2
τ̂ ≤ ζ

2
τ needed for (1.46) does not hold. For this case, we assume

that τ̂ ≥ д(n,pn ) with probability one, for some function д(n,pn ), corresponding to ζ τ̂ ≤√
−2σ 2 logд(n,pn ). Then we �nd by (1.45):

Eθ (Tτ̂ (Yi ) − θi )
21{τ̂ ≤τ } . 2Eθζ 2

τ̂ 1{τ̂ ≤τ } + 2σ 2

≤ −4σ 2 log(д(n,pn ))Pθ (̂τ ≤ τ ) + 2σ 2. (1.48)

By (1.47) and (1.48), we have for θi , 0:

Eθ (Tτ̂ (Yi ) − θi )
2 . 1 + ζ 2

τ − log(д(n,pn ))Pθ (̂τ ≤ τ ). (1.49)

Zero means
We �rst establish an inequality for Eθ [Z 21A], where A is an event and Z a standard

normal random variable. By Young’s inequality, we have for any positive x and y:

xy ≤

∫ x

0
(e s − 1)ds +

∫ y

0
log(s + 1)ds = ex − x − 1 + (y + 1) log(y + 1) − y.

By this inequality combined with the inequality log(y + 1) < y, we have:

EθZ
21A ≤ cdEθ

[
e
Z2
c −

Z 2

c
− 1

]
+ cdPθ (A)

( 1
d

log
( 1
d

+ 1
)
−

1
d

)
.

With c = 3 and d = Pθ (A), we �nd:

EθZ
21A ≤ (3

√
3 − 4)Pθ (A) + 3Pθ (A) log

(
1 + 1
Pθ (A)

)
< 5Pθ (A) log

(
1 + 1
Pθ (A)

)
. (1.50)
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By (1.46) and (1.50), we get for any c ≥ 1 such that cτ < 1:

Eθ (Tτ̂ (Yi ) − θi )
21{τ̂ >cτ } . 2ζ 2

τ Pθ (̂τ > cτ )

+ 10σ 2Pθ (̂τ > cτ ) log
(
1 + 1
Pθ (̂τ > cτ )

)
. (1.51)

Now suppose τ̂ ≤ cτ for some c ≥ 1 such that cτ < 1. First note that |Tτ (y) | increases
monotonically in τ , as is clear from

Tτ (yi ) = E[(1 − κi )yi | yi ,τ ] = E
[

τ 2λ2
i

1 + τ 2λ2
i
yi

����� yi ,τ
]
.

Because sign(Tτ̂ (yi )) = sign(Tcτ (yi )) and 0 ≤ |Tτ̂ (yi ) | ≤ |Tcτ (yi ) |, we have:

(Tτ̂ (yi ) − θi )
2
≤ max{θ 2

i , (Tcτ (yi ) − θi )
2} ≤ θ 2

i + (Tcτ (yi ) − θi )
2.

Hence:
Eθ (Tτ̂ (Yi ) − θi )

21{τ̂ ≤cτ } ≤ θ 2
i + Eθ (Tcτ (Yi ) − θi )2.

And thus, by (1.18), we have for θi = 0:

Eθ (Tτ̂ (Yi ) − θi )
21{τ̂ ≤cτ } . ζcτcτ . ζττ . (1.52)

Combining (1.51) and (1.52), we �nd:

EθTτ̂ (Yi )
2 . ζττ + ζ 2

τ Pθ (̂τ > cτ ) + Pθ (̂τ > cτ ) log
(
1 + 1
Pθ (̂τ > cτ )

)
. (1.53)

Conclusion
We can now bound the expected `2 loss. We assume that θi , 0 for i = 1, . . . ,p̃n and

θi = 0 for i = p̃n + 1, . . . ,n, where p̃n ≤ pn . By combining (1.49) and (1.53), we �nd:

Eθ ‖Tτ̂ (Y ) − θ ‖
2 . p̃n

(
1 + ζ 2

τ − log(д(n,pn ))Pθ (̂τ ≤ τ )
)

+ (n − p̃n )ζττ

+ (n − p̃n )Pθ (̂τ > cτ )

(
ζ 2
τ + log

(
1 + 1
Pθ (̂τ > cτ )

))
. (1.54)

The function x log(1 + 1
x ) is monotonically increasing in x for x ∈ [0,1]. Hence, with the

choice τ = pn
n or τ = pn

n

√
log(n/pn ), the conditions stated in the theorem are su�cient

for (1.54) to be bounded by the minimax squared error rate in the worst case.
If an estimator τ̂ satis�es only the �rst condition, then sup{ 1

n , τ̂ } satis�es the second
condition with − logд(n,pn ) = logn. By the assumption pn → ∞, we have Pθ (sup{ 1

n , τ̂ } >

c
pn
n ) ≤ Pθ (̂τ > c

pn
n ). Plugging this into inequality (1.54) yields an `2 risk of at most order

pn logn. �

Lemma 1.13. Suppose Yi ∼ N (θi ,σ
2),i = 1, . . . ,pn and Yi ∼ N (0,σ 2),i = pn + 1, . . . ,n

and de�ne

τ̂ =
#{|yi | ≥

√
c1σ 2 logn,i = 1, . . . ,n}

c2n

for some c2 > 1. Then Pθ (̂τ > τ ) .
pn
n as pn,n → ∞, pn = o(n) if c1 > 2, or c1 = 2 and

pn . logn for τ = pn
n or τ = pn

n

√
log(n/pn ).
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Proof. We only need to consider Pθ (̂τ > pn
n ), as we assume pn = o(n) and thus, for

large n, Pθ (̂τ > pn
n

√
log(n/pn )) ≤ Pθ (̂τ > pn

n ). De�ne Ai = {|yi | ≥
√
c1σ 2 logn},i =

1, . . . ,n. For i = pn + 1, . . . ,n, 1Ai follows a Bernoulli distribution with parameter qn =
2Φc (

√
c1 logn), which by Mills’ ratio can be bounded from above by

√
2

c1π
(logn)− 1

2n−
c1
2 .

For X ∼ Bin(n,p), we have the bound P(X ≥ k ) ≤ (
enp
k )k as a consequence of Theorem 1

in (Cherno�, 1952). Hence:

Pθ

(̂
τ >

pn
n

)
≤ Pθ




n∑
i=pn+1

1Ai > (c2 − 1)pn


 ≤

(
e (n − pn )qn
(c2 − 1)pn + 1

) (c2−1)pn+1

≤



√

2e2

c1π

1
(c2 − 1)pn + 1

1√
logn

n1− c1
2



(c2−1)pn+1

. (1.55)

The inequality Pθ (̂τ > pn
n ) .

pn
n holds if − logPθ (̂τ > pn

n ) ≥ log n
pn

+ c holds for some
positive constant c . The negative logarithm of bound (1.55) is:

((c2 − 1)pn + 1)
( 1

2 log c1π

2e2 + log((c2 − 1)pn + 1) + 1
2 log logn +

(c1
2 − 1

)
logn

)
.

For c1 = 2, this quantity will exceed log n
pn

if pn & logn. If c1 > 2, we require ((c2 − 1)pn +
1) ( c1

2 − 1) ≥ 1, which is certainly satis�ed if pn → ∞. �
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2
Conditions for posterior
concentration for scale

mixtures of normals

Abstract
The �rst Bayesian results for the sparse normal means problemwere proven for spike-and-slab
priors. However, these priors are less convenient from a computational point of view. In the
meanwhile, a large number of continuous shrinkage priors has been proposed. Many of these
shrinkage priors can be written as a scale mixture of normals, which makes them particularly
easy to implement. We propose general conditions on the prior on the local variance in scale
mixtures of normals, such that posterior contraction at the minimax rate is assured. The
conditions require tails at least as heavy as Laplace, but not too heavy, and a large amount of
mass around zero relative to the tails, more so as the sparsity increases. These conditions give
some general guidelines for choosing a shrinkage prior for estimation under a nearly black
sparsity assumption. We verify these conditions for the class of priors considered in Ghosh
and Chakrabarti (2015), which includes the horseshoe and the normal-exponential gamma
priors, and for the horseshoe+, the inverse-Gaussian prior, the normal-gamma prior, and the
spike-and-slab Lasso, and thus extend the number of shrinkage priors which are known to
lead to posterior contraction at the minimax estimation rate.

This chapter has appeared as S.L. van der Pas, J.-B. Salomond and J. Schmidt-Hieber (2016). Conditions for
posterior contraction in the sparse normal means problem. Electronic Journal of Statistics 10, 976–1000. Research
supported by NWO VICI project ‘Safe Statistics’.
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2.1 Introduction

In the sparse normal means problem, we wish to estimate a sparse vector θ based on a
vector X n ∈ Rn , X n = (X1, . . . ,Xn ), generated according to the model

X i = θi + εi , i = 1, . . . ,n,

where the εi are independent standard normal variables. The vector of interest θ is sparse
in the nearly black sense, that is, most of the parameters are zero. We wish to separate the
signals (nonzero means) from the noise (zero means). Applications of this model include
image reconstruction and nonparametric function estimation using wavelets (Johnstone
and Silverman, 2004).

The model is an important test case for the behaviour of sparsity methods, and has
been well-studied. A great variety of frequentist and Bayesian estimators has been pro-
posed, and the popular Lasso (Tibshirani, 1996) is included in both categories. It is but
one example of many approaches towards recovering θ ; restricting ourselves to Bayesian
methods, other approaches include shrinkage priors such as the spike-and-slab type priors
studied by Castillo and Van der Vaart (2012); Johnstone and Silverman (2004) and Castillo
et al. (2015), the normal-gamma prior (Gri�n and Brown, 2010), non-local priors (Johnson
and Rossell, 2010), the Dirichlet-Laplace prior (Bhattacharya et al., 2014), the horseshoe
(Carvalho et al., 2010), the horseshoe+ (Bhadra et al., 2015) and the spike-and-slab Lasso
(Roc̆ková, 2015).

Our goal is twofold: recovery of the underlying mean vector, and uncertainty quanti�-
cation. The benchmark for the former is estimation at the minimax rate. In a Bayesian
setting, the typical choice for the estimator is some measure of center of the posterior
distribution, such as the posterior mean, mode or median. For the purpose of uncertainty
quanti�cation, the natural object to use is a credible set. In order to obtain credible sets
that are narrow enough to be informative, yet not so narrow that they neglect to cover the
truth, the posterior distribution needs to contract to its center at the same rate at which
the estimator approaches the truth.

For recovery, spike-and-slab type priors give optimal results (Castillo et al. (2015);
Castillo and Van der Vaart (2012); Johnstone and Silverman (2004)). These priors assign
independently to each component a mixture of a point mass at zero and a continuous prior.
Due to the point mass, spike-and-slab priors shrink small coe�cients to zero. The advan-
tage is that the full posterior has optimal model selection properties but this comes at the
price of, in general, too narrow credible sets. Another drawback of spike-and-slab meth-
ods is that they are computationally expensive although the complexity is much better
than what has been previously believed (Yang et al. (2015)).

Thus, we might ask whether there are priors which are smoother and shrink less than
the spike-and-slab but still recover the signal with a (nearly) optimal rate. A naive choice
would be to consider the Laplace prior ∝ e−λ ‖θ ‖1 with ‖θ ‖1 =

∑n
i=1 |θi |, since in this case

the maximum a posteriori (MAP) estimator coincides with the Lasso, which is known to
achieve the optimal rates for sparse signals. In Castillo et al. (2015), Section 3, it was
shown that although the MAP-estimator has good properties, the full posterior spreads a
non-negligible amount of mass over large neighborhoods of the truth leading to recovery
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rates that are sub-optimal by a polynomial factor inn. This example shows that if the prior
does not shrink enough, we loose the recovery property of the posterior.

Recently, shrinkage priors were found that are smoother than the spike-and-slab but
still lead to (near) minimax recovery rates. Up to now, optimal recovery rates have been
established for the horseshoe prior (Van der Pas et al., 2014), horseshoe-type priors with
slowly varying functions (Ghosh and Chakrabarti, 2015), the empirical Bayes procedure
of Martin and Walker (2014), the spike-and-slab Lasso (Roc̆ková, 2015), and the Dirichlet-
Laplace prior, although the latter result only holds under a restriction on the signal size
(Bhattacharya et al., 2014). Finding smooth shrinkage priors with theoretical guarantees
remains an active area of research.

The question arises which features of the prior lead to posterior convergence at the
minimax estimation rate. Qualitative discussion on this point is provided by Carvalho
et al. (2010). Intuitively, a prior should place a large amount of mass near zero to account
for the zero means, and have heavy tails to counteract the shrinkage e�ect for the nonzero
means. In the present article, we make an attempt to quantify the relevant properties of
a prior, by providing general conditions ensuring posterior concentration at the minimax
rate, and showing that a large number of priors (including the ones listed above) meets
these conditions.

We study scale mixtures of normals, as many shrinkage priors proposed in the liter-
ature are contained in this class and provide general conditions on the prior on the local
variance such that posterior concentration at the minimax estimation rate is guaranteed.
These conditions are general enough to recover the already known results for the horse-
shoe prior, the horseshoe-type priors with slowly varying functions and the spike-and-slab
Lasso, and to demonstrate that the horsehoe+ (Bhadra et al., 2015), inverse-Gaussian prior
(Caron and Doucet, 2008) and the normal-gamma prior (Caron and Doucet, 2008; Gri�n
and Brown, 2010) lead to posterior concentration at the correct rate as well. Our condi-
tions in essence mean that a sparsity prior should have tails that are at least as heavy as
Laplace, but not too heavy, and there should be a sizable amount of mass close to zero
relative to the tails, especially when the underlying vector is very sparse.

This paper is organized as follows. We state our main result, providing conditions on
sparsity priors such that the posterior contracts at the minimax rate in Section 2.2. We
then show, in Section 2.3, that these conditions hold for the class of priors of Ghosh and
Chakrabarti (2015), as well as for the horseshoe+, the inverse-Gaussian prior, the normal-
gamma prior, and the spike-and-slab Lasso. A simulation study is performed in Section
2.4, and we conclude with a Discussion. All proofs are given in Appendix 2.6.

Notation. Denote the class of nearly black vectors by `0[pn] = {θ ∈ Rn : ∑n
i=1 1{θi ,

0} ≤ pn}. The minimum min{a,b} is given by a∧b. The standard normal density is denoted
by ϕ, its cdf by Φ, and we set Φc (x ) = 1 − Φ(x ). The norm ‖ · ‖ is the `2-norm.

2.2 Main results

Each coe�cient θi receives a scale mixture of normals as a prior:

θi | σ
2
i ∼ N (0,σ 2

i ), σ 2
i ∼ π (σ

2
i ), i = 1, . . . ,n, (2.1)
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where π : [0,∞) → [0,∞) is a density on the positive reals. While π might depend on
further hyperparameters, no additional priors are placed on such parameters, rendering
the coe�cients independent a posteriori. The goal is to obtain conditions on π such that
posterior concentration at the minimax estimation rate is guaranteed.

We use the coordinatewise posterior mean to recover the underlying mean vector. By
Tweedie’s formula (Robbins, 1956), the posterior mean for θi given an observation xi is
equal to xi + d

dx logp (xi ), where p (xi ) is the marginal distribution of xi . The posterior
mean for parameter θi is thus given by θ̂i = X imX i , wheremx : R→ [0,1] is

mx :=

∫ 1
0 z (1 − z)−3/2e

x2
2 zπ

(
z

1−z

)
dz∫ 1

0 (1 − z)−3/2e
x2
2 zπ

(
z

1−z

)
dz
=

∫ ∞
0 u (1 + u)−3/2e

x2u
2+2u π (u)du∫ ∞

0 (1 + u)−1/2e
x2u
2+2u π (u)du

. (2.2)

We denote the estimate of the full vector θ by θ̂ = (θ̂1, . . . ,θ̂n ) = (X1mX1 , . . . ,XnmXn ).
An advantage of scale mixtures of normals as shrinkage priors over spike-and-slab-type
priors, is that the posterior mean can be represented as the observation multiplied by (2.2).
The ratio (2.2) can be computed via integral approximation methods such as a quadrature
routine. See Polson and Scott (2012a), Polson and Scott (2012b) and Van der Pas et al. (2014)
for more discussion on this point in the context of the horseshoe.

Our main theorem, Theorem 2.1, provides three conditions on π under which a prior
of the form (2.1) leads to an upper bound on the posterior contraction rate of the order
of the minimax rate. We �rst state and discuss the conditions. In addition, we present
stronger conditions that are easier to verify. Condition 1 is required for our bounds on the
posterior mean and variance for the nonzero means. The remaining two are used for the
bounds for the zero means.

The �rst condition involves a class of regularly varying functions. Recall that a func-
tion ` is called regular varying (at in�nity) if for any a > 0, the ratio `(au)/`(u) converges
to the same non-zero limit as u → ∞. For our estimates, we need a slightly di�erent no-
tion, that will be introduced next. We say that a function L is uniformly regular varying,
if there exist constants R,u0 ≥ 1, such that

1
R
≤

L(au)

L(u)
≤ R, for all a ∈ [1,2], and all u ≥ u0. (2.3)

In particular, L(u) = ub , and L(u) = logb (u) with b ∈ R are uniformly regular varying
(take for example R = 2 |b | and u0 = 2). An example of a function that is not uniformly
regular varying is L(u) = eu . From the de�nition, we can easily deduce the following
properties of functions that are uniformly regular varying. Firstly, u 7→ L(u) is on [u0,∞)
either everywhere positive or everywhere negative. If L is uniformly regular varying then
so is u 7→ 1/L(u) and if L1 and L2 are uniformly regular varying, then so is their product
L1L2.

We are now ready to present Condition 1, and the stronger Condition 1’, which implies
Condition 1, as shown in Lemma 2.3.

Condition 1. For someb ≥ 0,we can writeu 7→ π (u) = Ln (u)e
−bu ,where Ln is a function

that satis�es (2.3) for some R,u0 ≥ 1 which do not depend on n. Suppose further that there
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are constants C ′,b ′ > 0,K ≥ 0, and u∗ ≥ 1, such that

C ′π (u) ≥
(pn
n

)K
e−b

′u for all u ≥ u∗. (2.4)

Condition 1’. Consider a global-local scale mixture of normals:

θi | σ
2
i ,τ

2 ∼ N (0,σ 2
i τ

2), σ 2
i ∼ π̃ (σ

2
i ), i = 1, . . . ,n. (2.5)

Assume that π̃ is a uniformly regular varying function which does not depend on n, and
τ = (pn/n)

α for α ≥ 0.

Condition 1 assures that the posterior recovers nonzero means with the optimal rate.
Thus, the condition can be seen as a su�cient condition on the tail behavior of the density
π for `2-recovery. The tail may decay exponentially fast, which is consistent with the
conditions found on the ‘slab’ in the spike-and-slab priors discussed by Castillo and Van
der Vaart (2012). In general, π will depend on n through a hyperparameter. Condition 1
requires that the n dependence behaves roughly as a power of pn/n.

In the important special case where each θi is drawn independently from a global-
local scale mixture, Condition 1 is satis�ed whenever the density on the local variance is
uniformly regular varying, as stated in Condition 1’. Below, we give the conditions on π
that guarantee posterior shrinkage at the minimax rate for the zero coe�cients. The �rst
condition ensures that the prior π puts some �nite mass on values between [0,1].

Condition 2. Suppose that there is a constant c > 0 such that
∫ 1

0 π (u)du ≥ c .

We turn to Condition 3 which describes the decay of π away from a neighborhood of
zero. To state the condition it will be convenient to write

sn := pn
n

log(n/pn ). (2.6)

Condition 3. Let bn =
√

log(n/pn ) and assume that there is a constant C, such that∫ ∞

sn

(
u ∧

b3
n
√
u

)
π (u)du + bn

∫ b2
n

1

π (u)
√
u
du ≤ Csn .

In order to allow for many possible choices of π , the tail condition involves several
terms. Observe that u ∧ b3

n/
√
u = u if and only if u ≤ b2

n and therefore the �rst integral
in Condition 3 can also be written as

∫ b2
n

sn
uπ (u)du + b3

n

∫ ∞
b2
n
u−1/2π (u)du . It is surprising

that some control of π (u) on the interval [sn,1] is needed. But this turns out to be sharp.
Theorem 2.2 proves that if we would relax the condition to

∫ 1
sn
uπ (u)du . tn for an arbi-

trary rate tn � sn, then there is a prior that satis�es all the other conditions needed for
the zero coe�cients, but which does not lead to concentration at the minimax rate.

Below we state two stronger conditions, each of which obviously implies Condition 2
and Condition 3 for sparse signals, that is, pn = o(n).
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Condition A. Assume that there is a constant C, such that

π (u) ≤
C

u3/2
pn
n

√
log(n/pn ), for all u ≥ sn .

Condition B. Assume that there is a constant C, such that∫ ∞

sn
π (u)du ≤

Cpn
n
.

In this case, even a stronger version of Condition 2 holds in the sense that nearly all
mass is concentrated in the shrinking interval [0,sn]. Notice that Condition 3 does not
imply Condition 2 in general. If, for example, the density π has support on [n2,2n2],
then, Condition 3 holds but Condition 2 does not. Condition 1 and Condition 3 depend
on the relative sparsity pn/n. Indeed, Condition 1 becomes weaker if the signal is more
sparse and at the same time Condition 3 becomes stronger. This matches intuition, as the
prior should shrink more in this case and thus the assumptions that are responsible for
the shrinkage e�ect should become stronger.
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Figure 2.1: Plots of priors on the local variance (�rst row) and the corresponding param-
eters (second row). From left to right: horseshoe, Inverse-Gaussian with a = 1/2,b = 1,
and normal gamma with β = 3. The parameter τ , which in practice should be of the order
pn/n, is taken equal to 1 (dashed line) and 0.05 (solid line).

Figure 2.1 presents plots of the priors π on the local variance, and the corresponding
priors on the parameters θi , for three priors for which the three conditions are veri�ed in
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Section 2.3: the horseshoe, inverse-Gaussian, and normal-gamma. The parameter τ , in the
notation of Section 2.3, should be thought of as the sparsity level pn/n. Figure 2.1 shows
that the priors start to resemble each other when τ is decreased. If the setting is more
sparse, corresponding to more zero means, the mass of the prior π on σ 2

i concentrates
around zero, leading to a higher peak at zero in the prior density on θi .

We now present our main result. The minimax estimation risk for this problem, under
`2 risk, is given by 2pn log(n/pn ) Donoho et al. (1992). We write θ0 = (θ0i )i=1, . . .,n and
consider posterior concentration of the zero and non-zero coe�cients separately. Asymp-
totics always refers to n → ∞.

Theorem 2.1. Work under model X n ∼ N (θ0, In ) and assume that the prior is of the form
(2.1). Suppose further that pn = o(n) and letMn be an arbitrary positive sequence tending to
+∞. Let θ̂ = (θ̂1, . . . ,θ̂n ) be the posterior mean. Under Condition 1,

sup
θ0∈`0[pn]

Eθ0Π
(
θ :

∑
i:θ0i,0

(θi − θ0i )
2 > Mnpn log(n/pn ) ��� X n

)
→ 0

and
sup

θ0∈`0[pn]
Eθ0

∑
i:θ0i,0

(θ̂i − θ0i )
2 . pn log(n/pn ).

Under Condition 2 and Condition 3 (or either Condition A or B),

sup
θ0∈`0[pn]

Eθ0Π
(
θ :

∑
i:θ0i=0

θ 2
i > Mnpn log(n/pn ) ��� X n

)
→ 0

and
sup

θ0∈`0[pn]
Eθ0

∑
i:θ0i=0

θ̂ 2
i . pn log(n/pn ).

Thus, under Conditions 1-3 (or Condition 1 with either Condition A or B),

sup
θ0∈`0[pn]

Eθ0Π
(
θ : ‖θ − θ0‖

2 > Mnpn log(n/pn ) ��� X n
)
→ 0

and
sup

θ0∈`0[pn]
Eθ0

θ̂ − θ0


2
2
. pn log(n/pn ).

The statement is split into zero and non-zero coe�cients of θ0 in order to make the
dependence on the conditions explicit. Indeed, posterior concentration of the non-zero
coe�cients follows from Condition 1 and posterior concentration for the zero-coe�cients
is a consequence of Conditions 2 and 3. In order to obtain posterior contraction, we need
that Mn → ∞. This is due to the use of Markov’s inequality in the proof, simplifying the
argument considerably. From the lower bound result in Ho�mann et al. (2015), Theorem
2.1, one should expect that the result holds already for some su�ciently large constant
M and that the speed at which the posterior mass of {θ : ‖θ − θ0‖

2 > Mpn log(n/pn )}
converges to zero is exp(−C1pn log(n/pn )) for some positive constantC1. It is well-known
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that posterior concentration at rate ϵn implies existence of a frequentist estimator with
the same rate (cf. Ghosal et al. (2000), Theorem 2.5 for a precise statement). Thus, the
rate of contraction around the true mean vector θ0 must be sharp. This also means that
credible sets computed from the posterior cannot be so large as to be uninformative, an
e�ect that, as discussed in the introduction, occurs for the Laplace prior connected to the
Lasso. If one wishes to use a credible set centered around the posterior mean, then its
radius might still be too small to cover the truth. The �rst step towards guarantees on
coverage is a lower bound on the posterior variance. Such a lower bound was obtained
for the horseshoe in Van der Pas et al. (2014), and for priors very closely resembling the
horseshoe in Ghosh and Chakrabarti (2015). No such results have been obtained so far for
priors on σ 2

i that have a tail of a di�erent order than (σ 2
i )
−3/2. This is a delicate technical

issue that we will not pursue further here.
The results also indicates how to build adaptive procedures. We consider adaptivity to

the number of nonzero means, without accounting for the possibly unknown variance of
the εi , for which a prior of the type suggested for the horseshoe in Carvalho et al. (2010)
or an empirical Bayes procedure may be used. The method for adapting to the sparsity
does not require explicit knowledge of pn but in order to get minimax concentration rates,
we need to �nd priors that satisfy the conditions of Theorem 2.1. Consider for example
the prior de�ned as

π (u) := 1
u3/2

√
logn
n
, for all u ≥

√
logn
n

and the remaining mass is distributed arbitrarily on the interval [0,
√

logn/n). Thus Con-
dition A holds for any 1 ≤ pn = o(n) and thus also Condition 2 and Condition 3. Whenever
we impose an upper bound pn ≤ n1−δ with δ > 0, then also Condition 1 holds and thus
Theorem 2.1 follows. This shows that in principle priors can be constructed that adapt
over nearly the whole range of possible sparsity levels and lead to some theoretical guar-
antee. The trick is that a prior that works for an extremely sparse model with pn = 1 also
adapts to less sparse models. This requires, however, a lot of prior mass near zero. Such a
prior shrinks small non-zero components more than if we �rst get a rough estimate of the
relative sparsity pn/n and then use a prior that lies on the "boundary" of the conditions
in the sense that the both sides in the inequality of Condition 3 are of the same order.
An empirical Bayes procedure that �rst estimates the sparsity was found to work well in
Van der Pas et al. (2014), arguing along the lines of Johnstone and Silverman (2004). The
sparsity level estimator counts the number of observations that are larger than the ‘uni-
versal threshold’ of

√
2 logn. Similar results are likely to hold in our setting, as long as the

posterior mean is monotone in the parameter that is taken to depend on pn .

2.2.1 Necessary conditions
The imposed conditions are nearly sharp. To see this, consider the Laplace prior, where
each θi is drawn independently from a Laplace distribution with parameter λ. It is well-
known that the Laplace distribution with parameter λ can be represented as a scale mixture
of normals where the mixing density is exponential with parameter λ2 (cf. Andrews and
Mallows (1974) or Park and Casella (2008), Equation (4)). Thus, the Laplace prior �ts our
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framework (2.1) with π (u) = λ2e−λ
2u , for u ≥ 0. As mentioned in the introduction, the

MAP-estimator of this prior is the Lasso but the full posterior does not shrink at the min-
imax rate. Indeed, Theorem 7 in Castillo et al. (2015) shows that if the true vector is zero,
then, the posterior concentration rate has the lower bound n/λ2 for the squared `2-norm
provided that 1 ≤ λ = o(

√
n). This should be compared to the optimal minimax rate logn

(the rate for sparsity zero is the same as the rate for sparsity pn = 1). Thus, the lower
bound shows that the rate is sub-optimal as long as

λ �

√
n

logn . (2.7)

If λ &
√
n/ logn, the lower bound is not sub-optimal anymore, but in this case, the non-

zero components cannot be recovered with the optimal rate. The lower bound shows that
the posterior does not shrink enough if λ is not taken to be huge and thus either Condition
2 or Condition 3 must be violated, as these are the two conditions that guarantee shrinkage
of the zero mean coe�cients.

Obviously,
∫ 1

0 π (u)du ≥
∫ 1

0 e−udu > 0 for 1 ≤ λ and thus Condition 2 holds. For
Condition 3 notice that the integral can be split into the integral

∫ 1
0 uπ (u)du plus an in-

tegral over [1,∞) Now, if λ tends to in�nity faster than a polynomial order in n then the
integral over [1,∞) is exponentially small in n. Thus Condition 3 must fail because the
integral over

∫ 1
sn
uπ (u)du is of a larger order than sn = n

−1 logn. To see this, observe that
for λ ≤

√
n/ logn,∫ 1

sn
uλ2e−λ

2udu =
1
λ2

∫ λ2

snλ2
ve−vdv ≥

1
λ2

∫ λ2

1
e−vdv &

1
λ2 .

Now, we see that Condition 3 fails if and only if (2.7) holds. Indeed, if λ �
√
n/ logn, then

the r.h.s. is of larger order than sn and if λ �
√
n/ logn, then, Condition 3 holds. This

shows that this bound is sharp.
In order to state this as a formal result, let us introduce the following modi�cation of

Condition 3. Let κn denote an arbitrary positive sequence.

Condition 3(κn). Let bn =
√

log(n/pn ) and assume that there is a constant C, such that

κn

∫ 1

sn
uπ (u)du +

∫ ∞

1

(
u ∧

b3
n
√
u

)
π (u)du + bn

∫ b2
n

1

π (u)
√
u
du ≤ Csn .

In particular, we recover Condition 3 for κn = 1.

Theorem 2.2. Work under model X n ∼ N (θ0, In ) and assume that the prior is of the form
(2.1). For any positive sequence (κn )n tending to zero, there exists a prior π satisfying Condi-
tion 2 and Condition 3(κn) for pn = 1 and a positive sequence (Mn )n tending to in�nity, such
that

Eθ0=0Π
(
θ : ‖θ ‖22 ≤ Mn log(n) ��� X n

)
→ 0, as n → ∞. (2.8)
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This theorem shows that the posterior puts asymptotically all mass outside an `2-ball
with radius Mn log(n) � log(n) and is thus suboptimal. The proof can be found in the
appendix.

2.3 Examples

In this section, Conditions 1-3 are veri�ed for the horseshoe-type priors considered by
Ghosh and Chakrabarti (2015) (which includes the horseshoe and the normal-exponential
gamma), the horseshoe+, the inverse-Gaussian prior, the normal-gamma prior, and the
spike-and-slab Lasso. There are, to the best of our knowledge, no existing results yet
showing that the horseshoe+, the inverse-Gaussian and the normal-gamma priors lead
to posterior contraction at the minimax estimation rate. Posterior concentration for the
horseshoe and horseshoe-type priors were already established in Van der Pas et al. (2014)
and Ghosh and Chakrabarti (2015), and for the spike-and-slab Lasso in Roc̆ková (2015) .
Here, we obtain the same results but thanks to Theorem 2.1 the proofs become extremely
short. In addition, we can show that a restriction on the class of priors considered by
Ghosh and Chakrabarti (2015) can be removed.

2.3.1 Global-local scale mixtures of normals

In Ghosh and Chakrabarti (2015), the priors under consideration are normal priors with
random variances of the form

θi | σ
2
i ,τ

2 ∼ N (0,σ 2
i τ

2), σ 2
i ∼ π

′(σ 2
i ), i = 1, . . . ,n,

for priors π ′ with density given by

π ′(σ 2
i ) = K

1
(σ 2

i )
a+1L(σ

2
i ), (2.9)

where K > 0 is a constant and L : (0,∞) → (0,∞) is a non-constant, slowly varying
function, meaning that there exist c0,M ∈ (0,∞) such that L(t ) > c0 for all t ≥ t0 and
supt ∈(0,∞) L(t ) ≤ M . Ghosh and Chakrabarti (2015) prove an equivalent of Theorem 2.1
for these priors, for a ∈ [1/2,1) and τ = (pn/n)

α with α ≥ 1.
The horseshoe prior, with π (u) = (πτ )−1u−1/2 (1 + u/τ 2)−1, is contained in this class

of priors, by taking a = 1/2, L(t ) = t/(1 + t ), and K = 1/π . This class also contains the
normal-exponential-gamma priors of Gri�n and Brown (2005), for which π (u) = λ/γ 2 (1+
u/γ 2)−(λ+1) with parameters λ,γ > 0. This class of priors is of the form (2.9) for the choice
τ = γ , a = λ and L(t ) = (t/(1+t ))1+λ . In Ghosh and Chakrabarti (2015), it is stated that the
three parameter beta normal mixtures, the generalized double Pareto, the inverse gamma
and half-t priors are of the form (2.9) as well.

The global-local scale prior is of the form (2.1) with

π (u) =
Kτ 2a

u1+a L
( u
τ 2

)
.
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We assume that the polynomial decay in u is at least of order 3/2, that is a ≥ 1
2 . In partic-

ular, the horseshoe lies directly at the boundary in this sense. Depending on a,we allow
for di�erent values of τ . If 1

2 ≤ a < 1, we assume τ 2a ≤ (pn/n)
√

log(n/pn ); if a = 1, we
assume τ 2 ≤ pn/n; and if a > 1,we assume τ 2 ≤ (pn/n) log(n/pn ).

Below, we check Conditions 1-3.
Condition 1’: It is enough to show that π ′ is a uniformly regular varying function.

Notice that L is uniformly regular varying and satis�es (2.3) with R = M/c0 and z0 = t0.
If two functions are uniformly regular varying, then also their product, and thus π ′ is
uniformly regular varying.

Condition 2: Because of pn = o(n), τ 2 → 0. Observe that u ≥ t0τ
2 implies L(u/τ 2) ≥ c0

and thus ∫ 1

0
π (u)du ≥

∫ (t0+1)τ 2

t0τ 2
π (u)du ≥

∫ (t0+1)τ 2

t0τ 2

c0Kτ
2a

u1+a du =
c0K

(t0 + 1)1+a .

Condition 3: Since L is bounded in sup-norm by M , and sn ≥ τ
2,we �nd that π (u) ≤

KMτ 2au−1−a , for all u ≥ sn .With this bound, it is straightforward to verify Condition 3.
Thus, we can apply Theorem 2.1. �
In particular, the posterior concentration theorem holds even more generally than

shown by Ghosh and Chakrabarti (2015), as the restriction a < 1 can be removed. Thus,
for example, we recover Theorem 1.3 of Chapter 1 and in addition, �nd that the normal-
exponential-gamma prior of Gri�n and Brown (2005) contracts at at most the minimax
rate for γ = pn/n and any λ ≥ 1/2.

2.3.2 The inverse-Gaussian prior
Caron and Doucet Caron and Doucet (2008) propose to use the inverse-Gaussian distri-
bution as prior for σ 2. For positive constants b and τ the variance σ 2 is drawn from an
inverse Gaussian distribution with mean

√
2τ and shape parameter

√
2b. Thus the prior

on the components is of the form (2.1) with

π (u) =
Cb,ττ

u3/2 e−
τ 2
u −bu ,

whereCb,τ = e2
√
bτ /
√
π is the normalization factor. (In the notation of Caron and Doucet

(2008), this corresponds to reparametrizing γ =
√

2b, α/n =
√

2τ , and K = n is the dimen-
sion of the unknown mean vector.) As τ becomes small the distribution is concentrated
near zero. Caron and Doucet (2008) suggests to take τ proportional to 1/n, and we �nd
that optimal rates can be achieved if (pn/n)K . τ ≤ (pn/n)

√
log(n/pn ) for some K > 1.

Below we verify Condition 1 and Condition A, which together imply Theorem 2.1. The
inverse-Gaussian prior does not �t within the class considered by
Ghosh and Chakrabarti (2015), because of the additional exponential factors.

Condition 1: For u ≥ 1, e−1 ≤ e−τ
2/u ≤ 1. Thus, u 7→ e−τ

2/u is uniformly regular
varying with constants R = e and z0 = 1. Since products of uniformly regular varying
functions are again uniformly regular varying, we can write π (u) = Ln (u)e

−bu with Ln
uniformly regular varying.
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For u ≥ 1, π (u) ≥ π −1/2e−1τu−3/2e−bu , using the explicit expression for the constant
Cb,τ . Thus, (2.4) holds with b ′ > b,K = α , z∗ = 1, and C ′ a su�ciently large constant.

Condition A: Observe that π (u) ≤ Cb,1τu
−3/2.

Hence, the statement of Theorem 2.1 follows. �

2.3.3 The horseshoe+ prior
The horseshoe+ prior was introduced by Bhadra et al. (2015). It is an extension of the
horseshoe including an additional latent variable. A Cauchy random variable with pa-
rameter λ that is conditioned to be positive is said to be half-Cauchy and we writeC+ (0,λ)
for its distribution. The horseshoe+ prior can be de�ned via the hierarchical construction

θi | σi ∼ N (0,σ 2
i ), σi | ηi ,τ ∼ C

+ (0,τηi ), ηi ∼ C
+ (0,1).

and should be compared to the horseshoe prior

θi | σi ∼ N (0,σ 2
i ), σi | τ ∼ C

+ (0,τ ).

The additional variable ηi allows for another level of shrinkage, a role which falls solely
to τ in the horseshoe prior. In Bhadra et al. (2015), the claim is made that the horseshoe+
is an improvement over the horseshoe in several senses, but no posterior concentration
results are known so far. With Theorem 2.1, we can show that the horseshoe+ enjoys the
same upper bound on the posterior contraction rate as the horseshoe, if (pn/n)K . τ .
(pn/n) (log(n/pn ))−1/2, for some K > 1.

The horseshoe+ prior is of the form (2.1) with

π (u) =
τ

π 2
log(u/τ 2)

(u − τ 2)u1/2 .

Below, we verify Conditions 1-3.
Condition 1: Write π (u) = Ln (u), that is, b = 0. Let us show that Ln is uniformly

regular varying. For that de�ne u0 := 2. For u > u0, and τ 2 ≤ 1 we have u/2 ≤ u − τ 2 ≤ u,
thus

1
2a
−3/2 log(u/τ 2) + log(a)

log(u/τ 2)
≤
π (au)

π (u)
≤ 2a−3/2 log(u/τ 2) + log(a)

log(u/τ 2)
.

Since
1 ≤ log(u/τ 2) + log(a)

log(u/τ 2)
≤ 2,

Ln is regular varying. To check the second part of the assumption, observe that π (u) ≥
π −1τu−3/2 log(u/τ 2). For any K > α and any b ′ > 0,

π (u)eb
′u & τ log(1/τ ) ≥

(pn
n

)K
, for all u ≥ u0.

Thus, Condition 1 holds.
Condition 2: Observe that∫ 1

0
π (u)du ≥

τ

π 2

∫ τ 2/2

0

log(τ 2/u)

(τ 2 − u)u1/2du ≥
τ

π 2
1

(τ 2/2)3/2 ·
τ 2

2 log 1
2 & 1.
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Condition 3: For any u ≥ sn we can use (u − τ 2) ≥ u/2. This shows that

π (u) ≤
τ log(u)
u3/2 + τ log(1/τ 2)

u3/2 , for all u ≥ sn .

In particular, π (u) . τ log(n/pn )/u3/2 for sn ≤ u ≤ b2
n . For the integral on [b2

n,∞), we
use that d

du − (log(u) + 1)/u = log(u)/u2. Together, Condition 3 follows thanks to τ .
(pn/n)/

√
log(n/pn ).

Thus, Theorem 2.1 can be applied. �

2.3.4 Normal-gamma prior
The normal-gamma prior, discussed by Caron and Doucet (2008) and Gri�n and Brown
(2010), takes the following form for shape parameter τ > 0 and rate parameter β > 0:

π (u) =
β τ

Γ(τ )
uτ −1e−βu =

τ β τ

Γ(τ + 1)u
τ −1e−βu .

In Gri�n and Brown (2010), it is observed that decreasing τ leads to a distribution with a
lot of mass near zero, while preserving heavy tails. This is also illustrated in the right-most
panels of Figure 2.1. The class of normal-gamma priors includes the double exponential
prior as a special case, with τ = 1. We now show that the normal-gamma prior satis�es the
conditions of Theorem 2.1 for any �xed β , and for any (pn/n)

K . τ . (pn/n)
√

log(n/pn ) ≤
1 for some �xed K .

Below, we check Conditions 1-3.
Condition 1: We de�ne Ln (u) =

β τ

Γ(τ )u
τ −1, so π (u) = Ln (u)e

−bu with b = β . Note that
since τ → 0, we have that there exist a constantC such thatC−1 ≤ β τ ≤ C . We now prove
that Ln is regular varying. We have

Ln (au)

Ln (u)
= aτ −1.

and thus for all a ∈ [1,2], a−1 ≤ Ln (au)/Ln (u) ≤ 1. In addition for u > u∗ := 1 we have,
using Γ(τ + 1) ≥ Γ(1) = 1,

Ln (u) =
τ β τ

Γ(τ + 1)u
τ −1 ≥

(β ∧ 1)τ
Γ(2)u &

(pn
n

)K 1
u
,

implying π (u) = Ln (u)u
−1e−βu & (pn/n)

Ke−2βu . Thus Condition 1 is satis�ed.
Condition 2:∫ 1

0
π (u)du ≥

(β ∧ 1)e−buτ
Γ(2)

∫ 1

0
uτ −1du =

(β ∧ 1)e−bu

Γ(2) & 1.

Condition 3: Notice that π (u) ≤ (β ∨ 1)τuτ −1, for all u ≤ 1. For u ≥ 1, we �nd
π (u) ≤ (β ∨ 1)τe−βu . Since e−βu decays faster than any polynomial power of u, we see
that Condition 3 holds thanks to bnτ . sn .

Thus, we can apply Theorem 2.1.
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In Gri�n and Brown (2010), it is discussed that the extra modelling �exibility a�orded
by generalizing the double exponential prior to include the parameter τ is essential, and
indeed the double exponential (τ = 1) does not allow a dependence on pn and n such that
our conditions are met.

2.3.5 Spike-and-slab Lasso prior

The spike-and-slab Lasso prior was introduced by Roc̆ková (2015). It may be viewed as
a continuous version of the usual spike-and-slab prior with a Laplace slab, as studied in
Castillo et al. (2015); Castillo and Van der Vaart (2012), where the spike component has
been replaced by a very concentrated Laplace distribution. Recent theoretical results,
including posterior concentration at the minimax rate, have been obtained in Roc̆ková
(2015). Here, we recover Corollary 6.1 of Roc̆ková (2015).

For a �xed constant a > 0 and a sequence τ → 0,we de�ne the spike-and-slab Lasso
as prior of the form (2.1) with hyperprior

π (u) = ωae−au + (1 − ω) 1
τ
e−

u
τ , u > 0 (2.10)

on the variance. Recall that the Laplace distribution with parameter λ is a scale mixture
of normals where the mixing density is exponential with parameter λ2. Applied to model
(2.1), the prior on θi is thus a mixture of two Laplace distributions with parameter

√
a and

τ −1/2 and mixing weights ω and 1 − ω, respectively and this justi�es the name.
We now prove that the prior satis�es the conditions of Theorem 2.1 for mixing weights

satisfying (pn/n)
K ≤ ω ≤ (pn/n)

√
log(n/pn ) ≤ 1

2 , for some K > 1 and τ = (pn/n)
α with

α ≥ 1.
Condition 1: To prove that Condition 1 holds we rewrite the prior π as

π (u) = e−au
(
aω + 1 − ω

τ
e−u (

1
τ −a)

)
=: e−auLn (u)

For n large enough, we have 1/τ − a > 1/(2τ ). For all u > 1 and for C > 0 a constant
depending only on K and α ,

1 − ω
τ

e−u (
1
τ −a) ≤

1
τ
e−

1
2τ ≤ Cτ

K
α ≤ Cω .

Hence, for su�ciently large n, aω ≤ Ln (u) ≤ (a + C )ω for all u ≥ 1. Thus Ln is regular
varying with u0 = 1. Since also π (u) ≥ aωe−au and ω ≥ (pn/n)

K , Condition 1 holds.
Condition 2:

∫ 1
0 π (u)du ≥ (1 − ω)

∫ τ
0

1
τ e
− u
τ du = (1 − ω) (1 − e−1).

Condition 3: We might split the two mixing components in (2.10) and write π =: π1+π2.
To verify the condition for the �rst component π1,we use that e−au ≤ 1 foru ≤ 1 and that
e−au decays faster than any polynomial for u > 1. In order that Condition 3 is satis�ed,
we need thus ω . (pn/n)

√
log(n/pn ). For π2, there exists a constant C such that π2 (u) ≤

Cτ/u2 for all u ≥ sn, due to sn ≥ τ . Straightforward computations show that π2 satis�es
Condition 3 since τ ≤ pn/n.

Thus, we can apply Theorem 2.1. �
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2.4 Simulation study

To illustrate the point that our conditions are very sharp, we compute the average square
loss for four priors that do not meet our conditions, and compare them with two of the
examples from Section 2.3.

The two priors considered in this simulation study that do meet the conditions are the
horseshoe and the normal-gamma priors, both with τ = pn/n. The four priors that do
not meet the conditions are the Lasso (Laplace prior) with λ = 1 and λ = 2n/ logn (see
Section 2.3.4), and two priors of the form (2.9) of Section 2.3.1 with a = 0.1 and a = 0.4,
L(u) = e−1/u and density,

π (u) ∝ u−(1+a)e−τ
2/u ,

and we take τ = pn/n. This prior will be referred to as a GC (a) prior hereafter. Note that
π does not meet our conditions, as explained in Section 2.3.1.

For each of these priors, we sample from the posterior distribution using a Gibbs Sam-
pling algorithm, following the one proposed for the horseshoe prior by Carvalho et al.
(2010). To do so, we �rst compute the full conditional distributions

p (β |X ,σ 2) =
1

√
2πσ̂ 2

e−
1

2σ̂2 (β− β̂ )
2

p (σ 2 |X ,β ) ∝ (σ 2)−1/2e−
β2

2σ2 π (σ 2),

where σ̂ 2 = σ 2/(1 + σ 2) and β̂ = Xσ 2/(1 + σ 2). The only di�culty is thus sampling
from p (σ 2 |X ,β ). For the horseshoe prior we follow the approach proposed by Carvalho
et al. (2010). We apply a similar method for the normal-gamma prior using the approach
proposed by Damien et al. (1999). Sampling from the GC (a) priors is even simpler given
that in this case p (σ |X ,β ) is an inverse gamma. We compute the mean integrated squared
error (MISE) on 500 replicates of simulated data of size n = 100,250,500,1000. The MISE
is equal to Eθ0

∑
i[(θ̂i − θ0i )

2 + var(θi | X )]. For each n, we �x the number of nonzero
means at pn = 10, and take the nonzero coe�cients equal to 5

√
2 logn. This value is well

past the ‘universal threshold’ of
√

2 logn, and thus the signals should be relatively easy to
detect. For each data set, we compute the posterior square loss using 5000 draws from the
posterior with a burn-in of 20%.

The results are presented in Figure 2.2, for all means together and separately for the
nonzero and zero means. Given that pn = 10 is �xed, if the posterior contracts at the
minimax rate, then the integrated square loss should be linear in logn. However, we see
that for both Laplace priors and the GC (a = 0.1) priors, and less so for the GC (a = 0.4)
prior, the slope of the loss grows with n, when it remains steady for the other two consid-
ered priors. In addition, we see the expected trade-o� for the two choices of the tuning
parameter λ for the Lasso. A large value of λ results in strong shrinkage and thus low
MISE on the zero means, but very high MISE on the nonzero means, while a small value
of λ leads to barely any shrinkage, and we observe a relatively low MISE on the nonzero
means but a high MISE on the zero means. The GC (a) prior with a = 0.1 does not per-
form well, because it undershrinks. The same e�ect is visible for a = 0.4, but less so. The
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MISE for pn = 10, all means
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Figure 2.2: The logarithm of the integrated square loss for the Lasso (Laplace) with λ =
2n/ logn and λ = 1, the GC priors of Ghosh and Chakrabarti (2015) discussed in section
2.3.1 with a = 0.1 and a = 0.4, the normal-namma and horseshoe priors plotted against
log logn, computed on 500 replicates of the data for each value of n. From top to bottom:
MISE for all means, for only the pn = 10 nonzero means, and for the (n − pn ) zero means.
The axis labels refer to the original, non-log-transformed scale.
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normal-gamma and horseshoe priors both have low MISE on the zero and nonzero means;
the horseshoe outperforms the normal-gamma because it shrinks the nonzero means less.

These results suggest that the horseshoe and normal-gamma strike a better balance
between shrinking the zero means without a�ecting the nonzero means than the four
priors that do not meet our conditions, leading to lower risk and illustrating that our
conditions are very sharp.

2.5 Discussion

Our main theorem, Theorem 2.1, expands the class of shrinkage priors with theoretical
guarantees for the posterior contraction rate. Not only can it be used to obtain the optimal
posterior contraction rate for the horseshoe+, the inverse-Gaussian and normal-gamma
priors, but the conditions provide some characterization of properties of sparsity priors
that lead to desirable behaviour. Essentially, the tails of the prior on the local variance
should be at least as heavy as Laplace, but not too heavy, and there needs to be a sizable
amount of mass around zero compared to the amount of mass in the tails, in particular
when the underlying mean vector grows to be more sparse.

In Polson and Scott (2010) global-local scale mixtures of normals like (2.5) are dis-
cussed, with a prior on the parameter τ 2. Their guidelines are twofold: the prior on the
local variance σ 2

i should have heavy tails, while the prior on the global variance τ 2 should
have substantial mass around zero. They argue that any prior on σ 2

i with an exponential
tail will force a tradeo� between shrinking the noise towards zero and leaving the large
nonzero means unshrunk, while the shrinkage of large signals will go to zero when a prior
with a polynomial tail is chosen. This matches the intuition behind our conditions, with
the remark that exponential tails are possible, but they should not be lighter than Laplace.

Besides the three discussed goals of recovery, uncertainty quanti�cation, and com-
putational simplicity, we might have mentioned a fourth: performing model selection or
multiple testing. Priors of the type studied in this paper are not directly applicable for
this goal, as the posterior mean will, with probability one, not be exactly equal to zero.
A model selection procedure can be constructed however, for example by thresholding
using the observed values of mx i : if mx i is larger than some constant, we consider the
underlying parameter to be a signal, and otherwise we declare it noise. Such a proce-
dure was proposed for the horseshoe by Carvalho et al. (2010), and was shown to enjoy
good theoretical properties by Datta and Ghosh (2013). Similar results were found for the
horseshoe+ (Bhadra et al., 2015). The same thresholding procedure, and similar analysis
methods, may prove to be fruitful for the more general prior (2.1).

2.6 Proofs

This section contains the proofs of Theorem 2.1 and Theorem 2.2, followed by the state-
ment and proofs of the supporting Lemmas. The proof of Theorem 2.1 follows the same
structure as that of Theorem 1.3 in Chapter 1, but requires more general methods to bound
the integrals involved in the proof.
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In the course of the proofs, we use the following two transformations of π ,

д(z) =
1
z2 π

( 1 − z
z

)
and h(z) =

1
(1 − z)3/2 π

( z

1 − z

)
. (2.11)

The function д is a density on [0,1], resulting from transforming the density π on σ 2
i to a

density for z = (1 + σ 2
i )
−1. The function h is a rescaled version of π .

Lemma 2.3. Condition 1’ implies Condition 1.

Proof. Observe that π (u) = π̃ (u/τ 2)/τ 2. Since by assumption π̃ is uniformly regular vary-
ing, (2.3) holds for some constants R and u0 which do not depend on n. To check the �rst
part of Condition 1, it is enough to see that π̃ (·/τ 2) is uniformly regular varying as well
and satis�es (2.3) with the same constants as π̃ .

It remains to prove a lower bound (2.4). Thanks to τ 2 ≤ 1 and Lemma 2.5, for any
u ≥ u∗ := u0, π̃ (u/τ

2) ≥ π̃ (u0) (τ
2u0/2u)log2 R . This implies the lower bound (2.4) with

K = 2α log2 R,b
′ > 0, and C ′ a su�ciently large constant. �

Proof of Theorem 2.1. Applying Lemma 2.7 gives under Condition 1,∑
i:θ i,0 Eθ i (θi − θ̂i )

2 . pn log(n/pn ) and ∑
i:θ i,0 Eθ i var(θi | X i ) . pn log(n/pn ). These

inequalities combined with Markov’s inequality prove the �rst two statements of the the-
orem. Similarly, under Condition 2 and Condition 3, we obtain from Lemma 2.8 and
Lemma 2.9, Eθ

∑
i:θ i=0 θ̂

2
i ≤ nE0 (XmX )

2 . pn log(n/pn ) and ∑
i:θ i=0 E0 var(θi | X i ) .

pn log(n/pn ). Together with Markov’s inequality, this proves the third and fourth state-
ment of the theorem. �

Proof of Theorem 2.2. Without loss of generality, we can take κn such that κn ≥ n−1/4

for all n. Consider the prior, where θi is drawn from the Laplace density with parameter
λ =
√
sn/κn . This prior is of the form (2.1) with π (u) = λ2e−λ

2u (cf. Section 2.2.1). Theorem
7 in Castillo et al. (2015) shows that (2.8) holds with Mn = 1/κn → ∞. Thus it remains to
prove that π satis�es Condition 2 and Condition 3(κn).

Condition 2 follows immediately. For Condition 3(κn) observe that due to κn ≥ n−1/4,

λ ≥ n1/4/
√

logn. Splitting the integral
∫ λ2

0 =
∫ 1

0 +
∫ λ2

1 , we �nd κn
∫ 1
sn
uπ (u)du

≤ κn
∫ 1

0 uλ2e−λ
2udu ≤ κnλ

−2
∫ λ2

0 ve−vdv . κnλ
−2 = sn . Also,

∫ b2
n

1 uπ (u)du

= λ−2
∫ b2

nλ
2

λ2 ve−vdv ≤ b2
ne
−λ2
= o(sn ) andb3

n

∫ ∞
1 π (u)/

√
udu ≤ b3

n

∫ ∞
1 π (u)du ≤ b3

ne
−λ2
=

o(sn ). Hence, Condition 3(κn) holds and this completes the proof. �

Lemma 2.4. The posterior variance can be written as

var(θ | x ) =mx − (xmx − x )
2 + x2

∫ 1
0 (1 − z)2h(z)e x2

2 zdz∫ 1
0 h(z)e

x2
2 zdz

(2.12)

and bounded by

var(θ | x ) ≤ 1 + x2

∫ 1
0 (1 − z)2h(z)e x2

2 zdz∫ 1
0 h(z)e

x2
2 zdz

and var(θ | x ) ≤ mx + x2mx . (2.13)
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Proof. By Tweedie’s formula (Robbins, 1956), the posterior variance for θi given an obser-
vation xi is equal to 1 + (d2/dx2) logp (x ) |x=x i , where p (xi ) is the marginal distribution of
xi . Computing

p (x ) =

∫ 1

0

1
√

2π
(1 − z)−3/2e−

x2
2 (1−z)π

( z

1 − z

)
dz,

taking derivatives with respect to x , and substituting h(z) = (1 − z)−3/2π (z/(1 − z)) gives

var(θ | x ) = 1 + x2

∫ 1
0 (1 − z)2h(z)e x2

2 zdz∫ 1
0 h(z)e

x2
2 zdz

−

∫ 1
0 (1 − z)h(z)e x2

2 zdz∫ 1
0 h(z)e

x2
2 zdz

− x2



∫ 1

0 (1 − z)h(z)e x2
2 zdz∫ 1

0 h(z)e
x2
2 zdz




2

.

From that we can derive (2.12) noting that the third term on the r.h.s. is 1 −mx . The last
display also implies the �rst inequality in (2.13). Representation (2.12) together with the
trivial bound (1 − z)2 ≤ (1 − z) for z ∈ [0,1] yields

x2

∫ 1
0 (1 − z)2h(z)e x2

2 zdz∫ 1
0 h(z)e

x2
2 zdz

≤ x2

∫ 1
0 (1 − z)h(z)e x2

2 zdz∫ 1
0 h(z)e

x2
2 zdz

= x2 (1 −mx ).

Combined with (2.12), we �nd var(θ | x ) ≤ mx − x
2m2

x + x2mx ≤ mx + x2mx . �

Lemma 2.5. Suppose that L is uniformly regular varying. If R and u0 are chosen such that
(2.3) holds, then, for any a ≥ 1, and any u ≥ u0,

L(u) ≤ (2a)log2 RL(au),

where log2 denotes the binary logarithm.

Proof. Write a = 2rb with r a non-negative integer and 1 ≤ b < 2. By assumption (2.3)
holds for some R and u0.We apply the upper bound (2.3) repeatedly and obtain for a ≥ 1,
L(u) ≤ RL(2u) ≤ . . . ≤ RrL(2ru) ≤ Rr+1L(au). Since Rr+1 = (2r+1)log2 R ≤ (2a)log2 R , the
result follows. �

Lemma 2.6. Assume that L is uniformly regular varying and satis�es (2.3) with R and u0.
Then, the shifted function L(· − 1) is also uniformly regular varying with constants R3 and
u0 ∨ 2.

Proof. Write

L(az − 1)
L(z − 1) =

L(az − 1)
L(az)

·
L(az)

L(z)
·

L(z)

L(z − 1) .

For z ≥ z0∨2 we apply (2.3) to each of the three fractions and this completes the proof. �
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The following lemma states that if the density д can be decomposed as a product of
a function that is uniformly varying and possibly n dependent, and a factor of the form
z 7→ e−bz , then the posterior recovers the size of the non-zero components of θ with the
minimax estimation rate, provided that the n dependence is of the right order.

