
Algorithms for the description of molecular sequences
Vis, J.K.

Citation
Vis, J. K. (2016, December 21). Algorithms for the description of molecular sequences.
Retrieved from https://hdl.handle.net/1887/45045

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/45045

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/45045

Cover Page

The handle http://hdl.handle.net/1887/45045 holds various files of this Leiden University
dissertation.

Author: Vis, J.K.
Title: Algorithms for the description of molecular sequences
Issue Date: 2016-12-21

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/45045
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 3

An Efficient Algorithm for the
Extraction of HGVS Variant
Descriptions from Sequences

Unambiguous sequence variant descriptions are important in reporting the
outcome of clinical diagnostic DNA tests. The standard nomenclature of the
Human Genome Variation Society (HGVS) describes the observed variant
sequence relative to a given reference sequence. We propose an efficient
algorithm for the extraction of HGVS descriptions from two sequences with
three main requirements in mind: minimizing the length of the resulting
descriptions, minimizing the computation time, and keeping the unambiguous
descriptions biologically meaningful.

Our algorithm is able to compute the HGVS descriptions of complete chro-
mosomes or other large DNA strings in a reasonable amount of computation
time and its resulting descriptions are relatively small. Additional applications
include updating of gene variant database contents and reference sequence
liftovers.

The algorithm is accessible as an experimental service in the Mutalyzer
program suite (https://mutalyzer.nl). The C++ source code and Python
interface are accessible at: https://github.com/mutalyzer/description-

extractor.

25

26 Chapter 3. HGVS Description Extraction

3.1 Introduction

The Human Genome Variation Society publishes nomenclature guidelines [den
Dunnen et al., 2000] for unambiguous sequence variant descriptions in clin-
ical reports, the literature and genetic databases. The Mutalyzer program
suite [Wildeman et al., 2008] has been built to automatically check and correct
these variant descriptions. As many complex variants are supported, the corre-
sponding descriptions are not always straightforward to construct, justifying
the need for the automatic extraction of HGVS descriptions by comparison
of the sequence observed in an individual to the reference sequence speci-
fied in guidelines and databases. Here we approach this from an informatics
perspective as a string comparison problem.

Consider two DNA strings: R, the reference string and S, the sample or
observed string:

R = ATGAT GATCAGATACAGTGTGATACAGGTAGTTAG ACAA

S = ATGATTTGATCAGATACA TGTGATACCGGTAGTTAGGACAA

The string S can be rewritten in terms of string R by using the HGVS descrip-
tion:

g.[5_6insTT;17del;26A>C;35dup]

The string-to-string correction problem calculates the distance between two
strings as measured by the minimum cost of a sequence of edit operations
needed to transform one string into the other. The traditionally allowed
edit operations [Wagner and Fischer, 1974] are exchanging one symbol of a
string for another: a substitution indicated using > between symbols (26A>C),
deleting a single symbol from a string: a deletion indicated using abbrevia-
tion del (17del), and inserting one symbol: an insertion using abbreviation
ins (5_6insTT). There is a specific case: insertion of previous symbol(s) is
described with HGVS term duplication using abbreviation dup (35dup). The
string-to-string correction problem has been extended on in numerous oc-
casions [Wagner and Lowrance, 1975, Tichy, 1984] usually allowing more
powerful edit operations. Here, we solve another extension of this problem by
defining additional edit operators especially suited to the HGVS nomenclature.

3.1. Introduction 27

Formally, our extension can be defined as follows. Given two stringsR and S
over the finite alphabet Σ = {A, C, G, T}, and a set of edit operators with their
corresponding (non-negative) weights, calculate a sequence of edit operations
that transforms a reference string R into a sample string S with a minimum cost
with regard to the weights of the operations given in Table 3.1. The weights in
Table 3.1 are based on the textual length of the HGVS nomenclature. Note that
the length of the description of the position is dependent on the position, i.e.,
towards the end it takes more symbols to describe the position, therefore we
will parameterize all weights making them independent of the positions.

Traditionally, the edit operations are defined on single symbols. To provide
a more intuitive way of describing variants, we extend these operations in a
natural way allowing use of substrings rather than individual symbols. Note
that, in contrast to the insertion operator, the deletion operator on multiple
symbols is not dependent on the length of the deleted substring, thereby
creating an asymmetry between insertion and deletion.

