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Abstract

Hemodialysis vascular access patency is severely compromised by fistula non-
maturation and access stenosis. Intimal hyperplasia (IH) is considered the culprit 
lesion in failed fistulas, resulting in luminal narrowing and stenosis. This review 
focuses on the biology and pathophysiology of fistula failure and highlights not 
only the classically associated intimal hyperplasia but also some relatively neglected 
but potentially important contributors such as inadequate outward remodeling. In 
addition, the complex process and fragile balance of successful fistula maturation 
might be partially hindered by pre-existent chronic kidney disease-mediated 
vasculopathy. Further unravelling the (patho)physiology of outward remodeling and 
intimal hyperplasia could contribute to novel therapies and enhance fistula patency.
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Introduction

Patients with end-stage renal disease are largely dependent on dialysis as renal replacement 
therapy. For chronic hemodialysis, an adequately functioning high-flow vascular access is 
required. Arteriovenous fistulas (AVFs) are the preferred modality in view of the superior 
patency rates and fewer complications as compared to arteriovenous synthetic grafts1-3. 

Nonetheless, the durability of AVFs is far from optimal with one year primary patency rates 
ranging from 60-65%4;5. In fact, these numbers are too optimistic, as they frequently do not 
account for fistulas that failed to mature. Maturation failure contributes significantly to the 
dismal patency rates of AVFs as illustrated by a recent multi-center study which revealed that 
60% of the AVFs were not suitable for dialysis between 4-5 months post surgery6, although, 
these numbers do vary between different types of AVFs7. According to the KDOQI guidelines, 
an AVF maturation is clinically considered successful if 6 weeks after surgery the fistula 
supports a flow of 600 mL/min, is located at a maximum of 6 mm from the surface and has a 
diameter greater than 6 mm2. The exact underlying mechanisms responsible for maturation 
failure are however unknown, but impaired outward remodeling as well as intimal hyperplasia 
(IH) are both considered to contribute.
Thus far, most research on the pathophysiology of AVF failure focuses on IH. In contrast, 
the role of vascular outward remodeling in the setting of AVFs is often neglected. However, 
adequate outward remodeling could preserve luminal caliber and may therefore be valuable 
for successful fistula maturation. We postulate that the balance between outward expansion 
and potential luminal narrowing due to IH may ultimately determine fistula flow and patency 
(Fig.1). This review focuses on the pathophysiology of both AVF maturation failure and failure 
of already matured AVFs, and highlights some potential contributors thus far gaining relatively 
little attention, such as outward remodeling and the implications of chronic kidney disease 
(CKD) mediated vascular pathology. 
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Figure 1. Different modalities of the vascular remodeling response after fistula creation. Whereas a healthy 
vein has the potential for successful outward remodeling (top left), adequate maturation may be partially 
hindered by CKD-induced pre-existing vasculopathy such as IH (top right). As shown below, we postulate that 
the net resultant of IH and outward remodeling may determine ultimate luminal calibre. In case of IH formation, 
adequate outward remodeling could to a certain extent remain lumen calibre intact, thus providing a patent 
fistula. However, if IH outbalances outward remodeling this could result in stenosis and fistula failure.

 

Outward remodeling: an emerging concept in arteriovenous fistulas?