Lemma 2.7. If Condition 1 holds, there exists a constant C,which is independent of n, such
that ∑

i:θ i,0
Eθ i (X imX i − θi )

2 ≤ Cpn log(en/pn ), (2.14)

and ∑
i:θ i,0

Eθ i var(θi |X i ) ≤ Cpn log(en/pn ). (2.15)

Proof. We prove the two statements separately. The main argument is a careful analysis
of the integral representation

|x (mx − 1) | = |x |

∫ 1
0 e−

x2
2 zz−1/2π

(
1
z − 1

)
dz∫ 1

0 e−
x2
2 zz−3/2π

(
1
z − 1

)
dz
= |x |

∫ 1
0 e−

x2
2 uu3/2д(u)du∫ 1

0 e−
x2
2 uu1/2д(u)du

(cf. (2.2) and (2.11)). Throughout the remaining proof, let C1 be a generic constant which
is independent of n and which might change from line to line. Without loss of generality,
we may assume that u0 ≥ 2 in Condition 1.

Proof of (2.14): It is enough to show supx>0 |x (mx − 1) | . 1 +
√

log(n/pn ). It is thus
enough to consider the sup over |x | > T0 := 2 + 2(u0 ∨ u∗) +

√
8u0K log(n/pn ), since

otherwise, we simply use |x (mx − 1) | ≤ |x |.
For 0 ≤ a < b ≤ 1, write I (a,b) =

∫ b
a e−

x2
2 uu3/2д(u)du/

∫ 1
0 e−

x2
2 uu1/2д(u)du and for

b ≤ a, set I (a,b) = 0.We need to prove that

I (0,1) = I
(
0, 2b+4
|x |

)
+ I

(
2b+4
|x | ,

1
u0

)
+ I

(
1
u0
,1

)
=: (I ) + (I I ) + (I I I ) .

1
|x |
.

Bound for (I ) : Obviously, I (0,v ) ≤ v for all v ∈ (0,1]. Thus, I
(
0, 2b+4
|x |

)
≤ C1/|x |.

Bound for (I I ) : We �rst derive a lower bound for the denominator. Recall that by
Condition 1, π (u) = Ln (u)e

−bu . De�ne L̃n = Ln (· − 1) and observe that due to |x | ≥ 2u0
we can use Lemma 2.6 and substitute v = u |x |/2 to obtain∫ 1

0
e−

x2
2 uu−3/2π

(
1
u − 1

)
du ≥

∫ 2/ |x |

1/ |x |
e−

x2
2 uu−3/2L̃n

(
1
u

)
e−

b
u +bdu (2.16)

≥
1
4e

b−(1+b) |x | |x |3/2
∫ 2/ |x |

1/ |x |
L̃n

(
1
u

)
du

=
1
4e

b−(1+b) |x | |x |1/22
∫ 1

1/2
L̃n

(
1
v ·

|x |
2

)
dv
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≥
1

4R3 e
b−(1+b) |x | |x |1/2L̃n

(
|x |
2

)
. (2.17)

For the numerator, using Lemma 2.5 with u = |x |/v and a = v/2,∫ u−1
0

(2b+4)/ |x |
e−

x2
2 uu−1/2π

(
1
u − 1

)
du

=

∞∑
k=1

∫ (2b+4+k )/ |x |

(2b+4+k−1)/ |x |
e−

x2
2 uu−1/2L̃n

(
1
u

)
eb−

b
u 1(u ≤ u−1

0 )du

≤ eb
∞∑
k=1

e−
|x |
2 (2b+4+k−1)

(
|x |

2b+4+k−1

)1/2 ∫ (2b+4+k )/ |x |

(2b+4+k−1)/ |x |
L̃n

(
1
u

)
1(u ≤ u−1

0 )du

≤ eb
∞∑
k=1

e−
|x |
2 (2b+2+k ) |x |−1/2

∫ 2b+4+k

2b+4+k−1
L̃n

(
|x |
v

)
1
(
v ≤ |x |

u0

)
dv

≤ e−|x |(b+1) |x |−1/2L̃n
(
|x |
2

)
eb

∞∑
k=1

e−
|x |
2 k (2b + 4 + k )3 log2 R .

The sum ∑∞
k=1 e

−
|x |
2 k (2b + 4 + k )3 log2 R is bounded for |x | > T0. Since by assumption, R

does not depend on n, we �nd I
(

2b+4
|x | ,

1
u0

)
≤ C1/|x |.

Bound for (I I I ) : Since д is a density, we obtain
∫ 1
u−1

0
e−

x2
2 uu3/2д(u)du ≤ e−x

2/(2u0 ) . For
the denominator, we �nd using (2.17), |x | ≥ 2 + 2u∗, and Condition 1,∫ 1

0
e−

x2
2 uu−3/2π

(
1
u − 1

)
du ≥

1
4R3 e

−(1+ b
2 ) |x | |x |1/2π

(
|x |
2 − 1

)
≥

1
4R3C ′

( pn
n

)K
e−(1+b+b ′) |x | |x |1/2.

Combining this with the upper bound and (1 +b +b ′) |x | ≤ (1 +b +b ′)2u0 + x2/(4u0) gives

I
(

1
u0
,1

)
≤ 4C ′R3

(
n
pn

)K
|x |−1/2e (1+b+b ′)2u0e−x

2/(4u0 ) .

Using that x 7→ |x |1/2e−x
2/(8u0 ) is bounded and |x | > T0 yields I

(
1
u0
,1

)
≤ C1/|x |.

The result for (2.14) follows by combining the bounds (I ) − (I I I ).
Proof of (2.15): Recall that (2.13) uses h(u) = (1 − u)−3/2π (u/(1 − u)). With (2.11),

h(1 − u) = u−3/2π ((1 − u)/u) = u1/2д(u). Therefore, we �nd

var(θ |x ) ≤ 1 + x2

∫ 1
0 e−

x2
2 uu5/2д(u)du∫ 1

0 e−
x2
2 uu1/2д(u)du

.

Arguing as for (2.14) completes the proof. �

Next, we provide the technical lemmas establishing the rate for the zero coe�cients.
Recall that sn = (pn/n) log(n/pn ) and de�ne

qn := pn
n

√
log(n/pn ). (2.18)
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Suppose that Condition 2 and Condition 3 hold with constants c andC, respectively. With
(2.2),

mx :=

∫ ∞
0

u
(1+u)3/2 e

x2u
2+2u π (u)du∫ ∞

0
1

(1+u)1/2 e
x2u
2+2u π (u)du

≤ sn +
√

2
c

∫ ∞

sn

ue
x2u
2+2u

(1 + u)3/2 π (u)du

≤ sn
(
1 +
√

2C
c

e
x2
4
)

+
√

2
c

∫ ∞

1

ue
x2u
2+2u

(1 + u)3/2 π (u)du

≤ sn
(
1 +
√

2C
c

e
x2
4
)

+
√

8C
c

qne
x2
2 , (2.19)

where for the last inequality, we split the integral
∫ ∞

1 =
∫ log(n/pn )

1 +
∫ ∞

log(n/pn )
and used

Condition 3 twice. These inequality will be very useful for the proofs below. For the vari-
ance bound, the last bound is not sharp enough and we need to work with the upper bound
induced by the second inequality.

Lemma 2.8. Work under Condition 2 and Condition 3. Then,

E0 (XmX )
2 .

pn
n

log(n/pn ).

Proof. Let qn be as in (2.18) and set an :=
√

2 log(1/qn ). Decompose

E0 (XmX )
2 = E0 (XmX )

21{|X | ≤ an} + E0 (XmX )
21{|X | > an} =: I1 + I2.

To bound the term I1, (2.19) and x2ex
2/2 ≤ d

dx [xex2/2] yield

I1 . s2
n

∫ an

−an
x2dx + q2

n

∫ an

−an
x2ex

2/2dx . s2
na

3
n + q2

nane
a2
n /2.

There is a constant only depending on K such that x2 logK (1/x ) ≤ CKx for all x ≤ 1.
Thus, I1 . (pn/n) log(n/pn ).

In order to bound I2, we use mx ≤ 1, d
dx [−xe−x2/2] = −e−x2/2 + x2e−x

2/2 and Mills’
ratio,

I2 ≤ E0X
21{|X | > an} = 2

∫ ∞

an
x2ϕ (x )dx

= 2[−xϕ (x )]∞an +
∫ ∞

an
ϕ (x )dx ≤ e−a

2
n /2 (2an + 1).

Plugging the expression for an into the r.h.s. shows that I2 . (pn/n) log(n/pn ) as well and
this �nally gives E0 (XmX )

2 . (pn/n) log(n/pn ). �
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Lemma 2.9. Work under Conditions 2 and 3. Then,

n∑
i:θ i=0

E0 var(θi | X i ) . pn log(n/pn ).

Proof. Let an =
√

2 log(n/pn ). It is enough to show that E0 var(θ | X ) . pn log(n/pn )/n.
To prove this, we need to treat the cases that |X | is larger/smaller than an , separately. To
bound the variance, we use (2.13), that is var(θ | X ) ≤ mx + x2mx ≤ 1 + x2.

Case |X | > an : Using the identity d/dx[xϕ (x )] = ϕ (x ) − x2ϕ (x ),

E0 var(θ | X )1{ |X |>an } ≤ 2
∫ ∞

an
(1 + x2)ϕ (x )dx = 2Φc (an ) + 2

∫ ∞

an
x2ϕ (x )dx

= 4Φc (an ) + 2[−xϕ (x )]∞an ≤ 4ϕ (an ) + 2anϕ (an ). (2.20)

Using the expression for an shows that this can be bounded by (pn/n)
√

log(n/pn ).
Case |X | ≤ an : Notice that the variance bound implies var(θ | X ) ≤ mx1{|x | ≤

1} + 2x2mx . Below, we estimate E0mX1{|X | ≤ 1} and E0X
2mX1{|X | ≤ an}. For the �rst

term, using (2.19),

E0mX1{|X | ≤ 1} .
∫ 1

−1
(sne

x2/4 + qne
x2/2)ϕ (x )dx ≤ 4sn . (2.21)

For the second term E0X
2mX1{|X | ≤ an}, we use the second inequality in (2.19) and �nd

E0X
2mX1{|X | ≤ an} . sn

∫ an

−an
x2e

x2
4 ϕ (x )dx

+
∫ an

−an

∫ ∞

1

uπ (u)

(1 + u)3/2x
2e−

x2
2+2u dudx .

The �rst integral is bounded by a constant and for the second integral, we use Fubini’s
theorem, substitute y = x/

√
1 + u, and use Condition 3∫ an

−an

∫ ∞

1

uπ (u)

(1 + u)3/2x
2e−

x2
2+2u dudx =

∫ ∞

1
uπ (u)

∫ an /
√

1+u

−an /
√

1+u
y2e−

y2
2 dydu

≤

∫ ∞

1
uπ (u)

[( an
√

1 + u

)3
∧
√

2π
]
du

≤ 23/2Csn .

Together with (2.21) this shows that E0 var(θ | X )1{|X | ≤ an} . sn . Since in both cases
the upper bound is of order (pn/n) log(n/pn ) the result follows. �
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3
Adaptive inference and

uncertainty quanti�cation for
the horseshoe

hyperprior
Abstract
We investigate the frequentist properties of Bayesian procedures for estimation and uncer-
tainty quanti�cation based on the horseshoe prior. We consider the sparse multivariate mean
model and consider both the hierarchical Bayes method of putting a prior on the unknown
sparsity level and the empirical Bayes method with the sparsity level estimated by maximum
marginal likelihood. We show that both Bayesian techniques lead to rate-adaptive optimal
posterior contraction. We also investigate the frequentist coverage of Bayesian credible sets
resulting from the horseshoe prior, both when the sparsity level is set by an oracle and when
it is set by hierarchical or empirical Bayes. We show that credible balls and marginal credible
intervals have good frequentist coverage and optimal size if the sparsity level of the prior is
set correctly. By general theory honest con�dence sets cannot adapt in size to an unknown
sparsity level. Accordingly the hierarchical and empirical Bayes credible sets based on the
horseshoe prior are not honest over the full parameter space. We show that this is due to over-
shrinkage for certain parameters and characterise the set of parameters for which credible
balls and marginal credible intervals do give correct uncertainty quanti�cation. In particular
we show that the fraction of false discoveries by the marginal Bayesian procedure is controlled

This chapter has been submitted as: S. van der Pas, B. Szabó and A. van der Vaart. How many needles in the
haystack? Adaptive inference and uncertainty quanti�cation for the horseshoe. The research leading to these
results has received funding from the European Research Council under ERC Grant Agreement 320637.
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by a correct choice of cut-o�.

3.1 Introduction

The rise of big datasets with few signals, such as gene expression data and astronomical
images, has given an impulse to the study of sparse models. The sequence model, or sparse
normal means problem, is well studied. In this model, a random vector Y n = (Y1, . . . ,Yn )
with values in Rn is observed, and each single observation Yi is the sum of a �xed mean
and standard normal noise:

Yi = θ0,i + εi , i = 1, . . . ,n, (3.1)

where the εi are independent standard normal variables. We perform inference on the
mean vector θ0 = (θ0,1, . . . ,θ0,n ), and assume it to be sparse in the nearly black sense,
meaning that all except an unknown number pn =

∑n
i=1 1{θ0,i , 0} of the means are zero.

We assume that pn increases with n, but not as fast as n: pn → ∞ and pn/n → 0 as n tends
to in�nity.

Many methods to recover θ0 have been suggested. Those most directly related to this
work are Bhadra et al. (2015); Bhattacharya et al. (2014); Caron and Doucet (2008); Castillo
et al. (2015); Castillo and Van der Vaart (2012); Ghosh and Chakrabarti (2015); Gri�n and
Brown (2010); Jiang and Zhang (2009); Johnson and Rossell (2010); Johnstone and Silver-
man (2004); Roc̆ková (2015); Tibshirani (1996). In the present paper we study the Bayesian
method based on the horseshoe prior (Carvalho et al., 2009, 2010; Polson and Scott, 2012a,b;
Scott, 2011). Under this prior the coordinates θ1, . . . ,θn are an i.i.d. sample from a scale
mixture of normals with a half-Cauchy prior on the variance, as follows. Given a “global
hyperparameter” τ ,

θi | λi ,τ ∼ N (0,λ2
iτ

2),

λi ∼ C
+ (0,1), i = 1, . . . ,n.

(3.2)

In the Bayesian model the observations Yi follow (3.1) with θ0 taken equal to θ . The pos-
terior distribution is then as usual obtained as the conditional distribution of θ given Y n .
For a given value of τ , possibly determined by an empirical Bayes method, aspects of the
posterior distribution of θ , such as its mean and variance, can be computed with the help
of analytic formulas and numerical integration (Van der Pas et al., 2014; Polson and Scott,
2012a,b). It is also possible to equip τ with a hyperprior, and follow a hierarchical, full
Bayes approach. Several MCMC samplers and a software package are available for com-
putation of the posterior distribution (Gramacy, 2014; Makalic and Schmidt, 2015; Scott,
2010).

The horseshoe posterior has performed well in simulations (Armagan et al., 2013; Bhat-
tacharya et al., 2014; Carvalho et al., 2009, 2010; Polson and Scott, 2010, 2012a). Theoretical
investigation in Van der Pas et al. (2014) shows that the parameter τ can, up to a logarith-
mic factor, be interpreted as the fraction of nonzero parameters θi . In particular, if τ is
chosen to be at most of the order (pn/n)

√
logn/pn , then the horseshoe posterior contracts

to the true parameter at the (near) minimax rate of recovery for quadratic loss over sparse
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models (Van der Pas et al., 2014). While motivated by these good properties, we also be-
lieve that the results obtained give insight in the performance of Bayesian procedures for
sparsity in general.

In the present paper we make four novel contributions. First and second we establish
the contraction rates of the posterior distributions of θ in the hierarchical, full Bayes case
and in the general empirical Bayes case. Third we study the particular empirical Bayes
method of estimating τ by the method of maximum Bayesian marginal likelihood. Fourth
we study the capability of the posterior distribution for uncertainty quanti�cation, in both
the hierarchical and empirical Bayes cases.

As the parameter τ can be viewed as measuring sparsity, the �rst two contributions
are both focused on adaptation to the number pn of nonzero means, which is unlikely
to be known in practice. The hierarchical and empirical Bayes methods studied here are
shown to have similar performance, both in theory and in a small simulation study, and
appear to outperform the ad-hoc estimator introduced in Van der Pas et al. (2014). The
horseshoe posterior attains similar contraction rates as the spike-and-slab priors, as ob-
tained in Castillo et al. (2015); Castillo and Van der Vaart (2012); Johnstone and Silverman
(2004), and two-component mixtures, as in Roc̆ková (2015). We obtain these results under
general conditions on the hyperprior on τ , and for general empirical Bayes methods.

The conditions for the empirical Bayes method are met in particular by the maximum
marginal likelihood estimator (MMLE). This is the maximum likelihood estimator of τ
under the assumption that the “prior” (3.2) is part of the data-generating model, leaving
only τ as a parameter. The MMLE is a natural estimator and is easy to compute. It turns
out that the “MMLE plug-in posterior distribution” closely mimics the hierarchical Bayes
posterior distribution. Besides practical bene�t, this correspondence provides a theoretical
tool to analyze the hierarchical Bayes method, which need not rely on testing arguments
(as in Ghosal et al. (2000, 2008); Van der Vaart and Van Zanten (2009)).

In the Bayesian framework the spread of the posterior distribution over the parameter
space is used as an indication of the error in estimation. For instance, a set of prescribed
posterior probability around the center of the posterior distribution (a credible set) is often
used in the same way as a con�dence region for the parameter. A main contribution of the
present paper is to investigate this practice for the horseshoe posterior distribution, in its
dependence on the true signal θ0. Besides for credible balls we also study this for credible
intervals based on the marginal posterior distributions.

It follows from general results of Li (1989); Nickl and Van de Geer (2013); Robins and
Van der Vaart (2006) that honest uncertainty quanti�cation is irreconcilable with adap-
tation to sparsity. Here honesty of con�dence sets Ĉn = Ĉn (Y

n ) relative to a parameter
space Θ̃ ⊂ Rn means that

lim inf
n→∞

inf
θ0∈Θ̃

Pθ0 (θ0 ∈ Ĉn ) ≥ 1 − α ,

for some prescribed con�dence level 1 − α . Furthermore, adaptation to a partition Θ̃ =
∪p∈PΘp of the parameter space into submodels Θp indexed by a hyperparameter p ∈ P ,
means that, for every p ∈ P and for rn,p the (near) minimax rate of estimation relative to
Θp ,

lim inf
n→∞

inf
θ0∈Θp

Pθ0 (diam(Ĉn ) ≤ rn,p ) = 1.
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This second property ensures that the good coverage is not achieved by taking conser-
vative, overly large con�dence sets, but that these sets have “optimal” diameter. In our
present situation we may choose the modelsΘp equal to nearly black bodies withp nonzero
coordinates, in which case r 2

n,p � p log(n/p), if p � n. Now it is shown in Li (1989) that
con�dence regions that are honest over all parameters in Θ̃ = Rn cannot be of square
diameter smaller than n1/2, which can be (much) bigger than p log(n/p), if p � n. Similar
restrictions are valid for honesty over subsets ofRn , as follows from testing arguments (see
the appendix in Robins and Van der Vaart (2006)). Speci�cally, in Nickl and Van de Geer
(2013) it is shown that con�dence regions that adapt in size to nearly black bodies of two
di�erent dimensions pn,1 � pn,2 cannot be honest over the union of these two bodies, but
only over the union of the smallest body and the vectors in the bigger body that are at
some distance from the smaller body. As both the full Bayes and empirical Bayes horse-
shoe posteriors contract at the near minimax rate rn,p , adaptively over every nearly black
body, it follows that their credible balls cannot be honest in the full parameter space.

In Bayesian practice credible balls are nevertheless used as if they were con�dence
sets. A main contribution of the present paper is to investigate for which parameters θ0
this practice is justi�ed. We characterise the parameters for which the credible sets of the
horseshoe posterior distribution give good frequentist coverage, and the ones for which
they do not. We investigate this both for the empirical and hierarchical Bayes approaches,
both when τ is set deterministically, and in adaptive settings where the number of nonzero
means is unknown. In the case of deterministically chosen τ , uncertainty quanti�cation
is essentially correct provided τ is chosen not smaller than (pn/n)

√
logn/pn . For the more

interesting full and empirical Bayes approaches, the correctness depends on the sizes of the
nonzero coordinates in θ0. If a fraction of the nonzero coordinates is detectable, meaning
that they exceed the “threshold”

√
2 log(n/p), then uncertainty quanti�cation by a credible

ball is correct up to a multiplicative factor in the radius. More generally, this is true if the
sum of squares of the non-detectable nonzero coordinates is suitably dominated, as in
Belitser and Nurushev (2015).

Uncertainty quanti�cation for single coordinates θ0,i by marginal credible intervals is
quite natural. Credible intervals can be easily visualised by plotting them versus the in-
dex (cf. Figure 3.2). They may also be used as a testing device, for instance by declaring
coordinates i for which the credible interval does not contain 0 to be discoveries. We show
that the validity of these intervals depends on the value of the true coordinate. On the
positive side we show that marginal credible intervals for coordinates θ0,i that are either
close to zero or above the detection boundary are essentially correct. In particular, the
fraction of false discoveries (referring to zero θ0,i that are declared nonzero) can be con-
trolled by slightly enlarging the length of the intervals. On the negative side the horseshoe
posteriors shrink intervals for intermediate values too much to zero for good frequentist
coverage. Di�erent from the case of credible balls, these conclusions are hardly a�ected
by whether the sparseness level τ is set by an oracle or adaptively, based on the data.

We conclude that the uncertainty quanti�cation given by the horseshoe posterior dis-
tribution is “honest” only conditionally on certain prior assumptions on the parameters. In
contrast, interesting recent work within the context of the sparse linear regression model is
directed at obtaining con�dence sets that are honest in the full parameter set (Van de Geer
et al., 2014; Liu and Yu, 2013; Zhang and Zhang, 2014). The resulting methodology, appro-
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priately referred to as “de-sparsi�cation”, might in our present very special case of the
regression model reduce to con�dence sets for θ0 based on the trivial pivot Y n − θ0, or
functions thereof, such as marginals. These con�dence sets would have uniformly correct
coverage, but be very wide, and not employ the presumed sparsity of the parameter. This
seems a high price to pay; sacri�cing some coverage so as to retain some shrinkage may
not be unreasonable. Our contribution here is to investigate in what way the horseshoe
prior makes this trade-o�.

Uncertainty quanti�cation in the case of the sparse normal mean model was addressed
also in the recent paper by Belitser and Nurushev (2015). These authors consider a mixed
Bayesian-frequentist procedure, which leads to a mixture over sets I ⊂ {1,2, . . . ,n} of pro-
jection estimators (Yi1i∈I ), where the weights over I have a Bayesian interpretation and
each projection estimator comes with a distribution. Treating this as a posterior distribu-
tion, the authors obtain credible balls for the parameter, which they show to be honest over
parameter vectors θ0 that satisfy an “excessive-bias restriction”. This interesting procedure
has similar properties as the horseshoe posterior distribution studied in the present paper.
While initially we had derived our results under a stronger “self-similarity” condition,
we present here the results under a slight weakening of the “excessive-bias restriction”
introduced in Belitser and Nurushev (2015).

The performance of adaptive Bayesian methods for uncertainty quanti�cation for the
estimation of functions has been previously considered in Castillo and Nickl (2014); Ray
(2014); Serra and Krivobokova (2014); Szabó et al. (2015a); Szabó et al. (2015b), Belitser
(2014); Sniekers and Van der Vaart (2015a,b,c). These papers focus on adaptation to func-
tions of varying regularity. This runs into similar problems of honesty of credible sets,
but the ordering by regularity sets the results apart from the adaptation to sparsity in the
present paper.

The paper is organized as follows. We �rst introduce the MMLE in Section 3.2. Next we
present contraction rates in Section 3.3, for general empirical and hierarchical Bayes ap-
proaches, and speci�cally for the MMLE. Coverage of credible balls and marginal credible
intervals, again for general empirical and hierarchical Bayes approaches, and the MMLE in
particular, are stated in Section 3.4. We illustrate the coverage properties of the marginal
credible sets computed by empirical and hierarchical Bayes methods in a simulation study
in Section 3.5. We conclude with Section 3.6, containing all proofs not given in the main
text.

3.1.1 Notation
We use Π(· |Y n,τ ) for the posterior distribution of θ relative to the prior (3.2) given �xed τ ,
and Π(· |Y n ) for the posterior distribution in the hierarchical setup where τ has received a
prior. The empirical Bayes “plug-in posterior” is the �rst object with a data-based variable
τ̂ substituted for τ . In order to stress that this does not entail conditioning on τ̂ , we also
write Πτ (· |Y

n ) for Π(· |Y n,τ ), and then Πτ̂ (· |Y
n ) is the empirical Bayes (or plug-in)

posterior distribution.
The density of the standard normal distribution is denoted by φ. Furthermore, `0[p] =

{θ ∈ Rn : ∑n
i=1 1{θi , 0} ≤ p} denotes the class of nearly black vectors, and we abbreviate

ζτ =
√

2 log(1/τ ), τn (p) = (p/n)
√

log(n/p), τn = τn (pn ).
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3.2 Maximummarginal likelihood estimator

In this Section we de�ne the MMLE and compare it to a naive empirical Bayes estimator
previously suggested in Van der Pas et al. (2014). In Sections 3.3.1 and 3.4.2 we show that
the MMLE is close to the “optimal” value τn (pn ) = (pn/n)

√
log(n/pn ) with high probability,

leads to posterior contraction at the near-minimax rate, and yields adaptive con�dence sets
for selected parameters.

The marginal prior density of a parameter θi in the model (3.2) is given by

дτ (θ ) =

∫ ∞

0
φ

(
θ

λτ

)
1
λτ

2
π (1 + λ2)

dλ. (3.3)

In the Bayesian model the observations Yi are distributed according to the convolution
of this density and the standard normal density. The MMLE is the maximum likelihood
estimator of τ in this latter model, given by

τ̂M = argmax
τ ∈[1/n,1]

n∏
i=1

∫ ∞

−∞

φ (yi − θ )дτ (θ ) dθ . (3.4)

The restriction of the MMLE to the interval [1/n,1] can be motivated by the interpretation
of τ as the level of sparsity, as in Van der Pas et al. (2014), which makes the interval
correspond to assuming that at least one and at most all parameters are nonzero. The
lower bound of 1/n has the additional advantage of preventing computational issues that
arise when τ is very small (Datta and Ghosh (2013); Van der Pas et al. (2014)). We found the
observation in Datta and Ghosh (2013) that an empirical Bayes approach cannot replace
a hierarchical Bayes one, because the estimate of τ tends to be too small, too general. In
both our theoretical study as in our simulation results the restriction that the MMLE be at
least 1/n prevents a collapse to zero. Our simulations, presented in Section 3.5, also give
no reason to believe that the hierarchical Bayes method is inherently better than empirical
Bayes. Indeed, they behave very similarly (depending on the prior on τ ).

An interpretation of τ as the fraction of nonzero coordinates motivates another esti-
mator (Van der Pas et al. (2014)), which is based on a count of the number of observations
that exceed the “universal threshold”

√
2 logn:

τ̂S (c1,c2) = max

∑n

i=1 1{|yi | ≥
√
c1 logn}

c2n
,
1
n

 , (3.5)

where c1 and c2 are positive constants. If c2 > 1 and (c1 > 2 or c1 = 2 and pn & logn),
then the plug-in posterior distribution with the simple estimator τ̂S (c1,c2) contracts at the
near square minimax rate pn logn (see Section 1.4 in Chapter 1). This also follows from
Theorem 3.2 in the present paper, as τ̂S (c1,c2) satis�es Condition 4 below. On the other
hand, this estimator fails to meet Condition 8 and hence our results on coverage do not
apply to it. It appears that the simple estimator tends to be “too small”.

This is corroborated by the numerical study presented in Figure 3.1. The �gure shows
approximations to the expected values of τ̂S and τ̂M when θ0 is a vector of length n = 100,
with pn coordinates drawn from aN (A,1) distribution, with A ∈ {1,4,7}, and the remain-
ing coordinates drawn from a N (0,1/4) distribution. For this sample size the “universal
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threshold”
√

2 logn is approximately 3, and thus signals with A = 1 should be di�cult to
detect, whereas those with A = 7 should be easy; those with A = 4 represent a boundary
case.
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Figure 3.1: Approximate expected values of the MMLE (3.4) (solid) and the simple esti-
mator (3.5) with c1 = 2 and c2 = 1 (dotted) when pn (horizontal axis) out of n = 100
parameters are drawn from aN (A,1) distribution, and the remaining (n −pn ) parameters
from a N (0,1/4) distribution. The study was conducted with A = 1 (�), A = 4 (•) and
A = 7 (N). The results as shown are the averages over N = 1000 replications.

The �gure shows that in all cases the MMLE (3.4) yields larger estimates of τ than
the simple estimator (3.5), and thus leads to less shrinkage. This is expected in light of the
results in the following section, which show that the MMLE is of order τn (pn ), whereas the
simple estimator is capped at pn/n. Both estimators appear to be linear in the number of
nonzero coordinates of θ0, with di�erent slopes. When the signals are below the universal
threshold, then the simple estimator is unlikely to detect any of them, whereas the MMLE
may still pick up some of the signals. We study the consequences of this for the mean
square errors and credible sets in Section 3.5.

3.3 Contraction rates

In this section we establish the rate of contraction of both the empirical Bayes and full
Bayes posterior distributions. The empirical Bayes posterior is found by replacing τ in the
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posterior distribution Π(· |Y n,τ ) of θ relative to the prior (3.2) with a given τ by a data-
based estimator τ̂ ; we denote this by Πτ̂ (· |Y

n ). The full Bayes posterior Π(· |Y n ) is the
ordinary posterior distribution of θ in the model where τ is also equipped with a prior and
(3.2) is interpreted as the conditional prior of θ given τ .

The rate of contraction refers to properties of these posterior distributions when the
vector Y n follows a normal distribution on Rn with mean θ0 and covariance the identity.
We give general conditions on the empirical Bayes estimator τ̂n and the hyperprior on
τ that ensure that the square posterior rate of contraction to θ0 of the resulting posterior
distributions is the near minimax ratepn logn for estimation of θ0 relative to the Euclidean
norm. We also show that these conditions are met by the MMLE and natural hyperpriors
on τ .

The minimax rate, the usual criterion for point estimators, has proven to be a useful
benchmark for the speed of contraction of posterior distributions as well. The posterior
cannot contract faster to the truth than at the minimax rate (Ghosal et al., 2000). The
square minimax `2-rate for the sparse normal means problem is pn log(n/pn ) (Donoho
et al., 1992). This is slightly faster (i.e. smaller) than pn logn, but equivalent if the true
parameter vector is not very sparse (if pn ≤ nα , for some α < 1, then (1 − α )pn logn ≤
pn log(n/pn ) ≤ pn logn). For adaptive procedures, where the number of nonzero means
pn is unknown, results are usually given in terms of the “near-minimax rate” pn logn, for
example for the spike-and-slab Lasso (Roc̆ková, 2015), the Lasso (Bickel et al., 2009), and
the horseshoe (Van der Pas et al., 2014).

3.3.1 Empirical Bayes
The empirical Bayes posterior distribution achieves the near-minimax contraction rate
provided that the estimator τ̂n of τ satis�es the following condition. Let τn (p)
= (p/n)

√
log(n/p).

Condition 4. There exists a constant C > 0 such that τ̂n ∈ [1/n,Cτn (pn )], with Pθ0 -
probability tending to one, uniformly in θ0 ∈ `0[pn].

This condition is weaker than the condition given in Van der Pas et al. (2014) for `2-
adaptation of the empirical Bayes posterior mean, which requires asymptotic concentra-
tion of τ̂n on the same interval [1/n,Cτn (pn )] but at a rate. In Van der Pas et al. (2014) a
plug-in value for τ of order τn (pn ) was found to be the largest value of τ for which the
posterior distribution contracts at the minimax rate, and has variance of the same order.
Condition 4 can be interpreted as ensuring that τ̂n is of at most this “optimal” order. The
lower bound can be interpreted as assuming that there is at least one nonzero mean, which
is reasonable in light of the assumption pn → ∞. In addition, it prevents computational
issues, as discussed in Section 3.2.

A main result of the present paper is that the MMLE satis�es Condition 4.

Theorem 3.1. The MMLE (3.4) satis�es Condition 4.

Proof. See Appendix 3.6.1. �

A second main result is that under Condition 4 the posterior contracts at the near-
minimax rate.
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Theorem 3.2. For any estimator τ̂n of τ that satis�es Condition 4, the empirical Bayes
posterior distribution contracts around the true parameter at the near-minimax rate: for
any Mn → ∞ and pn → ∞,

sup
θ0∈`0[pn]

Eθ0Πτ̂n

(
θ : ‖θ0 − θ ‖2 ≥ Mn

√
pn logn |Y n

)
→ 0.

In particular, this is true for τ̂n equal to the MMLE.

Proof. See Appendix 3.6.3. �

3.3.2 Hierarchical Bayes
The full Bayes posterior distribution contracts at the near minimax rate whenever the
prior density πn on τ satis�es the following two conditions.

Condition 5. The prior density πn is supported inside [1/n,1].

Condition 6. Let tn = Cuπ
3/2 τn (pn ), with the constantCu as in Lemma 3.28(i). The prior

density πn satis�es ∫ tn

tn /2
πn (τ ) dτ & e−cpn , for some c > Cu/10.

The restriction of the prior distribution to the interval [1/n,1] can be motivated by the
same reasons as discussed under the de�nition of the MMLE in Section 3.2. In our simu-
lations (also see Chapter 1) we have also noted that large values produced by for instance
a sampler using a half-Cauchy prior, as in the original set-up proposed by Carvalho et al.
(2010), were not bene�cial to recovery.

As tn is of the same order as τn (pn ), Condition 6 is similar to Condition 4 in the empir-
ical Bayes case. It requires that there is su�cient prior mass around the “optimal” values
of τ . The condition is satis�ed by many prior densities, including the usual ones, except
in the very sparse case that pn . logn, when it requires that πn is unbounded near zero.
For this situation we also introduce the following weaker condition, which is still good
enough for a contraction rate with additional logarithmic factors.

Condition 7. For tn as in Condition 6 the prior density πn satis�es,∫ tn

tn /2
πn (τ ) dτ & tn .

Example 3.3. The Cauchy distribution on the positive reals, truncated to [1/n,1], has
density πn (τ ) = (arctan(1) − arctan(1/n))−1 (1 +τ 2)−11τ ∈[1/n,1]. This satis�es Condition 5,
of course, and Condition 7. It also satis�es the stronger Condition 6 provided tn ≥ e−cpn ,
i.e. pn ≥ C logn, for a su�ciently large C .

Example 3.4. For the uniform prior on [1/n,1], with density πn (τ ) = n/(n − 1)1τ ∈[1/n,1],
the same conclusions hold.
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Example 3.5. For the prior with density πn (x ) ∝ 1/x on [1/n,1], Conditions 5 and 6 hold
provided pn � loglogn.

The following lemma is a crucial ingredient of the derivation of the contraction rate.
It shows that the posterior distribution of τ will concentrate its mass at most a constant
multiple of tn away from zero. We denote the posterior distribution of τ by the same
general symbol Π(· |Y n ).

Lemma 3.6. If Conditions 5 and 6 hold, then

inf
θ0∈`0[pn]

Eθ0Π(τ : τ ≤ 5tn |Y n ) → 1.

Furthermore, if only Conditions 5 and 7 hold, then a similar assertion is true, but with 5tn
replaced by (logn)tn .

Proof. See Appendix 3.6.3. �

We are ready to state the posterior contraction result for the full Bayes posterior.

Theorem 3.7. If the prior on τ satis�es Conditions 5 and 6, then the hierarchical Bayes
posterior contracts to the true parameter at the near minimax rate: for any Mn → ∞ and
pn → ∞,

sup
θ0∈`0[pn]

Eθ0Π(θ : ‖θ − θ0‖2 ≥ Mn
√
pn logn |Y n ) → 0.

If the prior on τ satis�es only Conditions 5 and 7, then this is true with
√
pn logn replaced

by √pn logn.

Proof. Using the notation rn =
√
pn logn, we can decompose the left side of the preceding

display as

Eθ0

[∫
τ ≤5tn

+
∫
τ>5tn

]
Πτ (θ : ‖θ − θ0‖2 ≥ Mnrn |Y

n ) π (τ |Y n ) dτ

≤ Eθ0 sup
τ ≤5tn

Πτ (θ : ‖θ − θ0‖2 ≥ Mnrn |Y
n ) + Eθ0Π(τ : τ > 5tn |Y n ).

The �rst term on the right tends to zero by Theorem 3.2, and the second by Lemma 3.6. �

3.4 Coverage

By their de�nition credible sets contain a �xed fraction, e.g. 95 %, of the posterior mass.
The diameter of such sets will be at most of the order of the posterior contraction rate.
The upper bounds on the contraction rates of the horseshoe posterior distributions given
in Section 3.3 imply that these are narrow enough to be informative. However, these
bounds do not guarantee that the credible sets will cover the truth. The latter is dependent
on the spread of the posterior mass relative to its distance to the true parameter. For
instance, the bulk of the posterior mass may be highly concentrated inside a ball of radius
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the contraction rate, but within a narrow area of diameter much smaller than its distance
to the true parameter.

In this section we study coverage �rst in the case of deterministic τ and next for the
empirical and full Bayes posterior distributions. We consider both credible balls (for the
full parameter vector θ0 ∈ R

n relative to the Euclidean distance) and credible intervals
(for the individual coordinates θ0,i ). The latter are based on the marginal posterior distri-
butions of the coordinates θi .

In Section 3.4.1 we show that a (slightly enlarged) credible ball centered at the poste-
rior mean covers the truth provided τ is chosen bigger than the “optimal” value τn (pn ).
Furthermore, we show that the marginal credible intervals fall into three categories, de-
pendent on τ . For coordinates θ0,i with absolute value below a multiple of τ or above a
multiple of ζτ the credible intervals will cover, in the sense that within both categories
the fraction of correct intervals is arbitrarily close to 1. On the other hand, none of the
intermediate coordinates θ0,i are covered.

In Section 3.4.2 we consider the case that pn is not known, and the posterior is adapted
to the sparsity level by either the empirical or the full Bayes method. Here the potential
problem for coverage of credible balls is the over-shrinkage of the posterior distributions,
due to a too small value of the MMLE τ̂M or concentration of the posterior distribution of
τ too close to zero. We show that such over-shrinkage does not occur, and both empirical
and hierarchical credible balls cover, if the true parameter θ0 satis�es the “excessive-bias
restriction”, given below. Furthermore, we show that the results for deterministic marginal
credible intervals extend to the adaptive situation for any true parameter θ0, with slight
modi�cation of the boundaries between the three cases of small, intermediate and large
coordinates.

3.4.1 Credible sets for deterministic τ
Given a deterministic hyperparameter τ , possibly depending on n and pn , we consider a
credible ball of the form

Ĉn (L,τ ) =
{
θ : ‖θ − θ̂ (τ )‖2 ≤ Lr̂ (α ,τ )

}
, (3.6)

where θ̂ (τ ) = E(θ |Y n,τ ) is the posterior mean, L a positive constant, and for a given
α ∈ (0,1) the number r̂ (α ,τ ) is determined such that

Π
(
θ : ‖θ − θ̂ (τ )‖2 ≤ r̂ (α ,τ ) |Y n,τ

)
= 1 − α .

Thus r̂ (α ,τ ) is the natural radius of a set of “Bayesian credible level” 1 − α , and L is a
constant, introduced to make up for a di�erence between credible and con�dence levels,
similarly as in Szabó et al. (2015a). (Unlike in the latter paper the radii r̂ (α ,τ ) do depend
on the observation Y n , as indicated by the hat in the notation.)

The following lower bound for r̂ (α ,τ ) in the case that nτ → ∞ is the key to the fre-
quentist coverage. The assumption nτ/ζτ → ∞ is satis�ed for τ of the order the “optimal”
rate τn (pn ) provided pn → ∞ (as we assume).

Lemma 3.8. If nτ/ζτ → ∞, then with Pθ0 -probability tending to one,

r̂ (α ,τ ) ≥ 0.5
√
nτζτ .
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Proof. See Section 3.6.4. �

Theorem 3.9. If τ ≥ τn and τ → 0 and pn → ∞ with pn = o(n), then, there exists a large
enough L > 0 such that

lim inf
n→∞

inf
θ0∈`0[pn]

Pθ0

(
θ0 ∈ Ĉn (L,τ )

)
≥ 1 − α .

Proof. The probability of the complement of the event in the display is equal to Pθ0

(
‖θ0 −

θ̂ (τ )‖2 > L r̂ (α ,τ )
)
. In view of Lemma 3.8 this is bounded by o(1) plus

Pθ0

(
‖θ0 − θ̂ (τ )‖2 > 0.5L

√
nτζτ

)
.
Eθ0 ‖θ̂ (τ ) − θ0‖

2
2

L2nτζτ
.

By Theorem 1.2 of Chapter 1 (or see the proof of Theorem 3.2 below) the numerator on the
right is bounded by a multiple ofpn log(1/τ )+nτ

√
log 1/τ . By the assumption τ ≥ τn ≥ 1/n

the quotient is smaller than α for appropriately large choice of L. �

Marginal credible intervals can be constructed from themarginal posterior distributions
Π(θ : θi ∈ · |Y n,τ ). By the independence of the pairs (θi ,Yi ) given τ , the ith marginal
depends only on the ith observation Yi . We consider intervals of the form

Ĉni (L,τ ) =
{
θi : |θi − θ̂i (τ ) | ≤ Lr̂i (α ,τ )

}
, (3.7)

where θ̂i (τ ) = E(θi |Yi ,τ ) is the marginal posterior mean, L a positive constant, and
r̂i (α ,τ ) is determined so that, for a given 0 < α ≤ 1/2,

Π
(
θi : |θi − θ̂i (τ ) | ≤ r̂i (α ,τ ) |Yi ,τ

)
= 1 − α .

The coverage of these intervals depends crucially on the value of the true coordinate θ0,i .
For given τ → 0, positive constants kS , kM , kL and numbers fτ ↑ ∞ as τ → 0, we
distinguish three regions (small, medium and large) of signal parameters:

S :=
{
1 ≤ i ≤ n : |θ0,i | ≤ kSτ

}
,

M :=
{
1 ≤ i ≤ n : fττ ≤ |θ0,i | ≤ kMζτ

}
,

L :=
{
1 ≤ i ≤ n : kLζτ ≤ |θ0,i |

}
.

The conditions on the constants and fτ in the following theorem make that these three
sets may not cover all coordinates θ0,i , but their boundaries are almost contiguous. The
following theorem shows that the fractions of coordinates contained in S and in L that are
covered by the credible intervals are close to 1, whereas no coordinate in M is covered.
Inspection of the proof will show that the latter occurs, because the corresponding inter-
vals are shrunk too much to zero. Since all zero coordinates are in the set S , an overall
conclusion is then that the set of “discoveries”, the coordinates whose credible set does not
contain 0, contains only a small fraction of “false discoveries”. (In our setting the usual
“false discovery rate” is not a useful quantity, as the number of nonzero parameters is a
vanishing fraction of the total set of coordinates by assumption. The quantities considered
in the theorem seem more descriptive of the accuracy of the procedure.)

Let | · | denote the cardinality of a set.
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Theorem 3.10. Suppose that kS > 0, kM < 1, kL > 1, and fτ ↑ ∞, as τ → 0. Then for
τ → 0 and any sequence γn → c for some 0 ≤ c ≤ 1/2, satisfying ζγn � ζτ ,

Pθ0

( 1
|S |
|{i ∈ S : θ0,i ∈ Ĉni (LS ,τ )}| ≥ 1 − γn

)
→ 1, (3.8)

Pθ0

(
θ0,i < Ĉni (L,τ )

)
→ 1, for any L > 0 and i ∈ M , (3.9)

Pθ0

( 1
|L|
|{i ∈ L : θ0,i ∈ Ĉni (LL,τ )}| ≥ 1 − γn

)
→ 1, (3.10)

where LS = (2.1/zα )
[
kS + (2/γn )ζγn /2

]
and LL = (1.1/zα )ζγn /2.

Proof. See Section 3.6.4. �
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Marginal 95% credible sets, empirical Bayes with MMLE

Figure 3.2: 95% marginal credible intervals based on the MMLE empirical Bayes method,
for a single observation Y n of length n = 200 with pn = 10 nonzero parameters, the
�rst 5 (from the left) being 7 (green), the next 5 equal to 1.5 (orange); the remaining 190
parameters are coded (blue). The inserted plot zooms in on credible intervals 5 to 13, thus
showing one large mean and all intermediate means.

Figure 3.2 illustrates Theorem 3.10 by showing the marginal credible sets for just a
single draw of the observation, in a setting withn = 200, andpn = 10 nonzero coordinates.
The value τ was chosen equal to the MMLE, which realised as approximately 0.11. The
means were taken equal to 7, 1.5 or 0, corresponding to the three regions L,M ,S listed in
the theorem (

√
2 logn ≈ 3.3). All the large means (equal to 7) were covered; only 2 out of 5

of the medium means (equal to 1.5) were covered; and all small (zero) means were covered,
in agreement with Theorem 3.10. It may be noted that intervals for zero coordinates are
not necessarily narrow.
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3.4.2 Adaptive credible sets
We now turn to credible sets in the more realistic scenario that the sparsity parameter
pn is not available. We investigate both the empirical Bayes and the hierarchical Bayes
credible sets, and consider both balls and marginal intervals.

In the empirical Bayes approach we de�ne a credible set by plugging in an estimator
τ̂n of τ into the non-adaptive credible ball Ĉn (L,τ ) given in (3.6):

Ĉn (L, τ̂n ) =
{
θ : ‖θ − θ̂ (̂τn )‖2 ≤ Lr̂ (α , τ̂n )

}
. (3.11)

In the hierarchical Bayes case we use a ball around the full posterior mean θ̂ =∫
θ Π(dθ |Y n ), given by

Ĉn (L) =
{
θ : ‖θ − θ̂ ‖2 ≤ Lr̂ (α )

}
, (3.12)

where L is a positive constant and r̂ (α ) is de�ned from the full posterior distribution by

Π
(
θ : ‖θ − θ̂ ‖2 ≤ r̂ (α ) |Y n

)
= 1 − α .

The question is whether these Bayesian credible sets are appropriate for uncertainty quan-
ti�cation from a frequentist point of view.

Unfortunately, coverage can be guaranteed only for a selection of true parameters θ0.
The problem is that a data-based estimate of sparsity may lead to over-shrinkage, which
makes the credible sets too small and close to zero. A simple condition preventing over-
shrinkage is that a su�cient number of nonzero parameters θ0,i is above the “detection
boundary”. It turns out that the correct threshold for detection is given by

√
2 log(n/pn ).

This leads to the following condition.

Assumption 1 (self-similarity). A vector θ0 ∈ `0[p] is called self-similar if

#
(
i : |θ0,i | ≥ A

√
2 log(n/p)

)
≥

p

Cs
. (3.13)

The two constants Cs and A will be �xed to universal values, where necessarily Cs ≥ 1
and it is required that A > 1.

The problem of over-shinkage is comparable to the problem of over-smoothing in the
context of nonparametric density estimation or regression, due to the choice of a too large
bandwidth or smoothness level. The preceding self-similarity condition plays the same
role as the assumptions of “self-similarity” or “polished tail” used by Bull (2012); Giné
and Nickl (2010); Nickl and Szabó (2014); Picard and Tribouley (2000); Sniekers and Van
der Vaart (2015c); Szabó et al. (2015a) in their investigations of con�dence sets in non-
parametric density estimation and regression, or the “excessive-bias” restriction in Belitser
(2014) employed in the context of Besov-regularity classes in the normal mean model.

The self-similarity condition is also reminiscent of the beta-min condition for the adap-
tive Lasso (Bühlmann and Van de Geer, 2011; Van de Geer et al., 2011), which imposes a
lower bound on the nonzero signals in order to achieve consistent selection of the set of
nonzero coordinates of θ0. However, the present condition is di�erent in spirit both by the
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size of the cut-o� and by requiring only that a fraction of the nonzero means is above the
threshold.

For ensuring coverage of credible balls the condition can be weakened to the following
more technical condition.

Assumption 2 (excessive-bias restriction). A vector θ0 ∈ `0[p] satis�es the excessive-bias
restriction for constants A > 1 and Cs ,C > 0, if there exists an integer q ≥ 1 with∑

i: |θ0,i |<A
√

2 log(n/q)

θ 2
0,i ≤ Cq log(n/q), #

(
i : |θ0,i | ≥ A

√
2 log(n/q)

)
≥

q

Cs
. (3.14)

The set of all such vectors θ0 (for �xed constantsA,Cs ,C) is denoted by Θ[p], and p̃ = p̃ (θ0)

denotes #
(
i : |θ0,i | ≥ A

√
2 log(n/q)

)
, for the smallest possible q.

If θ0 ∈ `0[p] is self-similar, then it satis�es the excessive-bias restriction with q = p,
C = 2A2 and the same constants A and Cs . This follows, because the sum in (3.14) is
trivially bounded by #(i : θ0,i , 0)A22 log(n/q).

In the following example we show that the excessive-bias restriction is also implied
by a condition with the same name introduced in Belitser and Nurushev (2015). The lat-
ter condition motivated Assumption 2, which is more suited to our investigation of the
horseshoe credible sets.

Example 3.11. For a given θ0 and any subset I ⊂ {1,2, . . . ,n} let

G (I ) =
∑
i∈I c

θ 2
0,i + 2A2 |I | log ne

|I |
.

In Belitser and Nurushev (2015) θ0 is de�ned to satisfy the excessive-bias restriction if G
takes its minimum at a nonempty set Ĩ such that G (Ĩ ) ≤ C |Ĩ | log(ne/|Ĩ |).

We now show that in this case θ0 also satis�es Assumption 2, with q = |Ĩ |. Let θ0,i
be a coordinate with i ∈ Ĩ of minimal absolute value |θ0,i | = min{|θ0, j | : j ∈ Ĩ }. From
G (Ĩ ) ≤ G (Ĩ − {i}) we obtain that θ 2

0,i ≥ 2A2 |Ĩ | log(ne/|Ĩ |) − 2A2 ( |Ĩ | − 1) log(ne/( |Ĩ | − 1)) ≥
2A2 log(n/|Ĩ |), since the derivative of x 7→ x log(ne/x ) is log(n/x ). Consequently, �rst
#(j : θ 2

0, j ≥ 2A2 log(n/|Ĩ |)) ≥ #(j : θ 2
0, j ≥ θ 2

0,i ) ≥ |Ĩ |, by the minimising property of θ0,i ,
verifying the second inequality in (3.14). Second {j : θ 2

0, j < 2A2 log(n/q)} ⊂ {j : θ 2
0, j <

θ 2
0,i } ⊂ Ĩ c , again by the minimising property of θ0,i . Thus the �rst inequality of (3.14)

follows by the fact that G (Ĩ ) ≤ C |Ĩ | log(ne/|Ĩ |).

To obtain coverage in the empirical Bayes setting, we replace Condition 4 by the fol-
lowing.

Condition 8. The estimator τ̂n satis�es, for a given sequencepn and some constantC > 1,
with p̃ = p̃ (θ0),

inf
θ0∈Θ[pn]

Pθ0

(
C−1τn (p̃) ≤ τ̂n ≤ Cτn (p̃)

)
→ 1.

Although this condition may appear more restrictive than Condition 4, as it requires
a lower bound on τ̂n of order τn (p̃) instead of 1/n, Condition 8 may not be more stringent
than Condition 4, because it only needs to hold for vectors θ0 that meet the excessive-bias
restriction.
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Lemma 3.12. For pn → ∞ such that pn = o(n), the MMLE τ̂n satis�es Condition 8.

Proof. See Section 3.6.1. �

Theorem 3.13. Let p̃n ≤ pn be given sequences with p̃n → ∞ and pn = o(n). If the
estimator τ̂n of τ satis�es Condition 8, then for a su�ciently large constant L the empirical
Bayes credible ball Ĉn (L, τ̂n ) has honest coverage and rate adaptive (oracle) size:

lim inf
n→∞

inf
θ0∈Θ[pn],p̃ (θ0 )≥p̃n

Pθ0

(
θ0 ∈ Ĉn (L, τ̂n )

)
≥ 1 − α ,

inf
θ0∈Θ[pn]

Pθ0

(
diam

(
Ĉn (L, τ̂n )

)
.

√
p̃ log(n/p̃)

)
→ 1.

In particular, these assertions are true for the MMLE. Furthermore, if p̃n ≥ C logn for
a su�ciently large constant C , then the hierarchical Bayes method with τ ∼ πn for πn
probability densities on [1/n,1] that are bounded away from zero also yields adaptive and
honest con�dence sets: for su�ciently large L,

lim inf
n→∞

inf
θ0∈Θ[pn],p̃ (θ0 )≥p̃n

Pθ0

(
θ0 ∈ Ĉn (L)

)
≥ 1 − α ,

inf
θ0∈Θ[pn],p̃ (θ0 )≥p̃n

Pθ0

(
diam

(
Ĉn (L)

)
.

√
p̃ log(n/p̃)

)
→ 1.

Proof. See Section 3.6.5. �

It may be noted that for self-similar θ0 the square diameter of the credible balls is of
the order p log(n/p), improving on the square contraction rate p logn obtained in Theo-
rem 3.2. For parameters satisfying the excessive-bias restriction, this may further improve
to p̃ log(n/p̃).

Adaptive empirical Bayes marginal credible intervals are de�ned by plugging in an
estimator τ̂n for τ in the intervals Ĉni (L,τ ) de�ned by (3.7) in Section 3.4.1. Similarly
full Bayes credible intervals Ĉni (L) are de�ned from the full Bayes marginal posterior
distributions. The following theorem shows that these intervals mimic the behaviour of
the intervals for deterministic τ given in Theorem 3.14. In contrast to the case for credible
balls, for this result the excessive-bias restriction is not required.

For given positive constants kS , kM , kL, and fn the three regions (small, medium and
large) of signal parameters are de�ned as, where pn = #(i : θ0,i , 0},

Sa :=
{
1 ≤ i ≤ n : |θ0,i | ≤ kS/n

}
,

Ma :=
{
1 ≤ i ≤ n : fnτn (pn ) ≤ |θ0,i | ≤ kM

√
2 log(1/τn (pn ))

}
,

La :=
{
1 ≤ i ≤ n : kL

√
2 logn ≤ |θ0,i |

}
.

Theorem 3.14. Suppose that kS > 0, kM < 1, kL > 1, and fn ↑ ∞. If τ̂n satis�es
Condition 4, then for any sequence γn → c for some 0 ≤ c ≤ 1/2 such that ζ 2

γn �

log(1/τn (pn )), we have that

Pθ0

( 1
|Sa |
|{i ∈ Sa : θ0,i ∈ Ĉni (LS , τ̂n )}| ≥ 1 − γn

)
→ 1, (3.15)
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Pθ0

(
θ0,i < Ĉni (L, τ̂n )) → 1, for any L > 0 and i ∈ Ma , (3.16)

Pθ0

( 1
|La |
|{i ∈ La : θ0,i ∈ Ĉni (LL, τ̂n )}|/l ≥ 1 − γn

)
→ 1, (3.17)

with LS and LL given in Theorem 3.10. Under Conditions 5 and 6 and in additionpn & logn
the same statements hold for the hierarchical Bayes marginal credible sets. This is also true
under Conditions 5 and 7 if fn � logn, with di�erent constants LS and LL.

Proof. See Section 3.6.5. �

Remark 3.15. Under the self-similarity assumption (3.13) the statements of Theorem 3.14
hold for the sets S , M and L given preceding Theorem 3.10 with τ = τn (pn ).

3.5 Simulation study

We study the relative performances of the empirical Bayes and hierarchical Bayes ap-
proaches further through simulation studies, extending the simulation study in Chapter 1.
We �rst consider the mean square error (MSE) for empirical Bayes combined with either (i)
the simple estimator (with c1 = 2,c2 = 1) or (ii) the MMLE, and for hierarchical Bayes with
either (iii) a Cauchy prior on τ , or (iv) a Cauchy prior truncated to [1/n,1] on τ . We then
study the coverage and average lengths of the marginal credible intervals resulting from
these four methods, as well as intervals based solely on the posterior mean and variance.

3.5.1 Mean square error
We created a ground truth θ0 of length n = 400 with pn ∈ {20,200}, where each nonzero
mean was �xed to A ∈ {1,2, . . . ,10}. We computed the posterior mean for each of the four
procedures, and approximated the MSE by averaging over N = 100 iterations. The results
are shown in Figure 3.3. In addition the �gure shows the MSE separately for the nonzero
and zero coordinates of θ0, and the average value (of the posterior mean) of τ .

The shapes of the curves of the overall MSE for methods (i) and (iii) were discussed in
Chapter 1. Values close to the threshold

√
2 logn ≈ 3.5 pose the most di�cult problem,

and hierarchical Bayes with a Cauchy prior performs better below the threshold, while
empirical Bayes with the simple estimator performs better above, as the simple estimator
is very close to pn/n in those settings, whereas the values of τ resulting from hierarchical
Bayes are much larger.

Three new features stand out in this comparison, with the MMLE and hierarchical
Bayes with a truncated Cauchy added in, and the opportunity to study the zero and
nonzero means separately. The �rst is that empirical Bayes with the MMLE and hier-
archical Bayes with the Cauchy prior truncated to [1/n,1] behave very similarly, as was
expected from our proofs, in which the comparison of the two methods is fruitfully ex-
plored.

Secondly, while in the most sparse setting (pn = 20), full Bayes with the truncated
and non-truncated Cauchy priors yield very similar results, as the mean value of τ does
not come close to the ‘maximum’ of 1 in either approach, the truncated Cauchy (and the
MMLE) o�er an improvement over the non-truncated Cauchy in the less sparse (pn = 200)
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Figure 3.3: Mean square error (overall, for the nonzero coordinates, and for the zero coor-
dinates) of the posterior mean corresponding to empirical Bayes with the simple estimator
with c1 = 2,c2 = 1 (�) or the MMLE (•) and to hierarchical Bayes with a Cauchy prior on
τ (N) or a Cauchy prior truncated to [1/n,1] (�). The bottom plot shows the average esti-
mated value of τ (or the posterior mean in the case of the hierarchical Bayes approaches).
The settings are n = 400 and pn = 20 (left) and pn = 200 (right); the results are approxi-
mations based on averaging over N = 100 samples for each value of A.



3.5. SIMULATION STUDY 81

setting. The non-truncated Cauchy does lead to lower MSE on the nonzero means close
to the threshold, but overestimates the zero means due to the large values of τ . With the
MMLE and the truncated Cauchy, the restriction to [1/n,1] prevents the marginal posterior
of τ from concentrating too far away from the ’optimal’ values of order τn (pn ), leading to
better estimation results for the zero means, and only slightly higher MSE for the nonzero
means.