In addition to the traditional edit operators we define two additional opera-
tors: inversion (HGVS abbreviation: inv) matches the reverse complement of
the string and transpositions.

3.1.1 Transpositions

Here we define transpositions to be substrings which are copies of substrings
found either elsewhere in the matched string or elsewhere in the same string.
As we are interested in calculating concise descriptions, we will only consider
insertions to be candidates for transpositions. This will produce favorable
results especially in the case of long insertions that can be described as long
transpositions as their weights are independent of the length of the inserted
substrings. Furthermore, we allow some variants within these transpositions
yielding composite transpositions, e.g.:

g.[5_6ins[GG;17_45;inv46_78]]

This composite transposition consists of three parts: a regular insertion of GG, a
transposition of a substring of the reference sequence from position 17 to 45

28 Chapter 3. HGVS Description Extraction

Table 3.1: Edit operators for HGVS descriptions with their corresponding
weights.

Operator HGVS Description Weight

Deletion (single) pdel x+ 3

Deletion (multiple) pstart_penddel 2x+ 4

Deletion/insertion
(single)

pdelinsw x+ 6 + |w|†

Deletion/insertion
(multiple)

pstart_penddelinsw 2x+ 7 + |w|‡

Insertion pstart_pendinsw 2x+ 4 + |w|‡

Inversion pstart_pendinv 2x+ 4

Substitution pc1>c2 x+ 3

Transposition pstart_pendins[pstart_pend] 4x+ 4

Inverse transposition pstart_pendins[pstart_pendinv] 4x+ 7

where x is the weight of a position description independent of the actual
position.
† w ∈ Σ∗, with |w| > 1
‡ w ∈ Σ∗, with |w| > 0

followed by a transposition found on the reverse complement of the reference
sequence, i.e., an inverse transposition. Note that the alternative would require
the insertion of 62 nucleotides.

The remainder of this chapter is organized as follows. In Section 3.2 we
introduce an algorithm to efficiently compute the HGVS description between
two strings. Section 3.3 describes the experiments, followed by a discussion of
the results in Section 3.4 and the conclusions in Section 3.5.

3.2. Methods 29

3.2 Methods

In order to automatically construct HGVS descriptions we propose an extraction
algorithm. The three main requirements considered for this algorithm are:

1. The length of the descriptions — we try to minimize these;

2. The computational speed — in order to be practically useful we consider
a maximum total computation time of 1 hour for chromosome 1 of the
human genome on a desktop PC (3.4 GHz and 16 GB RAM). Although
this specific timing criterion is arbitrary it serves as a indication for a
responsive desktop environment;

3. The (biological) meaning of the descriptions — given that this algorithm
is developed for genetic data, we want the descriptions to be as close as
possible to the intuition of the people using them.

3.2.1 Extraction algorithm

A trivial way to describe the sample string in terms of the edit operations from
the reference string, is to give the substitution of the whole reference string
with the sample string by means of the deletion/insertion operator. This gives
us an upper bound on the length of the description. We can stop recursively
cutting the strings at the moment when the resulting description exceeds the
trivial description or when we can decide that every possible description from
this point on will result in a longer description.

The underlying idea of the extraction algorithm is to divide the string to be
described into a sequence of unaltered regions and altered regions. The altered
regions are then described according to the HGVS nomenclature. In order to
minimize the length of the resulting descriptions, we apply a greedy approach
by choosing the longest possible unaltered regions. Note that this is a heuristic
which implies that it might be possible to find a more concise description by
choosing a smaller unaltered region.

The algorithm is formulated recursively: given two strings R and S find the
longest string that is a substring of R as well as S. Remove this string from

30 Chapter 3. HGVS Description Extraction

the problem, and continue recursively with both prefixes Rpre and Spre and
both suffixes Rsuf and Ssuf . The recursion ends when either of the two strings
is empty or no common substring could be found, see Figure 3.1. In case of
an empty reference string and a non-empty sample string, the corresponding
variant is an insertion. When the sample string is empty and the reference string
is not, the corresponding variant is a deletion. If no common substring could
be found, depending on the length of both strings we deal with a substitution
in case of a single nucleotide or a larger deletion/insertion.