The connection of a low-pressure vein to the high-pressure arterial system results in a chain 
of vascular events that starts with an immediate increase of blood flow through the both 
the feeding artery and the draining vein4;8. Directly after construction of the AVF, this rapid 
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increase in flow results in both passive vascular distension and in nitric oxide (NO) synthesis 
by endothelial cells with subsequent vascular smooth muscle cell (VSMC) relaxation9-11 
resulting in acute vasodilation. Concomitantly, the hemodynamic changes following AVF 
creation initiate a more structural vascular remodeling response leading not only to a further 
increase in arterial and venous calibre12-14 but also to thickening of especially the venous 
wall15;16. Increased wall shear stress (WSS) and wall tension are the driving forces. WSS is the 
frictional force exerted by blood on the vessel wall and is mathematically defined by Poiseuille’s 
formula: 4ηQ/πr3 where η = blood viscosity, Q = flow and r = vessel radius. An increase in 
blood flow will provoke an adaptive response of the vessel in which the luminal diameter 
increases in attempt to reduce WSS to pre-AVF levels (5-10 dyn/cm2). Furthermore, due to the 
pressure increase in the venous outflow tract after fistula creation, the wall tension rises leading 
to another adaptive response culminating in medial thickening (i.e. venous arterialization). 
These phenomena are elegantly illustrated in a study of Corpataux et al12, where hemodynamic 
changes in the venous part of AVFs in six patients were investigated using echo-tracking and 
Doppler-ultrasonography. Within the first week after fistula formation the flow increased 
to 539 mL/min accompanied by an almost threefold increase in WSS to 24.5 dyn/cm2. The 
continuous increase in flow resulted in a progressive increment in venous luminal calibre from 
2.4 mm preoperative to 6.6 mm after 12 weeks. Since WSS is inversely related to lumen size, the 
WSS gradually returned to a physiological range (10.4 dyn/cm2 at 12 weeks). In addition, the 
venous wall thickness increased, demonstrated by an augmentation of cross sectional wall area. 
This adaptive response is also applicable for the arterial side of the AVF, where the increment 
of arterial flow results in an increase of arterial luminal diameter14, although to a lesser extent 
than the venous side12. This change in diameter does not result in wall thickening but likely 
rather results in arterial wall remodeling (i.e. an increase in both internal and external diameter 
without an increase in wall cross sectional area)14.
On a biological level, these changes in WSS and wall tension are sensed by the endothelial 
cells, that function as mechanosensors and convert these hemodynamic stimuli to biochemical 
signals such as vasodilating agents (e.g. NO), growth factors that can control VSMC 
proliferation and migration and cellular adhesion molecules10;17-19. Upregulation of proteases 
such as matrix metalloproteinases (MMPs) and cathepsins results in matrix degradation and 
restructuring of the vascular scaffold leading to luminal expansion15;20-22. In addition, with an 
increased circumference of the vessel wall, it seems logical that some VSMC reorganization 
should occur as well to keep in pace with the expansion, as is also described in arterial setting23. 
However, to date little is known about the role of VSMCs in outward remodeling in AVFs.
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As explained before, the adaptive outward remodeling response occurs both in the feeding 
artery and in the draining vein of the fistula12;14. Nonetheless, the majority of the stenotic lesions 
in fistulas failing to mature are localized in the venous part, mostly in the juxta-anastomotic 
region24;25. The latter observation could suggest that not only IH but also venous luminal 
expansion may be important for the preservation of the luminal calibre, thereby allowing 
the fistula to mature. We postulate that the net resultant of adaptive outward expansion and 
potential luminal narrowing by IH and thrombosis may ultimately determine luminal calibre, 
flow and long term AVF patency.