Thirdly, the lower MSE of the simple estimator for large values of A in case pn =
20 is mostly due to a small improvement in estimating the zero means, compared to the
truncated Cauchy and the MMLE. As so many of the parameters are zero, this leads to
lower overall MSE. However, close to the threshold, the absolute di�erences between these
methods on the nonzero means can be quite large.

Thus, from an estimation point of view, empirical Bayes with the MMLE or hierarchical
Bayes with a truncated Cauchy seem to deliver the best results, only to be outperformed
by hierarchical Bayes with a non-truncated Cauchy in a non-sparse setting with all zero
means very close to the universal threshold.

3.5.2 Coverage of credible sets

We study the coverage and length of the marginal credible sets resulting from the same
four methods applied in the simulation above: empirical Bayes with the simple estimator
and the MMLE, and hierarchical Bayes with a Cauchy prior on τ , or a Cauchy prior trun-
cated to [1/n,1]. In addition, we study intervals of the form θ̂i (yi , τ̂M )±1.96

√
var(θi |yi , τ̂M ),

based on a normal approximation to the posterior, where θ̂i (yi , τ̂M ) is the posterior mean
and var(θi |yi , τ̂M ) refers to the posterior variance, both with the MMLE plugged in. We
include the approximation because it o�ers a computational advantage over the other
methods, as no MCMC is required.

We again consider a mean vector of length n = 400, with pn ∈ {20,200}. We draw the
nonzero means from a N (A,1)-distribution, with A = c

√
2 logn for c ∈ {1/2,1,2}, corre-

sponding to most nonzero means being below the universal threshold, close to the uni-
versal threshold, or well past the universal threshold, respectively. In each of the N = 500
iterations, we created the 95% marginal credible sets for the hierarchical and empirical
Bayes methods by taking the 2.5%- and 97.5%-quantiles of the MCMC samples as the end-
points. We did not include a blow-up factor.

Figure 3.4 gives the coverage results averaged over the 500 iterations, for all parame-
ters, and separately for the pn nonzero means and the (n − pn ) zero means. The average
lengths of the credible sets, again for all signals and separately for the nonzero and zero
means, are displayed in Figure 3.5. Figure 3.6 gives the mean value of τ - in the hierarchical
Bayes settings, the posterior mean of τ was recorded for each iteration. No value is given
for the normal approximation, as it uses the MMLE as a plug-in value for τ .

We remark on some aspects of the results. First, we see that the zero means are
nearly perfectly covered by all methods in all settings, and the main di�erences lie in
the nonzero means. Secondly, coverage of the nonzero means improves as their values
increase. Thirdly, the lengths of the credible intervals adapt to the signal size. They
are smaller for the zero means than for the nonzero means, and smaller for the nonzero
means corresponding to A = (1/2)

√
2 logn than for the nonzero means corresponding to
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Figure 3.4: Average coverage of all parameters (top), the nonzero means (middle) and
the zero means (bottom) for the �ve methods, from left to right: empirical Bayes with
simple estimator (c1 = 2,c2 = 1) and MMLE, normal approximation, hierarchical Bayes
with Cauchy prior on τ and with Cauchy prior truncated to [1/n,1]. The pn nonzero
means were drawn from a N (A,1) distribution. Results are based on averaging over 500
iterations.

A =
√

2 logn and A = 2
√

2 logn, while there is not much di�erence between the interval
lengths in those latter two settings, suggesting that the interval length does not increase
inde�nitely with the size of the nonzero mean.

Furthermore, empirical Bayes with the simple estimator achieves the lowest overall
coverage, and especially bad coverage of the nonzero means. This appears to be due
to smaller interval lengths caused by lower estimates of τ compared to the other meth-
ods. The normal approximation leads to better coverage than the simple estimator, and
has the highest coverage of the nonzero means, even though the corresponding intervals
are slightly shorter than those of empirical Bayes with the MMLE and the hierarchical
Bayes approaches. However, its coverage of nonzero means is worse than that of those
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Figure 3.5: Average length of the credible sets of all parameters (top), the nonzero means
(middle) and the zero means (bottom) for the �ve methods, from left to right: empirical
Bayes with simple estimator (c1 = 2,c2 = 1) and MMLE, normal approximation, hierar-
chical Bayes with Cauchy prior on τ and with Cauchy prior truncated to [1/n,1]. The pn
nonzero means were drawn from a N (A,1) distribution. Results are based on averaging
over 500 iterations.

three methods, while the corresponding intervals are longer, except in the case where A
is largest. The normal approximation appears to be reasonable for very large signals only.

The hierarchical Bayes approach with a non-truncated Cauchy on τ leads to the high-
est overall coverage and coverage of the nonzero means, albeit by a small margin. The
price is slightly larger intervals compared to the other methods, mostly for the zero means.
These larger intervals are most likely due to the larger values of τ that are employed, this
being the only approach that allows for estimates of τ larger than one, and it avails itself
of the opportunity in the non-sparse setting. Finally, we again observe that the results for
empirical Bayes with the MMLE and hierarchical Bayes with a truncated Cauchy lead to
highly similar results. Their coverage is comparable to that of hierarchical Bayes with a
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Mean value of tau
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Figure 3.6: Average value of τ for four methods, from left to right: empirical Bayes with
simple estimator (c1 = 2,c2 = 1) and MMLE, hierarchical Bayes with Cauchy prior on τ
and with Cauchy prior truncated to [1/n,1]. For the hierarchical Bayes approaches, the
posterior mean of τ was recorded for each iteration. The pn nonzero means were drawn
from a N (A,1) distribution. Results are based on averaging over 500 iterations. .

non-truncated Cauchy in all settings except when pn = 200 and A is at least at the thresh-
old, in which case the non-truncated Cauchy has slightly better coverage. Their intervals
are shorter on average, because τ is not allowed to be larger than one.

In conclusion, empirical Bayes with the simple estimator should not be used for uncer-
tainty quanti�cation. The normal approximation is faster to compute than the marginal
credible sets, but leads to worse coverage of the nonzero compared to the empirical Bayes
with the MMLE and the hierarchical Bayes approaches, unless the nonzero means are very
large. The results of those latter three methods are very similar to each other. All these
results can be understood in terms of the behaviour of the estimate of τ : larger values lead
to larger intervals and better coverage, which may lead to worse estimates however (as
seen in the previous section). Empirical Bayes with the MMLE, or hierarchical Bayes with
a truncated Cauchy, appear to be the best choices when considering both estimation and
coverage. Those two approaches yield highly similar results and the choice for one over
the other may be based on other considerations such as computational ones.

3.6 Proofs

3.6.1 Proofs for the main results about the MMLE

Proof of Theorem 3.1

Proof. By its de�nition the MMLE maximizes the logarithm of the marginal likelihood
function, which is given by

Mτ (Y
n ) =

n∑
i=1

log
( ∫ ∞

−∞

φ (yi − θ )дτ (θ )dθ
)
. (3.18)
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We split the sum in the indices I0 := {i : θ0,i = 0} and I1 := {i : θ0,i , 0}. By Lemma 3.22,
withmτ given by (3.37),

d

dτ
Mτ (Y

n ) =
1
τ

∑
i∈I0

mτ (Yi ) + 1
τ

∑
i∈I1

mτ (Yi ).

By Proposition 3.23 the expectations of the terms in the �rst sum are strictly negative and
bounded away from zero for τ ≥ ε , and any given ε > 0. By Lemma 3.27 the sum behaves
likes its expectation, uniformly in τ . By Lemma 3.28 (i) the function mτ is uniformly
bounded by a constant Cu . It follows that for every ε > 0 there exists a constant Cε > 0
such that, for all τ ≥ ε , and with pn = #(θ0,i , 0), the preceding display is bounded above
by

−
n − pn
τ

Cε (1 + oP (1)) + pn
τ
Cu .

This is negative with probability tending to one as soon as (n − pn )/pn > Cu/Ce , and in
that case the maximum τ̂M of Mτ (Y

n ) is taken on [1/n,ε]. Since this is true for any ε > 0,
we conclude that τ̂M tends to zero in probability.

We can now apply Proposition 3.23 and Lemma 3.24 to obtain the more precise bound
on the derivative when τ → 0 given by

d

dτ
Mτ (Y

n ) ≤ −
(n − pn ) (2/π )3/2

ζτ
(1 + oP (1)) + pn

τ
Cu . (3.19)

This is negative for τ/ζτ & pn/(n − pn ), and then τ̂M is situated on the left side of the
solution to this equation, or τ̂M/ζ τ̂M . pn/(n−pn ), which implies, that τ̂M . τn , given the
assumption that pn = o(n). �

Proof of Lemma 3.12

Proof. Given θ0 that satis�es the excessive-bias restriction, let ζ̃ = A
√

2 log(n/q) and p̃ =

#
(
i : |θ0,i | ≥ ζ̃

)
, for q as in (3.14). Then q/Cs ≤ p̃ ≤ p = #

(
i : θ0,i , 0

)
≤ pn , which is o(n)

by assumption, so that ζ̃ → ∞, uniformly in θ0.
Take any δn ↓ 0 and A1 ∈ (A−1,1) and for given τ split the set of indices 1, . . . ,n into

I2 := {i : |Yi | ≥ A1ζ̃ }, I0 = {i < I2 : |θ0,i | ≤ δnζ
−2
τ }, and I1 = I c2 ∩ I c0 the remaining

indices. Since |Yi | ≥ |θ0,i | − |εi |, we have that i ∈ I2 as soon as |θ0,i | ≥ ζ̃ and |εi | <
(1 − A1)ζ̃ . By de�nition there exist p̃ coordinates with |θ0,i | ≥ ζ̃ , and the number of the
corresponding variables |εi | that fall below (1 − A1)ζ̃ is a binomial variable on p̃ trials
and success probability tending to one, as (1 − A1)ζ̃ → ∞. By Chebyshev’s inequality it
follows that with probability tending to one the cardinality of I2 is at least p̃/2 (easily). By
the excessive-bias restriction

δ 2
nζ
−4
τ #

(
i : δnζ −2

τ < |θ0,i | < ζ̃
)
≤

∑
i: |θ0,i |<ζ̃

θ 2
0,i . q log(n/q) ≤ Csp̃ log(ne/(Csp̃)).

This shows that the number of elements of I1 with |θ0,i | < ζ̃ is bounded above by a multiple
of δ −2

n ζ 4
τ p̃ log(ne/(Csp̃)). The number of θ0,i with |θ0,i | ≥ ζ̃ is p̃ by de�nition, which is
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smaller than the preceding number if δn tends to zero su�ciently slowly and ζτ is bounded
away from 0. In that case the cardinality of I1 is bounded above by δ −2

n ζ 4
τ p̃ log(ne/(Csp̃)).

Since the indices of all zero coordinates are contained in I0, the cardinality of I1 is also
trivially bounded from above by p.

By Lemma 3.22 the derivative of the log-likelihood can be written in the form
d

dτ
Mτ (Y

n ) =
1
τ

∑
i∈I0

mτ (Yi ) + 1
τ

∑
i∈I1

mτ (Yi ) + 1
τ

∑
i∈I2

mτ (Yi ) (3.20)

≥ −
Ce

ζτ
n − |I1 | + |I2 |C

( 1
τ
∧
eA

2
1 ζ̃

2/2

A2
1ζ̃

2

)
,

with probability tending to 1, uniformly in τ ∈ [1/n,ηn] and any ηn ↓ 0, for constants
Ce ,C > 0. This follows by applying Proposition 3.23 together with Lemma 3.24 to the �rst
sum, Lemma 3.28(ii) and the monotonicity ofy 7→mτ (y) to the second, and Lemma 3.28(vi)
to the third sum. The right side is certainly nonnegative for τ such that the third term
dominates twice the absolute values of both the �rst and second terms. Since |I2 | ≥ p̃/2
and p̃ & q = ne−ζ̃

2A−2/2, it follows that the right side is nonnegative if

n

ζτ
.

p̃

τ
,

n

ζτ
.

ne ζ̃
2 (A2

1−A
−2 )/2

ζ̃ 2
, |I1 | .

p̃

τ
, |I1 | .

ne ζ̃
2 (A2

1−A
−2 )/2

ζ̃ 2
,

where the multiplicative constants must be su�ciently small. The �rst inequality is satis-
�ed for τ . τn (p̃); the second is trivial since A1 > A−1 and ζ̃ → ∞, and ζ −1

τ → 0; the third
can be reduced to τζ 4

τ . δ
2
n/ log(ne/(Csp̃)), which is (easily) veri�ed if τ . τn (p̃) and δn

tends to zero su�ciently slowly; the fourth is trivial since |I1 | ≤ p � n and A1 > A−1 and
ζ̃ → ∞. It follows that τ 7→ Mτ (Y

n ) is increasing for τ . τn (p̃) and hence τ̂M & τn (p̃).
For the proof of the upper bound we use the same decomposition (3.20), but rede-

�ne the sets Ik slightly, to I0 = {i : |θ0,i | ≤ δn/ζ
2
τ }, I1 = {δn/ζ 2

τ ≤ |θ0,i | ≤ ζτ /4} and
I2 = I c0 ∩ I c1 . Reasoning as before, using the excessive-bias restriction, we see that the
cardinalities of the sets I1 and I2 are bounded by multiples of δ −2

n ζ 4
τ p̃ log(ne/(Csp̃)) and

ζ −2
τ p̃ log(ne/(Csp̃)) + p̃, respectively. By the decomposition (3.20) we obtain,

d

dτ
Mτ (Y

n ) . −
Ce

ζτ
(n − p) + |I1 |τ

1/16

τζτ
+ o

(
|I1 |τ

1/32

τζτ

)
+ 1
τ
|I2 |Cu , (3.21)

with probability tending to 1, uniformly in τ ∈ [1/n,ηn] and any ηn ↓ 0. Here the upper
bounds on the sums over the coordinates in I0 and I1 follow with the help of the �rst and
second parts of Proposition 3.23 and Lemma 3.24, and the bound on the sum over the
coordinates in I2 follows from Lemma 3.28(i). The right side is certainly negative for τ
such that 2τ −1 |I2 |Cu ≤ Ce (n − p)/ζτ and |I1 |τ 1/32/ζτ ≤ Cu |I2 |. The �rst reduces to τζτ &
(p̃/n) log(ne/(Csp̃)) and τ/ζτ & p̃/n and hence is true for τ & τn (p̃); the second reduces
to τ 1/32ζ 5

τ . δ 2
n and is true as well provided δn ↓ 0 slowly. Since we may assume that

τ̂M ∈ [1/n,ηn] for some ηn ↓ 0 by Theorem 3.1, it follows in that case that τ̂M . τn (p̃). �

3.6.2 Proofs of the contraction results
Lemma 3.16. For A > 1 and every y ∈ R,
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(i) |E(θi |Yi = y,τ ) − y | ≤ 2ζ −1
τ , for |y | ≥ Aζτ , as τ → 0.

(ii) |E(θi |Yi = y,τ ) | ≤ |y |.

(iii) |E(θi |Yi = y,τ ) | ≤ τ |y |ey
2/2, as τ → 0.

(iv) | var(θi |Yi = y,τ ) − 1| ≤ ζ −2
τ , for |y | ≥ Aζτ , as τ → 0.

(v) var(θi |Yi = y,τ ) ≤ 1 + y2,

(vi) var(θi |Yi = y,τ ) . τey
2/2 (y−2 ∧ 1), as τ → 0.

(vii) |E(θi |Yi = y,τ ) − y | . (log |y |)/|y |, uniformly in τ ≥ τ0 > 0 and |y | → ∞.

Proof. Inequalities (iii) and (v) come from Lemma 1.8 and Lemma 1.10 in Chapter 1, while
(ii), (iv) and (vi) are implicit in the proofs of Theorems 1.1 and 1.2 (twice) in Chapter 1, and
(i) with the bound ζτ instead of ζ −1

τ is (1.17) there. Alternatively, the posterior mean and
variance in these assertions are given in (3.25) and (3.26). Then (ii) and (iv) are immediate
from the fact that 0 ≤ I3/2 ≤ I1/2 ≤ I−1/2, while (iii) and (vi) follow by bounding I−1/2
below by a multiple of 1/τ and I3/2 ≤ I1/2 above by (1 ∧ y−2)ey

2/2, using Lemmas 3.30
and 3.31. Assertions (i) and (iv) follow from expanding I−1/2 and I1/2 and I3/2, again using
Lemmas 3.30 and 3.31. Finally (vii) follows from Lemma 3.32. �

3.6.3 Proof of Theorem 3.2

Proof. Set rn =
√
pn logn and τn = τn (pn ). By Condition 4 and the triangle inequality,

Eθ0Πτ̂n

(
θ : ‖θ0 − θ ‖2 ≥ Mnrn |Y

n
)

≤ Eθ01τ̂n ∈[1/n,Cτn]Πτ̂n

(
θ : ‖θ0 − θ̂ (̂τn )‖2 + ‖θ − θ̂ (̂τn )‖2 ≥ Mnrn |Y

n
)

+ o(1)

≤ Eθ0 sup
τ ∈[1/n,Cτn]

Πτ

(
θ : ‖θ0 − θ̂ (τ )‖2 + ‖θ − θ̂ (τ )‖2 ≥ Mnrn |Y

n
)

+ o(1).

Hence, in view of Chebyshev’s inequality, it is su�cient to show that, with var(θ |Y n,τ ) =

E
(
‖θ − θ̂ (τ )‖2 |Y n,τ

)
,

Pθ0

(
sup

τ ∈[1/n,Cτn]
‖θ0 − θ̂ (τ )‖2 ≥ (Mn/2)rn

)
= o(1), (3.22)

Pθ0

(
sup

τ ∈[1/n,Cτn]
var(θ |Y n,τ ) ≥ Mnr

2
n

)
= o(1). (3.23)

To prove (3.22) we �rst use Lemma 3.16(i)+(ii) to see that |θ̂i (τ ) | . ζτ and next the triangle
inequality to see that |θ̂i (τ ) − θ0,i | . ζτ + |Yi − θ0,i |, as τ → 0. This shows that

Eθ0,i sup
τ ∈[1/n,τn]

(θ0,i − θ̂i (τ ))
2 . sup

τ ≥1/n
ζ 2
τ + varθ0,i Yi . logn. (3.24)
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Second we use Lemma 3.16 (iii) and (ii) to see that |θ̂i (τ ) | is bounded above by τ |Yi |eY
2
i /2

if |Yi | ≤ ζτn and bounded above by |Yi | otherwise, so that

E0 sup
τ ∈[1/n,Cτn]

|θ̂i (τ ) |
2 .

∫ ζτn

0
(Cτn )

2y2ey
2
φ (y) dy +

∫ ∞

ζτn
y2φ (y) dy . τnζτn .

Applying the upper bound (3.24) for thepn non-zero coordinates θ0,i , and the upper bound
in the last display for the zero parameters, we �nd that

Eθ0 sup
τ ∈[1/n,Cτn]

‖θ0 − θ̂ (τ )‖
2
2 . pn logn + (n − pn )τnζτn . pn logn.

Next an application of Markov’s inequality leads to (3.22).
The proof of (3.23) is similar. For the nonzero θ0,i we use the fact that var(θi |Yi ,τ ) ≤

1 + ζ 2
τ . logn, by Lemma 3.16 (iv) and (v), while for the zero θ0,i we use that var(θi |Yi ,τ )

is bounded above by τeY
2
i /2 for |Yi | ≤ ζτn and bounded above by 1 + Y 2

i otherwise, by
Lemma 3.16 (vi) and (v). For the two cases of parameter values this gives bounds for
Eθ0,i supτ ∈[1/n,Cτn] var(θi |Yi ,τ ) of the same form as the bounds for the square bias, result-
ing in the overall bound pn logn + (n −pn )τnζτn . pn logn for the sum of these variances.
An application of Markov’s inequality gives (3.23). �

Proof of Lemma 3.6

Proof. The number tn de�ned in Condition 7 is the (approximate) solution to the equation
pnCu/τ
= Ce (n − p)/(2ζτ ), for Ce = (π/2)3/2. By the decomposition (3.19), with Pθ0 -probability
tending to one,

∂

∂τ
Mτ (Y

n ) <


pnCu/(tn/2), if tn/2 ≤ τ ≤ tn,

0 if τ > tn,

−pnCu/(2tn ), if τ ≥ 2tn .

Therefore, for Mτ (Y
n ) de�ned in (3.18), τmin = argminτ ∈[tn /2,tn] Mτ (Y

n ), and τ ≥ 2tn ,

Mτ (Y
n ) −Mτmin (Y

n ) =
[∫ tn

τmin

+
∫ 2tn

tn
+
∫ τ

2tn

]
∂

∂s
Ms (Y

n ) ds

≤ (tn/2)pnCu/(tn/2) + 0 − (τ − 2tn )pnCu/(2tn )
= −(τ − 4tn )pnCu/(2tn ) ≤ −τpnCu/(10tn ),

for τ ≥ 5tn . Since π (τ |Y n ) ∝ π (τ )eMτ (Y n ) by Bayes’s formula, with Pθ0 -probability
tending to one, for cn ≥ 5

Π(τ ≥ cntn |Y
n ) ≤

∫
τ ≥cn tn

eMτmin (Y
n )−τpnCu /(10tn )π (τ ) dτ∫

τ ∈[tn /2,tn] e
Mτmin (Y

n )π (τ ) dτ
.

e−cnpnCu /10∫
τ ∈[tn /2,tn] π (τ ) dτ

.

Under Condition 6 this tends to zero if cn ≥ 5. Under the weaker Condition 7 this is
certainly true for cn ≥ logn. �
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3.6.4 Proofs for the coverage of the credible sets

Proof of Lemma 3.8

Proof. The square radius r̂ 2 (α ,τ ) is de�ned as the upper α-quantile of the variable W =

‖θ − θ̂ (τ )‖22 relative to its posterior distribution given (Y n,τ ), where θ̂ (τ ) = E(θ |Y n,τ ).
By Chebyshev’s inequality the variableW falls below E(W |Y n,τ ) − c sd(W |Y n,τ ) with
conditional probability given (Y n,τ ) smaller than 1/c2 for any given c > 0. This implies
that r̂ 2 (α ,τ ) ≥ E(W |Y n,τ ) − c sd(W |Y n,τ ) for c > 0 such that 1/c2 ≤ 1 − α . Thus it
su�ces to show that E(W |Y n,τ ) ≥ 0.501nτζτ and sd(W |Y n,τ ) � nτζτ , with probability
tending to 1. Here the conditional expectations E(W |Y n,τ ) and sd(W |Y n,τ ) refer to the
posterior distribution of θ given (Y n,τ ) (whereW is a function of θ ), which are functions of
Y n that will be considered under the law of Y n following the true parameter. The variable
W =

∑n
i=1

(
θi−θ̂i (τ )

)2
is lower bounded by the sum of squaresW0 of the variables θi−θ̂i (τ )

corresponding to the indices with θ0,i = 0, which are (n − pn ) ∼ n of the coordinates. The
upper α-quantile of W is bigger than the upper α-quantile of W0, and hence it su�ces
to derive a lower bound for the latter. For simplicity of notation we assume that all n
parameters θ0,i are zero and writeW forW0.

Because given τ the coordinates are independent under the posterior distribution,

E(W |Y n,τ ) =
n∑
i=1
E
[(
θi − θ̂i (τ )

)2
|Yi ,τ

]
=

n∑
i=1

var(θi |Yi ,τ ),

var(W |Y n,τ ) =
n∑
i=1

var
[(
θi − θ̂i (τ )

)2
|Yi ,τ

]
≤

n∑
i=1
E
[(
θi − θ̂i (τ )

)4
|Yi ,τ

]
.

Because the variables Yi are i.i.d. under the true distribution, Lemma 3.17 below gives that

E0E(W |Y
n,τ ) ∼ (2/π )3/2nτζτ ,

var0 E(W |Y
n,τ ) . nτζτ ,

E0 var(W |Y n,τ ) . nτζ 3
τ .

From the �rst two assertions and another application of Chebyshev’s inequality, now with
respect to the true law of Y n , it follows that for any cn → ∞ the probability of the event
E(W |Y n,τ ) ≤ (2/π )3/2 nτζτ − cn

√
nτζτ tends to zero. Since

√
nτζτ � nτζτ (easily) under

the assumption that nτ/ζτ → ∞ and (2/π )3/2 ≈ 0.507, it follows that E(W |Y n,τ ) is lower
bounded by 0.5nτζτ with probability tending to one. By Markov’s inequality the probabil-
ity of the event sd(W |Y n,τ ) ≥ cnnτζτ is bounded above by (cnnτζτ )

−2E0 var(W |Y n,τ ),
which is further bounded above by (cnnτζτ )

−2nτζ 3
τ , by the third assertion in the display.

This tends to zero for some cn → 0, again by the assumption that nτ/ζτ → ∞ (tightly this
time). �

For the proof of Lemma 3.8, we have employed the lemma below, which is based on
the following observations. The posterior density of θi given (Yi = y,τ ) is (for �xed τ ) an
exponential family with density

θ 7→
φ (y − θ )дτ (θ )

ψτ (y)
= cτ (y)e

θyдτ (θ )e
−θ 2/2,
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where дτ is the prior density of θ given in (3.3), and ψτ is the Bayesian marginal density
of Yi , given in (3.36), and the norming constant is given by

cτ (y) =
φ (y)

ψτ (y)
=

π

τ I−1/2 (y)
,

for the function I−1/2 (y) de�ned in (3.35). The cumulant moment generating function
z 7→ logE(ezθ i |Yi = y,τ ) of the family is given by z 7→ log

(
cτ (y)/cτ (y + z)

)
, which is

z 7→ log I−1/2 (y +z) plus an additive constant independent of z. We conclude that the �rst,
second and fourth cumulants are given by

θ̂i (τ ) = E(θi |Yi = y,τ ) =
d

dy
log I−1/2 (y),

var(θi |Yi = y,τ ) =
d2

dy2 log I−1/2 (y), (3.25)

E
[(
θi − θ̂i (τ )

)4
|Yi = y,τ

]
− 3 var(θi |Yi = y,τ )2 =

d4

dy4 log I−1/2 (y).

The derivatives at the right side can be computed by repeatedly using the product and
sum rule together with the identity I ′k (y) = yIk+1 (y), for Ik as in (3.35).

Lemma 3.17. For E0 referring to the distribution of Yi ∼ N (0,1), as τ → 0,

4C−1τζτ

π
√

2π
. E0 inf

t ∈[C−1τ,Cτ ]
var(θi |Yi ,t ) . E0 sup

t ∈[C−1τ,Cτ ]
var(θi |Yi ,t ) .

4Cτζτ
π
√

2π
,

E0 sup
t ∈[C−1τ,Cτ ]

var(θi |Yi ,t )2 . τζτ ,

E0 sup
t ∈[C−1τ,Cτ ]

E
[(
θi − θ̂i (t )

)4
|Yi ,t

]
. τζ 3

τ .

Proof. The �rst assertion is already contained in Chapter 1, but we give a new proof, which
also prepares for the proofs of the other assertions.

Since (logh)′′ = h′′/h − (h′/h)2, for any function h, and I ′
−1/2 (y) = yI1/2 (y) and

I ′′
−1/2 (y) = y

2I3/2 (y) + I1/2 (y), we have by the formulas preceding the lemma,

var(θi |Yi = y,τ ) = y2
[ I3/2
I−1/2

−

( I1/2
I−1/2

)2]
(y) +

I1/2
I−1/2

(y). (3.26)

By Lemmas 3.30 and 3.31 the right side is equivalent, uniformly in y, to

y2
[ H3/2 (y)

π/τ + H−1/2 (y)

(
1 +O (

√
τ )

)
−

H 2
1/2 (y)(

π/τ + H−1/2 (y)
)2

(
1 +O (

√
τ )

)]
+

H1/2 (y)

π/τ + H−1/2 (y)

(
1 +O (

√
τ )

)
,
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where Hk (y) = (y2/2)−k
∫ y2/2
c vk−1ev dv , with c = 0 if k > 0 and c = 1 otherwise.

Uniformly iny ≥ 1/ετ → ∞, all functionsHk can be expanded asHk (y) = ey
2/2/(y2/2) (1+

O (1/y2)), by Lemma 3.29.
Let κτ be the solution to eκ

2
τ /2/(κ2

τ /2) = 1/τ . For y � κτ the factor π/τ dominates the
factor H−1/2 (y) and the preceding display can be approximated by

τ

π
y2H3/2 (y) −

τ 2

π 2y
2H 2

1/2 (y) + τ

π
H1/2 (y). (3.27)

For instance, we can use this approximation on [0,ζτ ], up to a uniform 1+o(1)-term, since
e−ζ

2
τ /2/ζ 2

τ � 1/τ . A multiple of the preceding display, with the negative term removed,
is an upper bound for var(θi |Yi ,τ ) for any y; we use this for y ∈ [ζτ ,κτ ]. For y≥κτ
the factor H−1/2 (y) dominates π/τ and the second to last display can be rewritten as, for
δτ (y) = (π/τ )/H−1/2 (y),

y2
[ 1 +O (y−2)

1 + δτ (y)
(1 + o(1)) − 1 +O (y−2)

(1 + δτ (y))2
(1 + o(1))

]
+ 1 +O (y−2)

1 + δτ (y)
(1 + o(1))

=
y2δτ (y)

(1 + δτ (y))2
+ rτ (y), (3.28)

where rτ (y) is uniformly bounded in y ≥ κτ as τ → 0.
We can choose ετ/C → 0 slow enough that

E0 sup
t ∈[C−1τ,Cτ ]

var(θi |Yi ,t )10≤ |Yi | ≤1/εt . Cτ

∫ 1/ετ/C

0

[
y2H3/2 (y) + H1/2 (y)

]
φ (y) dy

is of smaller order than τζτ . Then this part of the expectation is negligible. For 1/εt ≤
|y | ≤ ζt , we expand the functions Hk in (3.27) and �nd that

E0 sup
t ∈[C−1τ,Cτ ]

var(θi |Yi ,t )11/εt ≤ |Yi | ≤ζτ

. 2
∫ ∞

0
sup

t ∈[C−1τ,Cτ ]
11/εt ≤ |y | ≤ζτ

[
(2τ/π )ey2/2

− (2τ/π )2ey2
/y2 + (2τ/π )ey2/2/y2

]
φ (y) dy. (3.29)

We note that the integrand is non-negative and its derivative with respect to t is also
non-negative for every 1/εCτ ≤ y ≤ ζτ/C and t ≤ Cτ , i.e.

(2/π )ey2/2 − (8τ/π 2)ey
2
/y2 + (2/π )ey2/2/y2 > 0,

since ey
2/2 ≤ C/τ and y2 → ∞. Therefore, we can further bound the right hand side of

(3.29) as

2
∫ ζτ/C

ε−1
Cτ

[
(2Cτ/π )ey2/2 − (2Cτ/π )2ey2

/y2 + (2Cτ/π )ey2/2/y2
]
φ (y) �

2C
√

2
π
√
π
τζτ .
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Similar computations also lead to

E0 inf
t ∈[C−1τ,Cτ ]

var(θi |Yi ,t )11/εt ≤ |Yi | ≤ζτ &
2C
√

2
π
√
π
τζτ .

Fory ∈ [ζτ ,κτ ] we again use (3.27), but as an upper bound (without the negative term),
and obtain

E0 sup
t ∈[C−1τ,Cτ ]

var(θi |Yi ,t )1ζτ ≤ |Yi | ≤κτ . Cτ
∫ κC−1τ

ζCτ
ey

2/2φ (y) dy . τ (κτ − ζτ ),

which is of lower order than the preceding display. By (3.28) the contribution of y ≥ κτ is
bounded by

E0 sup
t ∈[C−1τ,Cτ ]

var(θi |Yi ,t )1κτ ≤ |Yi | .
∫ ∞

κτ/C
[y2δτ/C (y) + 1]φ (y) dy

.

∫ ∞

κτ/C
[Cτ −1y4e−y

2 + e−y
2/2]dy

. τ −1κ3
τe
−κ2

τ + κ−1
τ e−κ

2
τ /2 = O (τ/κτ ).

This concludes the proof of the �rst assertion.
For the proof of the second assertion we follow the same approach. We simply square

the integrands in the preceding bounds and obtain a negligible contribution from the in-
terval [0,1/ετ ], a contribution bounded by C2τ 2

∫ κτ/C
0 ey

2
φ (y) dy . τ 2eκ

2
τ/C /2/κτ . τζτ

from the interval [1/ετ ,κτ ] and a contribution no bigger than a multiple of∫ ∞

κCτ
[y4δ 2

τ/C (y) + 1]φ (y) dy .
∫ ∞

κCτ
[C2τ −2y8e−3y2/2 + e−y

2/2]dy . τκτ

from the interval [κτ ,∞).
For the proof of the third assertion it su�ces to bound the fourth cumulant of θi given

(Yi ,τ ), in view of the second assertion. For any function h we have

(logh)′′′′ = h′′′′

h
− 4h

′′′

h

h′

h
+ 12h

′′

h

(h′
h

)2
− 3

(h′′
h

)2
− 6

(h′
h

)4
.

Combined with the formulas for I ′
−1/2 and I ′′

−1/2 given before as well as I ′′′
−1/2 (y) = y

3I5/2 (y)+
3yI3/2 (y) and I ′′′′

−1/2 (y) = y
4I7/2 (y) + 6y2I5/2 (y) + 3I3/2 (y), we �nd that the fourth cumulant

can be written in the form

y4I7/2 (y) + 6y2I5/2 (y) + 3I3/2 (y)

I−1/2 (y)
− 4

y3I5/2 (y) + 3yI3/2 (y)

I−1/2 (y)

yI1/2 (y)

I−1/2 (y)

+ 12
y2I3/2 (y) + I1/2 (y)

I−1/2 (y)

(yI1/2 (y)

I−1/2 (y)

)2
− 3

(y2I3/2 (y) + I1/2 (y)

I−1/2 (y)

)2
− 6

(yI1/2 (y)

I−1/2 (y)

)4
.

As before we expand these expressions with the help of Lemmas 3.30 and 3.31, and next
integrate separately over [0,1/εC−1τ ], [1/εCτ ,2κτ/C], and [2κCτ ,∞). The �rst interval gives
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a negligible contribution. Following from the inequality I−1/2 (y) ≥ Ik (y) for k ≥ −1/2 and
Lemma 3.29 one can obtain that the dominating term in the second interval is Cτy2ey

/2.
This leads to ∫ κτ/C

0
sup

t ∈[C−1τn ,Cτn]
ty2ey

2/2φ (y) dy . Cτ

∫ κτ/C

0
y2 dy . τζ 3

τ

On the last interval ∫
y≥2κCτ

y4e−y
2/2 . κ11

τ τ
4 = o(τζ 3

τ ).

�

Proof of Theorem 3.10

Proof. The posterior distribution of θi given (Yi ,τ ,λi ) is normal with mean and variance

θ̂i (τ ,λi ) :=E(θi |Yi ,τ ,λi ) =
λ2
iτ

2

1 + λ2
iτ

2Yi ,

r 2
i (τ ,λi ) := var(θi |Yi ,τ ,λi ) =

λ2
iτ

2

1 + λ2
iτ

2 .

Furthermore, the posterior distribution of λi given (Yi ,τ ) possesses density function given
by

π (λi |Yi ,τ ) ∝ e
−

Y2
i

2(1+λ2
i τ

2 ) (1 + τ 2λ2
i )
−1/2 (1 + λ2

i )
−1.

The parameter θ0,i is contained in Cni (L,τ ) if and only if |θ0,i − θ̂i (τ ) | ≤ Lr̂i (α ,τ ). We
show that this is true, or not, for θ0,i belonging to the three regions separately for S , L and
M .

Case S : proof of (3.8). If i ∈ S , then |θ0,i − θ̂i (τ ) | ≤ kSτ + τ |Yi |eY
2
i /2, by the triangle

inequality and Lemma 3.16(iii). Below we show that r̂i (α ,τ ) ≥ τzαc , with probability
tending to one, for zα the standard normal upper α-quantile and every c < 1/2. Hence
θ0,i ∈ Cni (L,τ ) as soon as |Yi |eY

2
i /2 ≤ Lzαc − kS .

For i ∈ S the variable |Yi | is stochastically bounded by |θ0,i | + |εi | ≤ kSτ + |εi |. Since
the variables |εi | are i.i.d. with quantile function u 7→ Φ−1 ((u + 1)/2) ≤

√
2 log(2/(1 − u)),

a fraction 1 −γ of the variables Yi with i ∈ S is bounded above by kSτ +
√

2 log(2/γ ) + δ =
kSτ +ζγ/2 +δ , with probability tending to 1, for any δ > 0. Then the corresponding fraction
of parameters θ0,i is contained in their credible interval if L is chosen big enough that

Lzαc − kS ≥ (kSτ + ζγ/2 + δ )e (kS τ+ζγ/2+δ )2/2 ≤
2
γ
ζγ/2 (1 + ε ),

where ε → 0 if γ → 0 and can chosen arbitrarily small if δ is chosen small and τ → 0.
This is certainly true for LS as in the theorem.

We �nish by proving the lower bound for the radius r̂i (α ,τ ). Because the conditional
distribution of θi given (Yi ,τ ,λi ) is normal with mean θ̂i (τ ,λi ) it follows by Anderson’s
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lemma that Π
(
θi : |θi − θ̂i (τ ) | > r |Yi ,τ ,λi

)
≥ Π

(
θi : |θi − θ̂i (τ ,λi ) | > r |Yi ,τ ,λi

)
, for

any r > 0. Furthermore, by the monotonicity of the variance in λi of this conditional
distribution, the last function is increasing in λi . If π̃ (· | τ ) is the probability density given
by

π̃ (λi | τ ) ∝ (λ2
iτ

2 + 1)−1/2 (1 + λ2
i )
−1,

then λi 7→ π (λi |Yt ,τ )/π̃ (λi | τ ) is increasing. Combining the preceding observations with
Lemma 3.18, we see that

α =

∫ ∞

0
Π(θi : |θi − θ̂i (τ ) | > r̂i (α ,τ ) |Yi ,τ ,λi )π (λi |Yi ,τ ) dλi

≥

∫ ∞

0
Π(θi : |θi − θ̂i (τ ,λi ) | > r̂i (α ,τ ) |Yi ,τ ,λi )π̃ (λi | τ ) dλi . (3.30)

On the other hand, since sd(θi |Yi ,τ ,λi ) ≥ τ/2(1 +o(1)), for λi ≥ 1/2, the normality of the
conditional distribution of θi given (Yi ,τ ,λi ) gives that∫ ∞

0
Π

(
θi : |θi − θ̂i (τ ,λi ) | > zατ/2(1 + o(1))) |Yi ,τ ,λi )π̃ (λi | τ

)
dλi (3.31)

≥ 2α Π̃(λi ≥ 1/2 | τ ) ≥ 2α × 2/3 > α .

Here the second last inequality follows from∫ 1/2
0 (λ2

iτ
2 + 1)−1/2 (1 + λ2

i )
−1 dλ∫ ∞

0 (λ2
iτ

2 + 1)−1/2 (1 + λ2
i )
−1 dλi

→

∫ 1/2
0 (1 + λ2

i )
−1 dλi∫ ∞

0 (1 + λ2
i )
−1 dλi

<
1
3 ,

as τ → 0, by two applications of the dominated convergence theorem. Combination of
(3.30) and (3.31) shows that r̂i (α ,τ ) ≥ zατ/2(1 + o(1)).

Case L: proof of (3.10). If i ∈ L, then |θ0,i − θ̂i (τ ) | ≤ |θ0,i −Yi |+ |Yi − θ̂i (τ ) | ≤ |εi |+2ζ −1
τ ,

eventually, provided |Yi | ≥ Aζτ for some constant A > 1, by the triangle inequality and
Lemma 3.16(i). Below we show that r̂i (α ,τ ) ≥ zα + o(1), with probability tending to one.
It then follows that θ0,i ∈ Cni (L,τ ) as soon as |Yi | ≥ Aζτ and |εi | ≤ Lzα + o(1) − 2ζ −1

τ =

Lzα + o(1).
For i ∈ L the variable |Yi | is lower bounded by |θ0,i | − |εi | ≥ kLζτ − |εi | and hence

|Yi | ≥ Aζτ if |εi | ≤ (kL − A)ζτ . This is automatically satis�ed if |εi | ≤ Lzα + o(1), for
constants L with L � ζτ . As for the proof of Case S we have that |εi | ≤ Lzα + o(1) with
probability tending to one for a fraction γ of the indices i ∈ S if L ≥ z−1

α ζγ/2 + δ , for some
δ > 0.

The proof that r̂i (α ,τ ) ≥ zα + o(1) follows the same lines as the proof of the corre-
sponding result in Case S , expressed in (3.30) and (3.31), but with the true density π instead
of π̃ . Inequality (3.30) with π instead of π̃ is valid by Anderson’s lemma, while in (3.31)
we replace zατ/2(1 +o(1)) by zα +o(1). Since var(θi |Yi ,τ ,λi ) ≥ дτ /(1 +дτ ) = 1 +o(1) for
every λi ≥ дτ /τ and дτ → ∞, the desired result follows if Π

(
λi ≥ дτ /τ |Yi ,τ

)
is eventu-

ally bigger than 2/3, for every i such that |Yi | ≥ Aζτ . Now by the form of π (λi |Yi ,τ ), for
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any c,d > 0,

Π(λi ≤ дτ /τ |Yi ,τ ) ≤
e
−

Y2
i

2(1+c2 )
∫ c/τ

0 (1 + λ2)−1 dλ + e
−

Y2
i

2(1+д2
τ )

∫ дτ /τ
c/τ (1 + c2/τ 2)−1 dλ

e
−

Y2
i

2(1+d2д2
τ )

∫ 2dдτ /τ
dдτ /τ

(1 + 4d2д2
τ )−1/2 (1 + 4d2д2

τ /τ 2)−1 dλ

.
exp

[
−
Y 2
i

2

(
1

1+c2 −
1

1+d2д2
τ

)]
+ exp

[
−
Y 2
i

2

(
1

1+д2
τ
− 1

1+d2д2
τ

)]
дττ

(дτ /τ ) (1/дτ ) (τ 2/д2
τ )

.

For |Yi | > Aζτ and A > 1 we can choose c su�ciently close to zero so that the �rst
exponential is of order τ A′ for someA′ > 1. Then it is much smaller than the denominator,
which is of order τ/д2

τ , provided дτ tends to in�nity slowly. If we choose d > 1, then the
term involving the second exponential will also tend to zero for |Yi | > Aζτ as soon as
e−cζ

2
τ /д

2
τд3

τ → 0, for a su�ciently small constant c . This is true (for any c > 0) for instance
if дτ =

√
ζτ . Then the quotient tends to zero, and is certainly smaller than 1/3.

Case M : proof of (3.9). We show below that r̂i (α ,τ ) . Uτ := τ (1 ∨ |Yi |eY
2
i /2), with

probability tending to one, whenever i ∈ M . By Lemma 3.16(iii) exactly the same bound is
valid for |θ̂i (τ ) |. If |θ̂i (τ ) | + r̂i (α ,τ ) . Uτ , but |θ0,i | � Uτ then θ0,i < Cni (L,τ ) eventually,
and hence it su�ces to prove that the probability of the event that |θ0,i | � Uτ tends to
one whenever i ∈ M . Consider two cases. If |θ0,i | ≤ 1, then |Yi | ≤ 1 + |εi | = OP (1) and
hence Uτ = OP (τ ). For i ∈ M , we have |θ0,i | � τ and hence |θ0,i | � Uτ with probability
tending to one. On the other hand, if |θ0,i | ≥ 1 but |θ0,i | ≤ kMζτ , then |Yi | ≤ kζτ with
probability tending to one for any k > kM , and hence Uτ . τζτek

2ζ 2
τ /2 = τ 1−k2

ζτ . Since
kM < 1 we can choose k < 1, so that τ 1−k2

ζτ → 0, and again we have |θ0,i | � Uτ with
probability tending to one.

We �nish by proving that r̂i (α ,τ ) . Uτ , with probability tending to one. As a �rst step
we show that, for k < 1,

lim
M→∞

sup
|y | ≤kζτ

Π(λi ≥ M |Yi = y,τ ) → 0. (3.32)

By the explicit form of the posterior density of λi we have

Π(λi ≥ M |Yi = y,τ ) ≤

∫ ∞
M e

−
y2

2(1+λ2
i τ

2 ) (1 + λ2
iτ

2)−1/2 (1 + λ2
i )
−1 dλi∫ 2

1 e
−

y2
2(1+λ2

i τ
2 ) (1 + λ2

iτ
2)−1/2 (1 + λ2

i )
−1 dλi

≤ ey
2/25
√

2
∫ ∞

M
e
−

y2

2(1+λ2
i τ

2 ) (1 + λ2
iτ

2)−1/2 (1 + λ2
i )
−1 dλi .

We split the remaining integral over the intervals [M ,τ −a ) and [τ −a ,∞), for some a < 1.
On the �rst interval we use that y2/(1 + λ2

iτ
2) = y2 + o(1), uniformly in |y | . ζτ and

λi ≤ τ
−a , while on the second we simply bound the factor e−y2/(2(1+λ2

i τ
2 )) by 1, to see that

the preceding display is bounded above by

ey
2/25
√

2
[
e−y

2/2eo(1)
∫ τ −a

M
(1 + λ2

i )
−1 dλi +

∫ ∞

τ −a
(1 + λ2

i )
−1 dλi

]
.
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The �rst term in square brackets (times the leading term) contributes less than a multiple
of

∫ ∞
M λ−2 dλ = 1/M , while the second term contributes less than ey

2/2τ a ≤ τ −k
2+a , for

|y | ≤ kζτ , which tends to zero if a > k2. This concludes the proof of (3.32).
By the triangle inequality, for any M > 0,∫ ∞

0
Π(θi : |θi − θ̂i (τ ) | ≥ r + |θ̂i (τ ,λi ) − θ̂i (τ ) | |Yi ,λi ,τ )π (λi |Yi ,τ ) dλi

≤

∫ M

0
Π(θi : |θi − θ̂i (τ ,λi ) | ≥ r |Yi ,λi ,τ )π (λi |Yi ,τ ) dλi + Π(λi ≥ M |Yi ,τ ).

For su�ciently large M the second term on the far right is smaller than α/2 by the preced-
ing paragraph and for r = zα/4 supλ≤M ri (τ ,λ) the �rst term on the right is smaller than
α/2 as well, by the normality of θi given (Yi ,λi ,τ ) and the de�nition of ri (τ ,λi ). The in-
equality remains valid if |θ̂i (τ ,λi )−θ̂i (τ ) | in the �rst line is replaced by supλ≤M |θ̂i (τ ,λi ) |+
|θ̂i (τ ) |. It follows that

r̂i (α ,τ ) ≤ zα/4 sup
λ≤M

ri (τ ,λ) + sup
λ≤M
|θ̂i (τ ,λi ) | + |θ̂i (τ ) |.

The �rst term is bounded above by Mτ , and the second by Mτ |Yi |, by the de�nitions of
ri (τ ,λ) and θ̂i (τ ,λ), while |θ̂i (τ ) | ≤ τ |Yi |e

Y 2
i /2, by Lemma 3.16(iii). This concludes the

proof that r̂i (α ,τ ) . Uτ . �

Lemma 3.18. If f1, f2 : [0,∞) → [0,∞) are probability densities such that f2/f1 is mono-
tonely increasing, then, for any monotonely increasing function h,

Ef1h(X ) ≤ Ef2h(X ).

Proof. De�ne д = f2/f1. Since
∫ ∞

0 f1 (x )dx =
∫ ∞

0 f1 (x )д(x ) dx and д is monotonely in-
creasing, there exists an x0 > 0 such that д(x ) ≤ 1 for x < x0 and д(x ) ≥ 1 for x > x0.
Therefore

0 = h(x0)

∫ ∞

0
f1 (x )

(
д(x ) − 1

)
dx

≤

∫ x0

0
f1 (x )h(x )

(
д(x ) − 1

)
dx +

∫ ∞

x0

f1 (x )h(x )
(
д(x ) − 1

)
dx .

By the de�nition of д the right side is Ef2h(X ) − Ef1h(X ). �

3.6.5 Proofs for the adaptive credible sets

Proof of Theorem 3.13

Proof. To simplify notation set Tn = [C−1τ̃n,Cτ̃n], where τ̃n = τn (p̃n ).
First we deal with the empirical Bayes credible sets. Since τ̂n ∈ Tn with probability

tending to one by Condition 8,

Pθ0

(
θ0 < Ĉn (τ̂n,L)

)
= Pθ0

(
‖θ0 − θ̂ (τ̂n )‖2 > Lr̂ (α , τ̂n )

)
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≤ Pθ0

(
sup
τ ∈Tn

‖θ0 − θ̂ (τ )‖2 > L inf
τ ∈Tn

r̂ (α ,τ )
)

+ o(1).

By Lemma 3.19 inf τ ∈Tn r̂ (α ,τ ) &
√
nτ̃nζ τ̃n , with probability tending to one. Therefore it

su�ces to show that supτ ∈Tn ‖θ0 − θ̂ (τ )‖2 = OP (
√
nτ̃nζ τ̃n ). We show this by bounding the

second moment of this variable.
We split the sum in ‖θ̂ (τ ) − θ0‖

2
2 =

∑
i (θ̂i (τ ) − θ0,i )

2 in two parts, according to the
values of θ0,i . Set ζ̃ = A

√
2 log(n/q), for q as in (3.14).

If |θ0,i | ≥ ζ τ̃n/5, then we �rst use Lemma 3.16(ii) together with the triangle inequality
to see that |θ̂i (τ ) − θ0,i | . ζτ + |Yi − θ0,i |, as τ → 0, whence

Eθ0,i sup
τ ∈Tn

(θ0,i − θ̂i (τ ))
2 . sup

τ ∈Tn
ζ 2
τ + varθ0,i Yi . ζ

2
τ̃n .

By the excessive-bias restriction

ζ 2
τ̃n

25
����
{
i :

ζ τ̃n
5 < |θ0,i | < ζ̃

}���� ≤ ∑
i: |θ0,i | ≤ ζ̃

θ 2
0,i . q log(n/q) . p̃ log(ne/(Csp̃)).

Since log(ne/(Csp̃))/ζ
2
τ̃n
→ 1, it follows that there are fewer than a constant times p̃ pa-

rameters with |θ0,i | ≥ ζ τ̃n/5 and hence their total contribution to the sum is bounded by
p̃ζ 2

τ̃n
.

For parameters such that |θ0,i | ≤ ζ τ̃n/5 we use the triangle inequality |θ̂i (τ ) − θ0,i | ≤

|θ̂i (τ ) | + |θ0,i |, and next further bound |θ̂i (τ ) | by τ |Yi |eY
2
i /2 in case |Yi − θ0,i | ≤ ζ τ̃n , which

is valid in view of Lemma 3.16 (iii), and further bound |θ̂i (τ ) | ≤ |Yi | by |Yi − θ0,i | + |θ0,i |,
otherwise. This gives

Eθ0,i sup
τ ∈Tn

|θ0,i − θ̂i (τ ) |
2 . Eθ0,i τ̃

2
n |Yi |

2eY
2
i 1 |Yi −θ0,i | ≤ζ τ̃n

+ Eθ0,i |Yi − θ0,i |
21 |Yi −θ0,i |>ζ τ̃n + θ 2

0,i .

The second expectation on the right is bounded above by τ̃nζ τ̃n . The �rst expectation on
the right is equal to τ 2

∫ ζτ
−ζτ

(y + θ )2e (y+θ )2φ (y) dy . τ 2ζ 2
τ

∫ ζτ
0 eθ

2+2y |θ |ey
2/2 dy, for τ = τ̃n

and θ = θ0,i . For |θ | . ζ −1
τ , the exponential factor eθ 2+2y |θ | is uniformly bounded, and

the whole expression is bounded by a multiple of τ 2ζ 2
τ

∫ ζτ
0 ey

2/2 dy . τζτ . For |θ | & ζ −1
τ ,

but |θ | ≤ ζτ /5, the exponential factor is bounded above by e ζ
2
τ /25+2ζ 2

τ /5 = τ −22/25 and the
whole expression is bounded above by τ 3/22ζτ . θ

2. Thus in both cases the �rst equation
is bounded above by a multiple of τ̃nζ τ̃n + θ 2

0,i .
Combining the above two cases we �nd

Eθ0 sup
τ ∈Tn

‖θ̂ (τ ) − θ0‖
2
2 . p̃ζ

2
τ̃n + nτ̃nζ τ̃n +

∑
i: |θ0,i |<ζ τ̃n /5

θ 2
0,i .

Since ζ 2
τ̃n
∼ log(n/p̃) ≤ log(ne/(Csq)) ∼ log(n/q) and 1/5 < 1, the last term is bounded

above by a multiple of q log(n/q) . p̃ log(n/p̃) by the excessive-bias restriction, whence
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the whole expression is bounded above nτ̃nζ τ̃n � p̃ log(n/p̃). This concludes the proof of
the coverage of the empirical Bayes credible balls.

The proof of their rate-adaptive size follows along the same lines.
Next we deal with the hierarchical Bayes credible sets. By Lemma 3.20 and the triangle

inequality

Pθ0

(
θ0 < Ĉn (L)

)
≤ Pθ0

(
‖θ0 − θ̂ ‖2 > Lr̂ (α )

)
≤ Pθ0

(
‖θ0 − θ̂ (τ̃n )‖2 + ‖θ̂ − θ̂ (τ̃n )‖2 > LA

√
nζ τ̃n τ̃n

)
+ o(1).

The proof for the empirical Bayes set as just given shows that ‖θ0−θ̂ (τ̃n )‖2 = OP (
√
nτ̃nζ τ̃n ).

Therefore, it is su�cient to show that ‖θ̂ − θ̂ (τn )‖2 = OP (
√
nτ̃nζ τ̃n ). Since θ̂ =∫

θ̂ (τ ) π (τ |Yi ) dτ , Jensen’s inequality gives

‖θ̂ − θ̂ (τ̃n )‖
2
2 ≤

∫ 1

1/n
‖θ̂ (τ ) − θ̂ (τ̃n )‖

2
2π (τ |Y

n ) dτ

≤ sup
τ ∈Tn

‖θ̂ (τ ) − θ̂ (τ̃n )‖
2
2 + sup

τ ∈[1/n,1]
‖θ̂ (τ ) − θ̂ (τ̃n )‖

2
2 Π(τ < Tn |Y

n ). (3.33)

The �rst term on the right hand side is bounded from above by 4 supτ ∈Tn ‖θ̂ (τ ) − θ0‖
2
2 ,

and was already seen to be OP (nτ̃nζ τ̃n ). By the triangle inequality and Lemma 3.16 (i)+(ii)
the second supremum on the right hand side is bounded by

4 sup
τ ∈[1/n,1]

‖θ̂ (τ ) − Y n ‖22 ≤ 4n sup
τ ∈[1/n,1]

ζ 2
τ . n logn.

By Lemma 3.21 we can choose the constant C in the de�nition of Tn such that Π(τ <
Tn |Y

n ) ≤ e−c3 p̃ , for a constant c3 > 0. For p̃ ≥ (2/c3) logn the probability Π(τ < Tn |Y
n )

is of the order n−2, and the second term on the right hand side of (3.33) is negligible. �

Proof of Theorem 3.14

Proof. The proof for the empirical Bayes procedure closely follows the proof of Theo-
rem 3.10. The lower bounds r̂i (α ,τ ) ≥ τzα (1 +o(1)) and r̂i (α ,τ ) ≥ zα +o(1) in the cases S
and L, and the upper bound r̂i (α ,τ ) ≤ τ (1∨ |Yi |eY

2
i /2) in case M , with probability tending

to one, remain valid when τ is replaced by τ̂n . The remainders of the arguments then go
through with minor changes, where it is used that τ̂n ≥ 1/n, ζ τ̂n ≤

√
2 logn and τ̂n ≤ τn (p)

with probability tending to one by Condition 4. Note the slightly changed right boundary
of the set Sa and left boundary of the set La , which refer to “extreme” cases.

In the proof for the hierarchical Bayes method, we denote by θ̂i the ith coordinate
of the hierarchical posterior mean θ̂ and by r̂i (α ) the (Bayesian) radius of the marginal
hierarchical Bayes credible interval. Hence θ0,i is contained in this credible interval if
|θ0,i − θ̂i | ≤ Lr̂i (α ).

By Lemma 3.6 we have that Π(1/n < τ < 5tn |Y n ) → 1 under Condition 6, or Π(1/n <
τ < (logn)tn |Y n ) → 1 under the weaker Condition 7.

Case Sa : proof of the hierarchical Bayes version of (3.15). For i ∈ Sa we have |Yi | ≤
kS/n + |εi |. Because the 1−γ -quantile of the absolute errors |εi | is bounded above by ζγ/2,
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the set Sγ of coordinates i ∈ Sa such that |Yi | ≤ ζγ/2 +δ contains at least a fraction 1−γ of
the elements of Sa , with probability tending to one. We show below that with probability
tending to one both r̂i (α ) ≥ c |θ̂i |zα/2ζγ/2 and r̂i (α ) ≥ zα/(2n) for i ∈ Sγ , and any c < 1/2.
Then |θ̂i −θ0,i | ≤ |θ̂i |+kS/n ≤ [(czα/2ζγ/2)

−1 + (2/zα )kS ]r̂i (α ), and hence θ0,i is contained
in its credible interval for every i ∈ Sγ if L ≥ (czα/2ζγ/2)

−1 + (2/zα )kS .
To show that r̂i (α ) ≥ c |θ̂i |zα/2ζγ/2 for i ∈ Sγ , we assume Yi > 0 for simplicity. Then

θ̂i (τ ,λi ) > 0 for every (τ ,λi ) and hence so is θ̂i . By its de�nition θ̂i (τ ,λi ) = r 2
i (τ ,λi )Yi .