R
Rpre Rsuf

S
Spre Ssuf

Rpre

Spre

Rsuf

Ssuf

Figure 3.1: Graphical representation of the extraction algorithm with reference
string R and sample string S, with the recursion showing a common substring
in the suffixes (suf), but not in the prefixes (pre). The wavy lines denote the
LCS during that iteration.

3.2.2 Finding the Longest Common Substring

In this section we explain the traditional approach for finding the longest
common substring between two strings as an introduction to the more efficient
version we present in Section 3.2.3.

The problem of finding the longest common substring(s) (LCS) between two
(or more) strings is a well studied problem [Gusfield, 1997]. Traditionally, a
dynamic programming approach for finding the LCS is used. Based on the
recurrence relation (3.1), a table M is built containing at each position (i, j)

the length of the longest common suffix between both prefixes.

Equation (3.2) is used to find the length of the longest common substring.

3.2. Methods 31

Together with the position (i, j) we can easily find the actual string.

M(S1..i, R1..j) =

M(S1..i−1, R1..j−1) + 1 if Si = Rj

0 otherwise
(3.1)

LCS(S,R) = max
1≤i≤|S|,1≤j≤|R|

M(S1..i, R1..j) (3.2)

In order to illustrate the mechanisms of finding the LCS, we will present an
example. Let R = AACACTTA, and S = ACTAACACTT. We construct M according
to the recurrence relation (3.1) as shown in Table 3.2. We fill M from top
to bottom, and from left to right. If the symbols on position (i, j) match, we
look at position (i − 1, j − 1) and extend the matched suffix. For instance,
position (3, 6) has 3, because position (2, 5) has 2 and T matches T.

Table 3.2: Dynamic programming approach for finding the longest common
substring. Here, the LCS is AACACTT, with length 7.

M A A C A C T T A

A 1 1 0 1 0 0 0 1
C 0 0 2 0 2 0 0 0
T 0 0 0 0 0 3 1 0
A 1 1 0 1 0 0 0 2
A 1 2 0 1 0 0 0 1
C 0 0 3 0 2 0 0 0
A 1 1 0 4 0 0 0 1
C 0 0 2 0 5 0 0 0
T 0 0 0 0 0 6 1 0
T 0 0 0 0 0 1 7 0

The number of rows in M corresponds to the length of S, while the number of
columns corresponds to the length of R. By filling M we deduce the runtime
and memory complexity of this algorithm: O(|R| · |S|). Usually |R| ≈ |S|, giving
a quadratic time behavior for this algorithm. We can easily reduce the required

32 Chapter 3. HGVS Description Extraction

amount of memory by storing only the current and previous row of table M ,
which gives us a memory bound of O(min(|R|, |S|)).

Although this dynamic programming approach seems similar to the Smith-
Waterman algorithm [Smith and Waterman, 1981] for local alignment, it is
significantly different. In this phase of the extraction algorithm we focus only
on finding the LCS. This permits us to use more powerful and non-local edit
operators, i.e., inversions and transpositions which are not possible within the
local alignment algorithm.

3.2.3 Finding the LCS more efficiently

In theory an instance of generalized suffix trees could be exploited giving us
a linear bound on runtime. However, the implementations are impractical
both in memory requirements as well as having large constants in the linear
runtime. Instead, we will present an alternative LCS retrieval method based on
the traditional dynamic programming approach in Section 3.2.2.

Although for application to chromosomal sequences we have to calculate
the LCS of two large strings, we expect that these strings within one species
would be very similar to each other. We expect the LCS of those strings to
be very large compared to the length of the strings. Using this knowledge
we propose to encode the strings into a higher alphabet. We split both string
into substrings of length k, called k-mers, one string into non-overlapping
k-mers and the other into overlapping k-mers. Using a k-mer representation is
a well-known optimization for sequence alignment [Compeau et al., 2011].

The size of the table required is greatly reduced by the use of non-overlapping
k-mers. It is, however, impossible to split both strings into non-overlapping
k-mers, because it would impose a constraint on the starting position of the
LCS to be found: only a LCS starting on a kth position can be found. By
splitting one string into overlapping k-mers we remove this constraint while
still reducing the table size.

In Table 3.3 we show the tables M2 and M3 constructed for the same
example as given in Table 3.2 by using a modified version of the recurrence

3.2. Methods 33

relation (3.1):

Mk(S1..i, R1..j) =

Mk(S1..i−k, R1..j−1) + 1 if Si = Rj

0 otherwise
, (3.3)

where Si and Rj are k-mers.