Intimal hyperplasia: adverse vascular response that hampers AVF function

Intimal hyperplasia is the pathologic lesion in AVFs that may result in stenosis and ultimately 
thrombosis. It is characterized primarily by α-smooth muscle actin (α-SMA) positive cells, 
extracellular matrix proteins and cytokines such as platelet-derived growth factor, transforming 
growth factor-β and endothelin within the intima and media of the vein26-28. The vast majority 
of the α-SMA positive cells in the intimal lesions exhibit a myofibroblasts or synthetic VSMC 
phenotype29. These cells could either be differentiated fibroblasts that migrated from the 
adventitia and acquired α-SMA expression30, or dedifferentiated medial VSMCs5. Furthermore, 
recent studies of non-AVF models suggest that a proportion of the α-SMA positive cells in IH 
lesions might originate from multipotent vascular stem cells from the bone marrow31;3233. 
In most physiological conditions, high laminar shear stress triggers endothelial quiescence, 
endothelial alignment in parallel with the flow and secretion of anti-inflammatory and anti-
coagulant substances17;18;34, thus preventing IH. In contrast, low flow and WSS levels as well as 
oscillating flow patterns are involved in endothelial cell activation with increased expression 
of pro-coagulant and pro-inflammatory mediators that predispose for IH34;35. Although AVFs 
merely express high flow profiles, recent studies revealed the coexistence of spot regions 
with low and oscillating flow and WSS levels in the venous part of the AVF, using a pulsatile 
computational fluid dynamics simulation36. These spot regions corresponded with in previous 
studies documented IH prone regions in the juxta-anastomotic area of the AVF. Alterations 
in anastomosis angle could impact the flow rates and patterns, potentially influencing IH 
formation, with sharper angles (30°) generating favourable outcomes37. This was further 
illustrated by Krishnamoorthy et al38, demonstrating a correlation between AVF configuration, 
WSS pattern and the development of IH in a porcine AVF model. Thus, IH in an AVF setting is 
likely to be associated with an abnormal WSS profile. Nevertheless, IH has also been observed 
in veins prior to vascular access placement39 and in saphenous veins40, suggesting that an 
abnormal WSS profile is not the sole cause for development of IH. Epidemiological studies 
have identified diabetes mellitus, race, older age, peripheral vascular disease, female sex and in 
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some studies also cardiovascular disease as risk factors for maturation failure41-43. Furthermore, 
individual variation in patency outcomes may also in part be explained by genetic susceptibility. 
Indeed, several single nucleotide polymorphisms are associated with poor functional outcome 
of vascular access conduits for hemodialysis44;45.
Most studies on fistula failure focussed on the effect of several parameters on IH, as IH is 
considered to be the pathognomonical lesion in fistula failure. However, as mentioned above, 
luminal calibre can be preserved by adequate outward remodeling. Consequently, in addition 
to IH, impaired outward remodeling may be another important but relatively overlooked 
contributor to fistula failure. Despite its potential impact on fistula patency, relatively little is 
known about outward remodeling in AVFs. Future research aiming to gain more insight in 
the (patho)physiology of outward remodeling in fistulas might therefore contribute to new 
therapeutic strategies that could improve fistula patency.
Interestingly, some of the elementary factors in outward remodeling are also involved in the 
process of IH. Whereas outward remodeling in AVFs is related to matrix protease activity 
such as MMPs and cathepsins20-22, it is shown that MMPs are also involved in IH formation in 
AVFs46;47 and cathepsins in IH formation in balloon-injured artery48. The relative contribution 
of these proteases to expansive remodeling versus IH is not yet established, though the crucial 
role in outward remodeling suggests a more beneficial than detrimental effect, especially in 
the initial phase of AVF maturation. The latter suggestion is underscored by a recent report 
showing increased serum MMP-2 levels in patients with matured fistulas as compared to those 
with maturation failure20. However, as a consequence of elastolytic protease activity the internal 
elastic lamina is fragmented21;49. This disruption of the elastic lamina and loss of integrity of 
this structural barrier may allow migration of adventitial fibroblasts or medial VSMCs to the 
intima. Moreover, the elastin degradation products can act as chemo-attractants for VSMCs 
and fibroblasts and might direct them to the intimal region and support their proliferation50-52. 
Thus, potentially the balance of this partially overlapping beneficial outward remodeling and 
detrimental IH may affect fistula patency outcomes. 

Vascular pathology in chronic kidney disease

Noteworthy, this complex process and fragile balance of successful fistula maturation might be 
partially hindered by pre-existent vascular abnormalities often present in patients with CKD. 
Especially in these patients with elevated comorbidity burden, a tailored surgical technique53;54 
and surgical expertise54 are important in determining fistula patency outcomes. Furthermore, 
CKD itself is a well-known risk factor for cardiovascular morbidity55. The increased prevalence 
of cardiovascular disease in CKD-patients is only partly explained by traditional risk factors such 
as hypertension, diabetes, dyslipidemia and increased age. Epidemiological studies revealed 
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that CKD is an independent risk factor for cardiovascular morbidity56. The latter observations 
implicate a role for additional inimical stimuli in CKD-patients such as chronic inflammation, 
increased oxidative stress, uremic toxins and endothelial dysfunction, as is reviewed in more 
detail elsewhere57-59. Most studies on CKD mediated vasculopathy concentrate on the arterial 
system. A functional AVF requires both adequate venous and arterial maturation. Pre-existent 
arterial vasculopathy may therefore reduce patency. In addition, although not extensively 
studied, the detrimental effects of CKD on the arterial system may influence veins in a similar 
manner60. Indeed, recent studies elegantly showed marked pre-existing IH in venous segments 
of patients with end-stage renal disease prior to vascular access surgery39;61;62. Another potential 
contributor to vascular pathology in CKD is vascular calcification. Whereas calcification in 
the tunica intima is classically associated with atherosclerosis, calcification in the tunica media 
can occur independently of atherosclerotic plaques and is frequently observed in arteries of 
any size in CKD-patients63, resulting in vascular stiffness64;65. In arterial setting this is known 
to impair the vessel’s ability to expand upon high flow stimulation66. Interestingly, Lee et al67 
recently also demonstrated extensive calcification in the intima and media of venous segments 
that were harvested at the time of vascular access surgery. This might result, similar to the 
arterial setting, in reduced venous compliance, thus potentially limiting the utility of AVFs 
by inhibiting outward remodeling and AVF maturation. Clinical studies already showed that 
forearm venous distensibility (i.e. increase in luminal diameter upon inflation of an upper arm 
cuff) rather than baseline venous diameter predicts successful AVF maturation68. Although a 
recent study revealed that medial calcification in the supplying artery of AVFs was not associated 
with maturation failure69, future studies should explore the impact of venous calcification prior 
to access surgery on maturation failure. Indeed, the outward remodeling response is much 
more pronounced in the venous part of AVFs compared to the feeding artery12. 