Since ri (τ ,λi ) ≤ 1, it follows that θ̂i (τ ,λi ) ≤ ri (τ ,λi ) (ζγ/2 + δ ), for every i ∈ Sγ . If
θ̂i (τ ,λi ) ≥ θ̂i/2, then ri (τ ,λi ) ≥ τ̂i (2ζγ/2 + 2δ ) and we can conclude, using Anderson’s
lemma and the conditional normal distribution ofθi given (Yi ,λi ,τ ) with variance r 2

i (τ ,λi ),
that Π

(
θi : |θi − θ̂i | ≥ zα/2θ̂i/(2ζγ/2 + 2δ ) |Yi ,τ ,λi

)
≥ α . If θ̂i (τ ,λi ) ≤ θ̂i/2, then θi ≤

θ̂i (τ ,λi ) implies that |θi − θ̂i | ≥ θ̂i/2, and hence Π
(
θi : |θi − θ̂i | ≥ θ̂i/2 |Yi ,τ ,λi

)
≥

Π
(
θi : θi ≤ θ̂i (τ ,λi ) |Yi ,τ ,λi

)
= 1/2, since θ̂i (τ ,λi ) is the median of the conditional

normal distribution of θi . For c0 = (1/2) ∧ (zα/2/(2ζγ/2 + 2δ )) and α ≤ 1/2, we have that
Π

(
θi : |θi − θ̂i | ≥ cθ̂i

)
≥ α in both cases, and hence

Π
(
θi : |θi − θ̂i | ≥ c0θ̂i |Y

n
)

∫ 1

1/n

∫ ∞

0
Π

(
θi : |θi − θ̂i | ≥ c0θ̂i |Yi ,τ ,λi

)
π (λi |Yi ,τ )π (τ |Y

n ) dλi dτ ≥ α .

Thus r̂i (α ) ≥ c0θ̂i by the de�nition of r̂i (α ).
For the proof that r̂i (α ) ≥ zα/(2n), we �rst note that, similarly to (3.30),

α = Π
(
θi : |θi − θ̂i | ≥ r̂i (α ) |Y

n
)

≥

∫ 1

1/n

∫ ∞

0
Π

(
θi : |θi − θ̂i (τ ,λi ) | ≥ r̂i (α ) |Yi ,τ ,λi )π (λi |Yi ,τ

)
π (τ |Y n ) dλi dτ

On the other hand, since ri (τ ,λi ) ≥ 1/(2n) (1+o(1)), whenever τ ∈ [1/n,5tn] and λi > 1/2,
we have similarly to (3.31),∫ 1

1/n

∫ ∞

0
Π

(
θi : |θi − θ̂i | ≥ zα/(2n) |Yi ,τ ,λi

)
π (λi |Yi ,τ )π (τ |Y

n ) dλi dτ

≥

∫ 5tn

1/n

∫ ∞

1/2
Π

(
θi : |θi − θ̂i | ≥ zαri (τ ,λi ) |Yi ,τ ,λi

)
π (λi |Yi ,τ )π (τ |Y

n ) dλi dτ

≥

∫ 5tn

1/n
(4α/3)π (τ |Y n )dτ > α ,

where the lower bound 4α/3 follows as in (3.31). Together the two preceding displays
imply that r̂i (α ) ≥ zα/(2n).

Case La : proof of the hierarchical Bayes version of(3.17). If i ∈ L, then |θ0,i | ≥
kL

√
2 logn = kLζ1/n and hence |Yi | ≥ kLζ1/n − |εi |. The subset Lγ of i with |εi | ≤ ζγ/2 + δ

contains a fraction of at least 1−γ of the elements of La eventually with probability tending
to one, and |Yi | ≥ kζ1/n for every i ∈ Lγ and some constant k > 1. Then |Yi −θi (τ ) | . ζ −1

τ
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for τ → 0 and |Yi −θi (τ ) | . (log ζ1/n )/ζ1/n for τ bounded away from zero, by Lemma 3.16
(i) and (vii), respectively, and hence |Yi −θ̂i | tends to zero, by Jensen’s inequality. It follows
that |θ0,i − θ̂i | ≤ |θ0,i − Yi | + |Yi − θ̂i | ≤ ζγ/2 + δ ′ for ever i ∈ Lγ with probability tending
to one. We can prove that r̂i (α ) ≥ zα (1 + o(1)) similarly as in the proof for Case L in
the proof of Theorem 3.10 (adapted similarly as in the proof for case Sa), but now using
that ri (τ ,λi ) ≥ 1 + o(1), whenever τ ∈ [1/n,5tn] and λi ≥ дτ /τ , for some дτ → ∞. Thus
|θ0,i − θ̂i | ≤ Lr̂i (α ) with probability tending to one, if Lzα ≥ ζγ/2 + δ ′.

Case Ma : proof of the hierarchical Bayes version of (3.16). First assume that Con-
dition 6 holds, so that Π(τ ≤ 5tn |Y n ) → 1 in probability, by Lemma 3.6, and in fact
Π(τ ≤ 5tn |Y n ) ≤ e−c0pn , for some c0 > 0 by the proof of the lemma. Since i ∈ Ma we
have that |Yi | ≤ |θ0,i | + |εi | ≤ kζτn , with probability tending to one and some k < 1. We
show below that both r̂i (α ) and |θ̂i | are bounded above by tn (1 ∨ |Yi |)eY

2
i /2, with proba-

bility tending to one. The argument as in the proof Theorem 3.10, split in the cases that
|θ0,i | is smaller or bigger than 1, then goes through and shows that θ0,i is not contained in
the credible interval, with probability tending to one.

By the triangle inequality, for any r > 0,

Π
(
θi : |θi − θ̂i | ≥ r + |θ̂i (τ ,λi ) − θ̂i | |Yi ,λi ,τ

)
≤ Π

(
θi : |θi − θ̂i (τ ,λi ) | ≥ r |Yi ,λi ,τ

)
.

For r ≥ zα/4ri (τ ,λi ) the right side is at most α/2. For given M de�ne

ri := zα/4 sup
τ ∈[1/n,5tn]

λ i ≤M

ri (τ ,λi ) + sup
τ ∈[1/n,5tn]

λ i ≤M

|θ̂i (τ ,λi ) | + |θ̂i |.

Then it follows that∫ 1

1/n

∫ ∞

0
Π(θi : |θi − θ̂i | ≥ ri |Yi ,λi ,τ )π (λi |Yi ,τ )π (τ |Y

n ) dλi dτ

≤ α/2 +
∫ 5tn

1/n

∫ ∞

M
π (λi | τ ,Yi )π (τ |Y

n ) dλi dτ +
∫ 1

5tn
π (τ |Y n ) dτ .

By (3.32) the second term on the right can be made arbitrarily small by choosing large
M , and the third term tends to zero by Lemma 3.6. We conclude that the left side is then
smaller than α which implies that r̂i (α ) ≤ ri . Now by the de�nitions of ri (τ ,λi ) and
θ̂i (τ ,λi ) the suprema in the de�nition of ri are bounded by zα/4M5tn and M5tn |Yi |, re-
spectively. Furthermore, by Lemma 3.16 (iii) and (ii),

|θ̂i | ≤

∫ 1

1/n
|θ̂i (τ ) |π (τ |Y

n ) dτ . tn |Yi |e
Y 2
i /2 + |Yi |Π(τ ≥ 5tn |Y n ) . tn |Yi |e

Y 2
i /2,

since Π(τ ≥ 5tn |Y n ) . e−c0pn � tn if pn & logn.
If the weaker Condition 7 is substituted for Condition 6, then in the preceding we must

replace tn by (logn)tn . The arguments go through, but with an additional logn factor in
the upper bound on the radius r̂i (α ). This is compensated by the stronger assumption
fn � logn on the lower bound of Ma . �
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Technical Lemmas

The next lemma extends Lemma 3.8 to nondeterministic values of τ .

Lemma 3.19. If nτ/ζτ → ∞, then for every constantC > 0 there exists a constant D > 0
such that

Pθ0

(
inf

t ∈[C−1τ,Cτ ]
r̂ (α ,t ) ≥ D

√
nτζτ

)
→ 1.

Proof. SetT = [C−1τ ,Cτ ]. By the arguments in the proof of Lemma 3.8 and with the same
notation, for 1/c2 ≤ 1 − α ,

inf
t ∈T

r̂ 2 (α ,t ) ≥ inf
t ∈T
E(W |Y n,t ) − c sup

t ∈T
sd(W |Y n,t ).

By the �rst assertion of Lemma 3.17 we have inf t ∈T E0E(W |Y
n,t ) & nτζτ . Combina-

tion with Lemma 3.34 gives that the in�mum on the right side of the display is bounded
below by a multiple of nτζτ , with probability tending to one. By the second assertion
of Lemma 3.17 we have E0 supt ∈T var(W |Y n,t ) . nτζ 3

τ . An application of Markov’s in-
equality shows that the supremum on the right side of the display is bounded above by
o(nτζτ ), with probability tending to one, in view of the assumption that nτ/ζτ → ∞. �

Lemma 3.20. Suppose that the density of πn is bounded away from zero on [1/n,1]. For
every su�ciently large constant D there exists d > 0 such that r̂ (α ) ≥ d

√
nζ τ̃n τ̃n with Pθ0 -

probability tending to one, uniformly in θ0 satisfying the excessive-bias restriction (3.14)
with p̃ ≥ D logn, where τ̃n = τn (p̃).

Proof. Set Tn = [C−1τ̃n,Cτ̃n], for C the constant in Lemma 3.21. Then by the de�nition
of r̂n (α ) and the latter lemma

∫
τ ∈Tn

Π
(
‖θ − θ̂ ‖2 ≤ r (α ) | τ ,Y n )π (τ |Y n

)
dτ is equal to

1 − α + o(1). Therefore there exists τ = τ (Y n ) ∈ Tn such that

Π
(
‖θ − θ̂ ‖2 ≤ r̂ (α ) | τ ,Y n

)
≥ 1 − 2α .

Introduce the notation W̃ = ‖θ − θ̂ ‖22 , and denote by E(·|Y n,τ ) and sd(·|Y n,τ ) the poste-
rior expected value and standard variation for given τ . By an application of Chebyshev’s
inequality, as in the proofs of Lemmas 3.8 and 3.19, we see that r̂ (α ) ≥ E(W̃ | τ ,Y n ) −
c sd(W̃ | τ ,Y n ), for a su�ciently small constant c > 0. Hence it su�ces to show that
inf τ ∈Tn E(W̃ | τ ,Y n ) & nτ̃nζ τ̃n and supτ ∈Tn sd(W̃ | τ ,Y n ) � nτ̃nζ τ̃n , with Pθ0 -probability
tending to one.

Since θ̂ (τ ) is the mean of θ given (Y n,τ ) and the coordinates θi are conditionally in-
dependent, forW = ‖θ − θ̂ (τ )‖22 ,

E(W̃ | τ ,Y n ) = E(W | τ ,Y n ) + ‖θ̂ − θ̂ (τ )‖22 ≥ E(W | τ ,Y n ),

var(W̃ | τ ,Y n ) .
n∑
i=1
E
(
(θi − θ̂i (τ ))

4 | τ ,Y n
)

+
n∑
i=1

(
θ̂i − θ̂i (τ )

)4
.

The proof of Lemma 3.19 shows that inf τ ∈Tn E(W | τ ,Y n ) & nτ̃nζ τ̃n , with Pθ0 -probability
tending to one, and hence the same conclusion holds for inf τ ∈Tn E(W̃ | τ ,Y n ).
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It remains to deal with the variance in the preceding display. By Lemma 3.17 the E0-
expected value of the supremum over τ ∈ Tn of the �rst term on the right is bounded above
by nτ̃nζ

3
τ̃n

, which shows that this term is suitably bounded in view of Markov’s inequality.
By Jensen’s inequality the second can be bounded as

‖θ̂ (τ ) − θ̂ ‖44 ≤

∫ 1

1/n
‖θ̂ (τ ) − θ̂ (t )‖44π (t |Y

n ) dt

≤ sup
t ∈Tn
‖θ̂ (τ ) − θ̂ (t )‖44 + sup

t ∈[1/n,1]
‖θ̂ (τ ) − θ̂ (t )‖44 Π(t < Tn |Y

n ), (3.34)

where ‖θ ‖44 =
∑n

i=1 θ
4
i . In view of Lemma 3.16 (i)+(ii),

sup
τ1,τ2∈[1/n,1]

‖θ̂ (τ1) − θ̂ (τ2)‖
4
4 . sup

τ ∈[1/n,1]
‖θ̂ (τ ) − Y n ‖44 . 8n(logn)2.

Furthermore Π(τ < Tn |Y
n ) ≤ e−c3 p̃ by Lemmas 3.21 and 3.6, for a constant c3 > 0. Hence

for p̃ ≥ D logn, where D > c−1
3 , the second term on the right hand side of (3.34) tends to

zero.
To bound the �rst term of (3.34) we �rst use the triangle inequality to obtain that

supt ∈Tn ‖θ̂ (τ ) − θ̂ (t )‖4 ≤ 2 supt ∈Tn ‖θ̂ (t ) − θ0‖4. We next split the sum in ‖θ̂ (t ) − θ0‖
4
4 in

the terms with |θ0,i | > ζ τ̃n/10 and the remaining terms.
If |θ0,i | > ζ τ̃n/10, then we use that |θ̂i (t )−θ0,i | ≤ |θ̂i (t )−Yi |+ |Yi −θ0,i | . ζt + |Yi −θ0,i |,

so that
Eθ0,i sup

t ∈Tn
|θ0,i − θ̂i (t ) |

4 . ζ 4
τ̃n + 1 . ζ 4

τ̃n .

By an analogous argument as in the proof of Theorem 3.13 the number of terms with
|θ0,i | > ζ τ̃n/10 is bounded by a multiple of p̃, so that their total contribution is bounded
above by p̃ζ 4

τ̃n
.

For the terms with |θ0,i | ≤ ζ τ̃n/10, we �rst use that |θ̂i (t ) − θ0,i | ≤ |θ̂i (t ) | + |θ0,i | ≤
|Yi − θ0,i | + 2|θ0,i |, so that

Eθ0,i sup
t ∈Tn
|θ̂i (t ) − θ0,i |

41 |Yi −θ0,i |>ζ τ̃n .

∫ ∞

ζ τ̃n
y4φ (y) dy + θ 4

0,i . τ̃nζ
3
τ̃n + θ 4

0,i .

Second we use that |θ̂i (t ) − θ0,i | . τ |Yi |e
Y 2
i /2 + |θ0,i |, by Lemma 3.16 (iii), so that

Eθ0,i sup
t ∈Tn
|θ̂i (t ) − θ0,i |

41 |Yi −θ0,i | ≤ζ τ̃n . τ̃
4
n

∫ ζ τ̃n

−ζ τ̃n
(y + θ0,i )

4e2(y+θ0,i )2φ (y) dy + θ 4
0,i

. τ̃nζ
3
τ̃ne

4ζ τ̃n |θ0,i |+2θ 2
0,i + θ 4

0,i .

For |θ0,i | . ζ
−1
τ̃n

, the exponential in the �rst term is bounded, and the �rst term is bounded
above by τ̃nζ 3

τ̃n
. For |θ0,i | & ζ

−1
τ̃n

, but still |θ0,i | ≤ ζ τ̃n/10, the �rst term can be seen to be
bounded above by τ̃nζ 3

τ̃n
τ̃ −21/25
n , which is bounded by θ 4

0,i in that case.
Combining all the preceding computations, we obtain:

Eθ0 sup
t ∈Tn
‖θ0 − θ̂ (t )‖

4
4 . p̃ζ

4
τ̃n + nτ̃nζ

3
τ̃n +

∑
i: |θ0,i |<ζ τ̃n /10

θ 4
0,i .
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We see that this is of the desired ordernτ̃nζ 3
τ̃n

by boundingθ 4
0,i by ζ 2

τ̃n
θ 2

0,i , and next applying
the excessive-bias restriction. �

Lemma 3.21. If θ0 satis�es the excessive-bias restriction (3.14) with p̃ ≥ D logn for a
su�ciently large constant D, and the density of πn is bounded away from zero on [1/n,1],
then there exist constants C > 0 and c3 > 0 such that

Π(τ : τ ≤ C−1τ̃n or τ ≥ Cτ̃n |Y
n ) . e−c3 p̃ .

Proof. As seen in the proof of Lemma 3.12 the function τ 7→ Mτ (Y
n ) is increasing for

τ ≤ c5τ̃n . Inspection of the proof (see (3.20)) shows that its derivative is bounded below
by c6p̃/τ for τ in the interval [cτ̃n,2cτ̃n], for 2c < c5/2 and suitably chosen c5. This shows
that Mτ (Y

n ) −Mc τ̃n (Y
n ) ≥ c8p̃ in the interval [2cτ̃n,4cτ̃n], whence

Π(τ : τ ≤ cτ̃n |Y
n ) ≤

∫ c τ̃n
1/n eMτ (Y n )π (τ ) dτ∫ 4c τ̃n
2c τ̃n

eMτ (Y n )π (τ ) dτ
.

eMc τ̃n (Y
n )

eMc τ̃n (Y n )+c8 p̃cτ̃n
.

This is bounded by e−c3 p̃ , by the assumption that p̃ & logn.
The same bound on Π(τ : τ ≥ cτ̃n |Y

n ) can be veri�ed following the same reasoning,
now using that τ 7→ Mτ (Y

n ) is decreasing for τ ≥ c6τ̃n with derivative bounded above by
−c9p̃/τ on an interval [cτ̃n/2,cτ̃n] for c/2 > 2c6 (see (3.21)). �

3.6.6 Lemmas supporting the MMLE results

For k ∈ {−1/2,1/2,3/2} de�ne a function Ik : R→ R by

Ik (y) :=
∫ 1

0
zk

1
τ 2 + (1 − τ 2)z

ey
2z/2 dz. (3.35)

The Bayesian marginal density ofYi given τ is the convolutionψτ := φ ∗дτ of the standard
normal density and the prior density of дτ , given in (3.3). The latter is a half-Cauchy
mixture of normal densities φτλ with mean zero and standard deviation τλ. By Fubini’s
theorem it follows thatψτ is a half-Cauchy mixture of the densities φ ∗φτλ . In other words

ψτ (y) =

∫ ∞

0

e−
1
2 y

2/(1+τ 2λ2 )

√
1 + τ 2λ2

√
2π

2
1 + λ2

1
π
dλ =

∫ 1

0

e−
1
2 y

2 (1−z)
√

2ππ
τz−1/2

τ 2 (1 − z) + z
dz

=
τ

π
I−1/2 (y)φ (y), (3.36)

where the second step follows by the substitution 1 − z = (1 + τ 2λ2)−1 and some algebra.
Note that I−1/2 depends on τ , but this has been suppressed from the notation Ik .

Set

mτ (y) = y
2 I1/2 (y) − I3/2 (y)

I−1/2 (y)
−

I1/2 (y)

I−1/2 (y)
. (3.37)



104 CHAPTER 3. ADAPTIVE COVERAGE FOR THE HORSESHOE

Lemma 3.22. The derivative of the log-likelihood function takes the form

d

dτ
Mτ (y

n ) =
1
τ

n∑
j=1

mτ (y j ).

Proof. From (3.36) we infer that, with a dot denoting the partial derivative with respect to
τ ,

ψ̇τ
ψτ
=

1
τ

+
İ−1/2
I−1/2

=
I−1/2 + τ İ−1/2

τ I−1/2
=

∫ 1
0

ey
2z/2

√
zN (z)2 [N (z) − 2τ 2 (1 − z)]dz

τ I−1/2
,

where N (z) = τ 2 (1 − z) + z = τ 2 + (1 − τ 2)z. By integration by parts,

y2 (I1/2 − I3/2) (y) =

∫ 1

0

√
z (1 − z)
N (z)

y2ey
2z/2 dz = −2

∫ 1

0
ey

2z/2 d
[√z (1 − z)

N (z)

]
.

Substituting the right hand side in formula (3.37), we readily see by some algebra that τ −1

times the latter formula reduces to the right side of the preceding display. �

Proposition 3.23. Let Y ∼ N (θ ,1). Then supτ ∈[ε,1] E0mτ (Y ) < 0 for every ε > 0, and as
τ → 0,

Eθmτ (Y ) =

− 23/2

π 3/2
τ
ζτ

(
1 + o(1)

)
, |θ | = o(ζ −2

τ ),

o(τ 1/16ζ −1
τ ), |θ | ≤ ζτ /4.

(3.38)

Proof. Let κτ be the solution to the equation ey
2/2/(y2/2) = 1/τ , that is

eκ
2
τ /2 =

1
τ
κ2
τ /2, κτ ∼ ζτ + 2 log ζτ

ζτ
, ζτ =

√
2 log(1/τ ).

We split the integral over (0,∞) into the three parts (0,ζτ ), (ζτ ,κτ ), and (κτ ,∞), where
we shall see that the last two parts give negligible contributions.

By Lemma 3.28(vi) and (vii), if |θ |κτ = O (1),∫
|y | ≥κτ

mτ (y)φ (y − θ ) dy .

∫
z≥κτ −|θ |

φ (z) dz .
e−(κτ −θ )

2/2

κτ − θ
.

e−κ
2
τ /2

κτ
,∫

ζτ ≤ |y | ≤κτ
mτ (y)φ (y − θ ) dy .

∫
ζτ ≤ |y | ≤κτ

τey
2/2−(y−θ )2/2

y2 dy .
τ (κτ − ζτ )

ζ 2
τ

.

By the de�nition of κτ , both terms are of smaller order than τ/ζτ .
Because ey

2/2/y2 is increasing for large y and reaches the value τ −1/ζ 2
τ at y = ζτ ,

Lemma 3.30 gives that I−1/2 (y) = πτ
−1 (1 +O (1/ζ 2

τ )) uniformly in y in the interval (0,ζτ ).
Therefore∫

|y | ≤ζτ
mτ (y)φ (y − θ ) dy =

∫ ζτ

0

y2I1/2 (y) − y
2I3/2 (y) − I1/2 (y)

τ −1π
φ (y) dy + Rτ ,
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where the remainder Rτ is bounded in absolute value by
∫ ζτ

0 |y2 (I1/2 − I3/2) (y) − I1/2 (y) |

φ (y) dy times sup0≤y≤ζτ
���φ (y − θ )/(I−1/2 (y)φ (y)) − 1/(τ −1π )���, which is bounded above by

τ
(
ζ −2
τ + e |θ |ζτ −θ

2/2 − 1) = o(τζ −1
τ ), for |θ | = o(ζ −2

τ ). By Lemma 3.31 the integrand in the
integral is bounded above by a constant for y near 0 and by a multiple of y−2 otherwise,
and hence the integral remains bounded. Thus the remainder Rτ is negligible. By Fubini’s
theorem the integral in the preceding display can be rewritten

τ

π

∫ 1

0

√
z

τ 2 + (1 − τ 2)z

∫ ζτ

0

[
y2 (1 − z) − 1

] e−y2 (1−z)/2
√

2π
dy dz

= −
τ

π

∫ 1

0

√
z

τ 2 + (1 − τ 2)z

∫ ∞

ζτ

[
y2 (1 − z) − 1

] e−y2 (1−z)/2
√

2π
dy dz

by the fact that the inner integral vanishes when computed over the interval (0,∞) rather
than (0,ζτ ). Since

∫ ∞
y [(va)2 − 1]φ (va) dv = yφ (ya), it follows that the right side is equal

to

−
τ

π

∫ 1

0

√
z

τ 2 + (1 − τ 2)z

ζτ e
−ζ 2

τ (1−z)/2
√

2π
dz.

We split the integral in the ranges (0,1/2) and (1/2,1). For z in the �rst range we have
1 − z ≥ 1/2, whence the contribution of this range is bounded in absolute value by

ζττ

π
√

2π
e−ζ

2
τ /4

∫ 1/2

0

√
z

(1 − τ 2)z
dz = O (ζττe

−ζ 2
τ /4).

Uniformly in z in the range (1/2,1) we have τ 2 + (1 − τ 2)z ∼ z, and the corresponding
contribution is

−
τ

π

∫ 1

1/2

1
√
z

ζτ e
−ζ 2

τ (1−z)/2
√

2π
dz = −

τ

πζτ
√

2π

∫ ζ 2
τ /2

0

1√
1 − u/ζ 2

τ

e−u/2 du .

by the substitution ζ 2
τ (1 − z) = u. The integral tends to

∫ ∞
0 e−u/2 du = 2, and hence the

expression is asymptotic to half the expression as claimed.
The second statement follows by the same estimates, where now we use that

e |θ |2ζτ −θ
2/2 ≤ τ −15/16, if |θ | ≤ ζτ /4.

Since E0mτ (Y ) ∼ −cτ/ζτ for a positive constant c , as τ ↓ 0, the continuous function
τ 7→ E0mτ (Y ) is certainly negative if τ > 0 and τ is close to zero. To see that it is bounded
away from zero as τ moves away from 0, we computed E0mτ (Y ) via numerical integration.
The result is shown in Figure 3.7. �

Lemma 3.24. For any ετ ↓ 0 and uniformly in I0 ⊆ {i : |θ0,i | ≤ ζ
−1
τ } with |I0 | & n,

sup
1/n≤τ ≤ετ

1
|I0 |

����
∑
i∈I0

mτ (Yi )
ζτ
τ
−

∑
i∈I0

Eθ0mτ (Yi )
ζτ
τ

����
Pθ0
→ 0.
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E0 mτ(Y)

τ

−0.20

−0.15

−0.10

−0.05

0.00

0.0 0.2 0.4 0.6 0.8 1.0

upper bound asymptotic

Figure 3.7: Upper bound on E0mτ (Y ) as computed with the R integrate() routine
(solid line). The upper bound mτ (y) ≤ y

2 was used for |y | > 500 for numerical stability.
The dashed line shows the asymptotic value (3.38).

Similarly, uniformly in I1 ⊆ {i : |θ0,i | ≤ ζτ /4},

sup
1/n≤τ ≤ετ

1
|I1 |

����
∑
i∈I1

mτ (Yi )
ζτ

τ 1/32 −
∑
i∈I1

Eθ0mτ (Yi )
ζτ

τ 1/32
����
Pθ0
→ 0.

Proof. WriteGn (τ ) = |I0 |
−1 ∑

i∈I0 mτ (Yi ) (ζτ )/τ . In view of Corollary 2.2.5 of Van der Vaart
and Wellner (1996) (applied with ψ (x ) = x2) it is su�cient to show that varθ0 Gn (τ ) → 0
for some τ , and ∫ diamn

0

√
N (ε,[1/n,1],dn ) dε = o(1), (3.39)

where dn is the intrinsic metric de�ned by its square d2
n (τ1,τ2) = varθ0

(
Gn (τ1) −Gn (τ2)

)
,

diamn is the diameter of the interval [1/n,1] with respect to the metric dn , and N (ε,A,dn )
is the covering number of the set A with ε radius balls with respect to the metric dn .

If |θ0,i | ≤ ζ
−1
τ , then in view of Lemma 3.26, as τ → 0,

varθ0 Gn (τ ) ≤
1
|I0 |
Eθ0

(
mτ (Y )ζτ /τ

)2
= o(τ −1/|I0 |).

This tends to zero, as τn ≥ 1 by assumption. Combining this with the triangle inequality
we also see that the diameter diamn tends to 0.

Next we deal with the entropy. The metric dn is up to a constant equal to the square
root of the left side of (3.40). By Lemma 3.25 it satis�es

dn (τ1,τ2) . |I0 |
−1/2 |τ2/τ1 − 1|τ −1/2

1 .
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To compute the covering number of the interval [1/n,1], we cover this by dyadic blocks
[2i/n,2i+1/n], for i = 0,1,2, ..., log2 n. On the ith block the distance dn (τ1,τ2) is bounded
above by a multiple of n |τ1 − τ2 |/23i/2. We conclude that the ith block can be covered by a
multiple of ε−12−i/2 balls of radius ε . Therefore the whole interval [1/n,1] can be covered
by a multiple of ε−1 ∑

i 2−i/2 . ε−1 balls of radius ε . Hence the integral of the entropy is
bounded by ∫ diamn

0

√
N (ε,[1/n,1],dn ) dε .

∫ diamn

0
ε−1/2 dε .

This tends to zero as diamn tends to zero.
The second assertion of the lemma follows similarly, where we use the second parts

of Lemmas 3.26 and 3.25. �

Lemma 3.25. Let Y ∼ N (θ ,1). For |θ | . ζ −1
τ and 0 < τ1 < τ2 ≤ 1/2,

Eθ

(
ζτ1

τ1
mτ1 (Y ) −

ζτ2

τ2
mτ2 (Y )

)2
. (τ2 − τ1)

2τ −3
1 . (3.40)

Furthermore, for |θ | ≤ ζτ /4, and ε = 1/16 and 0 < τ1 < τ2 ≤ 1/2,

Eθ

(
ζτ1

τ ε1
mτ1 (Y ) −

ζτ2

τ ε2
mτ2 (Y )

)2
. (τ2 − τ1)

2τ −2−ε
1 .

Proof. In view of Lemma 3.33 the left side of (3.40) is bounded above by, for ṁτ denoting
the partial derivative ofmτ with respect to τ ,

(τ1 − τ2)
2 sup
τ ∈[τ1,τ2]

Eθ

(ζτ
τ
ṁτ (Y ) −

ζτ + ζ −1
τ

τ 2 mτ (Y )
)2

≤ (τ1 − τ2)
2
[
2 sup
τ ∈[τ1,τ2]

Eθ

(ζτ
τ
ṁτ (Y )

)2
+ 2 sup

τ ∈[τ1,τ2]
Eθ

(ζτ + ζ −1
τ

τ 2 mτ (Y )
)2]
.

By Lemma 3.26 the second expected value on the right hand side is bounded from above
by a multiple of supτ ∈[τ1,τ2] τ

−3 . τ −3
1 .

To handle the �rst expected value, we note that the partial derivative of Ik with respect
to τ is given by İk = 2τ (Jk+1 − Jk ), for

Jk (y) =

∫ 1

0

zk

(τ 2 + (1 − τ 2)z)2
ey

2z/2dz. (3.41)

Therefore, by (3.37),

ṁτ (y) = (y2 − 1)
İ1/2
I−1/2

(y) − y2 İ3/2
I−1/2

(y) −
İ1/2
I−1/2

(y)mτ (y)

= 2τ
[
(y2 − 1)

J3/2 − J1/2
I−1/2

(y) − y2 J5/2 − J3/2
I−1/2

(y) −
J1/2 − J−1/2

I−1/2
(y)mτ (y)

]
.



108 CHAPTER 3. ADAPTIVE COVERAGE FOR THE HORSESHOE

Since Jk ≤ Ik−1/(1 − τ 2) and Jk ≤ Ik/τ
2, and k 7→ Ik and k 7→ Jk are decreasing and

nonnegative, we have that

0 ≤
J3/2 − J5/2

I−1/2
≤
J1/2 − J3/2

I−1/2
≤

J1/2
I−1/2

≤ 4,

0 ≤
J−1/2 − J1/2

I−1/2
≤
J−1/2
I−1/2

≤
1
τ 2 . (3.42)

By combining the preceding two displays we conclude

Eθṁ
2
τ (Y ) . τ

2
[
1 + EθY 4 + 1

τ 4Eθm
2
τ (Y )

]
. (3.43)

Here EθY 4 is bounded and Eθm2
τ (Y ) is bounded above by τζ −2

τ by Lemma 3.26. It follows
that (ζτ /τ )2Eθṁ2

τ (Y ) is bounded by a multiple of τ −3 ≤ τ −3
1 .

For the proof of the second assertion of the lemma, when |θ | ≤ ζτ /4, we argue simi-
larly, but now must bound,

(τ1 − τ2)
2
[
2 sup
τ ∈[τ1,τ2]

Eθ

( ζτ
τ ε

ṁτ (Y )
)2

+ 2 sup
τ ∈[τ1,τ2]

Eθ

( εζτ + ζ −1
τ

τ 1+ε mτ (Y )
)2]
.

The same arguments as before apply, now using the second bound from Lemma 3.26. �

Lemma 3.26. Let Y ∼ N (θ ,1). Then, as τ → 0,

Eθm
2
τ (Y ) =

o(τζ −2
τ ), |θ | . ζ −1

τ ,

o(τ 1/16ζ −2
τ ), |θ | ≤ ζτ /4.

Proof. By Lemma 3.28 (i), (vi) and (vii) we have, if |θ |ζτ . 1,∫
|y | ≥κτ

m2
τ (y)φ (y − θ ) dy .

∫ ∞

|z | ≥κτ −θ
φ (z) dz . e−(κτ −θ )

2/2 (κτ − θ )
−1 . τζ −3

τ ,∫
ζτ ≤ |y | ≤κτ

m2
τ (y)φ (y − θ ) dy .

∫ κτ

ζτ
τy−2ey

2/2−(y−θ )2/2 dy = τ (κτ − ζτ )ζ
−2
τ ,∫

|y | ≤ζτ
m2
τ (y)φ (y − θ ) dy . τ

2
∫ ζτ

0
(y−4 ∧ 1)ey2/2eθζτ −θ

2/2 dy . τζ −4
τ .

All three expressions on the right are o(τζ −2
τ ).

The second assertion of the lemma follows by the same inequalities, together with the
inequalities e−(κτ −θ )2/2 ≤ τ −9/32 and e |θ |2ζτ −θ

2/2 ≤ τ −15/16, if |θ | ≤ ζτ /4. �

Lemma 3.27. If the cardinality of I0 := {i : θ0,i = 0} tends to in�nity, then

sup
1/n≤τ ≤1

1
|I0 |

����
∑
i∈I0

mτ (Yi ) −
∑
i∈I0

Eθ0mτ (Yi )
����
Pθ0
→ 0.
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Proof. By Lemma 3.28(i) we have that E0m
2
τ (Yi ) . 1 uniformly in τ and by the proof of

Lemma 3.25 E0 (mτ1 −mτ2 )
2 (Yi ) . |τ1 − τ2 |

2/τ1, uniformly in 0 < τ1 < τ2 ≤ 1. The �rst
shows that the marginal variances of the processGn (τ ) := |I0 |−1 ∑

i∈I0 mτ (Yi ) tend to zero
as |I0 | → ∞. The second allows to control the entropy integral of the process and complete
the proof, in the same way as the proof of Lemma 3.24. �

Lemma 3.28. The functiony 7→mτ (y) is symmetric about 0 and nondecreasing on [0,∞)
with

(i) −1 ≤ mτ (y) ≤ Cu , for all y ∈ R and all τ ∈ [0,1], and some Cu < ∞.

(ii) mτ (0) = −(2τ/π ) (1 + o(1)), as τ → 0.

(iii) mτ (ζτ ) = 2/(πζ 2
τ ) (1 + o(1)), as τ → 0.

(iv) mτ (κτ ) = 1/(π + 1)/(1 + o(1)), as τ → 0.

(v) supy≥Aζτ |mτ (y) − 1| = O (ζ −2
τ ), as τ → 0, for every A > 1.

(vi) mτ (y) ∼ τe
y2/2/(πy2/2 + τey2/2), as τ → 0, uniformly in |y | ≥ 1/ετ , for any ετ ↓ 0.

(vii) |mτ (y) | . τe
y2/2 (y−2 ∧ 1), as τ → 0, for every y.

Proof. As seen in the proof of Lemma 3.22 the functionmτ can be written

mτ (y) = 1 + τ
İ−1/2
I−1/2

(y) = 1 + 2τ 2
∫ 1

0

z − 1
τ 2 + (1 − τ 2)z

дy (z) dz,

for z 7→ дy (z) the probability density function on [0,1] with дy (z) ∝ ey
2/2z−1/2/(τ 2 + (1 −

τ 2)z). If y increases, then the probability distribution increases stochastically, and hence
so does the expectation of the increasing function z 7→ (z − 1)/(τ 2 + (1 − τ 2)z). (More
precisely, note that дy2/дy1 is increasing if y2 > y1 and apply Lemma 3.18.)

(i). The inequalitymτ (y) ≥ −1 is immediate from the de�nition of (3.37) ofmτ and the
fact that I3/2 ≤ I1/2 ≤ I−1/2. For the upper bound it su�ces to show that both supymτ (y)
remains bounded as τ → 0 and that supy supτ ≥δ mτ (y) < ∞ for every δ > 0.

The �rst follows from the monotonicity and (v).
For the proof of the second we note that if τ ≥ δ > 0, then δ 2 ≤ τ 2 + (1 − τ 2)z ≤ 1, for

every z ∈ [0,1], so that the denominators in the integrands of I−1/2, I1/2, I3/2 are uniformly
bounded away from zero and in�nity and hence

mτ (y) ≤ y
2 I1/2 (y) − I3/2 (y)

I−1/2 (y)
≤

1
δ 2

y2
∫ 1

0
√
z (1 − z)ey2z/2 dz∫ 1

0 z−1/2ey2z/2 dz
.

After changing variables zy2/2 = v , the numerator and denominator take the forms of
the integrals in the second and �rst assertions of Lemma 3.29, except that the range of
integration is (0,y2/2) rather than (1,y). In view of the lemma the quotient approaches 1
as y → ∞. For y in a bounded interval the leading factor y2 is bounded, while the integral
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in the numerator is smaller than the integral in the denominator, as z (1 − z) ≤ z ≤ z−1/2,
for z ∈ [0,1].

Assertions (ii)-(v) are consequences of the representation (3.37), Lemmas 3.30 and
3.31 and the fact that I1/2 (0) =

∫ 1
0 z−1/2dz

(
1 +O (τ 2)

)
→ 2.

Assertions (vi) and (vii) are immediate from Lemmas 3.30 and 3.31. �

Technical lemmas

Lemma 3.29. For any k , as y → ∞,∫ y

1
ukeu du = ykey

(
1 − k/y +O (1/y2)

)
.

Consequently, as y → ∞,∫ y

1
ukeu du −

1
y

∫ y

1
uk+1eu du = yk−1ey

(
1 +O (1/y)

)
.

Proof. By integrating by parts twice, the �rst integral is seen to be equal to

ykey − e − kyk−1ey + ke + R,

where R satis�es

|R | = |k (k − 1) |
∫ y

1
uk−2eu du

≤ |k (k − 1) |
∫ y/2

1
(1 ∨ (y/2)k−2)eu du + |k (k − 1) |

∫ y

y/2
((y/2)k−2 ∨ yk−2)eu du

. |k (k − 1) |
[
(1 ∨ yk−2)ey/2 + yk−2ey

]
.

The second assertion follows by applying the �rst one twice. �

Lemma 3.30. There exist functions Rτ with supy |Rτ (y) | = O (
√
τ ) as τ ↓ 0, such that

I−1/2 (y) =
(π
τ

+
√
y2/2

∫ y2/2

1

1
v3/2 e

v dv
) (

1 + Rτ (y)
)
.

Furthermore, given ετ → 0 there exist functions Sτ with supy≥1/ετ |Sτ (y) | = O (
√
τ + ε2

τ ),
such that, as τ ↓ 0,

I−1/2 (y) =
(π
τ

+ ey
2/2

y2/2

) (
1 + Sτ (y)

)
.

Proof. For the proof of the �rst assertion we separately consider the ranges |y | ≤ 2ζτ and
|y | > 2ζτ . For |y | ≤ 2ζτ we split the integral in the de�nition of I−1/2 over the intervals
(0,τ ), (τ , (2/y2) ∧ 1) and ((2/y2) ∧ 1,1), where we consider the third interval empty if
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y2/2 ≤ 1. Making the changes of coordinates z = uτ 2 in the �rst integral, and (y2/2)z = v
in the second and third integrals, we see that

I−1/2 (y) =
1
τ

∫ 1/τ

0

1
√
u

1
1 + (1 − τ 2)u

ey
2τ 2u/2 du

+
√
y2/2

[∫ y2/2∧1

y2τ/2
+
∫ y2/2

y2/2∧1

] 1
√
v

1
τ 2y2/2 + (1 − τ 2)v

ev dv

For |y | ≤ 2ζτ , the exponential in the �rst integral tends to 1, uniformly in u ≤ 1/τ . Since
eu − 1 ≤ ueu , for u ≥ 0, replacing it by 1 gives an error of at most

1
τ

∫ 1/τ

0

1
√
u

ey
2τ /2y2τ 2u

1 + (1 − τ 2)u
du .

1
τ
y2τ 3/2.

As (1 − τ 2) (1 + u) ≤ 1 + (1 − τ 2)u ≤ 1 + u, dropping the factor 1 − τ 2 from the denom-
inator makes a multiplicative error of order 1 + O (τ 2). Since

∫ ∞
0 u−1/2/(1 + u) du = π

and
∫ ∞

1/τ u
−1/2/(1 + u) du . τ 1/2, the �rst term gives a contribution of π/τ + O (τ −1/2),

uniformly in |y | ≤ 2ζτ . In the second integral we bound the factor τ 2y2/2 + (1 − τ 2)v
below by (1 − τ 2)v , the exponential ev above by e and the upper limit of the integral by
1, and next evaluate the integral to be bounded by a constant times τ −1/2. For the third
integral we separately consider the cases that y2/2 ≤ 1 and y2/2 > 1. In the �rst case the
third integral contributes nothing; the second term (the integral) in the assertion of the
lemma is bounded and hence also contributes a negligible amount relative to π/τ . Finally
consider the case that y2/2 > 1. If in the third integral we replace τ 2y2/2 + (1 − τ 2)v by v ,
we obtain the second term in the assertion of the lemma. The di�erence is bounded above
by√

y2/2
∫ y2/2

1

1
√
v

τ 2v + τ 2y2

v (τ 2y2/2 + (1 − τ 2)v )
ev dv . τ 2

√
y2/2

∫ y2/2

1
(v−3/2 + y2v−5/2)ev dv .

This is negligible relative to the integral in the assertion. This concludes the proof of the
�rst assertion of the lemma for the range |y | ≤ 2ζτ .

For |y | in the interval (2ζτ ,∞) we split the integral in the de�nition of I−1/2 into the
ranges [0,1/3] and (1/3,1]. The contribution of the �rst range is bounded above by

1
τ 2 e

y2/6
∫ 1/3

0
z−1/2 dz �

√
τ
ey

2/2

y2/2 ,

for |y | ≥ 2ζτ . This is negligible relative to the integral in the assertion, which expands as
ey

2/2/
√
y2/2, as claimed by the second assertion of the lemma. In the contribution of the

second range we use that z ≤ τ 2 + (1 − τ 2)z ≤ (1 + 2τ 2)z, for z ≥ 1/3, and see that this is
up to a multiplicative term of order 1 +O (τ 2) equal to∫ 1

1/3
z−3/2ey

2z/2 dz =
√
y2/2

[∫ y2/2

1
−

∫ y2/6

1

]
v−3/2ev dv .
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Applying Lemma 3.29, we see that the contribution of the second integral is bounded
above by a multiple of (y2/2)−1ey

2/6, which is negligible relative to the �rst.
To prove the second assertion of the lemma we expand the integral in the �rst assertion

with the help of Lemma 3.29. �

Lemma 3.31. For k > 0, there exist functions Rτ,k with supy |Rτ,k (y) | = O (τ 2k/(k+1) ), and
for given ετ → 0 functions Sτ,k with supy≥1/ετ |Sτ,k (y) | = O (τ 2k/(2k+1) + ε2

τ ), such that, as
τ ↓ 0,

Ik (y) =
1

(y2/2)k

∫ y2/2

0
vk−1ev dv

(
1 + Rτ,k (y)

)
.

(
1 ∧ y−2

)
ey

2/2,

Ik (y) =
ey

2/2

y2/2
(
1 + Sτ,k (y)

)
.

There also exist functions R̄τ with supy |R̄τ (y) | = O (τ 1/2) and S̄τ with supy≥1/ετ |S̄τ (y) | =

O (
√
τ + ε2

τ ), such that, as τ ↓ 0 and ετ → 0,

I1/2 (y) − I3/2 (y) =
1√
y2/2

∫ y2/2

0

1 − 2v/y2
√
v

ev dv
(
1 + R̄τ (y)

)
. (1 ∧ y−4)ey

2/2,

I1/2 (y) − I3/2 (y) =
ey

2/2

(y2/2)2
(
1 + S̄τ (y)

)
.

Proof. We split the integral in the de�nition of Ik over the intervals [0,τ a] and [τ a ,1], for
a = 2/(k + 1). The contribution of the �rst integral is bounded above by

eτ
ay2/2

∫ τ a

0

zk

(1 − τ 2)z
dz . eτ

ay2/2τ ka .

In the second integral we use that z ≤ τ 2 + (1 − τ 2)z ≤ (τ 2−a + 1 − τ 2)z, for z ≥ τ a , to see
that the integral is 1 +O (τ 2−a ) times∫ 1

τ a

zk

z
ey

2z/2 dz & eτ
ay2/2.

Combining these displays, we see that

Ik (y) =

∫ 1

τ a
zk−1ey

2z/2 dz (1 +O (τ 2−a ) +O (τ ka )).

This remains valid if we enlarge the range of integration to [0,1]. The change of coordi-
nates zy2/2 = v completes the proof of the equality in the �rst assertion.

For the second assertion we expand the integral in the �rst assertion with the help of
the second assertion of Lemma 3.29. Note here that for k > −1 the integrals in the latter
lemma can be taken over (0,y) instead of (1,y), since the di�erence is a constant.

The inequality in the �rst assertion is valid fory → ∞, in view of the second assertion,
and from the fact that G (y) := (y2/2)−k

∫ y2/2
0 vk−1ev dv possesses a �nite limit as y ↓ 0 it
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follows that it is also valid for y → 0. For intermediate y the inequality follows since the
continuous function y 7→ G (y)e−y

2/2/(y−2 ∧ 1) is bounded on compacta in (0,∞).
For the proofs of the assertions concerning I1/2 − I3/2 we write

I1/2 (y) − I3/2 (y) =
(∫ τ

0
+
∫ 1

τ

) √
z (1 − z)

τ 2 + (1 − τ 2)z
ey

2z/2 dz.

Next we follow the same approach as previously. �

Lemma 3.32. For any M → ∞ and τ0 > 0 there exists a constant A such that 0 ≤
1 − I1/2/I−1/2 (y) ≤ A(log |y |)/y2, for every |y | ≥ M and τ ≥ τ0.

Proof. The �rst inequality is clear from the fact that I1/2 ≤ I−1/2. For the proof of the
upper bound we write the di�erence 1 − I1/2/I−1/2 (y) as∫ 1

0 (1 − z)z−1/2 (τ 2 + (1 − τ 2)z)−1 ezy
2/2 dz∫ 1

0 z−1/2 (τ 2 + (1 − τ 2)z)−1ezy2/2 dz
≤

∫ c
0 (1 − z)z−1/2τ −2 dz ecy

2/2∫ 1
d z−1/2 dzedy2/2

+ 1 − c .

The integral in the numerator is uniformly bounded, while the integral in the denominator
is bounded below by a multiple of 1 − d . We now choose 1 − c = 4 log(y2/2)/(y2/2) =
2(1 − d ). �

Lemma 3.33. For any stochastic process (Vτ : τ > 0) with continuously di�erentiable
sample paths τ 7→ Vτ , with derivative written as V̇τ ,

E(Vτ2 −Vτ1 )
2 ≤ (τ2 − τ1)

2 sup
τ ∈[τ1,τ2]

EV̇ 2
τ .

Proof. By the Newton-Leibniz formula, the Cauchy-Schwarz inequality, Fubini’s theorem
and the mean integrated value theorem, for τ2 ≥ τ1,

E
(
Vτ1 −Vτ2

)2
= E

( ∫ τ2

τ1

V̇τ dτ
)2
≤ E(τ2 − τ1)

∫ τ2

τ1

V̇ 2
τ dτ

= (τ2 − τ1)

∫ τ2

τ1

EV̇τ dτ ≤ (τ2 − τ1)
2 sup
τ ∈[τ1,τ2]

EV̇ 2
τ dτ .

�

3.6.7 Lemmas supporting the coverage results

Lemma 3.34. For τ ≥ 1/n and Y n ∼ Nn (0, In ), set Hn (τ ) = E(‖θ − θ̂ (τ )‖
2
2 | τ ,Y

n ) =∑n
i=1 var(θ | τ ,Yi ). Then for any C > 0, as τ → 0,

sup
t ∈[C−1τ,Cτ ]

1
nτζτ

����Hn (t ) − E0Hn (t )
����
P
→ 0.
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Proof. Set T = [C−1τ ,Cτ ]. In view of Corollary 2.2.5 of Van der Vaart and Wellner (1996)
(applied with ψ (x ) = x2) it is su�cient to show that var0

(
Hn (t )/nτζτ

)
→ 0 for some

t ∈ T , and ∫ diamn

0

√
N (ε,T ,dn ) dε = o(1), (3.44)

where dn is the intrinsic metric de�ned by its square d2
n (τ1,τ2) = (nτζτ )

−2 var0
(
Hn (τ1) −

Hn (τ2)
)
, diamn is the diameter of the intervalT with respect to the metricdn , andN (ε,A,dn )

is the covering number of the set A with ε radius balls with respect to the metric dn .
In view of Lemma 3.8,

var0
(
Hn (τ )/(nτζτ )

)
. (nτζτ )

−1 → 0.

Combining this with the triangle inequality and the fact that τζτ � tζt for every t ∈ T ,
we also see that the diameter diamn is bounded from above by a multiple of 1/(nτζτ )1/2.

Since dn (τ1,τ2) . |τ2 − τ1 |τ
−3/2n−1/2, by Lemma 3.35, the covering number of the

intervalT with balls of radius ε is bounded by a multiple of ε−1/(nτ )1/2 . Hence the integral
of the entropy is bounded by∫ diamn

0

√
N (ε,T ,dn ) dε . (nτ )−1/4

∫ 1/(nτζτ )1/2

0
ε−1/2 dε . (nτ )−1/2ζ −1/4

τ → 0.

�

Lemma 3.35. For Yi ∼ N (0,1), and 1/n ≤ τ1 < τ2 ≤ 1/2,

E0 (var(θi |Yi ,τ1) − var(θi |Yi ,τ2))
2 . (τ2 − τ1)

2τ −1
1 ζ 2

τ1 .

Proof. Di�erentiating the left side of (3.26) with respect to τ and applying Lemma 3.33 we
see that the left side of the lemma is bounded above by |τ1 − τ2 |

2 times

sup
τ ∈[τ1,τ2]

E0

[
Y 2
i
İ3/2
I−1/2

− 2Y 2
i
İ1/2I1/2

I 2
−1/2

+
İ1/2
I−1/2

−
İ−1/2
I−1/2

[
Y 2
i
I3/2
I−1/2

− 2Y 2
i

I 2
1/2

I 2
−1/2

+
I1/2
I−1/2

] ]2

= sup
τ ∈[τ1,τ2]

E0

[
Y 2
i
İ3/2
I−1/2

− 2Y 2
i
İ1/2I1/2

I 2
−1/2

+
İ1/2
I−1/2

+
İ−1/2
I−1/2

[
mτ (Yi ) + Y 2

i

[ 2I 2
1/2

I 2
−1/2

−
I1/2
I−1/2

] ] ]2
,

in view of (3.37). Here İk denotes the partial derivative of Ik with respect to τ , and the
argument Yi of Ik and İk has been omitted. In view of Lemma 3.25 and (3.42), the right
hand side of the preceding display is further bounded above by a multiple of

sup
τ ∈[τ1,τ2]

[
τ 2 + τ 2E0Y

4
i + τ −2E0mτ (Yi )

2 + τ −2E0Y
4
i

I 2
1/2

I 2
−1/2

]
.

The �rst two terms inside the square brackets are uniformly bounded, the third one is of or-
der o(τ −1ζ −2

τ ) as τ → 0 in view of Lemma 3.26, and is uniformly bounded, by Lemma 3.28.
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It remains to deal with the last term. By Lemmas 3.30 and 3.31 the quotient I1/2/I−1/2 is
bounded by a constant for |y | ≥ κτ , and by a multiple of τey2/2/y2, otherwise. Therefore,∫

|y | ≥κτ
y4

I 2
1/2

I 2
−1/2

φ (y) dy .

∫ ∞

κτ
y4e−y

2/2 dy . e−κ
2
τ /2κ3

τ . τζτ ,∫
|y | ≤κτ

y4
I 2
1/2

I 2
−1/2

φ (y) dy . τ 2
∫ κτ

0
ey

2/2 dy . τ 2κ−1
τ eκ

2
τ /2 . τζτ .

This concludes the proof. �



116 CHAPTER 3. ADAPTIVE COVERAGE FOR THE HORSESHOE



4
Bayesian community detection

Abstract
We introduce a Bayesian estimator of the underlying class structure in the stochastic block
model, when the number of classes is known. The estimator is the posterior mode correspond-
ing to a Dirichlet prior on the class proportions, a generalized Bernoulli prior on the class
labels, and a beta prior on the edge probabilities. We show that this estimator is strongly
consistent when the expected degree is at least of order log2 n, where n is the number of nodes
in the network.

4.1 Introduction

The stochastic block model (SBM) (Holland et al., 1983) is a model for network data in
which individual nodes are considered members of classes or communities, and the prob-
ability of a connection occurring between two individuals depends solely on their class
membership. It has been applied to social, biological and communication networks, for ex-
ample in Park and Bader (2012), Bickel and Chen (2009) and Snijders and Nowicki (1997)
amongst many others. There are many extensions of the SBM for various applications,
including the degree-corrected SBM (Karrer and Newman, 2011; Zhao et al., 2012) which
accounts for possible heterogeneity among nodes within the same class, and the mixed-
membership SBM (Airoldi et al., 2008), in which the assumption that the classes are disjoint
is removed. These extensions allow for additional modelling �exibility.

Two main SBM research directions are the recovery of the class labels (community

This chapter has been submitted as: S.L. van der Pas and A.W. van der Vaart. Bayesian community detection.
The research leading to these results has received funding from the European Research Council under ERC Grant
Agreement 320637.
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detection) and recovery of the remaining model parameters, consisting of the probability
vector generating the class labels, and the class-dependent probabilities of creating an
edge between nodes. In this paper, we focus on community detection, noting that once
strong consistency of a community detection method has been established, consistency of
the natural plug-in estimators for the remaining parameters follows directly by results in
(Channarond et al., 2012).

A large number of methods for recovering the class labels has been proposed. Those
most closely related to this work are the modularities. Newman and Girvan (2004) in-
troduced the term modularity for ‘a measure of the quality of a particular division of a
network’. They described one such measure for models in which edges are more likely to
occur within classes than between classes, in which case there is a community structure
in the colloquial sense, although the SBM does not require this assumption. Bickel and
Chen (2009) studied more general modularities, de�ning them as functions of the number
of connections between all combinations of classes and the proportion of nodes placed in
each class. They introduced the likelihood modularity, and provided general conditions
under which modularities are consistent. Their method and theory was extended to the
degree-corrected SBM by Zhao et al. (2012).

Spectral methods for community detection have gained in popularity, and re�ned re-
sults on error bounds are now available for the SBM and extensions of the SBM, as evi-
denced in Rohe et al. (2011), Jin (2015), Sarkar and Bickel (2015) and Lei and Rinaldo (2015)
for example. Many other algorithms have been introduced, most of them currently lacking
formal proofs of consistency. A notable exception is the Largest Gaps algorithm (Chan-
narond et al., 2012), which only takes the degree of each node as its input, and is strongly
consistent under a separability condition.

A Bayesian approach towards recovering the class assignments in the SBM was �rst
suggested by Snijders and Nowicki (1997), motivated by computational advantages of
Gibbs sampling over maximum likelihood estimation. They considered two classes and
proposed uniform priors on the class proportions and the edge probabilities. This ap-
proach was extended in (Nowicki and Snijders, 2001) to allow for more classes, with a
Dirichlet prior on the class proportions and beta priors on the edge probabilities. Hofman
and Wiggins (2008) described a similar Bayesian approach for a special case of the SBM
and suggested a variational approach to overcome the computational issues associated
with maximizing over all possible class assignments.

Bayesian methods for the SBM have barely been studied from a theoretical point of
view, although recent results for parameter recovery by Pati and Bhattacharya (2015), for
detecting the number of communites by Hayashi et al. (2016) and for an empirical Bayes
approach to community detection by Suwan et al. (2016) are encouraging. In this work,
we provide theoretical results on community detection, establishing that the Bayesian
posterior mode is strongly consistent for the class labels if the expected degree is at least of
order log2 n, wheren is the number of nodes. This is proven by relating the posterior mode
to the maximizer of the likelihood modularity of Bickel and Chen (2009). The likelihood
modularity has been claimed to be strongly consistent under the weaker assumption that
the expected degree is of larger order than logn (Bickel and Chen, 2009; Bickel et al., 2015;
Zhao et al., 2012). However, their proof assumes that the likelihood modularity is globally
Lipschitz, while it is only locally so. The Bayesian method is based on a combination
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of likelihood and prior, and for this reason the proof of our main theorem, Theorem 4.3,
runs into a similar problem. We were able to resolve this only under the slightly stronger
assumption that the expected degree is of larger order than (logn)2. The literature on other
methods for community detection shows that the order logn is su�cient for consistent
detection. However, these results are usually obtained under additional assumptions such
asăa restriction to two classes or an ordering of the connection probabilities, and their
implications for the likelihood or Bayesian modularities is unclear. We discuss this and
the relevant literature further following the statement of our main result in Section 4.3.5.

This paper is organized as follows. We introduce the SBM and the associated notation
in Section 4.2. Our main results are in Section 4.3, where we describe the prior and the link
with the likelihood modularity, present the consistency results and discuss the underlying
assumptions, especially those on the expected degree. The method is illustrated on a data
set in Section 4.4, and we conclude with a Discussion in Section 4.5. All proofs are given
in the Appendix.

4.2 The stochastic block model

We introduce the notation and generative model for the SBM with K ∈ {1,2, . . .} classes.
Consider an undirected random graph with n nodes, numbered 1,2, . . . ,n, and edges en-
coded by the n ×n symmetric adjacency matrix (Ai j ), with entries in {0,1}. ThusAi j = A ji
is equal to 1 or 0 if the nodes i and j are or are not connected by an edge, respectively. Self-
loops are not allowed, so Aii = 0 for i = 1, . . . ,n. The generative model for the random
graph is:

1. The nodes are randomly labeled with i.i.d. variables Z1, . . . ,Zn , taking values in a
�nite set {1, ...,K }, according to probabilities π = (π1, . . . ,πK ).

2. Given Z = (Z1, . . . ,Zn ), the edges are independently generated as Bernoulli vari-
ables with P(Ai j = 1 | Z ) = PZ i ,Z j , for i < j, for a given K × K symmetric matrix
P = (Pab ).

The probability vector π is considered �xed, but unknown. Although this is not visible in
the notation, the matrix P may change with n, a case of particular interest being that P
tends to zero, which gives a sparse graph. The order of magnitude of ‖P ‖∞ = maxa,b Pab
is the same as the order of magnitude of ρn =

∑
a,b πaπbPab , the probability of there being

an edge between two randomly selected nodes. The expected degree of a randomly selected
node is λn = (n − 1)ρn , and twice the expected total number of edges in the network is
µn = n(n − 1)ρn .