In order to calculate the value of position (7, 2), we have to look at the
position (7 − 3, 2 − 1) to extend the k-mers matched so far. Equation (3.2),
adapted in the natural way, can be used to extract the LCS based on k-mers.
In this case it yields the LCS AACACT with length 6. Consequently, we have to
extend the found LCS, possibly at both ends to find the actual LCS of length 7 as
a post-processing step. In general, the actual LCS can be extended k−1 symbols
to the left, and k − 1 symbols to the right. This implies that for k > 1 the LCS
can be found at a position in the Mk table with a sub-optimal value. To be
precise: one less than the maximum value found using Equation (3.2). All
these positions have to be considered for the LCS as well.

Table 3.3: Dynamic programming approach with overlapping and non-
overlapping 2-mers and 3-mers.

M2 AA CA CT TA

AC 0 0 0 0
CT 0 0 1 0
TA 0 0 0 1
AA 1 0 0 0
AC 0 0 0 0
CA 0 2 0 0
AC 0 0 0 0
CT 0 0 3 0
TT 0 0 0 0

M3 AAC ACT

ACT 0 1
CTA 0 0
TAA 0 0
AAC 1 0
ACA 0 0
CAC 0 0
ACT 0 2
CTT 0 0

In comparison to the original table M , the Mk table is much smaller:
(|S| − k + 1) × b|R|/kc. If we can swap the roles of R and S freely, it is

34 Chapter 3. HGVS Description Extraction

advantageous to choose R to be the longest string. Again, we only have to
store a part of this table: the current row and the k previous ones. All of these
rows contain fewer elements than those in table M . The memory constraints
remain approximately the same as for the original algorithm. The runtime,
however, is greatly reduced for large values of k.

3.2.4 Choosing the size of the of k-mers

If we compare Table 3.2 and Table 3.3, it appears that we cannot find all
arbitrary common substrings of R and S. For instance, the substring ACT

starting in R at position 9 and in S at position 7 is not present in Table 3.3
due to an unfortunate misalignment in the non-overlapping k-mers. Moreover,
all common substrings with a length less than k are not present at all. To
be certain to find a common substring of length `, k has to be at most d`/2e.
Therefore, we can consider k to be a guess for the expected length of the LCS
between R and S.

To achieve the best performance of this algorithm, the initial value for k
has to be chosen carefully. On one hand we like k to be as large as possible to
reduce the runtime as much as possible. On the other hand k has to be small
enough compared to the LCS between the two strings. In general we will not
know the exact length of the LCS.

In case the algorithm returns no result, we lack the guarantee of the
traditional approach, that there is no common substring between both strings.
If k is chosen too large, the whole table will contain zeroes or ones and the
algorithm fails to produce a result. To find the LCS, we have to reduce the value
of k and run the algorithm again until a result is returned or the value of k falls
below a certain threshold. In general, this threshold can be 1 which guarantees
that there exists no common substring between both strings. However, this is
impractical for large strings. Usually, the threshold can be set at the expected
length of the LCS between two random strings over alphabet Σ, trivially bound
by 2 log|Σ| n for strings of length n [Abbasi, 1997].

3.2. Methods 35

3.2.5 Adapting the extraction algorithm for inversions, transposi-
tions and inverse transpositions

So far the extraction algorithm in Figure 3.1 handles only variants of the dele-
tion, insertion, and substitution operations. To add support for the inversion
operator, we have to run the LCS algorithm twice. First, the sample string is
matched to the original reference string. Second, it is matched against the
reverse complement of the reference string (in every instance of the recursion).
If the LCS is found on the reverse complement, the algorithm picks this LCS
and removes it from the solution. In the exceptional case of a tie between
the length of a regular LCS and the length of a reverse complement LCS, the
algorithm prefers the regular one, because of the higher weight associated with
a reverse complement match. In the next step of the recursion a new decision
will be made on whether to use the original or a reverse complement LCS
independent of the current choice. Note that the complexity of the algorithm
does not change essentially as we do twice the amount of work.