Therapeutic strategies to improve vascular access patency

In order to create a proper basis for a successful AVF, pre-operative vein preservation and 
careful selection of suitable vessels for AVF creation should be performed routinely2;70. In case 
of fistula non-maturation or stenosis a percutaneous transluminal angioplasty (PTA) and/
or surgical revision is required2;70. To date, there are no adequate therapies improving the 
remodeling process of the AVF in the intermediary period. Moreover, despite the good results 
of PTA on the short term, it often induces restenosis on the longer term71-73. Therefore there is 
a strong clinical need for new therapeutic strategies to improve fistula patency. 
Possibilities to encourage outward remodeling include the use of elastase, thereby reorganizing 
the extracellular matrix scaffold of the vessel and promoting rapid dilation. After successful 
results in an AVF rabbit model35, the use of recombinant-elastase PRT-201 was recently 
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clinically evaluated in a randomized controlled trial in human AVFs74. Perivascular delivery of 
PRT-201 appeared to be safe but no effect on primary patency was observed. A larger clinical 
trial is underway since this first study was not powered to assess efficacy. Given the potential 
detrimental effects of elastin degradation products on both vascular calcification75 and VSMC 
proliferation51;52, the overall effectiveness of this agent remains to be elucidated. 
Potential candidates for targeting IH are agents that inhibit VSMC proliferation, such as 
paclitaxel and sirolimus, although with data obtained only in AVG setting76;77 their effect in 
AVFs remains to be established. 
As mentioned above, outward remodeling and IH are two processes that are in part intertwined. 
Some factors that are involved in outward remodeling such as MMPs may in a later stage also 
facilitate IH formation. Therefore, the potential of a therapy directed to a factor contributing in 
both types of remodeling could be influenced by the time of application. Limiting IH in an early 
stage might also decelerate the outward remodeling response and vice versa. Enhancement of 
maturation might require a different intervention than prevention of AVF failure once the 
AVF is successfully used for hemodialysis. Therefore, time dependent delivery might be a 
suitable approach to tackle fistula failure. Fistulas are ideal targets for such therapy, due to their 
easy accessibility and the potential to use perivascular delivery methods. However, to create a 
successful intervention strategy, more insight in the course and (patho)physiology of vascular 
remodeling is warranted. 
Incorporation of other disciplines in the field of vascular access might offer new perspectives. 
IH is studied extensively in the field of cardiology and vascular surgery and the process of 
outward remodeling in physiological situations such as pregnancy. Furthermore the technology 
in slow-release drug delivery systems is rapidly expanding. Another relatively new field with 
exciting developments is vascular tissue engineering. With vascular tissue engineering it is 
possible to create a diameter- and length-matched blood vessel free from valves and accessory 
vessels and has the unique potential to adjust a vessel to patient specific requirements. 
Importantly, tissue engineered blood vessels are free from pre-existing vascular disease. The 
potential of a tissue engineered blood vessel (TEBV) as arteriovenous graft was illustrated by 
the group of l’Heureux and McAllister. Using a so-called sheet-based method, a completely 
biological TEBV was developed without the use of synthetic material, thereby creating a TEBV 
that resembles a native vessel in both composition and structure. The TEBV was evaluated as 
AVG in ten patients resulting in a primary patency rate of 78% and 60% after 1 and 6 months 
respectively78. With spectacular progresses in the field of vascular tissue engineering79-81, the 
use of a TEBV might become a realistic alternative in the nearby future. 
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Conclusion

Upon AVF creation a complex cascade of remodeling events should occur. The net resultant 
of beneficial outward expansion, potential luminal narrowing by intimal hyperplasia and the 
possible interference of CKD induced vascular pathology may ultimately determine luminal 
calibre, flow and long term AVF patency. Due to the potential positive contribution to fistula 
maturation and its assumed role in luminal calibre preservation, we pledge for more research 
emphasis on the role of outward remodeling. Further unravelling the complex pathways that 
mediate both IH and outward remodeling processes after AVF creation could provide new 
targets and therapies to improve fistula patency. 
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