The likelihood for the model is given by∏
i< j

P
Ai j
Z iZ j

(1 − PZ iZ j )
1−Ai j

∏
i

πZ i =
∏
a≤b

POab (Z )
ab (1 − Pab )nab (Z )−Oab (Z )

∏
a

π na (Z )
a , (4.1)

where Oab (Z ) is the number of edges between nodes labelled a and b by the labelling Z ,
nab (Z ) is the maximum number of edges that can be created between nodes labelled a and
b, and na (Z ) is the number of nodes labelled a, and a and b range over {1,2, . . . ,K }.
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More formally, for a given labelling e = (e1, . . . ,en ) ∈ {1, . . . ,K }n of nodes, and class
labels a,b ∈ {1, . . . ,K }, we de�ne

Oab (e ) =


∑

i, j Ai j1{e i=a,e j=b }, a , b,∑
i< j Ai j1{e i=a,e j=b }, a = b,

nab (e ) =

na (e )nb (e ), a , b,
1
2na (e ) (na (e ) − 1), a = b,

na (e ) =
n∑
i=1

1{e i=a } .

Since the matrix A is symmetric with zero diagonal by assumption, for a , b the variable
Oab (e ) can also be written as ∑

i< j Ai j[1{e i=a,e j=b } + 1{e j=a,e i=b }], which explains the dif-
ferent appearances of the diagonal and o�-diagonal entries. The numbers nab (e ) are equal
to the numbers Oab (e ) when all Ai j are equal to 1. We collect the variables Oab (e ) and
nab (e ) in K × K matrices O (e ) and n(e ).

Now consider the K × K probability matrix R (e,c ) and K probability vector f (e ) with
entries

Rab (e,c ) =
1
n

n∑
i=1

1{e i=a,c i=b }, fa (e ) =
na (e )

n
. (4.2)

The row sums of R (e,c ) are equal to R (e,c )1 = f (e ), while the column sums are equal
to 1TR (e,c ) = f (c )T . Thus, the matrix R (e,c ) can be seen as a coupling of the marginal
probability vectors f (e ) and f (c ). If e = c , then it is diagonal with diagonal f (c ) = f (e ).
More generally, the matrix can be viewed as measuring the discrepancy between labellings
e and c . This can be precisely measured as half the L1-distance of R (e,c ) to its diagonal, as
evidenced by Lemma 4.1, which is noted in Bickel and Chen (2009).

For a vector v we denote by Diag(v ) the diagonal matrix with diagonal v , and for a
matrix M we denote its diagonal by diag (M ).

Lemma 4.1. For every labelling c,e in the K-class stochastic block model:

1
n

n∑
i=1

1{c i,e i } =
1
2 ‖Diag( f (c )) − R (e,c )‖1.

Proof. The diagonal of R (e,c ) gives the fractions of labels on which c and e agree. Hence
the left side of the lemma is 1 − ∑

a Raa (e,c ) =
∑

a ( fa (c ) − Raa (c )) . The elements of
both K × K matrices Diag( f (c )) and R (e,c ) can be viewed as probabilities that add up
to 1. Thus the sum of the di�erences of the diagonal elements is minus the sum of the
di�erences of the o�-diagonal elements. Because fa (c ) ≥ Raa (e,c ) for every a, we have∑

a ( fa (c ) − Raa (e,c )) =
∑

a | fa (c ) − Raa (e,c ) |. Similarly the o�-diagonal elements of
Diag( f (c )), which are zero, are smaller than the o�-diagonal elements of R (e,c ) and hence
we can add absolute values. Thus the sum over the diagonal is half the sum of the absolute
values of all terms in Diag( f (c )) − R (e,c ). �
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4.3 Bayesian approach to community detection

Our main results are presented in this section. We �rst discuss the choice of prior in
Section 4.3.1, and de�ne the estimator, in Section 4.3.2. The resulting Bayesian modularity
is closely related to the likelihood modularity of Bickel and Chen (2009). The relationship
is clari�ed in Section 4.3.3. We brie�y consider the issue of identi�ability in the SBM
in Section 4.3.4, and conclude with our main theorem on the strong consistency of the
Bayesian modularity in Section 4.3.5.

4.3.1 The prior
We adopt the Bayesian approach of Nowicki and Snijders (2001). We put prior distributions
on the parameters of the stochastic block model withK known, the vector π and the matrix
P , yielding a joint probability distribution of (A,Z ,π ,P ). Next we marginalize over π and
P as in McDaid et al. (2013), leading to a joint distribution of (A,Z ). Finally we “estimate”
the unobserved vector Z by the posterior mode of the conditional distribution of Z given
A. From a frequentist point of view this means that Z is treated as a parameter of the
problem, equipped with a hierarchical prior that chooses �rst π and then Z . Accordingly
we shall change notation from Z to e , reserving Z for the frequentist description of the
stochastic block model in Section 4.2.

The prior on π is a Dirichlet, and independently the Pab for a ≤ b receive independent
beta priors:

π ∼ Dir(α , . . . ,α ),

Pab
i .i .d .
∼ Beta(β1,β2), 1 ≤ a ≤ b ≤ K .

This is essentially the same set-up as in Nowicki and Snijders (2001) and McDaid et al.
(2013), except that we use a more �exible Beta(β1,β2) instead of a uniform prior on the
Pab . We assume α ,β1,β2 > 0.

We complete the Bayesian model by specifying class labels e = (e1, . . . ,en ) and edges
A = (Ai j : i < j ) through

ei | π ,P
i .i .d .
∼ π , 1 ≤ i ≤ n,

Ai j | π ,P ,e
ind .
∼ Bernoulli(Pe i ,e j ), 1 ≤ i < j ≤ n.

Abusing notation we write p (e ), p (A | e ) and p (e | A) for marginal and conditional prob-
ability density functions.

4.3.2 The Bayesian modularity
The Bayesian estimator of the class labels will be the posterior mode, that is:

ê = argmax
e

p (e | A).

The posterior mode can be interpreted as a modularity-based estimator in the sense of
Bickel and Chen (2009), in that it maximizes a function that only depends on theOab (e ) and
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thena (e ). This can be seen from the joint density of (A,e ), which is found by marginalizing
the likelihood (4.1) over π and P . The conjugacy between the multinomial and Dirichlet
distributions gives the marginal density of the class assignment e as:

p (e ) =

∫
SK

∏
a

π na (e )
a

∏
a π

α−1
a

D (α )
dπ =

Γ(αK )

Γ(α )KΓ(n + αK )

∏
a

Γ(na (e ) + α ). (4.3)

Here the integral is relative to the Lebesgue measure on the K-dimensional unit simplex
and D (α ) = Γ(α )K/Γ(Kα ) is the norming constant for the Dirichlet density. Similarly the
conjugacy between the Bernoulli and Beta distributions gives the marginal conditional
density of A given e as:

p (A | e ) =

∫
[0,1]K (K+1)/2

∏
a≤b

POab (e )
ab (1 − Pab )nab (e )−Oab (e )

∏
a≤b

P
β1−1
ab (1 − Pab )β2−1

B (β1,β2)
dP

=
∏
a≤b

1
B (β1,β2)

B (Oab (e ) + β1,nab (e ) −Oab (e ) + β2), (4.4)

where B (x ,y) = Γ(x )Γ(y)/Γ(x +y) is the beta-function. The joint density ofA and e is given
by the product of (4.3) and (4.4), and n−2 times its logarithm is up to a constant that is free
of e equal to

QB (e ) =
1
n2

∑
1≤a≤b≤K

logB (Oab (e ) + β1,nab (e ) −Oab (e ) + β2) + 1
n2

K∑
a=1

log Γ(na (e ) + α ).

This is a modularity in the sense of Bickel and Chen (2009), which we de�ne as the Bayesian
modularity. As p (e | A) is proportional to p (e,A), the posterior mode is equal to the class
assignment that maximizes the Bayesian modularity, so the Bayesian estimator is equal
to:

ê = argmax
e

QB (e ). (4.5)

4.3.3 Similarity to the likelihood modularity
The Bayesian modularity QB (e ) consists of a two parts, originating from the likelihood
and the prior on the classi�cation, respectively. The �rst part is close to the likelihood
modularity given by

QML (e ) =
1
n2

∑
1≤a≤b≤K

nab (e ) τ
(Oab (e )

nab (e )

)
,

where τ (x ) = x logx + (1−x ) log(1−x ). This criterion, obtained in Bickel and Chen (2009),
results from replacing in the log conditional likelihood of A given e (the logarithm of (4.1)
with Z replaced by e and discarding the term involving the parameters πa) the parameters
Pab by their maximum likelihood estimators P̂ab = Oab (e )/nab (e ). In other words, the
parameters are pro�led out rather than integrated out as for the Bayesian modularity. The
corresponding estimator

êML = argmax
e

QML (e )
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is consistent, and hence one may hope that the Bayesian estimator can be proved consis-
tent by showing that the Bayesian and likelihood modularities are close. This will indeed
be our line of approach, but the execution must be done with care. For instance, the second,
prior part of the Bayesian modularity does play a role in the proof of strong consistency,
although it is negligible when proving weak consistency.

The following lemma links the Bayesian and likelihood modularities.

Lemma 4.2. There exists a constant C such that, for E = {1, . . . ,K }n the set of all possible
labellings:

max
e∈E

����QB (e ) − QML (e ) − QP (e )
���� ≤

C logn
n2 ,

for

QP (e ) =
1
n2

∑
a:na (e )+ bα c≥2

na (e ) log(na (e )) −
1
n
.

Consequently maxe∈E ���QB (e ) − QML (e )
��� = O

(
logn/n

)
.

4.3.4 Identi�ability and consistency

A classi�cation ê is said to be weakly consistent if the fraction of misclassi�ed nodes tends
to zero (partial recovery), and strongly consistent if the probability of misclassifying any of
the nodes tends to zero (exact recovery). In de�ning consistency in a precise manner, the
complication of the possible unidenti�ability of the labels needs to be dealt with. From the
observed data A we can at best recover the partition of the n nodes in the K classes with
equal labels Zi , but not the values Z1, . . . ,Zn of the labels, in the set {1,2, . . . ,K }, attached
to the classes. Thus consistency will be up to a permutation of labels.

To make this precise de�ne, for a given permutation (1, . . . ,K ) → (σ (1), . . . ,σ (K )),
the permutation matrix Pσ as the matrix with rows

eTσ (1)
...

eTσ (K ) ,

for e1, . . . ,eK the unit vectors in RK . Then pre-multiplication of a matrix by Pσ permutes
the rows, and post-multiplication by PTσ the columns: PσR is the matrix with jth row
equal to the σ (j )th row of R, and RPTσ is the matrix with jth column the σ (j )th column of
R. Thus PσR (e,Z ) is the matrix that would result if we would permute the labels of the
classes of the assignment e , and PσPPTσ and PσR (e,Z )PTσ are the matrices that would result
if we would relabel the classes throughout. Since we cannot recover the labels, the matrix
PσR (e,Z ) is just as good or bad as R (e,Z ) for measuring discrepancy between a labelling e
and the true labellingZ ; furthermore, nothing should change if we choose di�erent names
for the classes.
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Thus, taking into account the unidenti�ability of the labels, by Lemma 4.1, an estimator
ê is weakly consistent if

‖PσR (̂e,Z ) − Diag( f (Z ))‖1 → 0,

for some permutation matrix Pσ . The classi�cation ê is said to be strongly consistent if

P(PσR (̂e,Z ) = Diag( f (Z ))) → 1,

for some permutation matrix Pσ .
The permutation matrix Pσ is for large n uniquely de�ned: if ‖ (Pσ )jR − Diag(π )‖1 ≤

mina πa , for j = 1,2, then (Pσ )1 = (Pσ )2. This follows because the assumption implies
that ‖ (Pσ )−1

1 Diag(π ) − (Pσ )
−1
2 Diag(π )‖1 ≤ 2 mina πa , by the triangle inequality and the

fact that the L1-norm is invariant under permutations. Furthermore, for Pσ = (Pσ )2 (Pσ )
−1
1

the left side is ‖PσDiag(π ) − Diag(π )‖1, which is at least two times the sum of the two
smallest coordinates of π if Pσ , I .

A necessary requirement for consistency is that the classes can be recovered from
the likelihood, i.e. the model parameters must be identi�able. If π has strictly positive
coordinates, so that all labels will appear in the data eventually, then as explained in Bickel
and Chen (2009) an appropriate condition is that P does not have two identical rows. If
πa = 0 for some a, then class a will never be consumed; the identi�ability condition
should then be imposed after deleting the ath column from P . Thus, we call the pair (P ,π )
identi�able if the rows of P are di�erent after removing the columns corresponding to zero
coordinates of π . Throughout we assume that P is symmetric.

4.3.5 Consistency results and assumptions
We are now ready to present our results on consistency for the Bayesian maximum a
posteriori (MAP) estimator (4.5). Theorem 4.3 shows strong consistency of the Bayesian
estimator if λn � (logn)2. The proof rests on a proof of weak consistency under similar
conditions, stated in the appendix as Theorem 4.4.

Recall that ρn =
∑

a,b πaπbPab is the probability of a new edge, and λn = (n − 1)ρn is
the expected degree of a node.

Theorem 4.3 (strong consistency). (i) If (P ,π ) is �xed and identi�able with 0 < P < 1
and π > 0 then the MAP classi�er ê = arg maxe QB (e ) is strongly consistent.

(ii) If P = ρnS , where (S ,π ) is �xed and identi�able with S > 0 and π > 0, then the MAP
classi�er ê = arg maxe QB (e ) is strongly consistent if λn � (logn)2.

The theorem distinguishes two cases: i is the dense case, while ii is the sparse case. The
second is the most interesting of the two, as it touches on the question how much infor-
mation is required to recover the underlying community structure. Much recent research
e�ort has gone into determining detection and computational boundaries, in particular
for special cases of the SBM with K = 2 (see e.g. Mossel et al. (2012), Chen and Xu (2014),
Abbe et al. (2014) and Zhang and Zhou (2015)).

Weakly consistent estimation of the class labels for an arbitrary, but known, number
of classes is possible under the assumption λn � logn, as this was shown to hold for
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spectral clustering by Lei and Rinaldo (2015). Strong consistency of maximum likelihood
was shown to hold in the special cases of planted bisection (K = 2 and equal community
sizes) and planted clustering (equal community sizes and Pab can take two values) by Abbe
et al. (2014); Chen and Xu (2014), again under the assumption λn � logn. Gao et al. (2015)
and Gao et al. (2016) achieve optimality in di�erent senses, under assumptions on the
average within-community and between-community edge probabilities; Gao et al. (2015)
introduce a two-stage procedure which achieves the optimal proportion of misclassi�ed
nodes in a special case where Pab can only take two values, while Gao et al. (2016) obtain
minimax rates for the proportion of misclassi�ed nodes in the degree corrected SBM.

Strong consistency of the likelihood modularity for an arbitrary number of classes
K has been claimed under the same assumption λn � logn (Bickel and Chen, 2009), and
those results have been extended to the degree-corrected SBM (Zhao et al., 2012). However,
these results were obtained by application of an abstract theorem to the special case of the
likelihood modularity, which would require the function τ (x ) = x logx + (1 − x ) log(1 −
x ), or the function σ (x ) = x logx , to be globally Lipschitz. As τ and σ are only locally
Lipschitz, it is still unclear whether λn � logn is a su�cient condition for either weakly
or strongly consistent estimation by maximum likelihood. From our proof of Theorem
4.3, which proceeds by comparing the Bayesian modularity to the likelihood modularity, it
immediately follows that λn � (logn)2 is certainly su�cient. Given weak consistency the
problem can be reduced to a neighbourhood of the true parameter on which the Lipschitz
condition is reasonable. However, it is precisely our proof of weak consistency that needs
the additional logn factor.

The Largest Gaps algorithm of Channarond et al. (2012) is strongly consistent provided
that mina,b |

∑K
k=1 αk (Pak − Pbk ) | is at least of order

√
logn/n, implying that at least one

of the Pab is of the same order, and thus λn �
√
n logn. This much stronger condition is

not surprising, as the Largest Gaps algorithm only uses the degree of a node and does not
take into account any �ner information on the group structure, such as the information
contained in the Oab .

To the best of our knowledge, for K > 2, it remains to be shown that λ � logn is
su�cient for strong consistency of any community detection method for the general SBM.
For the minimax rate for the proportion of misclustered nodes in community detection,
when only classes of sizes proportional to n are considered, a phase transition when going
from the case K = 2 to K ≥ 3 was observed by Zhang and Zhou (2015). Their results show
that ifK = 2, communities of the same size are most di�cult to distinguish, while ifK ≥ 3,
small communities are harder to discover. This shift in the nature of the communities that
are harder to detect may be what has been preventing a general strong consistency result
under the assumption λn � logn so far.

4.4 Application to the karate club data set

Some options for implementing the Bayesian modularity are given in Section 4.4.1, after
which the results of applying the Bayesian and likelihood modularities to the well-studied
karate club data of Zachary (1977) are discussed in Section 4.4.2.
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●
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Figure 4.1: Communities detected by the Bayesian modularity whenK = 2 (left) andK = 4
(right), with α = β1 = β2 = 1/2. The polygons contain the two groups the karate club was
split into; the left one is Mr. Hi’s club, the right one is the O�cers’ club. The shapes of
the nodes represent the communities selected by the modularities. Figure made using the
igraph package (Csardi and Nepusz, 2006).

4.4.1 Implementation
Two recent works explicitly discuss implementation of Bayesian methods for the SBM.
McDaid et al. (2013) followed the approach of Nowicki and Snijders (2001) and added a
Poisson prior on K . After marginalizing over π and P , they employ an allocation sampler
to sample from the joint density ofK and z givenA, and use the posterior mode to estimate
K . Their algorithm can scale to networks with approximately ten thousand nodes and ten
million edges. Côme and Latouche (2014), claiming that the algorithm of McDaid et al.
(2013) su�ers from poor mixing properties, propose a greedy inference algorithm for the
same problem. For the karate club data in Section 4.4.2, the network was small enough that
a tabu search (Glover, 1989), run for a number of di�erent initial con�gurations, yielded
good results. We used α = 1/2 for the Dirichlet prior, and β1 = β2 = 1/2 for the beta prior.

4.4.2 Karate club
Zachary (1977) described a karate club which split into two clubs after a con�ict over
the price of the karate lessons. The new club was led by Mr. Hi, the karate teacher of
the original club, while the remainder of the old club stayed under the former O�cers’
rule. The data consists of an adjacency matrix for those 34 individuals who interacted
with other club members outside club meetings and classes. Each of these individuals’
a�liations after the con�ict is known.

The communities selected by the Bayesian modularity for K = 2 and K = 4 are given
in Figure 4.1. In both instances, the tabu search led to nearly the same solution for both the
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Bayesian and likelihood modularities, only di�ering at one node for K = 4, which is not
surprising in light of Lemma 4.2. For K = 2, the results of Bickel and Chen (2009) for this
data set are recovered. For K = 4, the partition in Figure 4.1 yields a higher value of the
likelihood modularity than the partition into four classes found by Bickel and Chen (2009),
and an even higher value is obtained by switching club member 20 to the second-largest
class. This discrepancy is likely due to the heuristic nature of the tabu search algorithm,
and for the same reason, it may be the case that improvement over the partitions found
by the Bayesian modularity in Figure 4.1 are possible.

ForK = 2, the communities found by the algorithms do not correspond in the slightest
to the two karate clubs, instead grouping the nodes with the highest degrees, correspond-
ing to Mr. Hi, the president of the original club, and their closest supporters, together.
Incidentally, this partition is the same as the one returned by the Largest Gaps algorithm
of Channarond et al. (2012), which solely uses the degrees of the nodes and discards all
other information.

These bad results are no reason to shelve the Bayesian and likelihood modularities, as
there is no reason to believe that the two karate clubs form communities in the sense of
the stochastic block model. Mr. Hi and the club’s president are clear outliers within their
groups, and neither of the algorithms were designed to be robust to such a phenomenon.
The communities selected by the modularities are communities in the sense that they
form connections within and between the groups in a similar fashion. This sense does not
correspond to the social notion of a community in this setting.

The results for four classes unify the social and stochastic senses of community. The
prominent members of each of the new clubs are placed into two separate, small, commu-
nities. The other members are classi�ed nearly perfectly, with two exceptions. However,
one of those exceptional individuals is the only person described by Zachary (1977) as be-
ing a supporter of the club’s president before the split, who joined Mr. Hi’s club, making
this person’s a�liation up for debate. The second is described as only a weak supporter of
Mr. Hi. The increased number of communities allows for some outliers within the social
communities, and leads to a more detailed understanding of the dynamics within both of
the groups. We essentially recover the two communities, each with a core that is more
connective than the remainder of the nodes.

4.5 Discussion

An advantage of Bayesian modelling is that it does not solely result in an estimator, but
in a full posterior distribution. The posterior mode studied in this paper is but one aspect
of the posterior, and its good behaviour in terms of consistency is encouraging. Further
study into other aspects in the posterior may prove to be fruitful. One possible research
direction would be to use the posterior to quantify uncertainty in the estimate of the class
labels. A second issue that may be resolved by the Bayesian approach is the question of
estimating the number of classes, K . This remains an important open question, as noted
by Bickel and Chen (2009), despite recent attempts (e.g. Saldana et al. (2014), Chen and Lei
(2014) and Wang and Bickel (2015)). By introducing a prior onK , such as the Poisson-prior
suggested by McDaid et al. (2013), the number of communities K can be detected by the
posterior.
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4.6 Proofs

After stating some repeatedly used notation, this appendix starts with the proof of Theo-
rem 4.4, which is a theorem on weak consistency of the Bayesian modularity. It is followed
by a number of supporting Lemmas, after which we proceed to the proof of Theorem 4.3,
and some additional supporting Lemmas.

We write diag (P ) for the diagonal of P if P is a matrix, and Diag( f ) for the diagonal
matrix with diagonal f if f is a vector.

4.6.1 Weak consistency
The following quantities will be used in the course of multiple proofs. The function HP ,
with domain K × K probability matrices, is given by, for τ (u) = u logu + (1−u) log(1−u),

HP (R) =
1
2
∑
a,b

(R1)a (R1)b τ
(
(RPRT )ab
(R1)a (R1)b

)
. (4.6)

For τ0 (u) = u log(u) − u, de�ne

GP (R) =
1
2
∑
a,b

(R1)a (R1)b τ0

( (RPRT )ab
(R1)a (R1)b

)
.

The sums de�ning these functions are over all pairs (a,b) with 1 ≤ a,b ≤ K , unlike the
sums de�ning the modularities QB and QML, which are restricted to a ≤ b.

Theorem 4.4 (weak consistency). (i) If (P ,π ) is �xed and identi�able, then the MAP
classi�er ê = arg maxz QB (e ) is weakly consistent.

(ii) If P = ρnS for ρn → 0, and (S ,π ) is �xed and identi�able, then the MAP classi�er
ê = arg maxz QB (e ) is weakly consistent provided nρn � (logn)2.

Proof. By Lemma 4.2 the Bayesian modularity QB is equivalent to the likelihood mod-
ularity QML up to order (logn)/n. With the notation Õab (e ) = Oab (e ) if a , b, and
Õab (e ) = 2Oab (e ) if a = b, the likelihood modularity is in turn equivalent up to the same
order to

L(e ) =
1

2n2

∑
a,b

na (e )nb (e ) τ
( Õab (e )

na (e )nb (e )

)
. (4.7)

Indeed the terms of QML (e ) for a < b are identical to the sums of the terms of L(e ) for
a < b and a > b, while for a = b the terms of QML (e ) and L(e ) di�er only subtly: the �rst
uses naa (e ) = 1

2na (e ) (na (e ) − 1), where the second uses 1
2na (e )

2. Thus the di�erence is
bounded in absolute value by the sum over a of (where e is suppressed from the notation)

����
n2
a

2n2 τ
(Õaa

n2
a

)
−
na

(
na − 1)
2n2 τ

( Õaa

na (na − 1)

) ���� ≤ 1
2n ‖τ ‖∞ +

n2
a

2n2 l
( Õaa

n2
a (na − 1)

)
.

where l (x ) = x (1∨log(1/x )), in view of Lemma 4.7. We now use thatnal (u/na ) . logna ≤
logn, for 0 ≤ u ≤ 1.
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Combining the preceding, we conclude that

ηn,1 := max
e
|L(e ) − QB (e ) | = O

(
logn
n

)
.

Since QB (̂e ) ≥ QB (Z ), by the de�nition of ê , it follows that L (̂e ) − L(Z ) ≥ −2ηn,1. The
next step is to replace L in this equality by an asymptotic value.

For x equal to a big multiple of (‖P ‖1/2
∞ ∨n

−1/2)/n1/2, the right side of Lemma 4.5 tends
to zero and hence maxeÕ (e ) − E

(
Õ (e ) | Z

)∞/n2 is of this order in probability. We also
have, by Lemma 4.6:

max
e


1
n2E

(
Õ (e ) | Z

)
− R (e,Z )PR (e,Z )T

∞ = max
e

1
n
Diag(R (e,Z )) diag (P )∞ → 0,

as each entry of Diag(R (e,Z )) diag (P ) is bounded above by one. By Lemma 4.7, ���vτ (x/v )−
vτ (y/v )��� ≤ l ( |x −y |), uniformly in v ∈ [0,1], where l (x ) = x (1∨ log(1/x )). It follows that

ηn,2 := max
e

���L(e ) − L(e )��� = oP
(
l
(
‖P ‖1/2

∞ ∨ n−1/2

n1/2

))
,

for
L(e ) =

1
2
∑
a,b

fa (e ) fb (e ) τ
( (R (e,Z )PR (e,Z )T )ab

fa (e ) fb (e )

)
.

Combining this with the preceding paragraph, we conclude that L (̂e ) ≥ L(Z ) − 2(ηn,1 +
ηn,2).

Proof of i. For given δ > 0, let Rδ be the set of all probability matrices R with

min
Pσ

PσR − Diag(RT1)1
≥ δ , and min

a:πa>0
(RT1)a ≥ δ .

Here the minimum is taken over the (�nite) set of all permutation matrices Pσ on K labels.
Furthermore, set

η := inf
R∈Rδ

[
HP

(
Diag(RT1)

)
− HP (R)

]
,

where HP is as de�ned in (4.6). Because Rδ is compact and the maps R 7→ HP (R) and
R 7→ Diag(RT1) are continuous, the in�mum in the display is assumed for some R ∈ Rδ .
Because no R ∈ Rδ can be transformed into a diagonal element by permuting rows and
every R ∈ Rδ has a nonzero element in every column a with πa > 0, Lemma 4.8 shows
that ηn > 0.

Because L(e ) = HP (R (e,Z )) for every e , and R (Z ,Z ) = Diag( f (Z )) = Diag(R (̂e,Z )T1),
we conclude that

HP (Diag(R (̂e,Z )T1)) − HP (R (̂e,Z )) ≤ 2(ηn,1 + ηn,2).

If 2(ηn,1 + ηn,2) is smaller than ηn , then it follows that R (̂e,Z ) cannot be contained in Rδ .
Since R (̂e,Z )T1 = f (Z )

P
→ π , by the law of large numbers, for su�ciently small δ > 0

this must be because R (̂e,Z ) fails the �rst requirement de�ning Rδ . That is, ‖PσR (̂e,Z ) −
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Diag( f (Z ))‖1 ≤ δ for some permutation matrix Pσ . As this is true eventually for any
δ > 0, it follows that minPσ ‖PσR (̂e,Z ) − Diag(π )‖1

P
→ 0.

Proof of ii. In view of Lemma 4.9, the number η = ηn , which now depends on n, is
now bounded below by ρn times a positive number that depends on (S ,π ). The preceding
argument goes through provided ηn,1 + ηn,2 is of smaller order than ηn . This leads to
l
(√
ρn/n

)
+ log(n)/n � ρn , or (ρn/n) log2

(
n/(ρn ‖S ‖∞)

)
� ρ2

n . �

Lemma 4.5. Let Õab (e ) = Oab (e ) if a , b, and Õab (e ) = 2Oab (e ) if a = b. For any x > 0,

P
(
max
e

Õ (e ) − E
(
Õ (e ) | Z

)∞ > xn2
)
≤ 2Kn+2e−x

2n2/(8‖P ‖∞+4x/3) .

Proof. This Lemma is adapted from Lemma 1.1 in Bickel and Chen (2009). There are Kn

possible values of e and ‖ · ‖∞ is the maximum of the K2 entries in the matrix. We use
the union bound to pull these maxima out of the probability, giving the factor Kn+2 on the
right. Next it su�ces to bound the tail probability of each variable

Õab (e ) − E
(
Õab (e ) | Z

)
=

∑
i, j

(
Ai j − E(Ai j | Z )

)
(1{ei = a,e j = b} + 1{ei = b,e j = a}).

The nab (e ) variables in this sum are conditionally independent given Z , take values in
[−2,2], and have conditional mean zero given Z and conditional variance bounded by
4 var(Ai j | Z ) ≤ 4PZ iZ j (1 − PZ iZ j ) ≤ 4‖P ‖∞. Thus we can apply Bernstein’s inequality to
�nd that

P
(���Õab (e ) − E

(
Õab (e ) | Z

) ��� > xn2
)
≤ 2e−x2n4/(8nab (e ) ‖P ‖∞+4xn2/3) .

Finally we use the crude bound nab (e ) ≤ n2 and cancel one factor n2. �

Lemma 4.6. De�ne Õab (e ) = Oab (e ) if a , b, and Õab (e ) = 2Oab (e ) if a = b. Then, for
R (e,Z ) as de�ned in (4.2),

E(Õab | Z ) = n
2R (e,Z )PR (e,Z )T − nDiag(R (e,Z ) diag (P )).

Proof. A similar expression, not taking into account the absence of self-loops, appears in
Bickel and Chen (2009).

E(Õab (e ) | Z = c ) =
∑
i,j

Pc i c j1{ei = a,e j = b}

=
∑
a′,b ′

Pa′b ′
∑
i,j

1{ci = a′,c j = b
′}1{ei = a,e j = b}

=
∑
a′,b ′

Pa′b ′
∑
i, j

1{ci = a′,c j = b
′}1{ei = a,e j = b} − δab

∑
a′

Pa′a′1{ci = a′}1{ei = a}

= n2
∑
a′,b ′

Pa′b ′Raa′ (e,c )Rbb ′ (e,c ) − δabn
∑
a′

Pa′a′Raa′ (e,c ).

�
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Lemma 4.7. The function τ : [0,1] → R satis�es |τ (x ) − τ (y) | ≤ l ( |x − y |), for l (x ) =
2x (1 ∨ log(1/x )).

Proof. Write the di�erence between x logx and y logy as |
∫ y
x (1 + log s ) ds |. The function

s 7→ 1 + log s is strictly increasing on [0,1] from −∞ to 1 and changes sign at s = e−1.
Therefore the absolute integral is bounded above by the maximum of

−

∫ |x−y |∧e−1

0
(1 + log s ) ds = −( |x − y | ∧ e−1) log |x − y | ∧ e−1

and ∫ 1

1−|x−y |∨e−1
(1 + log s ) ds ≤ |x − y |.

�

Proof of Lemma 4.2

Proof. The second assertion of the lemma follows from the �rst and the fact that maxe QP (e )
. (logn)/n. It su�ces to prove the �rst assertion.

Recall that the Bayesian modularity is given by

n2QB (e ) =
∑
a≤b

logB
(
Oab (e ) + 1

2 ,nab (e ) −Oab (e ) + 1
2

)
+

∑
a

log Γ(na (e ) + α ). (4.8)

We shall show that the �rst sum on the right is equivalent to QML (e ), and the second sum
is equivalent to QP (e ). We show this by comparing the sums de�ning the various mod-
ularities term by term. For clarity we shall suppress the argument e . We will repeatedly
use the following bound from (Robbins, 1955): for n ∈ N≥1,

Γ(n + 1) =
√

2πnn+1/2e−nean , (4.9)

with (12n+1)−1 ≤ an ≤ (12n)−1, as well as the fact that Γ(s ) is monotone increasing for s ≥
3/2. In addition, we will bound remainder terms by using the inequalityx log((x+c )/x ) ≤ c
for c ≥ 0 and the fact that x log((x − 1)/x ) is bounded for x > 1.

First sum of (4.8).
Upper bound, case 1: Oab , 0 and nab , Oab
We apply (4.9):

logB (Oab + β1,nab −Oab + β2) ≤ log Γ(Oab + bβ1c + 1)Γ(nab −Oab + bβ2c + 1)
Γ(nab + bβ1 + β2c)

= Oab log
(

Oab + bβ1c

nab + bβ1 + β2c − 1

)
+ (nab −Oab ) log

(
nab −Oab + bβ2c

nab + bβ1 + β2c − 1

)
+ (bβ1c + 1/2) log(Oab + bβ1c) + (bβ2c + 1/2) log(nab −Oab + bβ2c)

− (bβ1 + β2c − 1/2) log(nab + bβ1 + β2c − 1) + log
√

2π − bβ1c − bβ2c + bβ1 + β2c − 1
+ αab + βab − γab ,
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where αab ,βab and γab are bounded by constants. By the inequality x log((x + c )/x ) ≤ c
for c ≥ 0, and the fact that x log((x − 1)/x ) is bounded for x > 1, we �nd the upper bound:

logB (Oab + β1,nab −Oab + β2) ≤ nabτ

(
Oab

nab

)
+O (lognab ).

Upper bound, case 2: nab = 1 and Oab = 0 or nab = Oab , or nab = 0
In both cases, the corresponding term of the likelihood modularity vanishes, whereas
the contribution of the Bayesian modularity is either logB (1 + β1,β2), log(β1,1 + β2), or
logB (β1,β2).

Upper bound, case 3: nab ≥ 2 and Oab = 0 or nab = Oab
Again, the corresponding term of the likelihood modularity vanishes. We show the com-
putations for the case nab = Oab ; for the case Oab = 0, switch β1 and β2. By (4.9):

logB (Oab + β1,nab −Oab + β2) = logB (nab + β1,β2) ≤ log Γ(nab + bβ1c + 1)Γ(β2)

Γ(nab + bβ1 + β2c)

= (nab + bβ1c) log
(

nab + bβ1c

nab + bβ1 + β2c

)
+ (1/2) log(nab + bβ1c)

− (bβ1 + β2c + 1/2) log(nab + bβ1 + β2c) + log Γ(β2) + bβ1 + β2c − 1 + δab − ϵab ,

where δab and ϵab are bounded by constants. Arguing as before, the �rst term is bounded,
while the remainder is of order log(nab ). A lower bound is found analogously.

Lower bound The computations for the lower bound are completely analogous, except
that we require Oab + β1 ≥ 2 and nab − Oab + β2 ≥ 2. We study four cases. The cases (1)
Oab ≥ 2 and nab − Oab ≥ 2, (2) nab = 0 and (3) nab > 0 and nab = Oab or Oab = 0 are
similar to cases 1, 2 and 3 respectively of the upper bound. The fourth case isnab−Oab = 1
andOab ≥ 2, orOab = 1 and nab −Oab ≥ 1. In both instances, the likelihood modularity is
equality to a bounded term minus lognab . By similar calculations as before, the Bayesian
modularity is of the order lognab as well.

Conclusion We �nd:∑
a≤b

logB (Oab + β1,nab −Oab + β2) =
∑
a≤b

nabτ

(
Oab

nab

)
+O (logn).

Second sum of (4.8).
We consider three cases. If na + bαc = 0, then α > 0, implies na = 0, in which case
log Γ(na + α ) = log Γ(α ), which is bounded. In case na + bαc = 1, the term log Γ(na + α ) is
equal to either log Γ(1 +α ) or log Γ(α ) and thus bounded as well. For the case na + bαc ≥ 2,
we study the upper bound Γ(na + α ) ≤ Γ(na + bαc + 1) and the lower bound Γ(na + α ) ≥
Γ(na + bαc). By applying (4.9) in both cases, we conclude:∑

a

log Γ(na + α ) =
∑

a:na+ bα c≥2
na logna − n +O (logn).

�
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Lemma 4.8. For any probability matrix R,

HP (R) ≤ HP (Diag(RT1)
)
. (4.10)

Furthermore, if (P ,π ) is identi�able and the columns of R corresponding to positive coordi-
nates of π are not identically zero, then the inequality is strict unless PσR is a diagonal matrix
for some permutation matrix Pσ .

Proof. This Lemma is related to the proof that the likelihood modularity is consistent given
in Bickel and Chen (2009). This proof however rests on their incorrect Lemma 3.1, and
thus we provide full details on how the argument can be adapted to avoid the use of their
Lemma 3.1 altogether.

For R a diagonal matrix the numbers (RPRT )ab/(R1)a (R1)b reduce to Pab . Conse-
quently, by the de�nition of HP ,

HP
(
Diag( f )

)
=

∑
a,b

fa fb τ (Pab ). (4.11)

For a general matrix R, by inserting the de�nition of τ ,

HP (R) =
∑
a,b

(RPRT )ab log (RPRT )ab
(R1)a (R1)b

+
∑
a,b

(
(R1)a (R1)b − (RPRT )ab

)
log

(
1 − (RPRT )ab

(R1)a (R1)b

)
.

Because (R1)a (R1)b − (RPRT )ab = (R (1 − P )RT )ab , with 1 the (K × K )-matrix with all
coordinates equal to 1, we can rewrite this as∑

a,b

∑
a′,b ′

Raa′Rbb ′

[
Pa′b ′ log (RPRT )ab

(R1)a (R1)b
+ (1 − Pa′b ′ ) log

(
1 − (RPRT )ab

(R1)a (R1)b

)]
.

By the information inequality for two-point measures, the expressions in square brackets
becomes bigger when (RPRT )ab/(R1)a (R1)b is replaced by Pa′b ′ , with a strict increase
unless these two numbers are equal. After making this substitution the terms in square
brackets becomes τ (Pa′b ′ ), and we can exchange the order of the two (double) sums and
perform the sum on (a,b) to write the resulting expression as∑

a′,b ′
(RT1)a′ (RT1)b ′τ (Pa′b ′ ) = HP

(
Diag(RT1)

)
.

This proves the �rst assertion (4.10) of the lemma.
IfR attains equality, then also for every permutation matrix Pσ , by the equalityHP (PσR)

= HP (R) and the fact that (PσR)T1 = RT1, we have

HP (PσR) = HP
(
Diag((PσR)T1)

)
. (4.12)

We shall show that if R satis�es this equality and PσR has a positive diagonal, then PσR
is in fact diagonal. Furthermore, we shall show that there exists Pσ such that PσR has a
positive diagonal.
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Fix some (Pσ )m that maximizes the number of positive diagonal elements of PσR over
all permutation matrices Pσ , and denote R̄ = (Pσ )mR. Because the information inequality
is strict, the preceding argument shows that (4.12) can be true for Pσ = (Pσ )m (giving
PσR = R̄) only if

Pa′b ′ =
(R̄PR̄T )ab

(R̄1)a (R̄1)b
, whenever R̄aa′R̄bb ′ > 0. (4.13)

Denote the matrix on the right of the equality by Q .
If R̄ has a completely positive diagonal, then we can choose a = a′ and b = b ′ and �nd

from equation (4.13), that Pab = Qab , for every a,b. If also R̄aa′ > 0, then we can also
choose b = b ′ and �nd that Pa′b = Qab , for every b. Thus the ath and a′th rows of P are
identical. Since all rows of P are di�erent by assumption, it follows that no a , a′ with
R̄aa′ > 0 exists.

If R̄ does not have a fully positive diagonal, then the submatrix of R̄ obtained by delet-
ing the rows and columns corresponding to positive diagonal elements must be the zero
matrix, since otherwise we might permute the remaining rows and create an additional
nonzero diagonal element, contradicting that (Pσ )m already maximized this number. If I
and I c are the sets of indices of zero and nonzero diagonal elements, then the preceding
observation is that R̄i j is zero for every i, j ∈ I . If π > 0, then we need to consider only R
with nonzero columns. For i ∈ I a nonzero element in the ith column of R̄ must be located
in the rows with label in I c : for every i ∈ I there exists ki ∈ I c with R̄k i i > 0. Then, for
i, j ∈ I ,

(1) for a = ki , b = k j , a′ = i , b ′ = j, equation (4.13) implies Qk ik j = Pi j .

(2) for a = ki , b ∈ I c , a′ = i , b ′ = b, equation (4.13) implies Qk ib = Pib .

(3) for a = ki , b ∈ I c , a′ = ki , b ′ = b, equation (4.13) implies Qk ib = Pk ib .

We combine these three assertions to conclude that, for a,i ∈ I and b ∈ I c ,

Pai = Pia
(1)
= Qk ika

(2)
= Pika = Pka i ,

Pab
(2)
= Qkab

(3)
= Pkab .

Together these imply that the ath and the kath row of P are equal. Since by assumption
they are not (if π > 0), this case can actually not exist (i.e. k = 0).

Finally if πa = 0 for some a, then we follow the same argument, but we match only
every column i ∈ I with πi > 0 to a row ki ∈ I c . By the assumption on R such ki exist,
and the construction results in two rows of P that are identical in the coordinates with
πa > 0. �

Lemma 4.9. For any �xed (K ×K )-matrix P with elements in [0,1], uniformly in probability
matrices R, as ρn → 0,

1
ρn

(
HρnP (Diag(RT1)

)
− HρnP (R)

)
→ GP (Diag(RT1)

)
−GP (R). (4.14)
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Furthermore, if (P ,π ) is identi�able and the columns of R corresponding to positive coordi-
nates of π are not identically zero, then the right side is strictly positive unless SR is a diagonal
matrix for some permutation matrix S .

Proof. From the fact that |(1 − u) log(1 − u) + u | ≤ u2, for 0 ≤ u ≤ 1, it can be veri�ed
that, ���ρ−1

n τ (ρnu) −
(
u log ρn + τ0 (u)

) ��� ≤ ρn → 0, uniformly in 0 ≤ u ≤ 1. It follows that,
uniformly in R,

1
ρn

HρnP (R) = log ρn
∑
a,b

(RPRT )ab +
∑
a,b

(R1)a (R1)bτ0

( (RPRT )ab
(R1)a (R1)b

)
+O (ρn ).

The �rst term on the right is equal to log ρn (RT1)TP (RT1), and hence is the same for R
and Diag(RT1). Thus this term cancels on taking the di�erence to form the left side of
(4.14), and hence (4.14) follows.

The right side of (4.14) is nonnegative, because the left side is, by Lemma 4.8. This fact
can also be proved directly along the lines of the proof of Lemma 4.8, as follows. Write

GP (R) =
∑
a,b

∑
a′,b ′

Raa′Rbb ′
[
Pa′b ′ log (RPRT )ab

(R1)a (R1)b
−

(RPRT )ab
(R1)a (R1)b

]
.

By the information inequality for two Poisson distributions the term in square brackets
becomes bigger if (RPRT )ab/(R1)a (R1)b is replaced by Pa′b ′ . It then becomes τ0 (Pa′b ′ ) and
the double sum on (a,b) can be executed to see that the resulting bound isGP

(
Diag(RT1)

)
.

Furthermore, the inequality is strictly unless (4.13) holds, with R̄ = R. Since alsoGP (PσR) =
GP (R), for every permutation matrix Pσ , the �nal assertion of the lemma is proved by
copying the proof of Lemma 4.8. �

4.6.2 Strong consistency
We need slightly adapted versions of the function HP , given by, with δab equal to 1 or 0 if
a = b or not,

HP,n (R) =
1
2
∑
a,b

(R1)a
(
(R1)b − δab/n

)
τ
( (RPRT )ab − δab ∑

k PkkRka/n

(R1)a
(
(R1)b − δab/n

) )
. (4.15)

For given functions tab : [0,1]→ R, let X (e ) be the K × K matrix with entries

Xab (e ) = tab

(Õab (e )

n2

)
− tab

(
E(Õab (e ) | Z )

n2

)
. (4.16)

Proof of Theorem 4.3 [strong consistency]

Proof. i. By Theorem 4.4, ê is weakly consistent, and hence with probability tending to
one it belongs to the set of classi�cations e such that the fractions f (e ) are close to π ,
and the matrices R (e,Z ) are close to Diag(π ) after the appropriate permutation of the
labels (that is, of rows of R (e,Z )). Therefore, it is no loss of generality to assume that ê
is restricted to this set. By Lemmas 4.5 and 4.6, the matrices Õ (e )/n2 are then close to
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R (e,Z )PR (e,Z )T → Diag(π )PDiag(π ), and hence are bounded away from zero and one if
P has this property.

If ê and Z di�er at m nodes, then ê belongs to the set of e with ‖R (Z ,Z ) − R (e,Z )‖1 =
m(2/n), by Lemma 4.1. In that case QB (e ) ≥ QB (Z ), for some e in this set, and hence by
Lemma 4.2 QML (e ) −QML (Z ) +QP (e ) −QP (Z ) ≥ −ηn , for some ηn of order (logn)/n2. It
follows that:[

QML (e ) − HP,n
(
R (e,Z )

)]
−

[
QML (Z ) − HP,n

(
R (Z ,Z )

)]
≥ HP,n

(
R (Z ,Z )

)
− HP,n

(
R (e,Z )

)
− |QP (e ) − QP (Z ) | − ηn . (4.17)

The �rst term on the right is bounded below by a multiple ofm/n, by Lemmas 4.10 and 4.1.
Because (x +α ) logx − (y +α ) logy =

∫ y
x (log s + (s +α )/s ) ds is bounded in absolute value

by a multiple of |x −y | log(x ∨y), if α ≥ 0 and x ,y > 0, the second term −|QP (e ) −QP (Z ) |
is bounded below by a multiple of m(logn)/n2, for some positive constant C2, which is
of smaller order than m/n. We conclude that the left side of (4.17) is bounded below by
C1m/n. The left side is ∑

a,b

(
Xab (e ) − Xab (Z )

)
, for X de�ned in (4.16) and t the function

with coordinates tab (o) = fa (e )
(
fb (e ) − δab/n

)
τ
(
o/fa (e )

(
fb (e ) − δab/n

))
. Because we

restrict e to classi�cations such thatOab (e )/nab (e ) and fa (e ) fb (e ) are bounded away from
zero and one, only the values of the function τ on an open interval strictly within (0,1)
matter. On any such interval τ has uniformly bounded derivatives, and hence the bound
of Lemma 4.13 is valid. Thus we �nd that

Pr
(
#(i : êi , Zi ) =m

)
≤ Pr

(
sup

e:#(i:e i,Z i )≤m

X (e ) − X (Z )∞ ≥
C1m

n

)
. Km

(
n

m

)
e−cm

2/(m ‖P ‖∞/n+m/n)

≤ em log(Kne/m)−c1mn .

The sum of the right side overm = 1, . . . ,n tends to zero.
ii. We follow the proof for i, but in (4.17) use that HP,n

(
R (Z ,Z )

)
− HP,n

(
R (e,Z )

)
≥

ρnC‖R (Z ,Z )−R (e,Z )‖1 ≥ ρnC2m/n, by Lemma 4.12. Since ρn � (logn)/n by assumption,
we have that the contribution m(logn)/n2 of QP (e ) − QP (Z ) is still negligible and hence
ρnC2m/n is a lower bound for the left side of (4.17). As a bound on the left side of the
preceding display, we then obtain

n∑
m=1

Km
(
n

m

)
e−c2ρ2

nm
2/(mρn /n+ρnm/n) ≤

n∑
m=1

em log(Kne/m)−c3ρnmn .

This sum tends to zero provided that nρn � logn. �

Lemma 4.10. If P is �xed and symmetric and every pair of rows of P is di�erent and 0 <
P < 1 and π > 0, then, for su�ciently small δ > 0,

lim inf
n→∞

inf
0< ‖R−Diag(π ) ‖<δ

HP,n
(
Diag(RT1)

)
− HP,n (R)

‖Diag(RT1) − R‖
> 0. (4.18)
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Proof. We can reparametrize the K × K matrices R by the pairs (RT1,R − Diag(RT1)),
consisting of the K vector f = RT1 and the K ×K matrix R−Diag(RT1). The latter matrix
is characterized by having nonnegative o�-diagonal elements and zero column sums, and
can be represented in the basis consisting of all K × K matrices ∆bb ′ , for b , b ′, de�ned
by: (∆bb ′ )b ′b ′ = −1, (∆bb ′ )bb ′ = 1 and (∆bb ′ )aa′ = 0, for all other entries (a,a′), i.e. the
b ′th column of ∆bb ′ has a 1 in the bth coordinate and a −1 on the b ′th coordinate and
all its other columns are zero. Given any matrix R ≥ 0 the matrix R − Diag(RT1) can be
decomposed as

R − Diag(RT1) =
∑
b,b ′

λbb ′∆bb ′ ,

for λbb ′ = Rbb ′ ≥ 0. Since every ∆bb ′ has exactly one nonzero o�-diagonal element, which
is equal to 1, and in a di�erent location for eachb , b, the sum of the o�-diagonal elements
of the matrix on the right side is ∑

b,b ′ λbb ′ . Because the sum of all its elements is zero, it
follows that its sum of absolute elements is given by ‖R − Diag(RT1)‖1 = 2 ∑

b,b ′ λbb ′ .
Thus we obtain a further reparametrization R ↔ ( f ,λ), in which R = Diag( f ) +∑

b,b ′ λbb ′∆bb ′ . For given P , f and n, de�ne the function

G (λ) = HP,n

(
Diag( f ) +

∑
b,b ′

λbb ′∆bb ′

)
.

Then we would like to show that there exists C such that

HP,n (Diag(RT1)) − HP,n (R)

‖R − Diag(RT1)‖1
=
G (0) −G (λ)

2 ∑
b,b ′ λbb ′

≥ C > 0,

for every f in a neighbourhood of π , λ in a neighbourhood of 0 intersected with {λ : λ ≥ 0},
and every su�ciently largen. The numerator in the quotient is f (0)− f (1) for the function
f (s ) = G (sλ). Writing this di�erence in the form − f ′(0) −

∫ 1
0

(
f ′(s ) − f ′(0)

)
ds gives that

the numerator is equal to

−∇G (0)Tλ −
∫ 1

0

(
∇G (sλ) − ∇G (0))

)T
ds λ. (4.19)

It su�ces to show that the �rst term is bounded below by a multiple of ‖λ‖1 and that the
second is negligible relative to the �rst, as n → ∞, uniformly in f in a neighbourhood of
π and λ in a neighbourhood of 0 intersected with {λ : λ ≥ 0}. Thus it is su�cient to show
�rst that for every coordinate λbb ′ of λ minus the partial derivative of G at λ = 0 with
respect to λbb ′ is bounded away from 0, as n → ∞ uniformly in f , and second that every
partial derivative is equicontinuous at λ = 0 uniformly in f and large n.

We have

G (λ) =
1
2

∑
a,a′

fa (λ)
(
fa′ (λ) − δaa′/n

)
τ
( (
R (λ)PR (λ)T

)
aa′
− δaa′ea (λ)/n

fa (λ)
(
fa′ (λ) − δaa′/n

) )
, (4.20)

for

f (λ) = f +
∑
bb ′

λbb ′ (∆bb ′1),
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R (λ) = Diag( f ) +
∑
b,b ′

λbb ′∆bb ′ ,

ea (λ) =
∑
k

PkkRak (λ) = Paa fa +
∑
b,b ′

Pb ′b ′λbb ′ (δab − δab ′ ).

By a lengthy calculation, given in Lemma 4.11,

∂

∂λbb ′
G (λ) |λ=0 = −

∑
a

faK (Pab ′ ‖Pab ) + 1
2nK (Pb ′b ′ ‖Pbb ), (4.21)

for K (p‖q) = p log(p/q) + (1 − p) log
(
(1 − p)/(1 − q)

)
the Kullback-Leibler divergence

between the Bernoulli distributions with success probabilitiesp and q. The numbers fa are
bounded away from zero for f su�ciently close to π , and hence so is ∑

a faK (Pab ′ ‖Pab ),
unless the bth and b ′th column of P are identical. The whole expression is bounded below
by the minimum over (b,b ′) of these numbers minus (2n)−1 times the maximum of the
numbers K (Pb ′b ′ ‖Pbb ), and hence is positive and bounded away from zero for su�ciently
large n.

To verify the equicontinuity of the partial derivatives we can compute these explicitly
at λ and take their limit as n → ∞. We omit the details of this calculation. However, we
note that every term of G (λ) is a �xed function of the quadratic forms in λ(

fa +
∑
bb ′

λbb ′ (∆bb ′1)a
) (
fa′ +

∑
bb ′

λbb ′ (∆bb ′1)a′ − δaa′/n
)
, (4.22)((

Diag( f ) +
∑
b,b ′

λbb ′∆bb ′
)
P
(
Diag( f ) +

∑
b,b ′

λbb ′∆
T
bb ′

))
aa′

−
δaa′

2n
(
Paa fa +

∑
b,b ′

Pb ′b ′λbb ′ (δab − δab ′ )
)
. (4.23)

These forms are obviously smooth in λ, and their dependence and that of their derivatives
on n is seen to vanish as n → ∞. For f and λ restricted to neighbourhoods of π and 0,
the values of the quadratic forms are restricted to a domain in which the transformation
mapping them into G (λ) is continuously di�erentiable. Thus the desired equicontinuity
follows by the chain rule. �

Lemma 4.11. The partial derivatives of the function G at 0 de�ned by (4.20) are given by
(4.21).

Proof. For given di�erentiable functions u and v the map ϵ 7→ u (ϵ )τ
(
v (ϵ )/u (ϵ )

)
has

derivative v ′ log
(
v/(u −v )

)
−u ′ log

(
u/(u −v )

)
. We apply this for every given pair (a,a′)

to the functionsu andv obtained by taking λbb ′ in (4.22) and (4.23) equal to ϵ and all other
coordinates of λ equal to zero. Then

u (0) = fa ( fa′ − δaa′/n),

v (0) = fa ( fa′ − δaa′/n)Paa′ ,

u ′(0) = (∆bb ′1)a ( fa′ − δaa′/n) + fa (∆bb ′1)a′
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v ′(0) = (∆bb ′P )aa′ fa′ + fa (∆bb ′P )a′a − (δaa′/n)Pb ′b ′ (δab − δab ′ ).

It follows thatv (0)/(u (0) − v (0)) = Paa′/(1 − Paa′ ), andu (0)/(u (0) − v (0)) = 1/(1 − Paa′ ).
Hence in view of (4.15) the partial derivative in (4.21) is equal to∑

a,a′

[
v ′(0) log Paa′

1 − Paa′
− u ′(0) log 1

1 − Paa′

]
.

We combine this with the equalities

(∆bb ′1)a =


0 if a < {b,b ′},
−1 if a = b ′,
1 if a = b,

(∆bb ′P )aa′ =


0 if a < {b,b ′},
−Pb ′a′ if a = b ′,
Pb ′a′ if a = b .

�

Lemma 4.12. If S is �xed and symmetric, every pair of rows of S is di�erent and S > 0 and
π > 0 coordinatewise, then there exists C > 0 such that, for su�ciently small δ > 0 and any
ρn ↓ 0,

lim inf
n→∞

inf
0< ‖R−Diag(π ) ‖<δ

HρnS,n
(
Diag(RT1)

)
− HρnS,n (R)

ρn ‖Diag(RT1) − R‖
≥ C .

Proof. In the notation of the proof of Lemma 4.10 we must now show that G (0) −G (λ) ≥
Cρn ‖λ‖1, as n → ∞, uniformly in f in a neighbourhood of π , and λ in a positive neigh-
bourhood of 0. As in that proof we write G (0) − G (λ) in the form (4.19) and see that it
su�ces that the partial derivatives ofG at 0 divided by ρn tend to negative limits, and that∇G (λ) − ∇G (0)/ρn becomes uniformly small as λ is close enough to zero.

The partial derivative at 0 with respect to λbb ′ is given in (4.21), where we must replace
P by ρnS . Since the scaled Kullback-Leibler divergence ρ−1

n K (ρns‖ρnt ) of two Bernoulli
laws converges to the Kullback-Leibler divergence K0 (s‖t ) = s log(s/t ) + t − s between
two Poisson laws of means s and t , as ρn → 0, it follows that for ρn → 0, uniformly in f ,

1
ρn

∂

∂λbb ′
G (λ) |λ=0 → −

∑
a

faK0 (Sab ′ ‖Sab ).

The right side is strictly negative by the assumption that every pair of rows of S di�er in
at least one coordinate.

If P = ρnS , then the function λ 7→ v (λ) given in (4.23) takes the form v = ρnvS , for
vS de�ned in the same way but with S replacing P . The function u given in (4.22) does
not depend on P or S . Using again that the derivative of the map ϵ 7→ u (ϵ )τ

(
v (ϵ )/u (ϵ )

)
is given by v ′ log

(
v/(u − v )

)
− u ′ log

(
u/(u − v )

)
, we see that the partial derivative with

respect to λbb ′ of the (a,a′) term in the sum de�ning G takes the form

ρnv
′
S log ρnvS

u − ρvS
− u ′ log u

u − ρnvS

= ρnv
′
S log ρn − ρnv ′S log(vS/u) − (ρnv

′
S − u

′) log(1 − ρnvS/u).
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Hereu andVS are as in (4.22) and (4.23) (with P replaced by S), and depend on (a,a′). From
the fact that the column sums of the matrices R (λ) do not depend on λ, we have that∑

a,a′

[
(R (λ)SR (λ)T )aa′ −

δaa′

n

∑
k

PkkR (λ)ak
]
= R (λ)T1SR (λ)T1 −

∑
k

Pkk
∑
a

R (λ)ak

is constant in λ. This shows that ∑
a,a′ v

′
S = 0 and hence the contribution of the term

ρnv
′
S log ρn to the partial derivatives ofG vanishes. The term −(ρnv ′S −u

′) log(1−ρnvS/u)
can be expanded as (ρnv ′S −u

′)ρnvS/u up to O (ρ2
n ), uniformly in f and λ. Since these are

equicontinuous functions of λ, it follows that ρ−1
n

(
∇G (λ) − ∇G (0)

)
becomes arbitrarily

small if λ varies in a su�ciently small neighbourhood of 0. �

Lemma 4.13. There exists a constant c > 0 such that for X (e ) as in (4.16), for every twice
di�erentiable functions ta,b : [0,1]→ R with ‖t ′a,b ‖∞ ∨ ‖t

′′
a,b ‖∞ ≤ 1, and every x > 0,

Pr
(

max
e:#(e i,Z i )≤m

X (e ) − X (Z )∞ > x
)

≤ 6
(
n

m

)
Km+2e−

cx2n2
m ‖P ‖∞ /n+x .

Proof. Given Z there are at most
(
n
m

)
groups of m candidate nodes that can be assigned

to have ei , Zi , and the label of each node can be chosen in at most K − 1 ways. Thus
conditioning the probability on Z , we can use the union bound to pull out the maximum
over e , giving a sum of fewer than

(
n
m

)
Km terms. Next we pull out the norm giving another

factor K2. It su�ces to combine this with a tail bound for a single variable Xa,b (e ) −
Xa,b (Z ). Write t for ta,b .