In order to find useful transpositions, we consider all insertions of a certain
length. In practice, insertions of two base pairs will usually not be considered
to be transpositions as all occurrences of two base pairs will be present else-
where. With increasing length of the insertions the probability that these exact
sequences are found elsewhere diminishes quickly. Therefore, if we are able
to locate these sequences elsewhere, we can be confident that they are indeed
transpositions. Instead of looking for the exact sequences, we use a modified
recursive instance of the extraction algorithm to find transpositions with small
variations. The main difference between the regular extraction algorithm and
the modified algorithm proposed here is that deletions within a transposition
are not meaningful, i.e., we just describe the actual insertions either as regions
to be found elsewhere in the string or as regular insertions. Likewise, inverse
transpositions are found by matching against the reverse complement string.

36 Chapter 3. HGVS Description Extraction

3.3 Experiments

We performed computer experiments to demonstrate the performance of our
proposed algorithm both in terms of speed and the quality of its output. In the
first experiment we will focus on the performance of the extraction algorithm
on large DNA strings, i.e., whole human chromosomes. The second experiment
aims to minimize the resulting descriptions in a real-life case study. The final
experiment shows the biological quality of the resulting descriptions.

In all experiments we used a fixed initialization and reduction scheme for k
when the algorithm fails to return a solution, as explained in Section 3.2.4. We
initialize k to |R|/4; in case of no solution we reduce k ← k/3. This seems to
be a good balance for maximizing k and miniziming the amount of re-runs for
the LCS_k algorithm. On average 1 to 2 re-runs are sufficient.

For the transposition cut-off discussed in Section 3.2.5, we specify a thresh-
old of 10% of the length of the inserted string. Any matched regions smaller
than this length are considered to be uninteresting as transpositions and are
described as regular deletions/insertions. Modifying this cut-off will greatly
affect the runtime of the algorithm. Again, for our experiments, this cut-off
strikes a good balance between runtime, description length, and biologically
interesting patterns.

3.3.1 Performance on large DNA strings

To demonstrate the usefulness and speed of our proposed algorithm we
used all chromosomal RefSeq sequences from human genome build NCBI36
(GCF_000001405.12), GRCh37 (GCF_000001405.13) and
GRCh38 (GCA_000001405.15) and performed three extraction experiments:

1. NCBI36 (sample) vs. GRCh37 (reference);

2. NCBI36 (sample) vs. GRCh38 (reference);

3. GRCh37 (sample) vs. GRCh38 (reference).

We extracted the HGVS descriptions of the differences of the respective sample
sequences relative to the respective reference sequences per chromosome with

3.3. Experiments 37

a total computation time of about 40 hours, see Figure 3.2.
As a preprocessing step we replaced all sequential occurrences of N with a

single N. Large sequences of N are commonly found at the starts and ends of
chromosomes (telomeres) and at their centers (centromeres). We particularly
wanted to avoid transposition matching of sequences of N as they yield no
information.

1
2
3
4
5
67
8
9

10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y M

Ti
m

e
(h

)

Chromosome

NCBI36 vs. GRCh37
NCBI36 vs. GRCh38

GRCh37 vs. GRCh38

Figure 3.2: Performance of the extraction algorithm per chromosome on a
desktop PC (3.4 GHz and 16 GB RAM).

In Figure 3.3 we observe that the maximum description length for any
chromosome is about 1 MB. The descriptions can be calculated in at most
1 hour for most chromosomes except for chromosomes 5, 7, 8, and X. Here,
we observe a large number of relatively small insertions which are just large
enough to be considered for the transposition extraction. This process is very
expensive in terms of calculation time, as a whole chromosome needs to be
matched against a small string, eliminating the speed-up gained when using a
large k.

There seems to be no obvious relation between the calculation time and the
resulting description length; a longer calculation time does not always result in
a more concise description. Again, small insertions seem to contribute most
to this phenomenon. Often the expensive transposition extraction process is
started, but the resulting description in terms of transpositions is, in the end,
longer than the trivial description. This results in an increase in computation

38 Chapter 3. HGVS Description Extraction

100 B
1 kB

10 kB
100 kB

1 MB
10 MB

100 MB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y M

S
iz

e

Chromosome

NCBI36 vs. GRCh37
NCBI36 vs. GRCh38

GRCh37 vs. GRCh38
Chromosome size

Figure 3.3: HGVS Description lengths of the extraction algorithm per chromo-
some.

time as well as in the description length.