Assume for simplicity of notation that ei = Zi , for i > m, and decompose

1
n2Oab (e ) =

1
n2

[ ∑
i≤m or j≤m

Ai j1e i=a,e j=b +
∑

i>m and j>m

Ai j1e i=a,e j=b
]

=: S1 + S2.

LetOab (Z )/n
2 =: S ′1 +S2, with the same variable S2, be the corresponding decomposition if

e is changed to Z , and then decompose, where the expectation signs E denote conditional
expectations given Z ,

Xab (e ) − Xab (Z )

=
(
t (S1 + S2) − t (ES1 + ES2)

)
−

(
t (S ′1 + S2) − t (ES

′
1 + ES2)

)
= t (S1 + S2) − t (ES1 + S2)

+
(
t (ES1 + S2) − t (ES1 + ES2)

)
−

(
t (ES ′1 + S2) − t (ES

′
1 + ES2)

)
+ t (ES ′1 + S2) − t (S

′
1 + S2)

The �rst and third terms on the far right can be bounded above in absolute value by ‖t ′‖∞
times the increment. To estimate the second term we write it as

(S2 − ES2) (ES1 − ES
′
1)

∫ 1

0

∫ 1

0
t ′′

(
uS2 + (1 − u)ES2 +vES1 + (1 − v )ES ′1

)
du dv .
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Since the �rst and second derivatives of t are uniformly bounded by 1, it follows that

���Xab (e ) − Xab (Z )
��� ≤ |S1 − ES1 | + |S2 − ES2 | |ES1 − ES

′
1 | + |S ′1 − ES ′1 |.

The variable S1 − ES1 is a sum of fewer than 2mn independent variables, each with con-
ditional mean zero, bounded above by 1/n2 and of variance bounded above by ‖P ‖∞/n4.
Therefore Bernstein’s inequality gives that

P
(
|S1 − ES1 | > x

)
≤ e−

1
2 x

2/(2mn ‖P ‖∞/n4+x/(3n2 )) .

This is as the exponential factor in the bound given by the lemma, for appropriate c . The
variable S ′1 − ES

′
1 can be bounded similarly. Furthermore |ES1 − ES

′
1 | ≤ 4mn/n2 = 4m/n,

and S2 − ES2 is the sum of fewer than n2 variables as before, so that

P
(
|S2 − ES2 | |ES1 − ES

′
1 | > x

)
≤ e−

1
2 (xn/(4m))2/(n2 ‖P ‖∞/n4+xn/(12mn2 )) .

The exponent has a similar form as before, except for an additional factor n/m ≥ 1. �
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5
The switch criterion in nested

model selection

Abstract
We study the switch distribution, introduced by Van Erven et al. (2012), applied to model se-
lection and subsequent estimation. While switching was known to be strongly consistent, here
we show that it achieves minimax optimal parametric risk rates up to a log logn factor when
comparing two nested exponential families, partially con�rming a conjecture by Lauritzen
(2012) and Cavanaugh (2012) that switching behaves asymptotically like the Hannan-Quinn
criterion. Moreover, like Bayes factor model selection but unlike standard signi�cance testing,
when one of the models represents a simple hypothesis, the switch criterion de�nes a robust
null hypothesis test, meaning that its Type-I error probability can be bounded irrespective of
the stopping rule. Hence, switching is consistent, insensitive to optional stopping and almost
minimax risk optimal, showing that, Yang’s (2005) impossibility result notwithstanding, it is
possible to ‘almost’ combine the strengths of AIC and Bayes factor model selection.

5.1 Introduction

We consider the following standard model selection problem, where we have i.i.d. obser-
vations X1, . . . ,Xn and we wish to select between two nested parametric models,

M0 =
{
pµ | µ ∈ M0

}
and M1 = {pµ | µ ∈ M1}. (5.1)

This chapter is set to appear in Statistica Sinica, as: S. van der Pas and P. Grünwald. Almost the best of three
worlds: risk, consistency and optional stopping for the switch criterion in nested model selection. The central
result of this paper, Theorem 5.5, already appeared in the Master’s Thesis (Van der Pas, 2013) for the special case
where m1 = 1 and m0 = 0. This research was supported by NWO VICI Project 639.073.04.
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Here the X i are random vectors taking values in some set X, M1 ⊆ R
m1 for some m1 > 0

andM0 = {pµ : µ ∈ M0} ⊂ M1 represents an m0-dimensional submodel ofM1, where
0 ≤ m0 < m1. We may thus denoteM0 as the ‘simple’ andM1 as the ‘complex’ model.
We will assume that M1 is an exponential family, represented as a set of densities on
X with respect to some �xed underlying measure, so that pµ represents the density of
the observations, and we take it to be given in its mean-value parameterization. As the
notation indicates, we require, without loss of generality, that the parameterizations of
M0 andM1 coincide, that is M0 ⊂ M1 is itself a set of m1-dimensional vectors, the �nal
m1 −m0 components of which are �xed to known values. We restrict ourselves to the case
in which both M1 and the restriction of M0 to its �rstm0 components are products of open
intervals. Most model selection methods output not just a decision δ (X n ) ∈ {0,1}, but also
an indication r (X n ) ∈ R of the strength of evidence, such as a p-value or a Bayes factor. As
a result, such procedures can often be interpreted as methods for hypothesis testing, where
M0 represents the null model andM1 the alternative; a very simple example of our setting
is when the X i consist of two components X i ≡ (X i1,X i2), which according to M1 are
independent Gaussians whereas underM2 they can have an arbitrary bivariate Gaussian
distribution and hence can be dependent. Since we allowM0 to be a singleton, this setting
also includes some very simple, classical yet important settings such as testing whether a
coin is biased (M0 is the fair coin model,M1 contains all Bernoulli distributions).

We consider three desirable properties of model selection methods: (a) optimal worst-
case risk rate of post-model selection estimation (with risk measured in terms of squared
error loss, squared Hellinger distance, Rényi or Kullback-Leibler divergence); (b) consis-
tency, and, (c) for procedures which also output a strength of evidence r (X n ), whether the
validity of the evidence is insensitive to optional stopping under the null model. We eval-
uate the recently introduced model selection criterion δsw based on the switch distribution
(Van Erven et al., 2012) on properties (a), (b) and (c).

The switch distribution, introduced by Van Erven et al., (2007), was originally designed
to address the catch-up phenomenon, which occurs when the best predicting model is not
the same across sample sizes. The switch distribution can be interpreted as a modi�cation
of the Bayesian predictive distribution. It also has an MDL interpretation: if one corrects
standard MDL approaches (Grünwald, 2007) to take into account that the best predicting
method changes over time, one naturally arrives at the switch distribution. Lhéritier and
Cazals (2015) describes a successful practical application for two-sample sequential testing,
related to the developments in this paper but in a nonparametric context. We brie�y give
the de�nitions relevant to our setting in Section 5.2; for all further details we refer to Van
Erven et al. (2012) and 5.7.5 in Section 5.7.

When evaluating any model selection method, there is a well-known tension between
(a) and (b): the popular AIC method (Akaike, 1973) achieves the minimax optimal para-
metric rate of order 1/n in the problem above, but is inconsistent; the same holds for the
many popular model selection methods that asymptotically tend to behave like AIC, such
as k-fold and leave-one-out-cross-validation, the bootstrap and Mallow’s Cp in linear re-
gression (Efron, 1986; Shao, 1997; Stone, 1977). On the other hand, BIC (Schwarz, 1978) is
consistent in the sense that for large enough n, it will select the smallest model contain-
ing the ‘true’ µ; but it misses the minimax parametric rate by a factor of logn. The same
holds for traditional Minimum Description Length (MDL) approaches (Grünwald, 2007)
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and Bayes factor model selection (BFMS) (Kass and Raftery, 1995), of which BIC is an ap-
proximation. This might lead one to wonder if there exists a single method that is optimal
in both respects. A key result by Yang (2005) shows that this is impossible: any consistent
method misses the minimax optimal rate by a factor д(n) with limn→∞ д(n) = ∞.

In Section 5.4.2 we show that, Yang’s result notwithstanding, the switch distribution
allows us to get very close to satisfying property (a) and (b) at the same time, at least in
the problem de�ned above (Yang’s result was shown in a nested linear regression rather
than our exponential family context, but it does hold in our exponential family setting
as well; see the discussion at the end of Section 5.3.3). We prove that in our setting, the
switch model selection criterion δsw (a) misses the minimax optimal rate only by an ex-
ceedingly small дsw (n) � log logn factor (Theorem 5.5). Property (b), strong consistency,
was already shown by Van Erven et al. (2012). The factor дsw (n) � log logn is an im-
provement over the extra factor resulting from Bayes factor model selection, which has
дbfms (n) � logn. Indeed, as discussed in the introduction of Van Erven et al. (2012),
the catch-up phenomenon that the switch distribution addresses is intimately related to
the rate-suboptimality of Bayesian inference. Van Erven et al. (2012) show that, while
model selection based on switching is consistent, sequential prediction based on model
averaging with the switching method achieves minimax optimal cumulative risk rates in
general parametric and nonparametric settings, where the cumulative risk at sample size
n is obtained by summing the standard, instantaneous risk from 1 to n. In contrast, in
nonparametric settings, standard Bayesian model averaging typically has a cumulative
risk rate that is larger by a logn factor. Using the cumulative risk is natural in sequential
prediction settings, but Van Erven et al. (2012) left open the question of how switching
would behave for the more standard, instantaneous risk. In contrast to the cumulative
setting, we cannot expect to achieve the optimal rate here by Yang’s (2005) result, but it is
interesting to see that switching gets so close.

We now turn to the third property, robustness to optional stopping. While consis-
tency in the sense above is an asymptotic and even somewhat controversial notion (see
Section 5.6), there exists a nonasymptotic property closely related to consistency that,
while arguably much more important in practice, has received relatively little attention in
the recent statistical literature. This is property (c) above, insensitivity to optional stop-
ping. In statistics, the issue was thoroughly discussed, yet never completely resolved, in
the 1960s; nowadays, it is viewed as a highly desirable feature of testing methods by, for
example, psychologists; see (Sanborn and Hills, 2014; Wagenmakers, 2007). In particular, it
is often argued (Wagenmakers, 2007) that the �xed stopping rule required by the classical
Neyman-Pearson paradigm severely and unnecessarily restricts the application domain of
hypothesis testing, invalidating much of the p-values reported in the psychological liter-
ature. Approximately 55% of psychologists admitted in a survey to deciding whether to
collect more data after looking at their results to see if they were signi�cant (John et al.,
2012). We analyze property (c) in terms of robust null hypothesis tests, formally de�ned in
Section 5.5. A method de�nes a robust null hypothesis test if (1) it outputs evidence r (X n )
that does not depend on the stopping rule used to determine n, and (2) (some function of)
r (X n ) gives a bound on the Type-I error that is valid no matter what this stopping rule
is. Standard (Neyman-Pearson) null hypothesis testing and tests derived from AIC-type
methods are not robust in this sense. For example, such tests cannot be used if the stop-
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ping rule is simply unknown, as is often the case when analyzing externally provided data
— but this is just the tip of an iceberg of problems with nonrobust tests. For an exhaustive
review of such problems we refer to Wagenmakers (2007) who builds on, amongst others,
Berger and Wolpert (1988) and Pratt (1962).

Now, as �rst noted by Edwards et al. (1963), in simple versus composite testing (i.e.
when M0 is a singleton), the output of BFMS, the Bayes factor, does provide a robust
null hypothesis test. This is one of the main reasons why for example, in psychology,
Bayesian testing is becoming more and more popular (Andrews and Baguley, 2012; Dienes,
2011), even among ‘frequentist’ researchers (Sanborn and Hills, 2014). Our third result,
in Section 5.5, shows that the same holds for the switch criterion: if M0 is a singleton,
so that the problem (5.1) reduces to a simple versus composite hypothesis test, then the
evidence r (X n ) associated with the switching criterion has the desired robustness property
as well and thus in this sense behaves like the Bayes factor method. The advantage, from
a frequentist point of view, of switching as compared to Bayes is then that switching is a
lot more sensitive: our risk rate results directly imply that the Type II error (1 − power)
of the switch criterion goes to 0 as soon as, at sample size n, the distance between the
‘true’ distribution µ1 and the null model, i.e. inf µ∈M0 ‖µ − µ1‖

2
2 is of order (log logn)/n;

for Bayes factor testing, in order for the Type-II error to reach 0, this distance must be
of order (logn)/n (this was informally recognized by Lhéritier and Cazals (2015), who
reported substantially larger power of switching as compared to the Bayes factor method
in a sequential two-sample testing setting).

Thus, switching gives us ‘almost the best of three worlds’: minimax rate optimality up
to a log logn factor (in contrast to BFMS), consistency (in contrast to AIC-type methods)
and nonasymptotic insensitivity to optional stopping (in contrast to standard Neyman-
Pearson testing) in combination with a small Type-II error.

Organization This paper is organized as follows. The switch criterion is introduced in
Section 5.2. In Section 5.3, we provide some preliminaries: we list the loss/risk functions
for which our result holds, describe the sets in which the truth is assumed to lie, and discuss
the tension between consistency and rate-optimality. Suitable post-model-selection esti-
mators to be used in combination with the switch criterion are introduced in Section 5.4,
after which our main result on the worst-case risk of the switch criterion is stated. We
also go into the relationship between the switch criterion and the Hannan-Quinn criterion
in that section. In Section 5.5 we de�ne robust null hypothesis tests, give some examples,
and show that testing by switching has the desired nonasymptotic robustness to optional
stopping; in constrast, AIC does not satisfy such a property at all and the Hannan-Quinn
criterion only satis�es an asymptotic analogue. We also provide some simulations that
illustrate our results. Section 5.6 provides some additional discussion and ideas for future
work. All proofs are given in Section 5.7.

Notations and conventions We use xn = x1, . . . ,xn to denote n observations, each
taking values in a sample space X. For a set of parameters M , µ ∈ M , and x ∈ X, pµ (x )
invariably denotes the density or mass function of x under the distribution Pµ of random
variable X , taking values in X. This is extended to n outcomes by independence, so that
pµ (x

n ) := ∏n
i=1 pµ (xi ) and Pµ (X n ∈ An ), abbreviated to Pµ (An ), denotes the probability
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that X n ∈ An for X n = X1, . . . ,Xn i.i.d. ∼ Pµ . Similarly, Eµ denotes expectation under Pµ .
As is customary, we write an � bn to denote 0 < limn→∞ inf an/bn ≤ limn→∞ supan/bn <
∞. For notational simplicity we assume throughtout this paper that whenever we refer to
a sample size n, then n ≥ 3 to ensure that log logn is de�ned and positive.

Throughout the text, we refer to standard properties of exponential families without
always giving an explicit reference; all desired properties can be found, in precise form, in
(Barndor�-Nielsen, 1978) and, on a less formal level, in (Grünwald, 2007, Chapter 18,19).

5.2 Model selection by switching

The switch distribution (Van Erven et al., 2012; 2007) is a modi�cation of the Bayesian pre-
dictive distribution, inspired by Dawid’s (1984) ‘prequential’ approach to statistics and the
related MinimumDescription Length (MDL) Principle (Barron et al., 1998; Grünwald, 2007).
The corresponding switch criterion can be thought of as Bayes factor model selection with
a prior on meta-models, where each meta-model consists of a sequence of basic models
and associated starting times: until time t1, follow model k1, from time t1 to t2, follow
model k2, and so on. The fact that we only need to select between two nested parametric
models allows us to considerably simplify the set-up of Van Erven et al. (2012), who dealt
with countably in�nite sets of arbitrary models.

It is convenient to directly introduce the switch criterion as a modi�cation of the Bayes
factor model selection (BFMS). Assuming equal prior 1/2 on each of the modelsM0 and
M1, BFMS associates each modelMk , k ∈ {0,1}, with a marginal distribution pB,k with

pB,k (x
n ) :=

∫
µ∈Mk

ωk (µ )pµ (x
n )dµ, (5.2)

where ωk is a prior density on Mk . It then selects model M1 if and only if pB,1 (xn ) >
pB,0 (x

n ).
The basic idea behind MDL model selection is to generalize this in the sense that each

modelMk is associated with some ‘universal’ distribution pU,k ; one then picks the k for
which pU,k (x

n ) is largest. pU,k may be set to the Bayesian marginal distribution, but other
choices may be preferable in some situations. Switching is an instance of this; in our
simpli�ed setting, it amounts to associatingM0 with a Bayes marginal distributon pB,0 as
before. pU,1 however is set to the switch distribution psw,1. This distribution corresponds
to a switch between modelsM0 andM1 at some sample point s , which is itself uncertain;
before point s , the data are modelled as coming fromM0, using pB,0; after point s , they are
modelled as coming fromM1, using pB,1. Formally, we denote the strategy that switches
from the simple to the complex model after t observations by p̄t ; psw,1 is then de�ned as
the marginal distribution by averaging p̄t over t , with some probability mass function π
(analogous to a Bayesian prior) over t ∈ {1,2, . . .}:

p̄t (x
n ) = pB,0 (x

t−1) · pB,1 (xt , . . . ,xn | x
t−1)

psw,1 (x
n ) =

∞∑
t=1

π (t )p̄t (x
n ),
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where switching at t = 1 corresponds to predicting with pB,1 at each data point, and
switching at any t > n to predicting with pB,0. We remind the reader that even for i.i.d.
models,pB,1 (xt , . . . ,xn | x t−1) usually depends on x t−1 — the Bayes predictive distribution
learns from data. The model selection criterion δsw mapping sequences of arbitrary length
to k ∈ {0,1} is then de�ned, for each n, as follows:

δsw (x
n ) =


0 if

psw,1 (x
n )

pB, 0 (xn )
≤ 1

1 if
psw,1 (x

n )

pB, 0 (xn )
> 1
. (5.3)

When de�ning psw,1 it is su�cient to consider switching times that are equal to a power of
two. Thus, we restrict attention to ‘priors’π on switching time with support on 20,21,22, . . ..
For our subsequent results to hold, π should be such that π (2i ) decays like i−κ for some
κ ≥ 2. An example of such a prior with κ = 2 is π (2i ) = 1/((i + 1) (i + 2)), π (j ) = 0 for any
j that is not a power of 2.

To prepare for Theorem 5.5, we instantiate the switch criterion to the problem (5.1).
We de�ne pB,1 as any distribution of the form (5.2) where ω1 is a continuous prior density
on M1 that is strictly positive on all µ ∈ M1. To de�ne pB,0 we need to take a slight detour,
because we parameterizedM0 in terms of an M0 that has a �xed value on its �nalm1 −m0
components: it is an m0-dimensional family with an m1-dimensional parameterization,
so one cannot easily express a prior on M0 as a density on M0. To overcome this, we
distinguish between the case that m0 = 0 and m0 > 0. In the former case M0 has a single
element ν , and we de�ne pB,0 = pν . In the latter case, we de�ne Π′0 : M0 → R

m0 as the
projection of µ ∈ M0 on its �rst m0 components, and Π′0 (M0) := {Π′0 (µ ) : µ ∈ M0}. For
µ ∈ M0, we de�ne pΠ′0 (µ ) = pµ , and we then let ω0 be a continuous strictly positive prior
density on Π′0 (M0), and we de�ne pB,0 (xn ) :=

∫
µ ′∈Π′0 (M0 )

ω0 (µ
′)pµ ′ (x

n )dµ ′.

Two important remarks are in order: �rst, the fact that we associateM1 with a dis-
tribution incorporating a ‘switch’ from M0 to M1 does not mean that we really believe
that data were sampled, until some point t , according toM0 and afterwards according to
M1. Rather, it is suggested by prequential and MDL considerations, which suggest that
one should pick the model that performs best in sequentially predicting data; and if the
data are sampled from a distribution inM1 that is not inM0, but quite close to it in KL
divergence, then pB,1 is suboptimal for sequential prediction, and can be substantially out-
performed by psw,1. This is explained at length by Van Erven et al. (2012), and Figure 1 in
that paper especially illustrates the point. The same paper also explains how one can use
dynamic programming to arrive at an implementation that has the same computational
e�ciency as computation of the standard Bayes model selection decision.

Second, the criterion (5.3) as de�ned here is not 100% equivalent to the special case
of the construction of Van Erven et al. (2012) specialized to two models, but rather an
easily-explained simpli�cation thereof. Yet, all our results continue to hold if we were to
follow the original construction, as explained in Section 5.7.5; and conversely, the strong
consistency result for the construction of Van Erven et al. (2012) trivially continues to
hold for the criterion (5.3) used in the present paper.
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5.3 Rate-optimality of post-model selection estimators

This section contains some background to our main result, Theorem 5.5. In Section 5.3.1,
we �rst list the loss functions for which our main result holds, and de�ne the CINECSI
sets in which the truth assumed to lie. We then discuss the minimax parametric risk for
our model selection problem in Section 5.3.2. This section ends with a discussion on the
generality of the impossibility result of Yang (2005) in Section 5.3.3.

5.3.1 Loss functions and CINECSI sets
LetM = {pµ | µ ∈ M } be an exponential family given in its mean-value parameterization
with M ⊂ Rm a product of m open, possibly but not necessarily unbounded intervals for
some m > 0; see Section 5.7 for a formal de�nition of exponential families and mean-
value parameterizations. Note that we do not require the family to be ‘full’; for example,
the Bernoulli model with success probability µ ∈ M1 = (0.2,0.4) counts as an exponential
family in our (standard) de�nition.

Suppose that we measure the quality of a density pµ ′ as an approximation to pµ by
a loss function L : M × M → R. The standard de�nition of the (instantaneous) risk of
estimator µ̆ : ⋃

i>0X
i → M at sample size n, as de�ned relative to loss L, is given by its

expected loss,
R (µ, µ̆,n) = Eµ

[
L(µ, µ̆ (X n ))

]
,

where Eµ denotes expectation over X1, . . . ,Xn i.i.d. ∼ Pµ . Popular loss functions are:

1. The squared error loss: dSQ (µ ′,µ ) = ‖µ ′ − µ‖22 ;

2. The standardized squared error loss which is a version of the squared Mahalonobis
distance, de�ned as

dST (µ
′‖µ ) := (µ − µ ′)T I (µ ′) (µ − µ ′), (5.4)

whereT denotes transpose, I (·) is the Fisher information matrix, and we view µ and
µ ′ as column vectors;

3. The Rényi divergence of order 1/2, de�ned as

dR (µ
′,µ ) = −2 logEµ ′

[(
pµ (X )/pµ ′ (X )

) 1
2
]

;

4. The squared Hellinger distance dH 2 (µ ′,µ ) = 2
(
1 − Eµ ′

[(
pµ (X )/pµ ′ (X )

) 1
2
] )

;

5. The KL (Kullback-Leibler) divergenceD (pµ ′ ‖pµ ), henceforth abbreviated toD (µ ′‖µ ).

We note that there is a direct relationship between the Rényi divergence and squared
Hellinger distance:

dH 2 (µ ′,µ ) = 2
(
1 − e−dR (µ ′,µ )/2

)
. (5.5)

In fact, as we show below, these loss functions are all equivalent (equal up to universal
constants) on CINECSI sets. Such sets will play an important role in the sequel. They are
de�ned as follows:
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De�nition 5.1 (CINECSI). A CINECSI (Connected, Interior-Non-Empty-Compact-Subset-
of-Interior) subset of a set M is a connected subset of the interior of M that is itself compact
and has nonempty interior.

The following proposition is proved in Section 5.7.

Proposition 5.2. Let M be the mean-value parameter space of an exponential family
as above, and let M ′ be an CINECSI subset of M . Then there exist positive constants
c1,c2, . . . ,c6 such that for all µ,µ ′ ∈ M ′,

c1‖µ
′ − µ‖22 ≤ c2 · dST (µ

′‖µ ) ≤ dH 2 (µ ′,µ ) ≤ dR (µ
′,µ ) ≤ D (µ ′‖µ ) ≤ c3‖µ

′ − µ‖22 . (5.6)

and for all µ ′ ∈ M ′,µ ∈ M (i.e. µ is now not restricted to lie in M ′),

dH 2 (µ ′,µ ) ≤ c4‖µ
′ − µ‖22 ≤ c5 · dST (µ

′‖µ ) ≤ c6‖µ
′ − µ‖22 . (5.7)

CINECSI subsets are a variation on the INECCSI sets of (Grünwald, 2007). Our main
result, Theorem 5.5, holds for all of the above loss functions, and for general ‘su�ciently
e�cient’ estimators. While the equivalence of the losses above on CINECSI sets is a great
help in the proofs, we emphasize that we never require these estimators to be restricted
to CINECSI subsets of M — although, since we require M to be open, every ‘true’ µ ∈ M
will lie in some CINECSI subset M ′ of M , a statistician who employs the modelM cannot
know what this M ′ is, so such a requirement would be unreasonably strong.

5.3.2 Minimax parametric risk
We say that a quantity fn converges at rate дn if fn � дn . We say that an estimator µ̆ is
minimax rate optimal relative to a modelM = {pµ | µ ∈ M } restricted to a subset M ′ ⊂ M
if

sup
µ∈M ′

R (µ, µ̆,n)

converges at the same rate as
inf
µ̇

sup
µ∈M ′

R (µ, µ̇,n), (5.8)

where µ̇ ranges over all estimators of µ at sample size n, that is, all measurable functions
from Xn to M .

For most parametric models encountered in practice, the minimax risk (5.8) is of order
1/n when R is de�ned relative to any of the loss measures de�ned in Section 5.3.1 and
M ′ is an arbitrary CINECSI subset of M (Van der Vaart, 1998). In particular this holds if
M is an exponential family. For this reason, from now on we refer to 1/n as the min-
imax parametric rate. Note that, crucially, the restriction µ ∈ M ′ is imposed only on
the data-generating distribution, not on the estimators, and, since we will require models
with open parameter sets M such that for every δ > 0, there is a CINECSI subset M ′δ
of M with supµ∈M inf µ ′∈M ′δ ‖µ − µ

′ | |22 < δ , every possible µ ∈ M will also lie in some
CINECSI subset M ′δ that ‘nearly’ covers Mδ . This makes the restriction to CINECSI M ′ in
the de�nition above a mild one. Still, it is necessary: at least for the squared error loss,
for most exponential families (the exception being the Gaussian location family), we have
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inf µ̇ supµ∈M ′δ R (µ, µ̇,n) = Cδ/n for some constant Cδ > 0, but the smallest constant for
which this holds may grow arbitrarily large as δ → 0, the reason being that the determi-
nant of the Fisher information may tend to 0 or∞ as δ → 0.

Now consider a model selection criterion δ : ⋃i>0X
i → {0,1, . . . ,K − 1} that selects,

for given data xn of arbitrary length n, one of a �nite number K of parametric models
M0, . . . ,MK−1 with respective parameter sets M0, . . . ,MK−1. One way to evaluate the
quality of δ is to consider the risk attained after �rst selecting a model and then estimating
the parameter vector µ using an estimator µ̆k associated with each modelMk . This post-
model selection estimator (Leeb and Pötscher, 2005) will be denoted by µ̆ k̆ (x

n ), where k̆
is the index of the model selected by δ . The risk of a model selection criterion δ is thus
R (µ,δ ,n) = Eµ

[
L(µ, µ̆ k̆ (X

n ))
]
, where L is a given loss function, and its worst-case risk

relative to µ restricted to M ′k ⊂ Mk is given by

sup
µ∈M ′k

R (µ,δ ,n) = sup
µ∈M ′k

Eµ
[
L(µ, µ̆ k̆ (X

n ))
]
. (5.9)

We are now ready to de�ne what it means for a model selection criterion to achieve the
minimax parametric rate.

De�nition 5.3. A model selection criterion δ achieves theminimax parametric rate if there
exist estimators µ̆k , one for eachMk under consideration, such that, for every CINECSI
subset M ′k of M :

sup
µ∈M ′k

R (µ,δ ,n) � 1/n.

Just as in the �xed-model case, the restriction µ ∈ M ′k is imposed only on the data-
generating distribution, not on the estimators.

5.3.3 The result of Yang (2005) transplanted to our setting
In this paper, as stated in the introduction, we further specialize the setting above to prob-
lem (5.1) where we select between two nested exponential families, which we shall al-
ways assume to be given in their mean-value parameterization. To be precise, the ‘com-
plex’ model M1 contains distributions from an exponential family parametrized by an
m1-dimensional mean vector µ, and the ‘simple’ modelM0 contains distributions with the
same parametrization, where the �nalm1 −m0 components are �xed to values νm0+1, . . . ,
νm1 . We introduce some notation to deal with the assumption that M1 and its restriction
of M0 to its �rstm0 components are products of open intervals. Formally, we require that
M1 and M0 are of the form

M1 = (ζ1,1,η1,1) × . . . × (ζ1,m1 ,η1,m1 )

M0 = (ζ0,1,η0,1) × . . . × (ζ0,m0 ,η0,m0 ) × {νm0+1} × . . . × {νm1 } (5.10)

where, for j = 1, . . . ,m0, we have −∞ ≤ ζ1, j ≤ ζ0, j < η0, j ≤ η1, j ≤ ∞; and for j =
m0 + 1, . . . ,m1, we have −∞ ≤ ζ1, j < ν j < η1, j ≤ ∞.

For example,M1 could contain all normal distributions with mean µ and variance σ 2,
with mean value parameters µ1 = µ

2 + σ 2 and µ2 = µ, and M1 = (0,∞) × (−∞,∞), while
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M0 could contain all normal distributions with mean zero and unknown variance σ 2, so
M0 = (0,∞) × {0}.

Yang (2005) showed in a linear regression context that a model selection criterion can-
not both achieve the minimax optimal parametric rate and be consistent; a practitioner is
thus forced to choose between a rate-optimal method such as AIC and a consistent method
such as BIC. Inequality (5.12) below provides some insight into why this AIC-BIC dilemma
can occur. A similar inequality appears in Yang’s paper for his linear regression context,
but it is still valid in our exponential family setting, and the derivation — which we now
give — is essentially equivalent.

To state the inequality, we need to relate µ1 ∈ M1 to a component in M0. For any given
µ1 = (µ1,1, . . . ,µ1,m1 )

T ∈ M1, we will de�ne

Π0 (µ1) := (µ1,1, . . . ,µ1,m0 ,νm0+1, . . . ,νm1 )
T (5.11)

to be the projection of µ1 on M0. The di�erence between Π0 of (5.11) and Π′0 in Section
5.2 is that Π0 is a function from Rm1 to Rm1 , whereas Π′0 is a function from Rm1 to Rm0 ;
Π0 (µ1) and Π′0 (µ1) agree in the �rst m0 components. Note that Π0 (µ1) obviously mini-
mizes, among all µ ∈ M0, the squared Euclidean distance ‖µ − µ1‖

2
2 to pµ1 ; somewhat less

obviously it also minimizes, among µ ∈ M0, the KL divergenceD (pµ1 ‖pµ ) (Grünwald, 2007,
Chapter 19); we may thus think of it as the ‘best’ approximation of the ‘true’ µ1 within
M0; we will usually abbreviate Π0 (µ1) to µ0.

Let An be the event that the complex model is selected at sample size n. Since M1
is an exponential family, the MLE µ̂1 is unbiased and µ̂0 coincides with µ̂1 in the �rst m0
components, so that Eµ1

[
µ0 − µ̂0 (X

n )
]
= 0, and hence we can rewrite, for any µ1 ∈ M1,

the squared error risk as

R (µ1,δ ,n) = Eµ1

[
1An ‖µ1 − µ̂1 (X

n )‖22 + 1Ac
n ‖µ1 − µ̂0 (X

n )‖22
]

= Eµ1

[
1An ‖µ1 − µ̂1 (X

n )‖22 + 1Ac
n ‖µ0 − µ̂0 (X

n )‖22 + 1Ac
n ‖µ1 − µ0‖

2
2
]

≤ Eµ1

[
‖µ1 − µ̂1 (X

n )‖22 + ‖µ0 − µ̂0 (X
n )‖22

]
+ P(Ac

n )‖µ1 − µ0‖
2
2

≤ 2R (µ1, µ̂1,n) + P(Ac
n )‖µ1 − µ0‖

2
2 . (5.12)

The �rst part of the proof of our main result, Theorem 5.5, extends this decomposition to
general estimators and loss functions.

The �rst term on the right of (5.12) is of order 1/n. The second term depends on the
‘Type-II error’, i.e. the probability of selecting the simple model when it is not actually true.
A low worst-case risk is attained if this probability is small, even if the true parameter is
close to µ0. This does leave the possibility for a risk-optimal model selection criterion to
incorrectly select the complex model with high probability. In other words, a risk-optimal
model selection method may not be consistent if the simple model is correct. The theorem
by Yang (2005), arguing from decomposition (5.12), essentially demonstrates that it cannot
be. Due to the general nature of (5.12), it seems likely that his result holds in much more
general settings: a procedure attains a low worst-case risk by selecting the complex model
with high probability, which is excellent if the complex model is indeed true, but leads to
inconsistency if the simple model is correct. Indeed, we have shown in earlier work that
the dilemma is not restricted to linear regression, but occurs in our exponential family
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problem (5.1) as well as long as M0 = {ν } is a singleton (see Van der Pas (2013) for the
proof, which is a simple adaptation of Yang’s proof that, we suspect, can be extended to
nonsingletonM0 as well). Hence, as the switch criterion is strongly consistent Van Erven
et al. (2012), we know that the worst-case risk rate of the switch criterion cannot be of the
order 1/n in general.

5.4 Main result

We perform model selection by using the switch criterion, as speci�ed in Section 5.2.
After the model selection, we estimate the underlying parameter µ. We discuss post-model
selection estimators suitable to our problem in Section 5.4.1. We are then ready to present
our main result, Theorem 5.5 in Section 5.4.2, stating that the worst-case risk for the switch
criterion under the loss functions listed in Section 5.3.1 attains the minimax parametric
rate up to a log logn factor.

5.4.1 Post-model selection: su�ciently e�cient estimators
Our goal is to determine the worst-case rate for the switch criterion applied to two nested
exponential families, which we combine with an estimator as follows: if the simple model
is selected, µ will be estimated by an estimator µ̆0 with range M0. If the complex model is
selected, the estimate of µ will be provided by another estimator µ̆1 with range M1. Our
result will hold for all estimators µ̆0 and µ̆1 that are su�ciently e�cient:

De�nition 5.4 (su�ciently e�cient). The estimators {µ̆k → Mk | k ∈ {0,1}} are su�-
ciently e�cient with respect to a divergence measure dgen (·‖·) if (with µ0 = Π0 (µ1) as in
(5.11)), for every CINECSI subset M ′1 of M1, there exists a constant C > 0 such that for all
n,

sup
µ1∈M ′1

Eµ1 [dgen (µ0‖µ̆0)] ≤ C · sup
µ1∈M ′1

Eµ1 [dgen (µ1‖µ̆1)] ≤
C

n
. (5.13)

Example 1. [Su�cient e�ciency for MLE’s for squared (standardized) error and
Hellinger] IfM0 andM1 are exponential families given in their mean-value parameteri-
zation withM0 ⊂ M1 as in (5.10), thenM1 has su�cient statisticφ ≡ (φ1, . . . ,φm1 )

T : X →
Rm1 (see Section 5.7 for the formal de�nition). Now by standard properties of exponential
families, if

n−1
∑

φ (X i ) ∈ M1, (5.14)

then the ML estimator for model Mk is equal to n−1 ∑n
i=1 φ (X i ). For many full families

such as the full (multivariate) Gaussians, Gamma and many others, (5.14) holds µ-almost
surely for each n, for all µ ∈ M1. Then the MLE is almost surely well-de�ned for M1.
We can then take µ̆1 := µ̂1 to be the MLE forM1, and µ̆0 to be its projection on the �rst
m0 coordinates (usually (5.14) will still hold for M0 and then this µ̆0 will be the MLE for
M0). This pair of estimators will be su�ciently e�cient for (standardized) squared error
and squared Hellinger distance, i.e. (5.13) holds for these three losses. To show this, note
that from (5.27) in Proposition 5.2, we see that it is su�cient to show that (5.13) holds
for the squared error loss. Since the j-th component of µ̂1 is equal to n−1 ∑n

i=1 φ j (X i ) and
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Eµ1 [n−1 ∑n
i=1 φ j (X i )] = µ1, j and varµ1

[
n−1 ∑n

i=1 φ j (X i )
]
= n−1varµ1

[
φ j (X1)

]
, it su�ces

to show that
sup
µ1∈M ′1

sup
j=1, . . .,m1

varµ1

[
φ j (X1)

]
= O (1) ,

which is indeed the case since M ′1 is an CINECSI set, so that the variance of all φ j ’s is
uniformly bounded on M ′1 (Barndor�-Nielsen, 1978).

Example 2. [Other su�ciently e�cient estimators for squared (standardized) er-
ror and Hellinger] For models such as the Bernoulli or multinomial, (5.14) may fail to
hold with positive probability: the full Bernoulli exponential family does not contain the
distributions with P (X1 = 1) = 1 and P (X1 = 0) = 1, so if after n examples, only ze-
ros or only ones have been observed, the MLE is unde�ned. We can then go either of
three ways. The �rst way, which we shall not pursue in detail here, is to work with so-
called ‘aggregate’ exponential families, which are extensions of full families to their limit
points. For models with �nite support (such as the multinomial) these are well-de�ned
(Barndor�-Nielsen, 1978, page 154–158) and then the MLE’s for these extended families
are almost surely well-de�ned again, and the MLE’s are su�ciently e�cient by the same
reasoning as above. Another approach that works in some cases (e.g. multinomial) is to
take µ̆1 to be a truncated MLE, that, at sample size n, maps X n to the MLE within some
CINECSI subset M (n)

1 of M1, where M (n)
1 converges to M1 as n increases in the sense that

supµ∈M (n)
1 ,µ ′∈M1\M

(n)
1
‖µ − µ ′‖22 = O (1/n). The resulting truncated MLE, and its projec-

tion on M0 (usually itself a truncated MLE) will then again be su�ciently e�cient. This
approach also works if the modelsM0 andM1 are not full but restricted families to be-
gin with. For full families though, a more elegant approach than truncating MLE’s is to
work with Bayesian posterior MAP estimates with conjugate priors. For steep exponen-
tial families (nearly all families one encounters in practice are steep), one can always �nd
conjugate priors such that the Bayes MAP estimates based on these priors exist and take
a value in M1 almost surely (Grünwald and de Rooij, 2005). They then take the form
µ̆1 =

∑n
i=1 (φ (X i ) + λ0µ

◦
1 )/(n + λ0), where λ0 > 0 and µ◦1 ∈ M1 are determined by the prior.

µ̆0 can then again be taken to be the projection of µ̆1 onto M0. Under the assumption that
µ1 is contained in a CINECSI set M ′1, one can now again show, using the same arguments
as in Example 1, that such estimators are su�ciently e�cient for squared (standardized)
error and Hellinger loss.

Example 3. [Su�cient e�ciency for Rényi and KL divergence] As is well-known,
for the multivariate Gaussian model with �xed covariance matrix, the squared error risk
and KL divergence are identical up to constant factors, so the unrestricted MLE’s will still
be su�ciently e�cient for KL divergence. For other models, though, the MLE will not
always be su�ciently e�cient. For example, with the Bernoulli model and other models
with �nite support, to make the unrestricted MLE’s well-de�ned, we would have to ex-
tend the family to its boundary points as indicated in Example 1. Since, however, for any
0 < µ < 1 and µ ′ = 0, the KL divergence D (µ‖µ ′) = ∞ and Pµ (µ̂ (X n ) = µ ′) > 0, the
unrestricted MLE in the full Bernoulli model including the boundaries will have in�nite
risk and thus will not be su�ciently e�cient. The MAP estimators tend to behave better
though: Grünwald and de Rooij (2005) implicitly show that for 1-dimensional families, un-
der weak conditions on the family (Condition 1 underneath Theorem 1 in their paper) —
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which were shown to hold for a number of families such as Bernoulli, Poisson, geometric
— su�cient e�ciency for the KL divergence still holds for MAP estimators of the form
above. We conjecture that a similar result can be shown for multidimensional families,
but will not attempt to do so here.

5.4.2 Main result: risk of the switch criterion

We now present our main result, which states that for the exponential family problem
under consideration, the worst-case instantaneous risk rate of δsw is of order (log logn)/n.
Hence, the worst-case instantaneous risk of δsw is very close to the lower bound of 1/n,
while the criterion still maintains consistency.

The theorem holds for any of the loss functions listed in Section 5.3.1. We denote this
by using the generic loss function dgen, which can be one of the following loss functions:
squared error loss, standardized squared error los, KL divergence, Rényi divergence of
order 1/2, or squared Hellinger distance.

Theorem 5.5. LetM0 = {pµ | µ ∈ M0} andM1 = {pµ | µ ∈ M1} be nested exponential
families in their mean-value parameterization, where M0 ⊆ M1 are of the form (5.10).
Assume:

1. µ̆0 and µ̆1 are su�ciently e�cient estimators relative to the chosen loss dgen;

2. δsw is constructed with pB,0 and pB,1 de�ned as in Section 5.2 with priors ωk that
admit a strictly positive, continuous density;

3. and psw,1 is de�ned relative to a prior π with support on {0,1,2,4,8, . . .} and π (2i ) ∝
i−κ for some κ ≥ 2.

Then for every CINECSI subset M ′1 of M1, we have:

sup
µ1∈M ′1

R (µ1,δsw,n) = O

(
log logn

n

)
,

for R (µ,δsw,n) the risk at sample size n de�ned relative to the chosen loss dgen.

Example 4. [Our setting vs. Yang’s]Yang (2005) considers model selection between two
nested linear regression models with �xed design, where the errors are Gaussian with �xed
variance. The risk is measured as the in-model squared error risk (‘in-model’ means that
the loss is measured conditional on a randomly chosen design point that already appeared
in the training sample). Within this context he shows that every model selection criterion
that is (weakly) consistent cannot achieve the 1/n minimax rate. The exponential family
result above leads one to conjecture that the switch distribution achievesO ((log logn)/n)
risk in Yang’s setting as well. We suspect that this is so, but actually showing this would re-
quire substantial additional work. Compared to our setting, Yang’s setting is easier in some
and harder in other respects: under the �xed-variance, �xed design regression model, the
Fisher information is constant, making asymptotic results hold nonasymptotically, which
would greatly facilitate our proofs (and obliterate any need to consider CINECSI sets or
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unde�ned MLE’s). On the other hand, evaluating the risk conditional on a design point is
not something that can be directly embedded in our proofs.

Example 5. [Switching vs. Hannan-Quinn] In their comments on Van Erven et al.
(2012), Lauritzen (2012) and Cavanaugh (2012) suggested a relationship between the switch
model selection criterion and the criterion due to Hannan and Quinn (1979). For the expo-
nential family models under consideration, the Hannan-Quinn criterion with parameter
c , denoted as HQ, selects the simple model, i.e. δHQ (x

n ) = 0, if

− logp µ̂0 (x
n ) < − logp µ̂1 (x

n ) + c log logn,

and the complex model otherwise. In their paper, Hannan and Quinn show that this cri-
terion is strongly consistent for c > 1.

As shown by Barron et al. (1999), under some regularity conditions, penalized maxi-
mum likelihood criteria achieve worst-case quadratic risk of the order of their penalty di-
vided by n. One can show (details omitted) that this is also the case in our speci�c setting
and hence, that the worst-case risk rate of HQ for our problem is of order (log logn)/n.
Our main result, Theorem 5.5, shows that the same risk rate is achieved by the switch
distribution, thus partially con�rming the conjecture of Lauritzen (2012) and Cavanaugh
(2012): HQ achieves the same risk rate as the switch distribution and, for the right choice
of c , is also strongly consistent. This suggests that the switch distribution and HQ, at least
for some speci�c value c0, may behave asymptotically indistinguishably. The earlier re-
sults of Van der Pas (2013) suggest that this is indeed the case ifM0 is a singleton; ifM0
has dimensionality larger than 0, this appears to be a di�cult question which we will not
attempt to resolve here — in this sense the conjecture of Lauritzen (2012) and Cavanaugh
(2012) has only been partially resolved.

Because HQ and δsw have been shown to be both strongly consistent and achieve the
same rates for this problem, one may wonder whether one criterion is to be preferred over
the other. For this parametric problem, HQ has the advantage of being simpler to analyze
and implement. The criterion δsw can however, be used to de�ne a robust hypothesis test
as in Section 5.5 below. As we shall see there, HQ is insensitive to optional stopping in an
asymptotic sense only, whereas robust tests such as the switch criterion are insensitive to
optional stopping in a much stronger, nonasymptotic sense. Except for the normal location
model, for which the asymptotics are precise, the HQ criterion cannot be easily adapted
to de�ne such a robust, nonasymptotic test. Another advantage of switching is that it can
be combined with arbitrary priors and applied much more generally, for example when
the constituting models are themselves nonparametric (Lhéritier and Cazals, 2015), are so
irregular that standard asymptotics such as the law of the iterated logarithm are no longer
valid, or are represented by black-box predictors such that ML estimators and the like
cannot be calculated. In all of these cases the switch criterion can still be de�ned and —
given the explanation in the introduction of Van Erven et al. (2012) — one may still expect
it to perform well.
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5.5 Robust null hypothesis tests

Bayes factor model selection, the switch criterion, AIC, BIC, HQ and most model selection
methods used in practice are really based on thresholding the output of a more informative
model comparison method. This is de�ned as a function from data of arbitrary size to the
nonnegative reals. Given data xn , it outputs a number r (xn ) between 0 and ∞ that is a
deterministic function of the data xn . Every model comparison method r and threshold t
has an associated model selection method δr,t that outputs 1 (corresponding to selecting
model M1) if r (xn ) ≤ t , and 0 otherwise. As explained below, such model comparison
methods can often be viewed as performing a null hypothesis withM0 the null hypothesis,
M1 the alternative hypothesis and t akin to a signi�cance level.

Example 1 (BFMS): The output of the Bayes factor model comparison method is the
posterior odds ratio rBayes (x

n ) = P(M0 |x
n )/P(M1 |x

n ). The associated model selection
method (BFMS) with threshold t selects modelM1 if and only rBayes (x

n ) ≤ t .
Example 2 (AIC): Standard AIC selects modelM1 if log(p µ̂1 (x

n )/p µ̂0 (x
n )) > m1 −m0.

We may however consider more conservative versions of AIC that only selectM1 if

log(p µ̂1 (x
n )/p µ̂0 (x

n )) − (m1 −m0) ≥ − log t . (5.15)

We may thus think of AIC as a model comparison method that outputs the left-hand side
of (5.15), and that becomes a model selection method when supplied with a particular t .

Now classical Neyman-Pearson null hypothesis testing requires the sampling plan, or
equivalently, the stopping rule, to be determined in advance to ensure the validity of the
subsequent inference. In the important special case of (generalized) likelihood ratio tests,
this even means that the sample size n has to be �xed in advance. In practice, greater
�exibility in choosing the sample size n is desirable (Wagenmakers (2007) provides so-
phisticated examples and discussion). Below, we discuss hypothesis tests that allow such
�exibility by virtue of the property that their Type I-error probability remains bounded ir-
respective of the stopping rule used. These robust null hypothesis tests are de�ned below.
As will be shown, whenever the null hypothesisM0 = {pµ0 } is ‘simple’, i.e. a singleton
(simple vs. composite testing), both Bayes factor model selection (BFMS) and the switch
distribution de�ne such robust null hypothesis tests, whereas AIC does not and HQ does
so only in an asymptotic sense. As we argue in Section 5.5.3, the advantage of switching
over BFMS is then that, while both share the robustness Type-I error property, switching
has signi�cantly smaller Type-II error (larger power) than BFMS when the ‘truth’ is close
toM0, which is a direct consequence of it having a smaller risk under the alternativeM1.
To make this point concrete, and to indicate what may happen ifM0 is not a singleton,
we provide a simulation study in Section 5.5.4.

5.5.1 Bayes factors with singleton M0 are robust under optional
stopping

In many cases, for each 0 < α < 1 there is an associated threshold t (α ), which is a
strictly increasing function of α , such that for every t ≤ t (α ) we have that δr,t becomes
a null hypothesis signi�cance test (NHST) with type-I error probability bounded by α . In
particular, then δr,t (α ) is a standard NHST with type-I error bounded by α . For example,
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for AIC with M0 = {0} and M1 = R representing the normal family of distributions with
unit variance, we may select t (α ) = exp(−2/z2

α/2), where zα/2 is the upper (α/2)-quantile
of the standard normal distribution. This results in the generalized likelihood ratio test at
signi�cance level α .

We say that model comparison method r de�nes a robust null hypothesis test for null
hypothesisM0 and signi�cance level α if for all µ0 ∈ M0,

Pµ0 (∃n : δr,t (α ) (X n ) = 1) ≤ α . (5.16)
Hence, a test that satis�es (5.16) is a valid NHST test at signi�cance level α , independently
of the stopping rule used. If a researcher can obtain a maximum of n observations, the
probability of incorrectly selecting the complex model will remain bounded away from
one, regardless of the actual number of observations made.

It is well-known that Bayes factor model selection provides a robust null hypothesis
test with t (α ) = α for all �xed α between 0 and 1, as long asM0 is a singleton. In other
words, we may view the output of BFMS as a ‘robust’ variation of the p-value. This was
already noted by Edwards et al. (1963) and interpreted as a frequentist justi�cation for
BFMS; it also follows immediately from the following result.

Theorem 5.6 (Special Case of Eq. (2) of Shafer et al. (2011)). LetM0,M1,M0 and M1 be
as in Theorem 5.5 with common support X ⊂ Rd for some d > 0. Let (X1,X2, . . .) be
an in�nite sequence of random vectors all with support X, and �x two distributions, P̄0
and P̄1 on X∞ (so that under both P̄0 and P̄1, (X1,X2, . . .) constitutes a random process).
Let, for each n, p̄ (n)j represent the marginal density of (X1, . . . ,Xn ) for the �rst n outcomes
under distribution P̄j , relative to some product measure ρn on (Rd )n (we assume P̄0 and
P̄1 to be such that these densities exist). Then for all α ≥ 0,

P̄0


∃n :

p̄ (n)0 (X n )

p̄ (n)1 (X n )
≤ α


 ≤ α .

We �rst apply this result for Bayes factor model selection, with model priors π0 = π1 =
1/2 , so that rBayes (x

n ) = P(M0 |x
n )/P(M1 |x

n ) = pB,0 (x
n )/pB,1 (x

n ). We immediately see
that If M0 = {µ0} represents a singleton null model, then Bayes factor model selection
constitutes a robust hypothesis test for null hypothesisM0.

What happens ifM0 is not singleton? Full robustness would require that (5.16) holds
for all µ0 ∈ M0. The simulations below show that this will in general not be the case for
Bayes factor model selection. Yet, the same reasoning as used above implies that we still
have some type of robustness in a much weaker sense, which one might call “robustness
in prior expectation” relative to prior ω0 on M0. Namely, we have for all 0 ≤ α ≤ 1:

PB,0 (∃n : δr,t (α ) (X n ) = 1) ≤ α , (5.17)
where PB,0 is the Bayes marginal distribution under priorω0. In other words, if the beliefs
of a Bayesian who adopts prior ω0 on modelM0 were accurate, then the BFMS method
would still give robust p-values, independently of the stopping rule. While for a subjective
Bayesian, such a weak form of robustness might perhaps still be acceptable, we will stick
to the stronger de�nition instead, equating ‘robust hypothesis tests’ with tests satisfying
(5.17) uniformly for all µ0 ∈ M0.
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5.5.2 AIC is not, and HQ is only asymptotically robust
The situation for AIC is quite di�erent from that for BFMS and switching: for every func-
tion t : (0,1) → R>0, we have, even for every single 0 < α < 1, that δAIC,t (α ) is not a
robust null hypothesis test for signi�cance level α . Hence AIC cannot be transformed into
a robust test in this sense. This can immediately be seen when comparing a 0-dimensional
(�xed mean µ0) with a 1-dimensional Gaussian location familyM1 (extension to general
multivariate exponential families is straightforward but involves tedious manipulations
with the Fisher information). Evaluating the left hand side of (5.15) yields that δAIC,t (α )
will select the complex model if

������
n∑
i=1

X̃ i

������
≥

√
2n

t (α )
, (5.18)

where the X̃ i are variables with mean 0 and variance 1 if M0 is correct. Hence, as a
consequence of the law of the iterated logarithm (see for example Van der Vaart (1998)),
with probability one, in�nitely many n exist such that the complex model will be favored,
even though it is incorrect.

It is instructive to compare this to the HQ criterion, which, in this example, using the
same notation as in (5.18), selects the complex model if

������
n∑
i=1

X̃ i

������
≥

√
2cn log logn.

If c > 1 (the case in which HQ is strongly consistent), then this inequality will almost
surely not hold for in�nitely many n, as again follows from the law of the iterated log-
arithm. The reasoning can again be extended to other exponential families, and we �nd
that the HQ criterion with c > 1 is robust to optional stopping in the crude, asymptotic
sense that the probability that there exist in�nitely many sample sizes such that the simple
model is incorrectly rejected is zero. Yet HQ does not de�ne a robust hypothesis test in
the sense above: to get the numerically precise Type I-error bound (5.16) we would need
to de�ne t (α ) in a model-dependent manner, which is quite complicated in all cases ex-
cept the Gaussian location families where the asymptotics hold precisely. We note that
the same type of asymptotic robustness holds for the BIC criterion as well.

5.5.3 Switching with singletonM0 is robust under optional stop-
ping

The main insight of this section is simply that, just like BFMS, switching can be used
as a robust null hypothesis test as well, as long as M0 is a singleton: we can view the
switch distribution as a model comparison method that outputs odds ratio rsw (x

n ) =
pB,0 (x

n )/psw,1 (x
n ). Until now, we used it to select model 1 if rsw (x

n ) ≤ 1. If instead
we �x a signi�cance level α and select model 1 if rsw (x

n ) ≤ α , then we immediately see,
by applying Theorem 5.6 in the same way as for the Bayes factor case, that rsw constitutes
a robust null hypothesis test as long asM0 is a singleton model. Similarly – at least if the
priors involved in the switch criterion are chosen independently of the stopping rule —
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just like BFMS, the result rsw (x
n ) of model comparison by switching does not depend on

the ‘sampling intentions’ of the analyst, thus addressing the two most problematic issues
with Neyman-Pearson testing. Yet, from a frequentist perspective, switching is preferable
to BFMS, since it has substantially better power (type-II error) properties. As could al-
ready be seen from Yang’s decomposition (5.12), there is an intimate connection between
Type-II error and the risk rate achieved by any model comparison method. Formally, we
have the following result, a direct corollary of Theorem 5.14 of Section 5.7, which is itself
a major building block of our main result Theorem 5.5 (plug in γ = α −1 into (5.46) to get
the corollary):

Corollary 5.7. Using the same notations and under the same conditions as Theorem
5.5, for any α > 0, there exist constantsC1,C2 > 0 such that, for every CINECSI subset M ′1
of M1, for every sequence µ (1)1 ,µ

(2)
1 , . . . of elements of M ′1 with for all n, inf µ0∈M0 ‖µ

(n)
1 −

µ0‖
2
2 ≥ C1 (log logn)/n, we have

Pµ (n)1
(rsw (x

n ) ≥ α ) ≤
C2

logn . (5.19)

Hence, for any �xed signi�cance level, the power of testing by switching goes to 1 as
long as the data are sampled from a distribution µ (n)1 in M1 that is farther away from M0
than order (log logn)/n; for BFMS, the power only goes to 1 if µ (n) is farther away than
order O ((logn)/n).

Robustness to optional stopping (and hence ‘almost the best of three worlds’) only
holds ifM0 is a singleton; ifM0 is composite, then — using again the same argument as
for the Bayes factor case — we immediately see from Theorem 5.6 that the much weaker
‘prior expected robustness’ property (5.17) still holds. But, the simulations below show
that full robustness does fail if µ0 is ‘atypical’, i.e. if it resides far out in the tails of the
prior ω0. A major question for future work is now obviously whether there exist versions
of the switch criterion that give a truly robust null hypothesis test even under a composite
null hypothesisM0. We return to this question in Section 5.6.

5.5.4 Simulation study
We now provide a simulation to illustrate the di�erences between AIC, BIC, HQ and the
switch criterion in terms of consistency, strong consistency and robustness to optional
stopping, illustrating the insights of the previous subsections. In each setting, two of the
following three models are compared:

• M0 = {N (0,1)}.

• M1 = {N (µ,1),µ ∈ R}, with a normal prior with mean zero and variance equal to
100 on µ.

• M2 = {N (µ,σ 2),µ ∈ R,σ ∈ R>0}, with a normal-inverse-gamma prior: µ |σ 2 ∼
N (0,Cσ 2),σ 2 ∼ IG (α ,β ), with C = 100,α = 1,β = 1.

To illustrate standard consistency, M1 and M2 are considered. In the �rst setting, M1
is true. N = 1000 data sets of length n = 2500 are generated from a standard normal
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distribution, and AIC, BIC, HQ with c = 1.05 and δsw are evaluated at each sample size.
The average selected model index (0 forM1, 1 forM2) is given in Figure 5.1.

In the second setting, M2 is true. The data is generated from a normal distribution
with mean 0 and a variance that is varied. For each value of σ , N = 1000 datasets of
length n = 2500 are generated, and the four model selection criteria are evaluated at that
sample size. The average selected model index is given in Figure 5.2.

The results are as expected. When the complex model is true, AIC is most likely to
select it, at the cost of inconsistency when the simple model is true. BIC is the slowest to
correctly select the complex model and the �rst to correctly select the simple model. HQ
and δsw show intermediate behaviour, HQ being slightly more likely to select the complex
model.

To illustrate strong consistency and optional stopping, three scenarios are considered:

1. M0 vsM1, data from a standard normal distribution (“scenario 1" — Theorem 5.6
implies that switching de�nes a test that is robust with respect to optional stopping).

2. M1 vsM2, data from a standard normal distribution (“scenario 2”, Theorem 5.6 does
not only imply robustness, because null model is composite).

3. M1 vsM2, data from a normal distribution with mean 35 and variance 1 (“scenario
3", Theorem 5.6 again does not imply robustness).

We create N = 1000 data sets of length nmax = 10000 in each scenario. We select the
complex model when δsw is larger than 20 (in terms of the robust p-value interpretation of
Theorem 5.6, this corresponds to a signi�cance level of 0.05). We estimate two probabilities
at each sample size n:

• The probability that there will ever be a model index after n at which the complex
model will be selected (Figure 5.3), approximated by checking whether the complex
model is selected at any sample size between n and 3nmax.

• The probability that there exists a model index before n at which the complex model
would have been selected (Figure 5.4).

Figure 5.3 can be interpreted as a check whether strong consistency holds — if it does, then
the probabilities should converge to 0 as n → ∞. Van Erven et al.’s (2007) theorem implies
that strong consistency holds in all three scenarios, and the graphs con�rm this — even
though for scenario 3, in which data comes from a µ ∈ M0 that is ‘atypical’ under the prior,
it takes a bit longer — illustrating that strong consistency is not a uniform notion. The
graph also illustrates that strong consistency can be viewed as an asymptotic, nonuniform
version of robustness to optional stopping — it implies that from some sample size (which
may be very large though) onwards, one will never again falsely reject no matter how long
one keeps sampling.

Figure 5.4 refers to nonasymptotic optional stopping: in scenario 1, the conditions
from Theorem 5.6 hold, and indeed the �gure shows that the probability that the complex
model is ever incorrectly selected even when optional stopping is used, is bounded by 0.05
(the observed bound is 0.015). In scenarios 2 and 3, the conditions from Theorem 5.6 do not
hold. In scenario 2, the behaviour of the switch criterion is similar to scenario 1. However,
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in scenario 3, the probability of a false rejection opportunity before sample size n is not
bounded by 0.05, but quickly goes to 0.15. We clearly see that δsw is not robust to optional
stopping in scenario 3.

When the simplest model is not a singleton, the choice of prior on the model param-
eters (in scenarios 2 and 3 on µ inM1 and on (µ,σ 2) inM2) a�ects the results. In both
scenario 2 and 3, δsw must still satisfy the weak, prior-expected version of robustness (5.17),
as we have seen in Section 5.5.3. In scenario 2, the prior is centered at the data-generating
value of zero and we do observe actual robustness. In scenario 3 however, the prior is
centered at zero while the data is generated with a mean of 35, 3.5 standard deviations
away from the prior mean — thus µ is ‘atypical’ under the prior, and, as the �gure shows,
nonasymptotic robustness is violated.

5.6 Discussion and future work

In this paper we showed that switching combines near-rate optimality, consistency and,
for singletonM0, robustness to optional stopping. We end the paper by highlighting three
issues which, we feel, need additional discussion: �rst, the desirability of consistency;
second, whether there is anything ‘special’ to the switch criterion as opposed to other
possible trade-o�s between risk optimality and consistency; and third, the limitations of
switching in its current form.

Consistency Since the desirability of consistency, in the sense of �nding the smallest
model containing the true distribution, is somewhat controversial, let us discuss it a bit
further. The main argument against consistency is made by those adhering to Box’s maxim
‘Essentially, all models are wrong, but some are useful’ (Box and Draper, 1987). According
to some, the goal of model selection should therefore not be to select a non-existing ‘true’
model, but to obtain the best predictive inference or best inference about a parameter
(Burnham and Anderson, 2004; Forster, 2000). Another issue with consistency is that it is
a ‘nonuniform’ notion, which in our context means that — as is indeed easy to see — it
is impossible to give a bound on the probability under Pµ of selecting the wrong model
at sample size n that converges to 0 uniformly for all µ ∈ M . This nonuniformity implies
that consistency is of little practical consequence for post-model selection inference (Leeb
and Pötscher, 2005).

As to the �rst argument, one can reply that there do exist situations in which a model
can be correct, for example in the �eld of extrasensory perception (Bem, 2011), in which
it seems exceedingly likely that the null model (expressing that no such thing exists) is
correct; another example is genetic linkage (Gusella et al., 1983; Tsui et al., 1985). The
second argument is more convincing, but only to argue that even if consistency holds, a
method may not be very useful in practice. It does not contradict that consistency can
sometimes be a highly desirable (but never the only highly desirable) property — we feel
that this is the case whenever we are not purely interested in prediction but instead are
also seeking to �nd out whether a certain structural relationship (e.g. dependence between
variables) holds or not.

Going one step further, it seems a good idea to study model selection methods not in
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Figure 5.1: N = 1000 data sets of length n = 2500 are generated from a standard nor-
mal distribution and the criteria are evaluated at each sample size. The �gure shows the
average selected model index (0 forM1, 1 forM2). The true index is 0.
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Figure 5.2: N = 1000 data sets of length n = 2500 are generated from a normal distribution
with mean 0 and variance σ 2 for a range of values of σ . The criteria are evaluated at
n = 2500. The �gure shows the average selected model index (0 forM1, 1 forM2). The
true index is 1.
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Figure 5.3: N = 1000 data sets of length nmax = 10000 in each scenario, from the simple
model. The complex model is selected when δsw (x

n ) > 20. Estimated probability that
there exists a model index after n at which the complex model will be selected. Results
shown up to n = 1500 for clarity. After n = 1500, the three curves are indistinguishable
and all very close to zero.
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Figure 5.4: Setting as Figure 5.3. Estimated probability that there exists a model index
before n at which the complex model would have been selected.
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terms of the asymptotic, nonuniform notion of consistency but instead by a more tangible
�nite-sample analogue. For the case of just two models, Type-I and Type-II errors provide
exactly this analogue — note that if both errors go to 0 as n → ∞, this implies consistency.
Thus, the practical importance of the present work, for us, is mostly that model compar-
ison by switching de�nes, like Bayes, a robust null hypothesis test — providing Type-I
errors irrespective of the stopping rule and thus more in line with actual practice — yet
has better Type-II error behaviour, allowing the Type-II error to become small (i.e. the
power to go to 1) whenever the true distribution sits at a distance of order

√
(log logn)/n

rather than
√
(logn)/n, as with Bayes. We only showed robustness for singletonM0, how-

ever, and our simulations show that it may fail for compositeM0, so the major goal for
future work is therefore, to come up with methods that are robust to optional stopping
also under compositeM0.

How special is the switch distribution? Since Yang proved that in general, the con-
�ict between consistency and risk-optimality is not resolvable, one might argue that any
model selection rule just picks some position in the spectrum of behaviours of consistency
vs. risk-optimality. For example, one might have a modi�ed HQ criterion which picksM1
if, using the same setup and notation as in (5.18),

������
n∑
i=1

X̃ i

������
≥

√
n log log logn. (5.20)

By the central limit theorem, such a method will be consistent, yet when combined with
an e�cient estimator will achieve the minimax estimation rate up to a log log logn factor,
improving on the switch criterion by an additional logarithm. Note however that both
the switch distribution and HQ (with c > 1) achieve strong consistency. The meaning
of strong consistency is illustrated in Figure 5.3 above: it means that, from some n on-
ward, the wrong model will never be selected any more, no matter how long one keeps
sampling. It is easy to see from the law of the iterated logarithm that any strongly con-
sistent method can have rate no faster than order (log logn)/n — in particular, (5.20) is
not strongly consistent. Thus, in this sense both switching and HQ do take a special place
in the consistency vs. risk-optimality spectrum as obtaining the fastest rates compatible
with strong consistency, which may be viewed as asymptotic robustness to optional stop-
ping. While this may mostly be of theoretical interest, the switch distribution also takes a
special place in terms of its nonasymptotic robustness to optional stopping: again, the law
of the iterated logarithm implies that any model comparison method that de�nes a robust
hypothesis test cannot achieve estimation rate better than order (log logn)/n. Again, the
main open question here is whether one can modify it so that robustness for composite
M0 is achieved as well.

Future work — limitations of the switch distribution and our results Whereas the
results in this paper all apply to the original switch distribution as de�ned by Van Erven
et al. (2007) and a simpli�cation thereof, for full robustness to optional stopping with
compositeM0, some substantial changes have to be made, as suggested by the results in
Figure 5.4. Initial research suggests that such a modi�cation of the switch distribution
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might indeed be constructed, based on techniques in Ramdas and Balsubramani (2015);
whereas, compared to Bayes factor testing, in the current switch criterion, pB,1 is modi�ed
to another distribution and pB,0 can remain the same, in this new version we would also
have to change pB,0 — the resulting distribution would not have a Bayesian interpretation
any more. While this work is still under development, to avoid the nonrobustness seen in
Figure 5.4 as much as possible, for the time being we recommend using �at priors (but in
this case, not completely �at - Je�reys’ prior on µ is improper, in which case Theorem 5.6
holds in none of the scenarios and simulations — not reported here — show that optional
stopping robustness is violated).

Another limitation lies not in the switch distribution, but in our results: these are
restricted to two nested exponential family models. It would be interesting to extend
them to more than two models — highlighting the distinction between model selection
and testing — and going beyond exponential families. We are hopeful that switching still
behaves well in such contexts — we note that the risk rate convergence results of Van
Erven et al. (2012) were for countable, possibly in�nite collections of completely general
models — but they invariably dealt with the cumulative risk. While all our experiments
suggest that small cumulative risk usually goes together with small instantaneous risk,
formal analysis of the switch criterion’s instantaneous risk is far more di�cult, and the
present paper heavily relies on su�ciency to do so — so extension of our results beyond
exponential families would be di�cult.

Before doing so, we would prefer to modify the switch distribution further, since the
present version has a drawback when used in nonsequential settings: the precise results
it gives are dependent on the order of the data, even if all the models under consideration
are i.i.d. Thus, it would be interesting and challenging to design an alternative, order-
independent method that, like the switch distribution, is strongly consistent, near rate- and
power-optimal, and is robust to optional stopping under compositeM0. Such a method
would essentially truly achieve the best of the three worlds we considered in this paper —
and this is the method we aim for in our future research.
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5.7 Proofs

In this appendix, we start by listing some well-known properties of exponential families
which we will repeatedly use in the proofs. Then, in Section 5.7.4, we provide a sequence
of technical lemmata that lead up to the proof of our main result, Theorem 5.5. Finally,
in Section 5.7.5, we compare the switch distribution and criterion as de�ned here to the
original switch distribution and criterion of Van Erven et al. (2012).
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Additional notation Our results will often involve displays involving several constants.
The following abbreviation proves useful: when we write ‘for positive constants ~c , we
have ...’, we mean that there exist some (c1, . . . ,cN ) ∈ R

N , with c1, . . . ,cN > 0, such that
... holds; here N is left unspeci�ed but it will always be clear from the application what N
is. Further, for positive constants ~b = (b1,b2,b3), we de�ne small~b (n) as

small~b (n) =

1 if n < b1

b2e
−b3n if n ≥ b1,

and we frequently use the following fact. Suppose that E1,E2, . . . is a sequence of events
such that P(En ) ≤ small~b (n). Then we also have, for any event A, and for all n,

P(A,Ecn ) ≥ P(A) − small~b (n), (5.21)

as is immediate from P(A,Ecn ) = P(A) − P(A,En ) ≥ P(A) − P(En ).
The components of a vector µ ∈ Rn are given by (µ1,µ2, . . . ,µn ). If the vector already

has an index, we add a comma, for example µ1 = (µ1,1,µ1,2, . . . ,µ1,n ). A sequence of vectors
is denoted by µ (1) ,µ (2) , . . ..

5.7.1 De�nitions concerning and properties of exponential fami-
lies

The following de�nitions and properties can all be found in the standard reference
(Barndor�-Nielsen, 1978) and, less formally, in (Grünwald, 2007, Chapters 18 and 19).

A k-dimensional exponential family is a set of distributions onX, which we invariably
represent by the corresponding set of densities {pθ | θ ∈ Θ}, where Θ ⊂ Rk , such that any
member pθ can be written as

pθ (x ) =
1

z (θ )
eθ

T φ (x )r (x ) = eθ
T φ (x )−ψ (θ )r (x ), (5.22)

where φ (x ) = (φ1 (x ), . . . ,φk (x )) is a su�cient statistic, r is a non-negative function called
the carrier, z the partition function and ψ (θ ) = log z (θ ). We assume the representation
(5.7.1) to be minimal, meaning that the components of φ (x ) are linearly independent.

The parameterization in (5.22) is referred to as the canonical or natural parameteriza-
tion; we only consider families for which the set Θ is open and connected. Every exponen-
tial family can alternatively be parameterized in terms of its mean-value parameterization,
where the family is parameterized by the mean µ = Eθ [φ (X )], with µ taking values in
M ⊂ R, where µ as a function of θ is smooth and strictly increasing; as a consequence, the
set M of mean-value parameters corresponding to an open and connected set Θ is itself
also open and connected. Whenever for data x1, . . . ,xn , we have 1

n
∑n

i=1 φ (xi ) ∈ M , then
the maximum likelihood is uniquely achieved by the µ that is itself equal to this value,

µ̂ (xn ) =
1
n

n∑
i=1

φ (xi ). (5.23)

We thus de�ne the maximum likelihood estimator (MLE) to be equal to (5.23) whenever
1
n
∑n

i=1 φ (xi ) ∈ M . Since the result below which directly involves the MLE (Lemma 5.11)
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does not depend on its value for xn with 1
n
∑n

i=1 φ (xi ) < M , we can leave µ̂ (xn ) unde�ned
for such values. However, if we want to use the MLE as a ‘su�ciently e�cient’ estimator
as used in the statement of Theorem 5.5, we need to de�ne µ̂ (xn ) for such values in such
a way that (5.13) is satis�ed, as illustrated in Example 1.

A standard property of exponential families says that, for any µ ∈ M , any distribution
Q on X with EX∼Q[φ (X )] = µ, any µ ′ ∈ M , we have

EX∼Q

[
log

pµ (X )

pµ ′ (X )

]
= EX∼Pµ

[
log

pµ (X )

pµ ′ (X )

]
= D (µ‖µ ′), (5.24)

the �nal equality being just the de�nition of D (·‖·). Now �x an arbitry sample xn . By
taking Q to be the empirical distribution on X corresponding to sample xn , it follows
from (5.24) that if µ̂ (xn ) ∈ M then also the following relationship holds for any µ ′ ∈ M :

1
n

log
p µ̂ (xn ) (x

n )

pµ ′ (xn )
= D (µ̂ (xn )‖µ ′). (5.25)

(5.24) and (5.25) are a direct consequence of the su�ciency of µ̂1 (X
n ), and folklore among

information theorists. For a proof of (5.24) and more details on (5.25), see e.g. (Grün-
wald, 2007, Chapter 19), who calls this the robustness property of the KL divergence for
exponential families.

We are now in a position to prove Proposition 5.2, which we repeat for convenience.

Proposition 5.2 Let M , a product of open intervals, be the mean-value parameter space
of an exponential family, and let M ′ be an CINECSI subset of M . Then there exist positive
constants ~c such that for all µ,µ ′ ∈ M ′,

c1‖µ
′ − µ‖22 ≤ c2 · dST (µ

′‖µ ) ≤ dH 2 (µ ′,µ ) ≤ dR (µ
′,µ ) ≤ D (µ ′‖µ ) ≤ c3‖µ

′ − µ‖22 . (5.26)

and for all µ ′ ∈ M ′,µ ∈ M (i.e. µ is now not restricted to lie in M ′),

dH 2 (µ ′,µ ) ≤ c4‖µ
′ − µ‖22 ≤ c5 · dST (µ

′‖µ ) ≤ c6‖µ
′ − µ‖22 . (5.27)

Proof. We start with (5.26). The third and fourth inequality are immediate by using − logx
≥ 1 − x and Jensen’s inequality, respectively. From standard properties of Fisher infor-
mation for exponential families (Barndor�-Nielsen, 1978) we have that, for any CINECSI
(hence compact and bounded away from the boundaries of M) subset M ′ of M , there exists
positive ~C with

0 < C1 = inf
µ∈M ′

det I (µ ) < sup
µ∈M ′

det I (µ ) = C2 < ∞, (5.28)

from which we infer that for all µ ′ ∈ M ′, µ,µ ′′ ∈ Rm ,

C3‖µ − µ
′′‖22 ≤ (µ − µ ′′)T I (µ ′) (µ − µ ′′) ≤ C4‖µ − µ

′′‖22 , (5.29)

for some 0 < C3 ≤ C4 < ∞. Using (5.29), the �rst inequality is immediate, and the
�nal inequality follows straightforwardly from a second-order Taylor approximation of
KL divergence as in (Grünwald, 2007, Chapter 4). It only remains to establish the second
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inequality. Now, since M ′ is CINECSI and hence compact the �fth (rightmost) inequality
implies that there is aC5 < ∞ such that supµ,µ ′∈M ′ D (µ ′‖µ ) < C5 and hence, via the fourth
inequality, that supµ,µ ′∈M ′ dR (µ ′,µ ) < C5. Equality (5.5) now implies that there is aC6 such
that

sup
µ,µ ′∈M ′

dR (µ
′,µ )/dH 2 (µ ′,µ ) < C6. (5.30)

Using again (5.28), a second order Taylor approximation as in Van Erven and Harremoës
(2014) now gives that for some constantC7 > 0, ‖µ − µ ′‖22 ≤ C7dR (µ

′,µ ) for all µ,µ ′ ∈ M ′.
The �rst result, (5.26), now follows upon combining this with (5.30).

As to (5.27), the second and third inequality are immediate from (5.29). For the �rst
inequality, note that, since M ′ is CINECSI and we assume M to be a product of open
intervals, there must exist another CINECSI subset M ′′ of M strictly containing M ′ such
that inf µ ′∈M ′,µ∈M\M ′′ ‖µ ′−µ‖22 = δ for some δ > 0. We now distinguish between µ in (5.27)
being an element of (a) M ′′ or (b) M \M ′′. For case (a) (5.26), with M ′′ in the role of M ′,
gives that there is a constantC8 such that for all µ ∈ M ′′, dH 2 (µ ′,µ ) ≤ C8‖µ

′−µ‖22 . For case
(b), µ ∈ M \M ′′, we have ‖µ ′ − µ‖22 ≥ δ and, using that squared Hellinger distance for any
pair of distributions is bounded by 2, we have dH 2 (µ ′,µ ) ≤ (2/δ )‖µ ′− µ‖22 . Thus, by taking
c4 = max{C8,2/δ }, case (a) and (b) together establish the �rst inequality in (5.27). �

5.7.2 Preparation for proof of main result: results on large devia-
tions

LetM1 andM1 be as in Theorem 5.5. For the following result, Lemma 5.8, we set µ̂ ′1 (X n ) :=
n−1 ∑

φ (X i ), so that µ̂ ′1 (X n ) = µ̂1 (X
n ) whenever n−1 ∑

φ (X i ) ∈ M1. It is essentially a mul-
tidimensional extension of a standard information-theoretic result, with KL divergence
replaced by squared error loss. The result states the following: wheneverM1 is a single-
parameter exponential family (that is, m1 = 1), then for any µ ∈ M1, all a,a′ > 0 with
µ + a ∈ M1, µ − a′ ∈ M1,

Pµ (µ̂
′
1 (X

n ) ≥ µ + a) ≤ e−nD (µ+a ‖µ ) . ; Pµ (µ̂ ′1 (X n ) ≤ µ − a′) ≤ e−nD (µ−a′ ‖µ ) . (5.31)

For a simple proof, see (Grünwald, 2007, Section 19.4.2); for discussion see (Csiszár, 1984)
— the latter reference gives a multidimensional extension of (5.31) but of a very di�erent
kind than Lemma 5.8 below. To prepare for the lemma, letM1 andM1 be as in Theorem 5.5
and, for any µ ∈ M1 and any ~a,~b ∈ Rm1

>0 , de�ne the `∞-rectangle R∞ (µ,~a,~b) = {µ ′ ∈ Rm1 :
∀j = 1, . . . ,m1,−b j ≤ µ

′
j − µ j ≤ a j }.

Lemma 5.8. LetM1 and M1 be as in Theorem 5.5 and �x an arbitrary CINECSI subset
M ′1 of M1. Then there is a c > 0 (depending on M ′1) such that, for all µ ∈ M1, all n, all
~a,~b ∈ Rm1

>0 such that R∞ (µ,~a,~b) ⊂ M ′1,

Pµ (µ̂
′
1 (X

n ) < R∞ (µ,~a,~b)) ≤ 2m1e
−nc ·(min j min{a j ,b j })2 . (5.32)

Proof. For j = 1, . . . ,m1, d ∈ R, let ~e j represent the jth standard basis vector, such that µ +
d~e j = (µ1, . . . ,µ j−1,µ j +d ,µ j+1, . . . ,µm1 ), and letD µ+d ~e j := D (µ+d~e j ‖µ ). We now have that
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there exist constants ca,1, . . . ,ca,m1 ,cb,1, . . . ,cb,m1 > 0 such that for
c := min{ca,1, . . . ,ca,m1 ,cb,1, . . . ,cb,m1 }, all n,

Pµ (µ̂1 (X
n ) < R∞ (µ,~a,~b)) ≤

m1∑
j=1
Pµ (µ̂1, j (Xn ) ≥ µ j + a j ) +

m1∑
j=1
Pµ (µ̂1, j (X

n ) ≤ µ j − b j )

≤

m1∑
j=1

(
e
−nD µ+a j ~e j + e

−nD µ−bj ~e j
)
≤

m1∑
j=1

(
e−nca, ja

2
j + e−ncb, jb

2
j
)

≤ 2m1e
−nc ·(min j min{a j ,b j })2 ,

Here the �rst inequality follows from the union bound, and the second follows by applying,
for each of the 2m1 terms, (5.31) above to the one-dimensional exponential sub-family
{pµ | µ ∈ M1 ∩ {µ : µ = µ + d~e j for some d ∈ R}}. The third follows by Proposition 5.2
together with the equivalence of the `2 and sup norms on Rm1 , and the �nal inequality is
immediate. �

Lemma 5.9. Under conditions and notations as in Theorem 5.5, let µ,µ ′ be elements of
M1 and suppose X N = (Xn1 , . . . ,Xn2 ) is a sequence of i.i.d. observations of length N from
pµ . Then, for any A ∈ R:

Pµ


log

pµ (X
N )

pµ ′ (X N )
< A


 ≤ e

1
2 Ae−

N
2 dR (µ ′,µ ) . (5.33)

Proof. For any A, by Markov’s inequality:

Pµ


log

pµ (X
N )

pµ ′ (X N )
< A


 = Pµ





pµ ′ (X

N )

pµ (X N )




1
2

> e−
1
2 A


 ≤ e

1
2 AEµ





pµ ′ (X

N )

pµ (X N )




1
2 

= e
1
2 A


Eµ



(
pµ ′ (Xn1 )

pµ (Xn1 )

) 1
2 



N

= e
1
2 Ae

log


Eµ



(
pµ ′ (Xn1 )
pµ (Xn1 )

) 1
2 



N

= e
1
2 Ae

− N
2


− 1

1−1/2 logEµ


(
pµ ′ (Xn1 )
pµ (Xn1 )

) 1
2 



= e

1
2 Ae−

N
2 dR (µ,µ ′) . (5.34)

�

Proposition 5.10. Let M0,M1,M0,M1 be as in Theorem 5.5 and let M ′1 be a CINECSI
subset of M1. Then there exists another, larger, CINECSI subset M ′′1 of M1 and positive
constants ~b such that M ′1 is itself a CINECSI subset of M ′′1 and for both j ∈ {0,1}, the ML
estimator µ̂ j (xn ) satis�es

sup
µ∈M ′1

Pµ (µ̂ j (X
n ) < M ′′1 ) ≤ small~b (n).
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Proof. M1 can be written as in (5.10), and hence we can de�ne a set

M ′′1 = [ζ ∗1,1,η∗1,1] × . . . × [ζ ∗1,m1 ,η
∗
1,m1 ]

for values ζ ∗1, j ,η∗1, j ∈ R such thatM ′′1 is a CINECSI subset ofM1. SinceM ′1 is connected with
compact closure in interior of M1 and M ′′1 is a subset of M1, we can choose the ζ ∗1, j ,η∗1, j ∈ R
such that M ′1 is itself a CINECSI subset of M ′′1 . Since M ′1 is connected and its closure is in
the interior of M ′′1 which is itself compact, it follows that there is some δ > 0 such that,
for all µ ′1 ∈ M ′1,µ ′′1 < M ′′1 , all j ∈ {1, . . . ,m1}, it holds |µ ′1, j − µ ′′1, j | > δ . It now follows from
Lemma 5.8, applied with ~a chosen such that R∞ (µ ′,~a) = M ′′1 , that for every µ ′ ∈ M ′1, all n,

Pµ ′
(
µ̂1 (X

n ) < M ′′1
)
≤ C1e

−nC2δ 2

for some constants C1,C2. Here we used that by construction, each entry of ~a must be at
least as large as δ . Since µ̂1, j (x

n ) and µ̂0, j (x
n ) coincide for 0 < j ≤ m0 and µ̂0, j (x

n ) is
constant form0 < j ≤ m1, the result follows for µ̂0 (x

n ) as well. �

5.7.3 Preparation for proof of main result: results on Bayes factor
model selection

Lemma 5.11. Let M0,M1,M0,M1 be as in Theorem 5.5 and let, for j ∈ {0,1}, M ′j be a
CINECSI subset of M j . For both j ∈ {0,1}, there exist positive constants ~c,~b such that for
all µ1 ∈ M

′
1,

c1 ≤ n−m j /2 ·
p µ̂ j (X n ) (X

n )

pB, j (X n )
≤ c2, (5.35)

with Pµ1 -probability at least 1 − small~b (n).

Proof. For a Bayesian marginal distribution pB de�ned relative to m-dimensional expo-
nential family M given in its mean-value parameterization M , with a prior ω (·) that is
continuous and strictly positive on M , we have as a consequence of the familiar Laplace
approximation of the Bayesian marginal distribution of exponential famlies as in e.g. (Kass
and Raftery, 1995),

pB (x
n ) ∼

( n

2π

)−m/2
·

ω (µ̂ (xn ))√
det I (µ̂ (xn ))

p µ̂ (xn ) (x
n ).

As shown in Theorem 8.1 in (Grünwald, 2007), this statement holds uniformly for all se-
quences xn with ML estimators in any �xed CINECSI subset M ′ of M . By compactness
of M ′, and by positive de�niteness and continuity of Fisher information for exponential
families, the quantityω (µ̂ )/

√
det I (µ̂ ) will be bounded away from zero and in�nity on such

sequences, and, applying the result to both the familiesM0 andM1 it follows that there
exist c1,c2 > 0 such that for all n larger than some n0, uniformly for all sequences xn with
µ̂ j (x

n ) ∈ M ′j , we have:

c1 ≤ n−m j /2 ·
p µ̂ j (xn ) (x

n )

pB, j (xn )
≤ c2. (5.36)

The result now follows by combining this statement with Proposition 5.10. �
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Lemma 5.12. LetM0,M1,M0, M1 and the Bayesian marginal distribution pB,0 be as in
Theorem 5.5. Let M ′1 be a CINECSI subset of M1. Then there exist positive constants ~c and
~b such that for all n, all µ1 ∈ M

′
1, all A ∈ R,

Pµ1

(
log

pB,1 (X
n )

pB,0 (X n )
< A

)
≤ nm1/2 · c1 · e

1
2 c2Ae−

n
2 c3 ‖µ1−µ0 ‖22 + small~b (n),

where for each µ1, µ0 = Π0 (µ1) as in (5.11).
Proof. Fix constants C1,C2 such that they are smaller and larger respectively than the
constants c1,c2 from Lemma 5.11 and de�ne

En =

{
X n : C1 ≤ n−m1/2p µ̂1 (X n ) (X

n )

pB,1 (X n )
≤ C2

}
.

Using Lemma 5.11, we have that there exists positive ~b such that for all A ∈ R,

Pµ1

(
log

pB,1 (X
n )

pB,0 (X n )
< A

)
=Pµ1

(
log

pB,1 (X
n )

pB,0 (X n )
< A,En

)
+ Pµ1

(
log

pB,1 (X
n )

pB,0 (X n )
< A,Ecn

)
≤Pµ1


log

C−1
2 n−m1/2p µ̂1 (X n ) (X

n )

pB,0 (X n )
< A,En


 + small~b (n)

≤Pµ1


log

C−1
2 n−m1/2pµ1 (X

n )

pB,0 (X n )
< A


 + small~b (n)

= Pµ1

(
log

pµ1 (X
n )

pB,0 (X n )
< A + logC2n

m1/2
)

+ small~b (n). (5.37)

To bound this probability further, we need to relate pB,0 to pB′,0, the Bayesian marginal
likelihood under model M0 under a prior with support restricted to a compact set M ′0.
To de�ne M ′0, note �rst that there must exist a CINECSI subset, say M ′′1 , of M1 such that
M ′1 is itself a CINECSI subset of M ′′1 . Take any such M ′′1 and let M ′0 be the closure of
M ′′1 ∩M0. Givenω, the prior density on Π′(M0) used in the de�nition ofpB,0, de�neω ′(ν ) =
ω (ν )/

∫
ν ∈Π′ (M ′0 )

ω (ν )dν as the prior density restricted to and normalized on Π′(M ′0) and let
pB′,0 be the corresponding Bayesian marginal density on X n .

To continue bounding (5.37), de�ne

E ′n =

{
X n : C3 ≤ n−m0/2p µ̂0 (X n ) (X

n )

pB,0 (X n )
≤ C4 and C3 ≤ n−m0/2p µ̂0 (X n ) (X

n )

pB′,0 (X n )
≤ C4

}
,

withC3 andC4 smaller and larger respectively than the constants c1 and c2 resulting from
Lemma 5.11 (note that Lemma 5.11 can be applied to pB′,0 as well, by taking M0 in that
lemma to be the interior of M ′0 as de�ned here). Set C5 > C4/C3, and note that for any
A1 ∈ R, abbreviating Pµ1

(
log pµ1 (X

n )

C5pB′ ,0 (X n ) < A1

)
to p∗, we have

Pµ1

(
log

pµ1 (X
n )

pB,0 (X n )
< A1

)
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=Pµ1

(
log

pµ1 (X
n )

pB,0 (X n )
< A1,

pB0 (X
n )

pB′,0 (X n )
< C5

)
+ Pµ1

(
log

pµ1 (X
n )

pB,0 (X n )
< A1,

pB0 (X
n )

pB′,0 (X n )
≥ C5

)
≤Pµ1

(
log

pµ1 (X
n )

C5pB′,0 (X n )
< A1

)
+ Pµ1

(
pB,0 (X

n ) ≥ C5pB′,0 (X
n )

)
=p∗ + Pµ1

(
pB,0 (X

n ) ≥ C5pB′,0 (X
n )

)
≤p∗ + Pµ1

(
pB,0 (X

n )

pB′,0 (X n )
≥ C5,E

′
n

)
+ Pµ1

(
pB,0 (X

n )

pB′,0 (X n )
≥ C5, (E

′
n )

c
)

≤p∗ + 0 + small~b (n). (5.38)

Now it only remains to bound p∗. To this end, let

C6 :=
∫
ν ∈Π′ (M ′0 )

√
ω (ν )dν . (5.39)

Since M ′0 has compact closure in the interior of M0 and we are assuming that ω has full
support on M0, we have that C6 < ∞.

Now using Markov’s inequality as in the proof of Lemma 5.9, that is, the �rst line of
(5.34) with pB′,0 in the role of pµ ′ , gives, for any A2 ∈ R,

Pµ1

(
log

pµ1 (X
n )

pB′,0 (X n )
< A2

)
≤ e

1
2 A2Eµ1



(
pB′,0 (X

n )

pµ1 (X
n )

) 1
2 
. (5.40)

The expectation on the right can be further bounded, de�ning ω ′′ =
√
ω/C6 and noting

that ω ′′ is a probability density, as

Eµ1



(
pB′,0 (X

n )

pµ1 (X
n )

) 1
2 
≤ Eµ1






∫
ν ∈Π′ (M ′0 )

ω (ν )1/2pν (X
n )1/2dν

pµ1 (X
n )1/2





= C6 · Eµ∼ω ′′Eµ1



(
pµ (X

n )

pµ1 (X
n )

) 1
2 
≤ C6 · Eµ1



(
pµ◦ (X

n )

pµ1 (X
n )

) 1
2 
,

where µ◦ ∈ M ′0 achieves the supremum of Eµ1

[(
pµ◦ (X n )

pµ1 (X
n )

) 1
2
]

withinM ′0. By compactness of

M ′0 and continuity, this supremum is achieved. The �nal term can be rewritten, following
the same steps as in the second and third line of (5.34), as

Eµ1



(
pµ◦ (X

n )

pµ1 (X
n )

) 1
2 
= e−

n
2 dR (µ1,µ◦ ) . (5.41)

Since M ′0 and M ′1 are both CINECSI, it now follows from Proposition 5.2 that for some
�xed C7 > 0,

dR (µ1,µ
◦) ≥ C7‖µ1 − µ

◦‖22 ≥ C7‖µ1 − µ0‖
2
2 , (5.42)

where the latter inequality follows by the de�nition of µ0 = Π0 (µ1), see the explanation
below (5.11). Combining (5.40), (5.41) and (5.42), we have thus shown that for all n, all



174 CHAPTER 5. THE SWITCH CRITERION

µ1 ∈ M1, all A2 ∈ R,

Pµ1

(
log

pµ1 (X
n )

pB′,0 (X n )
< A2

)
≤ C6e

1
2 A
′′

e−
n
2 C7 ‖µ1−µ0 ‖22 . (5.43)

The result now follows by combining (5.37), (5.38) and (5.43). �

5.7.4 Proof of main result, Theorem 5.5

Proof Idea The proof is based on analyzing what happens if X1,X2, . . . ,Xn are sampled
from pµ (n)1

, where µ (1)1 ,µ
(2)
1 , . . . are a sequence of parameters in M ′1. We consider three

regimes, depending on how fast (if at all) µ (n)1 converges to µ (n)0 as n → ∞. Here µ (n)0 =

Π0 (µ
(n)
1 ) is the projection of µ (1) onto M0, i.e. the distribution inM0 de�ned, for each n, as

in (5.11), with µ1 and µ0 in the role of µ (n)1 and µ (n)0 , respectively. Our regimes are de�ned
in terms of the function f given by

f (n) :=
‖µ (n)1 − µ (n)0 ‖

2
2

log log n
n

=
n · ‖µ (n)1 − µ (n)0 ‖

2
2

log logn , (5.44)

which indicates how fastdSQ (µ (n)1 ,µ
(n)
0 ) grows relative to the best possible rate (log logn)/n.

We �x appropriate constants Γ1 and Γ2, and we distinguish, for all n with Γ2 logn ≥ Γ1, the
cases:

f (n) ∈


[0,Γ1] Case 1
[Γ1,Γ2 logn] Case 2 (Theorem 5.14)
[Γ2 logn,∞] Case 3 (Theorem 5.13).

For Case 1, the rate is easily seen to be upper bounded by O ((log logn)/n), as shown
inside the proof of Theorem 5.5. In Case 3, Theorem 5.14 establishes that the probability
that modelM0 is chosen is at most of order 1/(logn), which, as shown inside the proof of
Theorem 5.5, again implies an upper-bound on the rate-of convergence ofO ((log logn)/n).
Theorem 5.13 shows that in Case 3, which includes the case that ‖µ (n)1 − µ (n)0 ‖

2
2 does not

converge at all, the probability that modelM0 is chosen is at most of order 1/n, which, as
again shown inside the proof of Theorem 5.5, again implies an upper-bound on the rate-of
convergence of O ((log logn)/n).

The two theorems take into account that µ (n)1 is not just a �xed function of n, but may
in reality be chosen by nature in a worst-case manner, and that f (n) may actually �uctuate
between regions for di�erent n. Combining these two results, we �nally prove the main
theorem, Theorem 5.5.

Theorem 5.13. Let M0,M1, M ′1 and psw,1 (x
n ) be as in Theorem 5.5. Then there exist

positive constants ~b,~c such that for all µ1 ∈ M
′
1, all n,

Pµ1 (δsw (X
n ) = 0) ≤ c1 · n

m1/2 · e−c2n ‖µ
(n)
1 −µ (n)0 ‖22 + small~b (n), (5.45)
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where µ (n)0 = Π0 (µ
(n)
1 ) is as in (5.11). As a consequence, with Γ2 := c−1

2 (1 +m1/2), we have
the following: for every sequence µ (1)1 ,µ

(2)
1 , . . . with f (n) as in (5.44) larger than Γ2 logn,

we have
Pµ (n)1

(δsw (X
n ) = 0) ≤ c1

n
+ small~b (n).

Proof. We can bound the probability of selecting the simple model by:

Pµ (n)1
(δsw (X

n ) = 0) = Pµ (n)1

(
psw,1 (X

n )

pB,0 (X n )
≤ 1

)
= Pµ (n)1

(∑∞
i=0 π (2i )p̄2i (X

n )

pB,0 (X n )
≤ 1

)
≤ Pµ (n)1

(
π (1)pB,1 (X n )

pB,0 (X n )
≤ 1

)
.

Now (5.45) follows directly by applying Lemma 5.12 to the rightmost probability. For the
second part, set Γ2 = c

−1
2 (1+m1/2). By assumption f (n) > Γ2 logn, we have ‖µ (n)1 −µ

(n)
0 ‖

2
2 >

Γ2 (logn) (log logn)/n. Applying (5.45) now gives the desired result. �

Theorem 5.14. Let f be as in (5.44) and M ′1 be as in Theorem 5.5. For any γ > 0, there
exist constants Γ1,Γ3 > 0 such that, for every sequence µ (1)1 ,µ

(2)
1 , . . . of elements of M ′1 with

for all n, f (n) > Γ1, we have

Pµ (n)1

(
psw,1 (X

n )

pB,0 (X n )
≤ γ

)
≤

Γ3
logn . (5.46)

In particular, by taking γ = 1, we have

Pµ (n)1
(δsw (X

n ) = 0) ≤ Γ3
logn .

The probabilities thus converge uniformly at rate O (1/(logn)) for all such sequences
µ (1)1 ,µ

(2)
1 , . . ..

Proof. We specify Γ1 later. By assumption, we have π (2i ) & (logn)−κ for i ∈
{0, . . . , blog2 nc}. We can restrict our attention to the strategy that switches to the complex
model at the penultimate switching index, due to the following inequality: for any �xed
γ , there exist positive constants ~C such that for all large n:

Pµ (n)1

(
psw,1 (X

n )

pB,0 (X n )
≤ γ

)
≤ Pµ (n)1



∑ blog2 nc

i=0 π (2i )p̄2i (X
n )

pB,0 (X n )
≤ γ




≤ Pµ (n)1



∑ blog2 nc

i=0 p̄2i (X
n )

pB,0 (X n )
≤ C1 (logn)κ




≤ Pµ (n)1

(
p̄2 blog2 nc−1 (X n )

pB,0 (X n )
≤ C1 (logn)κ

)
= Pµ (n)1

(
log

p̄2 blog2 nc−1 (X n )

pB,0 (X n )
≤ κ log logn +C2

)
. (5.47)
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For the remainder of this proof, we will denote the penultimate switching index by n∗,
that is: n∗ = 2 blog2 nc−1. Now apply Lemma 5.11 twice, which gives that there exist C3,C4
such that, with probability at least 1 − small~b (n),

log p̄n∗ (X n ) = logpB,0 (X n∗ ) + logpB,1 (X n |X n∗ ) =

= logpB,0 (X n∗ ) + logpB,1 (X n ) − logpB,1 (X n∗ )

≥ logpB,0 (X n∗ ) + logp µ̂1 (X n ) (X
n ) − logp µ̂1 (X n∗ ) (X

n∗ ) + m1
2 log n∗

n
−C3

≥ logpB,0 (X n∗ ) + log
p µ̂1 (X n ) (X

n )

p µ̂1 (X n∗ ) (X
n∗ )
−C4, (5.48)

where we used that log n∗
n is of the order of a constant, because n∗ is between n

4 and n
2 .

From this, applying again Lemma 5.11 twice, it follows that there exists ~b and C5,C6 such
that for all n, with probability at least 1 − small~b (n),

log p̄n∗ (X
n )

pB,0 (X n )
≥ log

pB,0 (X
n∗ )

pB,0 (X n )
+ log

p µ̂1 (X n ) (X
n )

p µ̂1 (X n∗ ) (X
n∗ )
−C4

= − log
p µ̂0 (X n ) (X

n )

p µ̂0 (X n∗ ) (X
n∗ )
−
m0
2 log n∗

n
+ log

p µ̂1 (X n ) (X
n )

p µ̂1 (X n∗ ) (X
n∗ )
−C5

≥ − log
p µ̂0 (X n ) (X

n )

p µ̂0 (X n∗ ) (X
n∗ )

+ log
p µ̂1 (X n ) (X

n )

p µ̂1 (X n∗ ) (X
n∗ )
−C6 (5.49)

where we again used that log n∗
n can be bounded by constants. Let Bn be the event that

(5.49) holds. By (5.47) and (5.49), for all large n, all β ≥ 1,

Pµ (n)1

(
psw,1 (X

n )

pB,0 (X n )
≤ γ

)
≤ Pµ (n)1

(
log p̄n∗ (X

n )

pB,0 (X n )
≤ κ log logn +C2

)
≤Pµ (n)1

(
log p̄n∗ (X

n )

pB,0 (X n )
≤ κ log logn +C2,Bn

)
+ Pµ (n)1

(
Bc
n
)

≤Pµ (n)1


− log

p µ̂0 (X n ) (X
n )

p µ̂0 (X n∗ ) (X
n∗ )

+ log
p µ̂1 (X n ) (X

n )

p µ̂1 (X n∗ ) (X
n∗ )
−C6 ≤ κ log logn +C2


 + small~b (n)

=Pµ (n)1

(
E
(1)
n

)
+ small~b (n) ≤ Pµ (n)1

(
E
(β )
n

)
+ small~b (n), (5.50)

where we de�ned

E
(β )
n =

log
p µ̂1 (X n ) (X

n )

p µ̂1 (X n∗ ) (X
n∗ )
·
p µ̂0 (X n∗ ) (X

n∗ )

p µ̂0 (X n ) (X n )
≤ A

(β )
n

 (5.51)

and, for β ≥ 1, we set A(β )
n = βκ log logn +C2 +C6.

Below, if a sample is split up into two parts x1, . . . ,xn∗ and xn∗+1, . . . ,xn , these partial
samples will be referred to as xn∗ and x >n∗ respectively. We also suppress in our notation
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the dependency of An , En andDj,n as de�ned below on β ; all results below hold, with the
same constants, for any β ≥ 1.

We will now bound the right-hand side of (5.50) further. De�ne the events

D1,n =

log
pµ (n)1

(xn )

pµ (n)1
(xn∗ )

≤ log
p µ̂1 (X n ) (x

n )

p µ̂1 (X n∗ ) (x
n∗ )

+ An


D0,n =

log
pµ (n)0

(xn )

pµ (n)0
(xn∗ )

≥ log
p µ̂0 (X n ) (x

n )

p µ̂0 (X n∗ ) (x
n∗ )
− An

 .
The probability in (5.50) can be bounded, for all β ≥ 1, as

Pµ (n)1
(En ) = Pµ (n)1

(En,D0,n ∩ D1,n ) + Pµ (n)1
(En, (D0,n ∩ D1,n )

c ) + small~b (n)

≤ Pµ (n)1
(En,D0,n,D1,n ) + Pµ (n)1

(Dc
1,n ) + Pµ (n)1

(Dc
0,n ) + small~b (n). (5.52)

We �rst consider the �rst probability in (5.52): there are constants ~C such that, for all large
n,

Pµ (n)1
(En,D0,n,D1,n )

≤ Pµ (n)1


log

pµ (n)1
(X n )

pµ (n
∗ )

1
(X n∗ )

− An + log
pµ (n)0

(X n )

pµ (n)0
(X n∗)

− An ≤ An




= Pµ (n)1


log

pµ (n)1
(X >n∗ )

pµ (n)0
(X >n∗ )

≤ 3An




≤ e
3
2 Ane−

n
4 dR (µ

(n)
1 ,µ (n)0 ) ≤ e (3/2)βκ log log n+C7e−C8n ‖µ

(n)
1 −µ (n)0 ‖22 = eC7 (logn) (3/2)βκ−Γ1 ·C8 ,

(5.53)

where Γ1 is as in the statement of the theorem, the second inequality follows by Lemma
5.9 and noting n∗ < n

2 , we used Proposition 5.2.
We now consider the second probability in (5.52). Using p µ̂1 (X n ) (x

n ) ≥ pµ (n)1
(xn ) we

have the following, where we de�ne the event Fn = {µ̂1 (X
n∗ ) ∈ M ′1} with M ′1 the CINECSI

subset of M1 mentioned in the theorem statement: there is C9,C10 > 0 such that for al
large n,

Pµ (n)1
(Dc

1,n ) = Pµ (n)1


log

pµ (n)1
(X n )

pµ (n)1
(X n∗ )

> log
p µ̂1 (X n ) (X

n )

p µ̂1 (X n∗ ) (X
n∗ )

+ An




≤ Pµ (n)1


log

p µ̂1 (X n ) (X
n )

pµ (n)1
(X n∗ )

> log
p µ̂1 (X n ) (X

n )

p µ̂1 (X n∗ ) (X
n∗ )

+ An




≤ Pµ (n)1


log

p µ̂1 (X n∗ ) (X
n∗ )

pµ (n)1
(X n∗ )

> An,Fn


 + Pµ (n)1

(
F c
n
)
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≤ Pµ (n)1

(
D (µ̂1 (X

n∗ )‖µ (n)1 ) > An,Fn
)

+ small~b (n)

≤ Pµ (n)1

(
‖µ̂1 (X

n∗ ) − µ (n)1 ‖
2
2 > C9An,Fn

)
+ small~b (n)

≤ Pµ (n)1

(
‖µ̂1 (X

n∗ ) − µ (n)1 ‖∞ >
√
C9An/m1

)
+ small~b (n) (5.54)

≤ e−C10An = e−C10 (C2−C6 ) 1
(logn)C10βκ

, (5.55)

where we used the KL robustness property (5.25), Proposition 5.2 and Lemma 5.8.
The third probability in (5.52) is considered in a similar way. Using p µ̂0 (X n∗ ) (X

n∗ ) ≥

pµ (n)0
(X n∗ ) we have C11,C12 > 0 such that:

Pµ (n)1
(Dc

0,n ) = Pµ (n)1


log

pµ (n)0
(X n )

pµ (n)0
(X n∗ )

< log
p µ̂0 (X n ) (X

n )

p µ̂0 (X n∗ ) (X
n∗ )
−

1
3An




≤ Pµ (n)1


log

pµ (n)0
(X n )

p µ̂0 (X n∗ ) (x
n∗ )
< log

p µ̂0 (X n ) (X
n )

p µ̂0 (X n∗ ) (X
n∗ )
−

1
3An




= Pµ (n)1


log

p µ̂0 (X n ) (X
n )

pµ (n)0
(X n )

>
1
3An




≤ C11
1

(logn)C12βκ
(5.56)

where we omitted the last few steps which are exactly as in (5.54).
We now �nish the proof by combining (5.52), (5.53), (5.54) and (5.56), which gives that,

if we choose β ≥ max{1/(κC10),1/(κC12)} and, for this choice of β , we choose Γ1 as in
(5.53) as Γ1 ≥ (1 + (3/2)βκ)/C8, then we have Pµ (n)1

(En ) ≤ Γ4/(logn) for some constant Γ4

independent of n; the result now follows from (5.50).
�

Proof of Theorem 5.5

Proof. We show the result in two stages. In Stage 1 we provide a tight upper bound on
the risk, based on an extension of the decomposition of the risk (5.12) to general families
and estimators µ̆0 and µ̆1 that are su�ciently e�cient, i.e. that satisfy (5.13), and to losses
dgen (·‖·) equal to squared error loss, standardized squared error loss and KL divergence
(it is not su�cient to refer to Proposition 5.2 and prove the result only for squared error
loss, because the equivalence result of Proposition 5.2 only holds on CINECSI sets and
our estimators may take values outside of these; we do not need to consider Rényi and
squared Hellinger divergences though, because these are uniformly upper bounded by
KL divergence even for µ outside any CINECSI set). In Stage 2 we show how the bound
implies the result.

Stage 1: Decomposition of upper bound on the risk Let An be the event thatM1 is
selected, as in Section 5.3.3. We will now show that, under the assumptions of Theorem 5.5,
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we have for the constant C appearing in (5.13), for all µ1 ∈ M
′
1,

R (µ1,δ ,n) ≤
3C
n

+ 2P(Ac
n )dgen (µ1‖µ0), (5.57)

where the left inequality holds for all divergence measures mentioned in the theorem, and
the right inequality holds for dgen (·‖·) set to any of the squared error, the standardized
squared error or the KL divergence.

To prove (5.57), we use that for the three divergences of interest, for any µ1 ∈ M1,µ ∈
M0, with µ0 ∈ M0 as in (5.11), we have

dgen (µ1‖µ ) ≤ 2(dgen (µ1‖µ0) + dgen (µ0‖µ )), (5.58)

For dgen (·‖·) the KL divergence, this follows because

D (µ1‖µ ) = Eµ1

[
− log

pµ (X )

pµ1 (X )

]
= Eµ1

[
− log

pµ (X )

pµ0 (X )

]
+ Eµ1

[
− log

pµ0 (X )

pµ1 (X )

]
= Eµ0

[
− log

pµ (X )

pµ0 (X )

]
+ Eµ1

[
− log

pµ0 (X )

pµ1 (X )

]
, (5.59)

where the last line follows by the robustness property of exponential families (5.24), since
µ and µ0 are both in M0.

For dgen (·‖·) the squared and standardized squared error case we show (5.58) as fol-
lows: Fix a matrix-valued function J : M1 → R

m2
1 that maps each µ ∈ M1 to a positive

de�nite matrix Jµ . We can write

dgen (µ‖µ
′) = (µ − µ ′)T Jµ (µ − µ

′). (5.60)

where Jµ is the identity matrix for the squared error case, and Jµ is the Fisher information
matrix for the standardized squared error case. (5.58) follows since we can write, for any
function Jµ of the above type including these two:

(µ1 − µ )
T Jµ1 (µ1 − µ ) = (µ1 − µ0 + µ0 − µ )

T Jµ1 (µ1 − µ0 + µ0 − µ )

= (µ1 − µ0)
T Jµ1 (µ1 − µ0) + (µ0 − µ )

T Jµ1 (µ0 − µ ) + 2(µ1 − µ0) Jµ1 (µ0 − µ )

≤ 2
(
(µ1 − µ0)

T Jµ1 (µ1 − µ0) + (µ0 − µ )
T Jµ1 (µ0 − µ )

)
,

where the last line follows because for general positive de�nitem × m matrices J andm-
component column vectors a and b, (b − a)T J (b − a) ≥ 0 so that bT J (b − a) ≥ aT J (b − a)
and, after rearranging, bT Jb + aT Ja ≥ 2aT Jb.

We have thus shown (5.58). It now follows that

R (µ1,δ ,n) = Eµ1

[
1Andgen (µ1‖µ̆1 (X

n )) + 1Ac
ndgen (µ1‖µ̆0 (X

n ))
]

≤ Eµ1

[
dgen (µ1‖µ̆1 (X

n )) + 2 · 1Ac
n

(
dgen (µ0‖µ̆0 (X

n )) + dgen (µ1‖µ0)
)]

≤
3C
n

+ 2P(Ac
n )dgen (µ1‖µ0), (5.61)

where we used (5.58) and our condition (5.13) on µ̆0 and µ̆1. We have thus shown (5.57).
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Stage 2 We proceed to prove our risk upper bound for the squared error loss, standard-
ized squared error loss and KL divergence, for which the right inequality in (5.57) holds;
the result then follows for squared Hellinger and Rényi divergence because these are up-
per bounded by KL divergence. From (5.57) we see that it is su�cient to show that for all
n larger than some n0,

sup
µ1∈M ′1

{Pµ1 (A
c
n )dgen (µ1‖µ0)} = O

(
log logn

n

)
, (5.62)

for our three choices of dgen (·‖·). We �rst note that, since M ′1 is CINECSI,
supµ1∈M ′1

dgen (µ1‖µ0) is bounded by some constantC1. It thus follows by Proposition 5.10
that there exists some CINECSI subset M ′′1 of M1 such that, with Bcn ⊂ Ac

n de�ned as
Bcn = {x

n : δ (xn ) = 0; µ̂1 (X
n ) ∈ M ′′1 }, we have

sup
µ1∈M ′1

{Pµ1 (A
c
n )dgen (µ1‖µ0)} = sup

µ1∈M ′1

{(Pµ1 (B
c
n ) + Pµ1 (A

c
n \ B

c
n ))dgen (µ1‖µ0)}

= sup
µ1∈M ′1

{Pµ1 (B
c
n )dgen (µ1‖µ0)} +C1 · Pµ1 (µ̂

(1) < M ′′1 )

= sup
µ1∈M ′1

{Pµ1 (B
c
n )dgen (µ1‖µ0)} + small~b (n),

so that it is su�cient if we can show (5.62) with Bcn instead of Ac
n . But on the set Bcn , all

three divergence measures considered are within constant factors of each other, so that it
is su�cient if we can show that there is a constantC2 such that for all n larger than some
n0,

sup
µ1∈M ′1

{Pµ1 (B
c
n ) · ‖µ1 − µ0‖

2
2 } ≤ C2 ·

log logn
n

. (5.63)

Now, �x some µ1 ≡ µ
(n)
1 and consider f (n) as in (5.44). By Theorem 5.13, Pµ1 (B

c
n ) ≤ C3/n

for some constant C3 that can be chosen uniformly for all µ1 ∈ M ′1 whenever f (n) >
Γ2 logn with Γ2 as in that theorem. Using also that ‖µ1 − µ0‖

2
2 is bounded by C1 as above,

it follows that (5.63) holds whenever f (n) > Γ2 logn and (C1C3)/n ≤ C2 (log logn)/n, i.e.
whenever f (n) > Γ2 logn and C2 ≥ C1C3/(log logn).

Second, suppose that Γ1 < f (n) ≤ Γ2 logn with Γ1 as in Theorem 5.14. Then by that
theorem, uniformly for all µ (n)1 with such f (n), we have, with Γ3 as in that theorem,

‖µ (n)1 − µ (n)0 ‖
2
2 · Pµ (n)1

(δsw (X
n ) = 0) = f (n) ·

log logn
n

· Pµ (n)1
(δsw (X

n ) = 0) ≤

Γ2 · (logn) · log logn
n

· Pµ (n)1
(δsw (X

n ) = 0) ≤ Γ2Γ3 ·
log logn

n
,

where µ (n)0 = Π0 (µ
(n)
1 ) is de�ned as in (5.11), so that (5.63) holds again wheneverC2 ≥ Γ2Γ3.

Finally, suppose that f (n) ≤ Γ1 with Γ1 as in Theorem 5.14. Then (5.63) holds whenever
C2 ≥ Γ1. Combining the three cases we �nd that (5.63) holds whenever C3 ≥

max{Γ1,Γ2Γ3,C1C3/(log logn)}; the result is proved.
�
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5.7.5 Switching as in Van Erven et al. (2012)

The basic building block of the switch distribution and criterion as formulated by Van
Erven et al. (2012) is a countable set of sequential prediction strategies (also known as ‘pre-
quential forecasting systems’ (Dawid, 1984)) {pk | k ∈ K }, where K is a �nite or count-
able set indexing the basic models under consideration. Thus, each model is associated
with a corresponding prediction strategy, where a prediction strategy p is a function from⋃

i≥0X
i to the set of densities on X, where p (· | xn−1) denotes the density on X that xn−1

maps to, and p (xn | x
n−1) is to be interpreted as the probabilistic prediction that strategy

p makes for outcome Xn upon observation of the �rst n − 1 outcomes, X n−1 = xn−1. For
example, for a parametric model {pθ | θ ∈ Θ} one can base pk on a Bayesian marginal like-
lihood, pB (xn ) :=

∫
Θ
ω (θ )pθ (x

n )dθ , where ω is a prior density on Θ. The corresponding
prediction strategy could then be de�ned by setting pk (xn | x

n−1) := pB (x
n )/pB (x

n−1),
the standard Bayesian predictive distribution. In this paper, the basic strategies pk were
always Bayesian predictive distributions, but, in the spirit of Dawid (1984), one may con-
sider other choices as well.

After constructing the set of basic prediction strategies, a new family of prediction
strategies that switch between the strategies in the set {pk | k ∈ K } is de�ned. Formally,
let S be the set

S =
{
((t1,k1), . . . , (tm,km )) ∈ (N × K )m |m ∈ N,1 = t1 < t2 < . . . < tm

}
. (5.64)

Each s ∈ S speci�es the times t1, . . . ,tm at which a switch is made between the prediction
strategies from the original set, identi�ed by the indices k1, . . . ,km . The new family Q =
{qs | s ∈ S} is then de�ned by setting, for all n,xn ∈ Xn :

qs (xn | x
n−1) = pk j (xn | x

n−1), t j ≤ n < t j+1, (5.65)

with tm+1 = ∞ by convention. We now de�ne qs (x
n ) =

∏n
i=1 qs (xi | x

i−1); one easily
veri�es that this de�nes a joint probability density on Xn .

We now place a prior mass function π ′ on S and de�ne, for each n, the switch distri-
bution in terms of its joint density for Xn and S:

psw (x
n,s ) = qs (x

n )π ′(s ), psw (x
n ) =

∑
s∈S

psw (x
n,s ) =

∑
s∈S

qs (x
n )π ′(s ).

If the pk are de�ned as Bayesian predictive distributions as above, then, as explained by
Van Erven et al. (2012), the density psw (x

n ) can be interpreted as a Bayesian marginal
density of xn under the prior π ′ on meta-models (model sequences) in S.

The switch distribution can be used to de�ne a model selection criterion δ ′sw by se-
lecting the model with highest posterior probability under the switch distribution. This
is done by de�ning the random variable Kn+1 (s ) on S to be the index of the prediction
strategy that is used by qs to predict the (n + 1)th outcome. The model selection criterion
is then:

δ ′sw (x
n ) = arg max

k
psw (Kn+1 = k | x

n ) = arg max
k

∑
s:Kn+1 (s )=k psw (x

n,s )

psw (xn )
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= arg max
k

∑
s:Kn+1 (s )=k qs (x

n )π ′(s )∑
s∈S qs (xn )π ′(s )

, (5.66)

with ties resolved in any way desired.
In our nested two-model case, one might use, for example, a prior π ′ with support on

S′ = {(1,0), (1,1), ( (1,0), (2,1) ), ( (1,0), (4,1) ), ( (1,0), (8,1) ), ( (1,0), (16,1), . . . )}.