We should mention that the case of description of one genome build relative
to an other is a very artificial example. In each new version of the human
genome information is added, i.e., gaps representing unsequenced regions have
been replaced with regions that had not been sequenced before and assembly
errors have been corrected. This results in multiple large insertions. Also, these
descriptions yield no useful biological knowledge. However, we can give an
estimate of the amount of information added with every new build.

Parallelization of the algorithm is trivially possible by using threads for each
recursive call. The task of efficiently partioning the work over a fixed number
of threads is non-trivial. The current recursive definition implies that many
calls will terminate relatively quickly. The overhead of starting threads in these
circumstances should be considered carefully. Our algorithm in its current form
is ill-suited for distribution over multiple machines. Apart from the design
of our algorithm we also have to provide an efficient way of accessing global
data as the algorithm uses non-local operators. Moreover, one of our primary
design criteria is the ability of efficiently generating variant descriptions within
a desktop environment.

In Figure 3.4 we present the distribution of the HGVS operators from
the description of Chromosome 2 (NCBI36 vs. GRCh37). This distribution is

3.3. Experiments 39

representative for the distribution of the operators for most of the chromosomes
in this experiment (note that Chromosome M has no variants).

0 100 200 300 400 500

inverse transposition

transposition

substitution

inversion

insertion

duplicate

deletion/insertion

deletion

Frequency

Figure 3.4: The distribution of HGVS operators for Chromosome 2 (NCBI36 vs.
GRCh37).

The distribution in Figure 3.4 shows that almost 74% of all variants are
substitutions. The insertion operators contribute most to the length of the
descriptions (data not shown). The individual variants of composite transpo-
sitions are partitioned into their respective operators, e.g., the transposition
12_13ins[17_51;GC;50_99;CTCTG] contains two transpositions, and two in-
sertions.

3.3.2 Automated description extraction using
sequences from a gene database

For this experiment we used the IMGT/HLA Database [Robinson et al., 2014]
from which we extracted the sequence of 3,588 HLA-B variant genes. For most
of these sequences allele descriptions in HGVS-like format are provided using
coding DNA numbering with RefSeq Gene reference sequence NG_023187.1
(see for example: https://ebi.ac.uk/cgi-bin/ipd/imgt/hla/get_allele_
hgvs.cgi?B*73:01). As all sequences are between 500 and 1,000 bp long, cal-
culation time is not an issue and is in fact dominated by disk access times. For

40 Chapter 3. HGVS Description Extraction

this experiment it took about 1 hour to automatically generate all HGVS de-
scriptions.

The original descriptions contain predominantly substitutions. For substitu-
tions that are very close together it is often more concise to describe them using
a deletion/insertion operator. The HGVS nomenclature forbids the occurrence
of two adjacent substitutions. However, these are commonly found in the
original descriptions. The original descriptions never have deletions at the
beginning or end of the sequence while these variants are all captured by the
automatic extraction process. Because of the missing deletions the resulting
description length of the automated extracted description can be longer than its
corresponding original one. If we disregard these deletions, the automatically
derived description is either the same or of (much) smaller length. Finally, we
have observed some irregularities in the original descriptions with regard to the
HGVS nomenclature, e.g., [960_961dupT;] which contains two mistakes and
an inaccuracy: (1) only one nucleotide is duplicated, so there is no need for a
range of positions, (2) the nucleotide letter(s) do not have to be present for
duplicates, and (3) as there is no variant following the duplicate no separating
symbol (;) is needed. We have communicated the results of our description
extraction with the curators of the IMGT/HLA Database.

3.3.3 Replacing reference sequences for gene variant databases

Gene variant database curators need to update gene-centered reference se-
quences (predominantly RefSeq Gene files) when new (improved) versions are
generated following the release of a new genome build. The current algorithm
can help: variant sequences can be generated from the original descriptions
using the Mutalyzer Name Checker. These sequences can be compared with
the new RefSeq Gene sequence leading to updated HGVS variant descriptions.
These descriptions can replace the old ones in the database.

3.4. Discussion 41

3.4 Discussion

In this section we introduce two additional qualities of automatically generated
HGVS descriptions especially when used in genomic databases.