Such a prior expresses that at time 1, for the �rst prediction, one can either switch to (i.e.,
start with), model 0, and keep predicting according to its Bayes predictive distribution —
this strategy gets weight π ((1,0)). Or one can start with model 1, and keep predicting
according to its Bayes predictive distribution — this strategy gets weight π ((1,1)). Or one
can start with model 0 and switch to model 1 after 2i observations and then stick with 1
forever — this strategy gets weight π (( (1,0), (2i ,1) )). If we now start with a prior π on
{1,2, . . .} as in the main text and de�ne π ′((1,0)) = 1/2, π ′((1,1)) = (1/2) · π (1), and for
i ≥ 1, π ′((1,0), (2i ,1)) = (1/2) · π (2i ), then ∑

s∈S′ π
′(s ) = 1, so π ′ is a probability mass

function. A simple calculation gives that (5.66) based on switch prior π ′ now chooses
model 1 if ∑

1≤t<n
p̄t (x

n )π (t ) > (1 + д(n)) · pB,0 (xn ), (5.67)

where д(n) = ∑
t≥n π (t ); note that д(n) is decreasing and converges to 0 with increasing

n. (5.67) is thus an instance of the switch criterion of Van Erven et al. (2012). Comparing
this to (5.3), the criterion used in this paper, after rearranging we see that it chooses model
1 if ∑

1≤t<n
p̄t (x

n )π (t ) > (1 − д(n)) · pB,0 (xn ),

which is more likely by constant factor to select modelM0, the factor however tending
to 1 with increasing n. It is completely straightforward to check that Theorem 5.5 and all
other results in this paper still hold if δsw with prior π as in the main text is replaced by
δ ′sw with corresponding prior π ′ as de�ned here; thus our results carry over to the original
de�nitions of Van Erven et al. (2012). Similarly, the proof for the strong consistency of δ ′sw
given by Van Erven et al. (2012) carries through for δsw, needing only trivial modi�cations.



6
Bilateral patients in

arthroplasty registry data

6.1 Introduction

Worldwide more than 3 million total hip and knee arthroplasties are performed annually,
and this number is predicted to increase substantially within the next decades (Pabinger
and Geissler, 2014; Pabinger et al., 2015). Data on total joint arthroplasties (TJAs) are col-
lected in a growing number of arthroplasty registries around the world, and the resulting
data has proven to be valuable in improving the outcome of TJA (Graves, 2010).

This chapter is based on analyses of total hip arthroplasty (THA) data from the LROI
(Landelijke Registratie Orthopedische Implantaten / Dutch Arthroplasty Register), which
has been recording patient and implant characteristics of all hip and knee replacements
in The Netherlands since its establishment in 2007. A large number of THAs is performed
in The Netherlands each year; the LROI registered about 28.000 primary THRs in 2014.
Osteoarthritis is the most common reason for THA: 87% of THAs were performed after a
diagnosis of osteoarthritis (LROI, 2014).

Bene�ts of THA include improved mobility, increased hip joint functionality, and pain
relief (Wilcock, 1978). A hip implant does not last forever however, and a patient may

This chapter contains material from two papers. The �rst has been submitted as: S.L. van der Pas, R.G.H.H.
Nelissen and M. Fiocco. Staged bilateral total joint arthroplasty patients in registries. Immortal time bias and
methodological options. The second is in preparation, with R.G.H.H. Nelissen, B.W. Schreurs and M. Fiocco,
and titled ‘Risk factors for early revision after unilateral and staged bilateral total hip replacement in the Dutch
Arthroplasty Register’.
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need to undergo revision surgery, which we de�ne as any change to the implant. Revision
places not only a burden on healthcare costs, but on the patient as well, and is associated
with higher risk of adverse outcomes than the primary surgery (Mahomed et al., 2003;
Ong et al., 2006). Incidence of revision has been linked to many demographic, clinical,
surgical and health care provider related factors, including gender, age, race, body weight,
American Society of Anesthesiologists (ASA) score, underlying diagnosis, type of �xation
and hospital volume (Prokopetz et al., 2012). We investigate risk factors for revision within
the �rst 8 years of follow-up.

Three methodological issues need to be taken into consideration during the statistical
analysis. The �rst and second are due to the presence of (staged) bilateral patients in the
data. With "bilateral patients", we refer to patients with two THAs, and we refer to patients
with a THA on one side as "unilateral patients". The �rst issue is that each bilateral THA
patient contributes two dependent observations, violating the independence assumptions
underlying most methods. Secondly, the time that usually passes between two successive
THAs renders a patient’s bilaterality status time-dependent. The number of patients with
bilateral THAs is not negligible; in The Netherlands 20% of total hip arthroplasty surg-
eries in 2014 concerned the placement of a second prosthesis, in Sweden 20.5% of patients
became staged bilateral between 1992-2014, and in Norway, 23.6% of patients became bi-
lateral within 10 years (Lie et al., 2004; LROI, 2014; SHAR, 2014).

The third issue is that a patient may die before experiencing revision of the implant. If
this competing risk of death is not appropriately accounted for, the risk of revision surgery
will be overestimated (Keurentjes et al., 2012; Ranstam et al., 2011).

Although this chapter is written in the context of total hip replacement, the consider-
ations and results are relevant to registry data of any body part of which a human has at
least two, such as knees, ankles, shoulders, eyes, �ngers and teeth.

The structure of this chapter is as follows. Methods for handling the competing risk of
death are brie�y reviewed in Section 6.2. The complications stemming from the bilateral
patients are discussed in Section 6.3. The data structure is then introduced in Section 6.4.
This Chapter concludes with preliminary results on the LROI data in Section 6.5.

6.2 Competing risk of death

THA is most commonly done in elderly patients; the average age of the patients in the hip
replacement data set is 69 years. A patient may die before experiencing revision. Indeed,
out of the 161,434 hips in the data set 3,897 hips were revised, while it was not possible to
observe revision for 7,179 hips due to death of the patient. Thus, death should be consid-
ered a competing risk. Estimating the probability of revision by Kaplan-Meier would be
inappropriate, as it is designed for a single outcome (in this case, revision), which is pos-
sibly not observed due to censoring. Deaths are treated as censored observations and not
as events. However, considering deceased patients as censored observations violates the
independence of the censoring distribution assumption underlying Kaplan-Meier (Putter
et al., 2007). By the independent censoring assumption, a dead patient would have the
same hazard of revision as a patient who is still alive and has not experienced revision
yet. Since Kaplan-Meier treats dead patients as if they could still experience revision, the
probability of revision is overestimated.
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In a competing risk setting, the functions of interest are the cumulative incidence func-
tions. The cumulative incidence of cause k at time t is the probability that failure due to
cause k has occurred by time t . There are methods available to estimate the cumulative
incidence of any event in the competing risks setting. We consider three of them, and �rst
introduce some notation.

We assume right-censored data. We have n observations, and each observation i has
failure time Ti and censoring time Ci associated to it. De�ne X i = min{Ti ,Ci }, and ∆i =

1{Ti ≤ Ci } and let εi ∈ {1, . . . ,K } be the causes of failure, for i = 1, . . . ,n. Let Zi be a
p × 1 bounded and time-independent covariate vector. We assume that (X i ,∆i ,∆iεi ,Zi )
are independent and identically distributed for i = 1, . . . ,n. Denote the observed, distinct
event times by t1 < t2 < . . . < tm .

With this notation, the cumulative incidence of cause k is given by:

Fk (t ) = Pr (T ≤ t ,ε = k ), k = 1, . . . ,K .

A cumulative incidence function is determined by the cause-speci�c hazards λk (t ), k =
1, . . . ,K . The cause-speci�c hazard is the hazard of failing from cause k ∈ {1, . . . ,K },
which is in competition with the other failure causes. It is de�ned as

λk (t ) = lim
∆t↓0

Pr (t ≤ T ≤ t + ∆t ,ε = k | T ≥ t )

∆t
.

The cumulative incidence can be expressed in terms of the cause-speci�c hazards as fol-
lows:

Fk (t ) =

∫ t

0
S (u)dΛk (u), k = 1, . . . ,K , (6.1)

where S (t ) = exp(−∑K
k=1 Λk (t )) is the overall survival function, and Λk (t ) =

∫ t
0 λk (u)du

is the cumulative cause-speci�c hazard. In the following sections, we brie�y review three
methods for estimating the cumulative incidence: the Aalen-Johansen estimator, cause-
speci�c Cox regression and Fine-Gray regression.

Aalen-Johansen estimator

The unadjusted cumulative incidence can be estimated by the Aalen-Johansen estimator
(Aalen and Johansen, 1978), which was de�ned for more general multi-state models, but
in this case reduces to (6.1) with the left-continuous Kaplan-Meier estimate for the sur-
vival function, and the Nelson-Aalen estimators for the cumulative cause-speci�c hazards.
Denote the number of failures due to cause k at time ti by dk (ti ) =

∑n
i=1 1{X i = ti ,εi = k }

and the number still at risk just before time ti by n(ti ) =
∑n

i=1 1{X i ≥ ti }.
The Nelson-Aalen estimators and Kaplan-Meier estimator are given by

Λ̂k (t ) =
∑
t i ≤t

dk (ti )

n(ti )
, Ŝ (t ) =

∏
t i ≤t


1 −

∑K
k=1 dk (ti )

n(ti )


 ,

and Fk (t ) is estimated by F̂k (t ) =
∑

t i ≤t S (ti−1)dk (ti )/n(ti ).
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Cause-speci�c Cox regression

The Cox proportional hazards model allows a natural extension to the competing risks
settings, where the cause-speci�c hazard for individual i and cause k is modelled as (Holt,
1978):

λk (t ; zi ) = λ0,k (t )e
βTk z i . (6.2)

Here, λ0,k (t ) is a cause-speci�c baseline hazard. All cause-speci�c hazards are estimated
separately and then combined to assess the association of the covariates to the cumulative
incidence of the cause of interest. Each cause-speci�c hazard λk (t ; z0) is estimated by
censoring all individuals who failed due to a cause other than k . At each time at which
an individual experiences failure due to cause k , the covariate values of this individual are
compared with the covariates of all other individuals who are still event-free and in follow-
up. Following Cheng et al. (1998), the cumulative incidence is estimated by plugging in
the maximum partial likelihood estimate β̂k for βk and the Breslow estimate Λ̂0,k (t ) for
the cumulative hazard:

F̂k (t ; z0) =

∫ t

0
Ŝ (u; z0)dΛ̂k (u; z0),

where Ŝ (u; z0) = exp(−∑K
k=1 Λ̂k (u; z0)) and Λ̂k (u; z0) = Λ̂0,k (u) exp(β̂Tk z0)).

Fine-Gray regression

Fine-Gray regression (Fine and Gray, 1999) is a Cox model like (6.2), but for the subdistri-
bution hazard hk (t ; z0) instead of the cause-speci�c hazard. The subdistribution hazard is
the instantaneous risk of failing from cause k given that the individual has not failed from
cause k :

hk (t ;Zi ) = lim
∆t→0

1
∆t

Pr (t ≤ T ≤ t + ∆t ,ε = k | T ≥ t ∪ (T ≤ t ∩ ε , k ),Zi ).

Fine-Gray regression is designed to model only one subdistribution hazard at the same
time (Beyersmann et al., 2012, Section 5.3.4). The model is given by:

hk (t ; zi ) = h0,k (t )e
βTk z i , (6.3)

where h0,k (t ) is a subdistribution baseline hazard and k refers to the single cause of failure
under consideration. An appealing property of the subdistribution hazard is that it satis�es

Fk (t ; z0) = 1 − e−
∫ t

0 hk (u;z0 )du . (6.4)

The model (6.3) for the subdistribution hazard thus allows direct assessment of the rela-
tionship between a covariate and the cumulative incidence of the cause of interest. The
risk set corresponding to the subdistribution hazard is counterintuitive however, as it con-
tains those individuals who have already failed from a cause di�erent than k , and are thus
not able to fail from cause k anymore (Fine and Gray, 1999). The coe�cients β in (6.3) are
estimated by a weighted partial likelihood approach and the cumulative subdistribution
baseline hazard is estimated by a Breslow-type estimator. A test for equality of cause-
speci�c cumulative incidence functions is available (Gray, 1988).
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Choice of method and model checking

Usually, only either cause-speci�c Cox regression or Fine-Gray regression is selected for
adjusted analyses. This seems natural, as they estimate di�erent quantities, although both
can be used to estimate cumulative incidences. There is a relationship between the sub-
distribution hazard hk (t ; z0) and cause-speci�c hazard λk (t ; z0), which follows from com-
bining (6.1), (6.4) and di�erentiating with respect to t (Beyersmann and Scheike, 2013;
Beyersmann and Schumacher, 2007):

hk (t ; z0) =
S (t ; z0)

1 − Fk (t ; z0)
λk (t ; z0).

If the proportionality assumption holds for one of the hazards, the other model will thus
typically be misspeci�ed (Beyersmann and Schumacher, 2007; Latouche et al., 2013, 2007).
Grambauer et al. (2010) found that the subdistribution hazards and cause-speci�c hazards
for cause 1 are numerically quite close if a covariate has no e�ect on the remaining cause-
speci�c hazards, or when there is heavy censoring.

Cause-speci�c Cox regression provides insight into the relationship of covariates on
the hazard of, in this case, revision or death. Fine-Gray regression yields in a sense a
summary, indicating the association between a covariate and the cumulative incidence of
revision. Grambauer et al. (2010) and Latouche et al. (2013) recommend presenting the
results from both the cause-speci�c Cox model and Fine-Gray regression side by side, for
all causes. In any case, it is prudent to report results on model �t. There are several options
available. Three aspects of the models are evaluated (Lin et al., 1993):

1. The proportional hazards assumption;

2. The functional forms of covariates in the exponent of the model;

3. The link function.

An overview of diagnostic tests for the Cox model is given in Chapter 11 of Klein and
Moeschberger (2003), while Li et al. (2015) discuss a number of tests for each of the three
aspects listed above for Fine-Gray regression. In addition, Andersen and Pohar Perme
(2010) review methods for assessing goodness-of-�t using pseudo-values, which can be
applied to the Cox model and the Fine-Gray model. Omnibus tests for all three aspects
are available for the Cox model (Lin et al., 1993; McKeague et al., 2001) and the Fine-Gray
model (Li et al., 2015), and an R package for the latter is under development (Li et al., 2015).

6.3 Dependence between hips and the time-dependent
bilateral status

Approximately 20% of THAs undertaken in The Netherlands concern the placement of
a second hip implant (LROI, 2014). Thus, the LROI data contains a sizable proportion
of bilateral patients. Both hips can be placed simultaneously, but more commonly, the
interoperative time is several months or years. In the latter case, the patients are referred
to as "staged bilateral patients". Their presence poses a problem to the statistical analysis of
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arthroplasty data, as has been recognized in the orthopaedic literature (Bryant et al., 2006;
Lie et al., 2004; Ranstam et al., 2011). The focus of those papers has been on the dependence
of the two observations contributed by a bilateral patient. There is little recognition for a
second problem however, namely that a patient’s bilaterality status is time-dependent.

We review some methods for handling the dependence between two hip implants
within a patient in Section 6.3.1, and discuss methods which incorporate the time-dependent
status in Section 6.3.2. We give some remarks on practical relevance in Section 6.3.3.

6.3.1 Methods for dependent observations

Most of the methods proposed in the orthopaedic literature only account for the depen-
dence between two hips within one patient, and do not consider the time between two
successive THAs. The interoperative time is not relevant for patients undergoing simulta-
neous bilateral hip replacement ("same-day bilateral patients"), and those are the patients
we will have in mind in this section. We now review the methods that have been proposed
in the orthopaedic literature. These methods are intended to be used in combination with
the competing risks methods discussed in Section 6.2.

Subgroup analysis

One recommendation by Bryant et al. (2006) is to analyse patients with bilateral THA as a
separate subgroup, which is done occasionaly in practice, or the bilateral patients are ex-
cluded altogether (Buchholz et al., 1985; Gillam et al., 2010; SHAR, 2014; Visuri et al., 2002).
The unilateral observations will all be independent, but the bilateral patients’ observations
are still dependent, so the dependence issue is not completely resolved by subgroup analy-
sis. In addition, when subgroup analysis is done with staged bilateral patients, the analysis
is at risk of being a�ected by immortal time bias, as will be explained in Section 6.3.2.

Excluding the second joint

Bryant et al. (2006) suggested excluding the second joint, and this option is used in practice
(Maurer et al., 2001; Morris, 1993; NJR, 2015). Only using each patient’s �rst THA ensures
independence of the observations used in the analysis. A disadvantage is that not all data
is used, although this may not be a serious problem in arthroplasty registry studies where
the amount of data can run into the hundred thousands. At �rst glance, a second drawback
may be that the conclusions only hold for a patient’s �rst THA and not the second, but this
may actually be sensible given that the outcomes for the second implant may be di�erent
compared to the �rst implant.

Selecting a random joint

A third suggestion by Bryant et al. (2006) is to select a random hip for each bilateral pa-
tient, and this was previously implemented by Visuri et al. (2002). The analysis is carried
out using all unilateral observations, and one randomly selected observation from each
bilateral patient. In this way, alle observations in the sample are independent. However,
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this raises other issues. The �rst problem is that the sensitivity of the results to the partic-
ular sample should be assessed. The second is that it is unclear what is being estimated.
If the outcomes of a patient’s �rst and second THA are di�erent, the interpretation of the
estimate resulting from this procedure is di�cult.

Resampling techniques

Closely related to the selection of a random joint per patient is the idea of within-cluster re-
sampling. Each patient is viewed as a cluster, containing either one or two THAs. Ranstam
et al. (2011) suggested to apply the methodology of Ho�man et al. (2001), which is valid for
data with clusters of nonignorable size, meaning that the risk for the outcome is related
to the cluster size. For within-cluster resampling, a large number of data sets is created
by randomly selecting one observation per individual. The estimator is computed on each
data set, after which all estimates are averaged, resulting in the within-cluster resampling
estimator.

Ho�man et al. (2001) prove asymptotic normality in the context of generalized linear
models, and the main proof concept can be adapted to the competing risks setting, when
combined with results in Cheng et al. (1998); Fine and Gray (1999) and Lin (1997). This
extension would require assuming that both hips follow the same model, which seems
unlikely to be true. The resulting estimator would represent the cumulative incidence of
revision for a randomly sampled hip from a randomly sampled patient, and again, it is not
clear how meaningful this would be in practice.

The within-cluster resampling procedure is reminiscent of the block or cluster boot-
strap, but these methods di�er in execution and aim. Suppose we have observedC clusters.
The resampled datasets of the cluster bootstrap arise by samplingC clusters with replace-
ment (Davison and Hinkley, 1997), while for within-cluster resampling, exactly one ob-
servation is sampled from each cluster. In the arthroplasty example, the cluster bootstrap
would be performed by sampling the patients with replacement, while within-cluster sam-
pling proceeds by sampling one hip per patient.

Regarding the di�erence in aim, the cluster bootstrap is intended to �nd the sampling
distribution of the estimator, which would in our example be the variance of the estimated
cumulative incidence of revision for a randomly sampled hip from the population. The two
methods coincide only when there is no correlation between units in a cluster.

Shared gamma frailty model

A shared gamma frailty model was proposed to model the within-patient correlation (Ri-
patti and Palmgren, 2000), and has been applied since (Robertsson and Ranstam, 2003;
Schwarzer et al., 2001). A disadvantage of these models is that the correlation is explicitly
modeled, and the underlying assumptions do not necessarily hold for arthroplasty data.
In particular, only positive correlation between the two THAs can be induced (Wienke,
2003). Not much is known about the correlation between two THAs in one patient. A
positive one is possible, e.g. if the patient is very active, both prostheses are prone to ear-
lier failure. However, two prostheses in one patient can be negatively correlated. If the
patient favors one of the prostheses, then the prosthesis bearing the most stress is likely
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to fail early while the other prosthesis is likely to survive longer. Thus, the shared gamma
frailty model does not seem to be entirely adequate.

Cluster Fine-Gray

An extension of the Fine-Gray proportional subdistribution hazards model for clustered
data is available (Zhou et al., 2012). More details on standard Fine-Gray regression can be
found in Section 6.2. The cluster version has, to the best of our knowledge, not been ap-
plied to arthroplasty data yet. The cumulative incidence is estimated using standard Fine-
Gray methodology under an independence working assumption, after which the variance
is estimated using a sandwich variance estimator. The method was designed for settings
where there are unobserved shared factors across individuals, such as multicenter trials or
family studies. The correlation structure remains unspeci�ed, making this method more
attractive than a frailty model for arthroplasty data.

6.3.2 Methods for the time-dependent bilaterality status

In the terminology of Kalb�eisch and Prentice (2002), a patient’s bilaterality status can
be viewed as an internal time-dependent covariate, meaning that the possibility of its
observation depends on the survival status of the patient. Internal time-dependent co-
variates pose a challenge in competing risks analysis, as their very observation at some
time point t informs us that the probability of survival up until time t conditional on the
time-dependent covariate is equal to one. It is possible to estimate cause-speci�c hazards,
but prediction of cumulative incidences is not possible when an internal time-dependent
covariate is included (Andersen et al., 1993; Cortese and Andersen, 2009). This makes the
method of Lie et al. (2004), who propose to include a time-dependent covariate that con-
tains information on a patient’s bilaterality status and revision status of the opposite hip,
unsuitable for our purposes.

If one’s goal is to study the entire patient population, without any speci�c interest in
the bilateral patients, the time-dependence problem can be avoided by only including each
patient’s �rst THA in the analysis, as discussed in Section 6.3.1. In this section, we discuss
methods for the situation where the goal is to study bilateral patients speci�cally, or when
the loss of data resulting from excluding the second limb is considered prohibitive.

Cortese and Andersen (2009) discuss three methods to incorporate a time-dependent
covariate: a multistate model with additional transient states, the landmark analysis of
Van Houwelingen (2007), or an extended competing risks model in which all possible com-
binations between the levels of the time-dependent covariate and cause-speci�c events are
included as �nal states. These alternatives require a change of research question: the mul-
tistate model takes the per-patient point of view as opposed to the per-hip point of view,
landmark analysis yields estimates conditional on event-free survival up until a landmark
time, as does the extended competing risks model. Before reviewing these three options,
we discuss the potential for immortal time bias.
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Immortal time bias

A basic principle in survival analysis is that subgroups de�ned by patient characteristics
that are not known at the start of follow-up (such as receiving a second THA), can only be
compared with the greatest caution. The reason is the immortal time bias, a well-known
phenomenon in observational studies, resulting from �awed statistical analysis (Lévesque
et al., 2010; Suissa, 2007). Immortal time refers to a period of follow-up during which
the study outcome, which may be death or another event (e.g. revision surgery), cannot
occur. It was �rst described in the context of heart transplant data, when it was noted
that the observed improved survival of heart transplant patients was due to selection bias:
only patients who survived long enough to receive a heart transplant were included in the
transplant group (Gail, 1972).

Analyses of arthroplasty data risk being a�ected by the immortal time bias as well.
The immortal time bias arises when patients with staged bilateral THA are studied as a
separate subgroup, because only those patients who survive long enough to be able to
receive the second implant are observed. The bias occurs both when revision of one of the
implants or death are taken as the endpoints. With arthroplasty data, when the outcome
of interest is revision, the bias is subtle. Revision of the �rst hip does not prevent a patient
from joining the staged bilateral group, and thus there is no obvious immortal time bias.
However, there is the competing risk of death.

The underlying mechanism of the immortal time bias is illustrated through an arti�cial
example, in which 50% of patients will become staged bilateral exactly 2 years after their
index surgery. The �rst-placed implants of unilateral and bilateral patients are compared.
The implants of all patients behave the same: they have a 30% probability of revision after
exactly 3 years. In addition, each patient has a 20% probability of dying after 1 year. All
percentages are chosen for illustrative purposes and are not meant to be realistic. We
assume independence for all events. The process is visualized in Figure 6.1.

When the unilateral and staged bilateral subgroups are created at the end of follow-
up, patients that would have become staged bilateral at the 2-year mark but died before
realizing that potential, are observed to be unilateral. This leads to an estimate of a zero
probability of death for staged bilateral patients, while the cumulative incidence of death
is overestimated for unilateral patients. The reverse happens for revision: the cumulative
incidence of revision is overestimated for staged bilateral patients, as the competing risk
of death is not observed, while it is underestimated for unilateral patients, because the risk
set is made arti�cially large by the inclusion of patients who would have become staged
bilateral if they had not died before the second surgery could take place.

The severity of the e�ect of the immortal time bias depends on the revision, mortality
and bilaterality rates, and also on the research question. With 5% revision, 5% mortality
and 20% bilaterality, the bias in the arti�cial data example is inconsequential for the cu-
mulative incidence of revision, but still relatively large for death. Moreover, statistically
signi�cant di�erences in implant survival between two groups can be very small, even
less than 1%, when the follow up is short. In such a case, even a small bias may be large
enough to give the false impression of a di�erence between subgroups where there is ac-
tually none. In addition, the Swedish Hip Arthroplasty Register reports 23-year revision
rates of up to 38.5% for men who are 50-59 years at index surgery (SHAR, 2014). After
such a long follow up, immortal time bias may signi�cantly a�ect analyses, and thus clini-
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Figure 6.1: Visualization of the arti�cial data example. Circles denote patients who will
only have one implant, while squares indicate patients who will become bilateral at the
2-year mark. Green indicates event-free patients, black patients who die before experi-
encing revision, and orange patients whose prosthesis has been revised. The subgroup
analysis ignores the fact that some patients will have died before realizing their poten-
tial of becoming bilateral, and thus some potentially bilateral patients will be considered
unilateral.

Figure 6.2: A landmark time is chosen, in this case after the patients become bilateral.
All patients who died or were revised before the landmark time are excluded from the
analysis.
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cal results based on subgroup analysis with staged bilateral patients should be interpreted
with caution.

Landmark analysis

Landmark analysis allows for comparison of unilateral and staged bilateral patients with-
out the risk of immortal time bias (Cortese and Andersen, 2009; Van Houwelingen, 2007).
The �rst step is to choose a landmark time of for example 2 years. The choice of land-
mark time should be guided by the research question. Only patients who are still alive
and have not experienced revision yet at the landmark time are included in the analysis.
This ensures a fair comparison between the two groups, as both need to survive for the
same minimum amount of time in order to be included in the analysis.

The next step is to create the subgroups: patients who have become bilateral by the
landmark time, and patients who were unilateral at the landmark time. As only each
patient’s status at the landmark time is considered, the latter group includes patients who
may receive a second implant after the landmark time. The procedure is illustrated in
Figure 6.2.

When the landmark subgroups have been made, the cumulative incidence can be es-
timated, for example by using one of the methods described in Section 6.2. The interpre-
tation of the resulting models is conditional on the landmark time. Thus, conclusions can
be drawn for comparison of unilateral and staged bilateral patients, conditional on the
fact that these patients were still alive and did not undergo revision by the landmark time.
This is a limitation to the method: the conclusions only hold for patients who are still alive
and unrevised by the landmark time point. This is not a negative per se, as this question
will be of interest to a patient who has survived some time unrevised since the primary or
index THA. However, excluding the �rst few postoperative months or years from analysis
may not be satisfactory in a situation where mortality or revision risk are especially high
immediately following surgery.

Extended competing risks model and multistate models

The second approach discussed by Cortese and Andersen (2009) is an extended competing
risks model, which has all possible combinations between internal covariate levels and
cause-speci�c events as �nal states. In the case of arthroplasty data, such a model could
be represented as in Figure 6.3.

The change in status from unilateral to bilateral comes bundled with the introduction
of a second outcome: revision of the second hip. Thus, the outcome "revision" needs a
more precise de�nition, such as "revision of the �rst THA", in which case the outcome of
the second THA is disregarded.

The disease process of a patient can be more fully captured by a multistate model with
transient states. Such a multistate model allows inclusion of a patient’s second THA in
a natural manner. Another advantage of these extended models is that they allow us to
take a per-patient point of view, which is more useful to the orthopaedic surgeon than the
classical per-hip point of view. See Figure 6.4 for an example of such a model.

There is a Markovian assumption behind this model, which can be relaxed. It may
be the case that the probability of transitioning from for example "bilateral" to one of the
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Figure 6.3: Extended competing risks model for Total Hip Arthroplasty.

revised states, depends on the amount of time spent as a unilateral patient. It is possible to
model the intensity regulating the transitions as a function of the time spent as a unilateral
patient, resulting in a semi-Markov model (Cortese and Andersen, 2009; Putter et al., 2007).

While multistate models have been rarely used in orthopaedic studies, there has been
a successful application to the data of the Australian Orthopaedic Association National
Joint Replacement Registry (Gillam et al., 2013, 2012).

6.3.3 Clinical relevance

Two reviews of arthroplasty studies found that is commonly believed that the bilateral
patients do not a�ect the results of the analyses too much, and thus the dependence of
their observations is often ignored (Bryant et al., 2006; Ranstam et al., 2011). Robertsson
and Ranstam (2003) �nd that the e�ect of subject dependency in total knee arthroplasty
is negligible, and explain this by saying that the source of the bias generated by ignoring
dependency consists solely of bilateral patients with revisions on both sides, of which
there are very few. Findings of Ripatti and Palmgren (2000), Schwarzer et al. (2001), Visuri
et al. (2002) and Lie et al. (2004) for THA are similar. A contributing factor is that hip
implant survival is very high.

The �ndings that ignoring the within-patient dependence does not signi�cantly a�ect
results are all within the context of questions about the entire patient population. Whether
ignoring the presence of bilateral patients is problematic depends on the goal of the anal-
ysis, and on the similarity of the outcomes for the two prostheses. If one is interested in
the time to revision for any hip, then ignoring the dependence may be a pragmatic solu-
tion if the �rst and second THAs have similar survival properties and similar associations
with the covariates, and especially if implant survival is high in general. In that case, the
ignored dependence will likely only a�ect the con�dence intervals. However, if the im-
plants of bilateral patients have di�erent survival properties than unilateral prostheses,
grouping everyone together without extra consideration does not make much sense. In
that cases, studying unilateral and bilateral patients separately will provide more useful
clinical insights.
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Figure 6.4: Multistate model for Total Hip Arthroplasty.

When the research question is concerned with bilateral patients, caution is warranted.
The main potential pitfalls lie in the time-dependence of a patient’s bilateral status. Extra
care needs to be taken when the proportion of bilateral patients is high, and when the
patients who become staged bilateral tend to do so relatively long after the �rst surgery.
A naive subgroup analysis may be a�ected by immortal time bias. Landmark analysis or
a multistate model seem appropriate solutions in this case.

In any analysis of arthroplasty registry data, researchers should carefully consider the
impact the bilateral patients may have on their results, de�ne their research population
precisely, and select the statistical method accordingly.

6.4 Data structure

The data set contains data on 161,434 primary total hip arthoplasties, undertaken between
2007 and 2014. Arthroplasties after tumors or fractures, and hemiarthroplasties were not
included. The survival information is captured in the following four variables:

1. Status_revision: indicates whether the hip was revised.

2. Status_death: indicates whether the patient has died.

3. Surv_revision: time at risk until revision.

4. Surv_death: time at risk until death.

In order to illustrate the time to event structure of the data, consider the following
patients (only status indicators and time at risk shown for clarity):
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Patient Status_revision Status_death Surv_revision Surv_death
103867 0 0 7.67 7.67
99702 1 0 3.97 6.56
88945 0 1 0.18 0.18
6645 1 1 0.13 0.52

Patient 103867 was under follow up for 7.67 years and was still alive at the end of
follow up, without revision of his or her implant. Patient 99702 was under follow up for
6.56 years. After 3.97 years, his or her hip implant was revised. The patient was still alive
at the end of follow up. Patient 88945 died after 0.18 years of follow up, without revision
of his or her implant. The implant of patient 6645 was revised after 0.13 years, and the
patient died 0.39 years later, at 0.52 years of follow up.

Each line in the data set corresponds to one hip. However, there are bilateral patients
included in the data set, with a hip implant on both sides. Some examples in the data:

Patient Status_revision Status_death Surv_revision Surv_death
5 0 0 3.16 3.16
5 0 0 2.30 2.30

3044 0 1 1.63 1.63
3044 1 1 0.15 1.13

22112 0 0 4.47 4.47
22112 1 0 1.36 2.86

Patient 5 received a second hip implant 0.86 years after the �rst, and was then followed
for another 2.30 years. During that time, none of the implants were revised, and the patient
was still alive at the end of follow up. Patient 3044 received his or her second implant after
0.5 years. The second implant was revised 0.15 years after its placement. The �rst was
never revised. The patient died 1.63 years after the �rst prosthesis was implanted. Patient
22112 received his or her second implant after 1.61 years, and it was revised 1.36 years
later. The patient was still alive, without revision of the �rst implant, at the end of follow
up at 4.47 years.

The statistical complications associated with the presence of bilateral patients in the
data set are discussed in Section 6.3. Before proceeding to the data analysis in Section 6.5,
we describe the remaining variables in the data set. The variables used in the model are
listed below.

1. Age: age of patient at index surgery.
Converted to the �ve age categories used by the LROI: younger than 50, 50-59, 60-69, 70-79,
80 and older.

2. GENDER: gender of patient.

3. ASACLASH: American Society of Anesthesiologists (ASA) classi�cation.
1: A normal healthy patient. 2: A patient with mild systemic disease. 3: A patient with severy
systemic disease. 4: A patient with severe systemic disease that is a constant threat to life
(ASA, 2014).

4. DIAGH: diagnosis.
The nine diagnoses in the data set were combined into �ve diagnostic groups, following
the recommendation of the clinician: osteoarthritis, post-Perthes and dysplasia, rheumatoid
and in�ammatory arthritis, osteonecrosis, and late posttraumatic combined with all other
diagnoses.
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5. FIXH_incl_rev: type of �xation of the hip implant.
Cementless, hybrid, cemented or reversed hybrid.

6. Hospitaltype: type of hospital.
General, academic, or private. Taken as a proxy for unmeasured confounders, outcome not
reported.

The distribution of the patient characteristics is shown in Figure 6.5.
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Figure 6.5: Barplot of patient characteristics in the LROI data set.
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Besides those variables, the data set contained information on the side of operation,
year of operation and revision, and whether the hip had been operated on before. These
were left out of the model because of redundancy or, in case of previous operations on the
same hip, low completeness.

6.5 Results on the LROI data

This section contains results on data from the Dutch Arthroplasty Register (LROI). The
analysis is based on total hip arthroplasty (THA) and subsequent revision surgeries per-
formed on a total of 161,434 hips in 144,513 patients, between January 1st, 2007 and De-
cember 31st, 2014. We aim to identify variables associated with the cumulative incidence
of revision, for all patients and in particular the bilateral patients.

A limitation of these analyses is that it requires identifying whether a THA was a pa-
tient’s �rst or second. This is not problematic for patients whose both surgeries took place
after 2007, but it is for bilateral patients whose �rst THA took place before the establish-
ment of the LROI. If a patient’s �rst THA happened before 2007, and his or her second
THA happened after 2007, then only the second THA is recorded in the data set, and we
would require an indicator to alert us to the fact that it is that patient’s second, not �rst
THA. Such an indicator exists in the form of the Charnley score, but this score has only
been recorded sinds mid 2013, and we do not have access to it at time of writing. This is
discussed in more detail in 6.5.3.

We �rst describe the analyses and present the results. We discuss the results, limita-
tions of these analyses and plans for future analyses in Section 6.5.5.

6.5.1 Competing risks

The need for competing risks methods is illustrated in Figure 6.6. It shows the cumulative
incidences of revision and death, estimated separately for the youngest and the oldest
patients. The cumulative incidences were estimated using each patient’s �rst THA, noting
that for some patients, this will actually be their second, as explained above.

The Figure shows a very strong competing risk of death for patients older than 80. For
patients under 50, the competing risk of death in this relatively short amount of follow up
is so small as to be negligible. Given the average age of patients undergoing THA, which
is 69, the competing risk of death cannot be ignored.

6.5.2 All patients

Before zooming in on the bilateral patients, we consider the entire patient population.
Following the recommendations of Grambauer et al. (2010) and Latouche et al. (2013),
both Fine-Gray regression and cause-speci�c Cox regression are performed.

We use Fine-Gray regression for clustered data (Zhou et al., 2012) to �nd variables
associated with revision. As discussed in Section 6.3, this analysis does not account for the
time between two THAs for bilateral patients. As a form of sensitivity analysis, standard
Fine and Gray regression was also performed on the entire data set, and on all �rst THAs
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Table 6.1: Fine-Gray regression for all patients. Reference category between parentheses.

Variable
Cluster Fine-Gray Fine-Gray Fine-Gray

all data all data �rst THAs
coe�cient s.e. coe�cient s.e. coe�cient s.e.

Gender (female)
Male 0.080 0.036 0.080 0.036 0.076 0.037

Age (< 50)
50-59 -0.073 0.083 -0.073 0.082 -0.084 0.087
60-69 -0.285 0.080 -0.285 0.079 -0.277 0.083
70-79 -0.300 0.083 -0.300 0.082 -0.312 0.086
≥ 80 -0.426 0.094 -0.426 0.093 -0.407 0.098

ASA (ASA 1)
ASA 2 0.090 0.040 0.090 0.040 0.086 0.042
ASA 3 & 4 0.234 0.060 0.234 0.060 0.249 0.062

Diagnosis (Osteoarthritis)
Osteonecrosis 0.027 0.097 0.027 0.096 0.063 0.098
Post-Perthes/Dysplasia -0.123 0.110 -0.123 0.110 -0.135 0.115
Late posttraumatic 0.434 0.091 0.434 0.091 0.421 0.093
Rheum./in�. arthritis -0.085 0.162 -0.085 0.163 -0.140 0.177

Fixation (Cementless)
Cemented -0.559 0.047 -0.559 0.046 -0.533 0.049
Hybrid -0.260 0.089 -0.260 0.088 -0.284 0.094
Reversed hybrid 0.046 0.078 0.046 0.078 0.081 0.081

(which will in some cases be the second THA, as explained above). The results are given
in Table 6.1.

Cause-speci�c Cox regression was done for revision and death, both on the �rst THAs
and on all THAs. The results are given in Table 6.2.

The subdistribution hazard ratios resulting from cluster Fine-Gray, as well as the haz-
ard ratios resulting from cause-speci�c Cox regression on all patients are given in Table
6.3, together with the p-values and the numbers of revisions and deaths.

The cumulative incidence of revision is associated with gender, age, ASA score, diag-
nosis and type of �xation. Men are more likely to experience revision than women. The
cumulative incidence of revision decreases with age, and increases with ASA score. It is
less for hybrid �xation and even smaller for cemented �xation, compared to cementless
�xation. This is set in context and discussed in Section 6.5.5.

As a visual check of the proportionality assumptions for Fine-Gray regression and
cause-speci�c Cox regression, nonparametric estimates of the cumulative incidences of
revision and the cause-speci�c cumulative hazards of revision and death are given in Fig-
ures 6.7, 6.8 and 6.9.
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Figure 6.7: Aalen-Johansen estimates of the cumulative incidences of revision, using all
hips in the data set.
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Figure 6.8: Nelson-Aalen estimates of the cumulative hazard of revision, using all hips in
the data set.
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Figure 6.9: Nelson-Aalen estimates of the cumulative hazard of death, using all hips in the
data set.
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Table 6.4: Number of known second THAs in the LROI data.
2007 2008 2009 2010 2011 2012 2013 2014

Number of THAs (total) 7,938 13,781 19,976 21,992 22,713 23,971 24,631 26,438
Number of second THAs 197 632 1,304 1,975 2,539 2,964 3,436 3,874
Percentage second THAs 2.5% 4.6% 6.5% 9.0% 11.2% 12.4% 13.9% 14.7%

6.5.3 Comparison of unilateral and bilateral patients

We compare rates of revision for the �rst implanted hip for unilateral and staged bilateral
patients at the landmark time of 1 year, meaning that we include those patients who had
not yet experienced revision after 1 year and divide them into groups who have received
either one or two prostheses by 1 year.

As explained above, this analysis is problematic, because the "unilateral" group will
contain some second THAs from bilateral patients. To get a sense of how many of these
second THAs we may miss, we compute for each year the number of THAs that are known
to be the second of a bilateral patient, because the corresponding �rst THA took place in
or after 2007. These numbers are given in Table 6.4. For reference, the Charnley score was
recorded in 2014, and in that year, 20% of THAs concerned the placement of a second hip
(LROI, 2014).

To mitigate the problem of the unidenti�ed second THAs, we only study patients
whose �rst (known) procedure took place in 2010 or later. Based on clinical experience,
we perform landmark analysis at the 1 year landmark, for 4.5 years of follow-up. In to-
tal, 75,397 patients were included in the unilateral group, and 5,031 in the bilateral group.
Gray’s test detects a di�erence in cumulative incidence of revision between patients who
are unilateral or bilateral 1 year after the �rst THA (p = 0.003). The estimated cumulative
incidences are given in Figure 6.10. As shown in Figure 6.10, the �rst implanted prosthesis
of a patient who has become bilateral at the one year mark is less likely to be revised com-
pared to unilateral prostheses, if we compare patients who have not undergone revision
and are still alive one year after the �rst THR.

6.5.4 Second-implanted hips

For a comparison of the second-implanted hips of staged bilateral patients, no time-
dependent covariates are required, as their time point of origin is the time of the sec-
ond primary THA. We thus compute the unadjusted and adjusted cumulative incidences
without any further considerations. Characteristics of the bilateral patients are given in
Table 6.5.

The results from the Fine-Gray regression are given in Table 6.6. When we consider
the second-placed hips of staged bilateral patients, the amount of time between the two
surgeries is a signi�cant variable. The unadjusted cumulative incidence of revision of the
second hip is signi�cantly di�erent for patients whose second hip was placed more than
one year after the �rst one, compared to patients whose hips were both placed within
one year (p = 0.009). This is illustrated in Figure 6.11, which shows that the unadjusted
cumulative incidence of revision for patients whose surgeries take place more than one
year apart is higher than for patients whose surgeries take place within one year.
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Figure 6.10: Aalen-Johansen estimator of the cumulative incidence of revision of the �rst
hip implant for patients who are unilateral or bilateral and event-free at the 1 year land-
mark. The cumulative incidence of revision is higher for patients who are (still) unilateral
1 year after their �rst THA.
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Table 6.5: Characteristics of bilateral patients as recorded at the time of the second THA,
compared to all patients.

Characteristics Second hip
within 1 year

Second hip after
more than 1 year

All patients

Total 8,027 8,894 161,434
Mean age 67.2 70.1 69.0
Female 68.7% 72.8% 67.3%
ASA 1 25.4% 20.9% 25.4%
ASA 2 64.2% 66.6% 62.4%
ASA 3&4 10.4% 12.5% 12.2%
Osteoarthritis 92.3% 95.6% 91.3%
Cementless �xation 64.1% 64.2% 62.1%

When the interoperative time is adjusted for, we �nd few remaining signi�cant pre-
dictors for revision of the second prosthesis. Patients with cemented hips are less likely
to experience revision than patients with cementless �xation, and the oldest patients are
less likely to experience revision than the youngest. Gender, ASA and diagnosis do not
appear to play a signi�cant role when we consider only the second prostheses of bilateral
patients.

6.5.5 Discussion and outlook

All patients

Outcome of Fine-Gray regression
The �nding that young age, male sex, high ASA score, uncemented prostheses and an
earlier trauma are risk factors for revision (Table 6.3) is consistent with previous studies
(Prokopetz et al., 2012). Many of those previous analyses were done without accounting
for the competing risk of death, but the conclusions still stand when it is corrected for.
Explanations are available in the clinical literature. Younger patients are typically more
active and heavier, leading to increased stress on the implant components compared to
older patients (Johnsen et al., 2006). Higher mechanical stress may also explain the in-
creased risk of revision for men compared to women, together with hip kinematics (Gallo
et al., 2010). The ASA score is an indicator of a patient’s preoperative health status, and can
be predictive of the early functional status (Hooper et al., 2012). Regarding �xation, the
lower cumulative incidence of revision for cemented implants compared to uncemented
implants is well-documented (Makela et al., 2014). In addition, we �nd that hybrid prosthe-
ses have a lower risk of revision compared to uncemented prostheses, a �nding for which
previous studies found evidence in either direction (Prokopetz et al., 2012). Of the diag-
noses included in this study, only those patients who receive a hip prosthesis long after a
trauma have a signi�cantly di�erent risk of revision than patients who have a diagnosis of
osteoarthritis. After a trauma, risk of dislocation is increased, as anatomic structures may
be compromised (Mallory et al., 1999). Thus, the results are consistent with the clinical
literature.
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Outcome of cause-speci�c Cox regression
The conclusions from the cause-speci�c Cox model are in line with the results from Fine-
Gray regression. The subdistribution hazard ratios for revision and the cause-speci�c
hazard ratios for revision are numerically very close (Table 6.3). This may be due to the
heavy censoring (Grambauer et al., 2010): there were 161,434 hips in the data set and only
11,076 events (3,897 revisions and 7,179 deaths).

The added value of two separate analyses for death and revision is visible for those
variables where the coe�cients for the two hazards have opposite signs: old age, diag-
noses of post-Perthes / dysplasia or rheumatoid/in�ammatory arthritis, and cemented or
hybrid �xation. In all these cases, the cause-speci�c hazard of revision is decreased; the
cause-speci�c hazard of death increased, and the cumulative incidence of revision de-
creased. Besides the explanations already provided above, this analysis makes clear that
another e�ect may be that patients with these characteristics are revised less frequently
because the rate of occurence of death is increased.

The proportionality assumptions
We highlight two aspects of Figures 6.7, 6.8 and 6.9. First, all plots in Figure 6.7 are re-
markably similar to the corresponding plots in Figure 6.8. We already observed that the
subdistribution and cause-speci�c hazards for revision are numerically very close. This is
most likely due to the heavy censoring.

The second aspect is that there is some evidence for violation of the proportional
subdistribution/cause-speci�c hazards assumption. The assumption seems to hold for nei-
ther hazard for revision for the ASA score, age (�rst 2 years) and diagnosis. For age, the
violation could be due to the categorization. The proportionality assumption does appear
to be reasonable for gender and �xation, and for the cause-speci�c hazards of death. This
can be investigated further using, for example, the methods listed in Section 6.2.

Sensitivity to the presence of bilateral patients
The di�erences between standard Fine-Gray and cluster Fine-Gray regression are negligi-
ble (Table 6.1). The estimated coe�cients are the same, and the standard errors only di�er
on the third decimal place. The coe�cients and standard errors estimated using only the
�rst THAs are di�erent compared to cluster Fine and Gray, but the signs of all coe�cients
are the same, and the same coe�cients would be signi�cant at the 5% level. The cause-
speci�c Cox regression is not substantively impacted by the within-subject dependence
of the bilateral patients either (Table 6.2); the di�erences between the estimated coe�-
cients based on all THAs or only the �rst THAs are minimal, and conclusions based on a
0.05-cuto� for the p-values would be the same.

Bilateral patients

Results
Our results indicate that the cumulative incidence of revision is di�erent for staged bi-
lateral patients than for unilateral patients, and that staged bilateral patients are not a
homogeneous subgroup. Interoperative time is an important factor to take into account.
If a patient’s second THR takes place within 1 year, not only does his or her �rst prosthesis
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survive longer compared to unilaterally implanted prostheses, but his or her second pros-
thesis is less likely to be revised than the second prosthesis of a bilateral patient whose
second THR took place more than 1 year after the �rst.

The results for the �rst bilateral implant compared to a unilateral implant correspond
with the �ndings of the Swedish Hip Arthroplasty Register; they report better survival
for the �rst bilateral THA compared to a unilateral implant (SHAR, 2014). However, in
homogeneous subgroups consisting of patients with a diagnosis of osteoarthritis, no dif-
ference in survivorship of the �rst bilateral prosthesis compared to the unilaterals was
found (Havelin et al., 1995; Lie et al., 2004; Visuri et al., 2002).

Most variables that were signi�cant for all patients, are not signi�cant at the 5% level
for bilateral patients, when the time between surgeries is included as a categorical variable
(Table 6.6). Only very old age and a cemented �xation remain signi�cant. This may be
in part because the time between surgery serves as a proxy for a patient’s general health
status and activity level, as will be discussed below.

Limitations
We must be careful not to draw causal conclusions, as the data are observational. Fur-
thermore, there are limitations to the comparison of unilateral and bilateral patients. First
of all, even after removing the data from 2007-2009, some second THAs will have been
included in the "unilateral" group. Two studies indicate that the second THA has bet-
ter survival than a unilateral implant, but the evidence is limited (Lie et al., 2004; Visuri
et al., 2002). It is thus not clear how the presence of unidenti�ed second THAs may have
a�ected the estimates presented in Figure 6.10. A second limiting factor is that the land-
mark analysis precludes us from drawing conclusions about the risk of revision within the
�rst year.

The analysis of the second THAs does not su�er from these limitations, and suggests
that implant survival is better for patients who receive their second THA within 1 year
after the �rst. When interpreting the results in Figure 6.11, the competing risk of death
needs to be considered. A bilateral patient who receives his or her second implant after
more than 1 year is on average older than a bilateral patient whose second surgery takes
place within 1 year, as supported by Table 6.6. Being older, the patient may be at lower
risk of revision. Yet Figure 6.11 and Table 6.5 indicate that patients who receive their sec-
ond implant after more than 1 year have higher risk of revision, lending credence to the
hypothesis that the two groups of bilateral patients di�er from each other in some other
respect.

Timing of the second THA
The protective e�ect of a shorter time between the two surgeries has been observed before
(Havelin et al., 1995; Lie et al., 2004; Möllenho� et al., 1994; Visuri et al., 2002). The cuto�
for signi�cant di�erences found in each of these studies has been di�erent, and none of the
studies accounted for the competing risk of death. The optimal lengths of interoperative
time as reported by these studies are within 1 year (Visuri et al., 2002), within 2 years (Lie
et al., 2004), or within 1-3 years (Möllenho� et al., 1994).

Our results suggest that the relevant period may be as short as 1 year. However, again
it must be stressed that these data are observational, and the conclusion that bilateral
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THAs should be placed as soon as possible cannot be drawn.
We o�er some clinical considerations on the observed protective e�ect of a shorter

interoperative time period. One factor may be the relationship between activity levels and
revision risk. A patient who receives two implants within 1 year may have other health
issues associated with impeded mobility, thus putting less strain on the �rst replaced hip,
leading to longer survival of the implant. Bilateral patients whose two surgeries are more
than 1 year apart may have su�ered from impaired mobility to a lesser extent, explaining
why their implants are more prone to early failure than those of patients who received
their second implant soon after the �rst.

On the other hand, with some diagnoses, patients may elect to have the second THA
sooner rather than later. The patients who do so are likely to be in good health, and more
satis�ed with the outcome of the �rst THA. This may actually lead to worse survival of
the implants, as these are generally more active patients.

A third factor may be that the group of osteoarthritis patients is not homogeneous,
and that those who receive a second implant soon after the �rst represent a subgroup
within the group of osteoarthritis patients for whom osteoarthritis should be considered
a systemic disease.

Outlook

Only a randomized clinical trial can con�rm hypotheses about interoperative time and
improved outcomes for staged bilateral patients. The LROI is still relatively young. With
the passing of time, more data will become available, allowing more detailed study of
bilateral patients. A multistate model has been applied to the data from the Australian
National Joint Replacement Registry, with promising results (Gillam et al., 2013, 2012).
One insight from the Australian multistate model is that women are more likely than men
to experience a second joint replacement surgery, which may be due to the lower mortality
risk for women, or because women may have more extensive osteoarthritis. We expect
that such a model, applied to the LROI data, would provide more insight into the path a
patient may take from unilateral to possible bilateral, revision and/or death. The Dutch
hip replacement data can be linked to knee replacement data, allowing for further study
of patients with multiple implants.
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Samenvatting

De eerste drie hoofdstukken van dit proefschrift betre�en problemen waarin er maar
weinig signalen zijn, temidden van heel veel ruis. Te denken valt aan het vinden van genen
geassocieerd met een bepaalde ziekte, het detecteren van supernovae in astronomische op-
namen, of het comprimeren van afbeeldingen. In het bijzonder wordt in dit proefschrift
aandacht besteed aan een simpel model, waarin elke waarneming gelijk is aan de som van
een parameter, en normaal verdeelde ruis. Aangenomen wordt dat de meeste van die pa-
rameters gelijk aan nul zijn. Het doel is tweeledig: het schatten van de parameters, en de
onzekerheid in die schatting aangeven.

Dit probleem wordt aangepakt met Bayesiaanse statistiek. Daartoe wordt een a-priori-
verdeling op de parameters aangenomen. Na waarneming van de observaties leidt dit tot
een a-posteriori-verdeling op de parameters, welke gebruikt wordt om tot een schatting
van de parameters te komen. In dit proefschrift wordt de hoe�jzer-a-priori-verdeling (Car-
valho et al., 2010) bestudeerd. De verwachtingswaarde van de bijbehorende a-posteriori-
verdeling wordt als schatter van de parameters gebruikt, en noemen we de hoe�jzerschat-
ter. De hoe�jzerverdeling hangt af van een parameter τ . Hoe kleiner τ gekozen wordt,
hoe dichter de uiteindelijke schattingen bij nul komen te liggen.

Het belangrijkste resultaat uit Hoofdstuk 1 is dat de hoe�jzerschatter geschikt is om
de parameters mee te schatten (in de zin van minimax-optimaliteit) indien τ klein genoeg
wordt gekozen. Hoe groot τ precies moet zijn, hangt af van het aantal signalen onder de
parameters. De resultaten uit Hoofdstuk 1 leidden tot de vraag of de goede eigenschappen
voorbehouden zijn aan de hoe�jzerverdeling. In Hoofdstuk 2 wordt aangetoond dat dat
niet het geval is: de resultaten kunnen herhaald worden voor een hele klasse aan verdelin-
gen.

De aandacht in de eerste twee hoofdstukken gaat voornamelijk uit naar het schatten
van de parameters. In Hoofdstuk 3 wordt ingegaan op de kwestie van de onzekerheid
in deze schattingen. Aan de hand van de hoe�jzer-a-posteriori-verdeling wordt er een
bereik aan waarden voor de parameters vastgesteld, en gekeken hoe vaak de echte pa-
rameterwaarde in dat bereik ligt, en of dat bereik niet onnodig groot is. In Hoofdstuk
3 wordt bewezen dat de hoe�jzer a-posteriori-verdeling geschikt is om onzekerheid in de
parameters uit te drukken, tenzij de echte waarde van de parameter dichtbij de "universele
drempelwaarde" van

√
2 logn ligt, waarbij n het aantal waarnemingen is. Voor deze gun-

stige eigenschappen is het van belang dat de parameter τ goed gekozen wordt. Dit blijkt
te kunnen door ofwel een a-priori-verdeling op τ te plaatsen, of door een schatter te ge-
bruiken die in Hoofdstuk 3 bestudeerd wordt. In beide gevallen is het niet nodig om op
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voorhand te weten hoeveel signalen er zijn.
Hoofdstuk 4 betreft een ander probleem, namelijk het vinden van groepen in een

netwerk dat is ontstaan volgens het stochastisch blokmodel. Als we een sociaal netwerk
als voorbeeld nemen, zouden we observeren wie met wie bevriend is, en aannemen dat
de kans op een vriendschap tussen twee personen alleen afhangt van de groep waar ieder
lid van is. Het doel is om te achterhalen wie lid is van welke groep. In Hoofdstuk 4 wordt
hiervoor wederom een Bayesiaanse aanpak gebruikt. De kans dat de bestudeerde schatter
de groepen correct identi�ceert gaat naar één wanneer het aantal individuen toeneemt,
mits het aantal connecties tussen individuen niet te klein is.

In Hoofdstuk 5 wordt het switch-criterium, een nieuwe methode om een hypothese-
toets uit te voeren, geëvalueerd op drie eigenschappen:

1. Wordt de juiste hypothese gekozen?
2. Hoe goed worden de parameters behorend bij de hypotheses geschat?
3. Is het criterium gevoelig voor de stopregel?

Dit laatste is een probleem bij de meeste klassieke hypothesetoetsen. Wanneer maar lang
genoeg wordt doorgegaan met waarnemingen doen, zal de nulhypothese uiteindelijk altijd
verworpen worden, ongeacht of deze waar is of niet. In een enquête onder psychologen
gaf 55% van de deelnemers toe wel eens pas te besluiten of er meer waarnemingen gedaan
zouden worden na het zien van de eerste resultaten (John et al., 2012). Het zou beter bij
de wetenschappelijke praktijk passen, als dergelijk gedrag geen problemen zou opleveren
voor de validiteit van de statistische analyse. Met het switch-criterium is dat het geval,
mits de nulhypothese een punthypothese is, en er daarvoor dus geen verdere parameters
geschat hoeven te worden. Dit gaat ten koste van de precisie bij het schatten van parame-
ters behorend bij de overige hypotheses. De eerste eigenschap, consistentie, komt niet in
het geding. Dit geldt voor hypotheses die in elkaar bevat zitten, wanneer de gepostuleerde
verdelingen een exponentiële familie vormen.

Hoofdstuk 6 is toegepast van aard. Het is gebaseerd op analyse van data over heup-
prothesen, afkomstig van het LROI (Landelijke Registratie Orthopedische Implantaten).
De vraag is hoe lang het duurt tot er een nieuwe ingreep aan de heupprothese (revisie)
plaatsvindt, en welke eigenschappen van de patiënt (zoals leeftijd en diagnose) daarmee
geassocieerd zijn. De statistische analyse wordt bemoeilijkt door drie problemen.

De eerste twee komen door de aanwezigheid van bilaterale patiënten, die aan beide
kanten een heupprothese hebben. Twee waarnemingen uit één patiënt zijn afhankelijk,
terwijl voor de meeste methodes onafhankelijkheid wordt aangenomen. De tweede moeil-
ijkheid is dat er doorgaans enkele maanden of jaren tussen het plaatsen van de twee heup-
protheses zit. Wanneer deze tijdsafhankelijkheid niet goed wordt meegenomen, kan dat
onbedoelde e�ecten op de uitkomsten van de analyse hebben. Zulke e�ecten treden ook op
bij de bewering dat Oscar-winnaars langer leven, waarbij over het hoofd wordt gezien dat
iemand in leven moet zijn om een Oscar te krijgen, en dus een minimum aantal jaren moet
overleven, terwijl die overlevingseis niet geldt voor de mensen waarmee vergeleken wordt
(Sylvestre et al., 2006). De derde moeilijkheid is dat een patiënt kan overlijden voordat re-
visie kan plaatsvinden. Het risico hierop is aanzienlijk, aangezien patiënten gemiddeld
ongeveer 69 jaar oud zijn wanneer ze een heupprothese krijgen (LROI, 2014).

Deze drie complicaties worden besproken in Hoofdstuk 6, waarna enkele voorlopige
resultaten op de data van de LROI worden gepresenteerd.
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