3.4.1 Compression

HGVS descriptions can be an attractive alternative for compressing DNA se-
quences, especially in a database containing sequences with high similarity
that can be described using a single reference sequence. Often the standard
reference genome can be used. All instances in the database can be stored by
using their HGVS descriptions instead of their sequences and (optionally) one
copy of the reference sequence. The difference between the original chromo-
some size and its corresponding description length is large: up to a million
times smaller, see Figure 3.2. To give an impression of the overall compression
efficiency, storing the complete human genome requires approximately 3 GB,
while storing only the descriptions will take approximately 6 MB per instance
giving a reduction 466 times. [Brandon et al., 2009] introduced a similar way
of compressing genomic sequence data. They achieved similar results in terms
of the compresssion factor as our method. As they focus on developing a com-
pression algorithm, they used a binary encoding scheme for frequent partial
variants. In this respect their algorithm differs from ours: we focus on the
actual variants and we describe the complete variants in a human readable
form.

Traditional compression techniques such as gzip will reduce the size of the
human genome to approximately 800 MB. Apart from a much better compres-
sion rate, the HGVS format is human readable. Furthermore, many useful
queries, e.g., determining the presence of a substitution, can be performed
directly on the HGVS descriptions without the need for decompression.

3.4.2 Transitivity

In principle we could also transform descriptions generated using one spe-
cific reference string to descriptions versus other reference strings. This is a

42 Chapter 3. HGVS Description Extraction

potentially powerful operation for large genomic databases. It enables the
conversion of entire databases to a new version of the reference genome in
considerably less time than generating descriptions versus this new reference
genome from scratch.

This transformation can be done by generating the HGVS description of the
original reference string versus the new reference string, and then computing
the new HGVS description for each instance by combining its description with
the description of the reference genomes. This results in a linear (in terms
of the description) amount of work for each instance. The actual implemen-
tation of the merging is beyond the scope of this chapter. However, to give
an intuition for a possible implementation we provide a small example. Con-
sider the HGVS descriptions g.[5_14inv] and g.[3T>C;9G>C]. The merging
of non-overlapping variants is trivial. Positions might have to be offset based
on the length of insertions and deletions in the prefix. For overlapping vari-
ants we can either construct the corresponding trivial deletion/insertion, i.e.,
g.[5_14delinsCGACCGAT] or alternatively split the inversion into two inver-
sions separated by a substitution: g.[10_14inv; 9G>C;5_8inv]. Although the
resulting description is a valid HGVS description, a more concise description
might be found when running the extraction algorithm directly.

3.5 Conclusion

We introduced an algorithm to extract HGVS descriptions from raw DNA
sequences with respect to reference sequences. We made this algorithm com-
putationally efficient for highly similar strings by introducing an alternative
version of the classic LCS algorithm using overlapping and non-overlapping
k-mers. We showed that the combination of these algorithms is able to com-
pute the HGVS descriptions of large DNA strings in a reasonable amount of
computation time and that the resulting descriptions are relatively small. The
HGVS descriptions yielded by the extraction algorithm are fully compliant with
the Mutalyzer tool suite. The Name Checker tool can be used to generate the
original sample string from the description.

We proposed to extend the HGVS nomenclature with the transposition

3.5. Conclusion 43

operator as it can greatly reduce the lengths of descriptions, while still being
able to efficiently compute these transpositions.

In addition to having a canonical algorithm for generating HGVS descrip-
tions we have shown that these descriptions are useful in genomic databases
for their compression and transitivity properties. The automatic extraction of
descriptions will be of great value to curators of existing databases: it makes
updates using new versions of reference sequences or of the nomenclature and
correction of HGVS descriptions very easy.

3.5.1 Future work

Nesting of variants has been proposed in an extension of the HGVS no-
menclature [Taschner and den Dunnen, 2011]. Our extraction algorithm
does not support nesting (with the exception of complex transpositions). A
possible extension of the extraction algorithm could be made towards finding
simple nested variants.

Breakpoint sequences observed with NGS sequencing technology also need
to be described in sufficient detail to allow reconstruction of their sequence.
The HGVS nomenclature committee is working on new guidelines involving
junctions of more than one chromosome. The current version of our algorithm
does not yet support transpositions involving more than one chromosome.

Other types of strings can be considered as well. We are mainly focussing
on an extraction algorithm for amino acid sequences to describe changes in
proteins using an altered set of edit operators.

