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We reexamine the emergence of a universal nonequilibrium steady state following a local quench
between quantum critical heat baths in spatial dimensions greater than one. We show that energy transport
proceeds by the formation of an instantaneous shock wave and a broadening rarefaction wave on either side
of the interface, and not by two shock waves as previously proposed. For small temperature differences the
universal steady state energy currents of the two-shock and rarefaction-shock solutions coincide. Over a
broad range of parameters, the difference in the energy flow across the interface between these two
solutions is at the level of 2%. The properties of the energy flow remain fully universal and independent of
the microscopic theory. We briefly discuss the width of the shock wave in a viscous fluid, the effects of
momentum relaxation, and the generalization to charged fluids.
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I. INTRODUCTION

In recent years there has been intense experimental and
theoretical activity exploring the behavior of nonequili-
brium quantum systems [1]. Stimulated by experiment on
low-dimensional cold atomic gases [2], theoretical work
has focused on the dynamics of integrable models and their
novel thermalization properties. An important finding is
that integrable models are typically described by a gener-
alized Gibbs ensemble (GGE) [3–5] due to the presence of
an infinite number of conservation laws. However, there are
very few theoretical results in nonintegrable settings and in
higher dimensions. Recent experiments on cold atomic
gases [6], Fermi liquids [7–9], and charge neutral graphene
[10,11] probe the dynamics of quantum systems in more
than one dimension. It is timely to establish universal
phenomena for such higher dimensional systems.
In recent work we investigated nonequilibrium energy

transport between quantum critical heat baths in arbitrary
dimensions [12], generalizing the results of [13] for one
spatial dimension. We showed that a nonequilibrium steady
state (NESS) emerges between the heat baths and that it is
equivalent to a Lorentz boosted thermal state. The latter
captures both the average energy current and its fluctua-
tions. In particular, the energy current and its entire
fluctuation spectrum is universally determined in terms
of the effective “central charge” (the analogue of the

Stefan-Boltzmann constant) of the quantum critical heat
baths and their temperatures. A key observation is that the
steady state is formed by propagating wave fronts emanat-
ing from the contact region. For small temperature
differences these wave fronts are ordinary sound waves,
but for large temperature differences their dynamics is
nonlinear. The properties of the NESS are constrained by
the equation of state of the heat baths and the conservation
of energy and momentum across the wave fronts. This
hydrodynamic approach based on macroscopic conserva-
tion laws thus provides a valuable handle on nonequili-
brium transport in arbitrary dimensions, establishing
bridges between different fields of research. The emergence
of a NESS bounded by two planar shock waves was also
considered in Refs. [14–16].
In this paper we reexamine this problem of nonequili-

brium energy flow in arbitrary dimensions. We show that
the idealized solution in terms of two infinitely sharp shock
waves requires modification in the light of thermodynamic
and numerical considerations. In spatial dimensions d > 1,
one of the shocks is actually a smoothly varying and
broadening rarefaction wave, even for vanishingly small
viscosity. The results in d ¼ 1 are unaffected due to the
light-cone propagation of the wave fronts, where the
effective speed of light and the speed of sound coincide.
In higher dimensions this is not the case and more
complicated solutions may arise. Even in the presence of
a broad rarefaction wave in d > 1, we always find that a
NESS is supported at the interface between the heat baths.
This NESS can once again be understood as a Lorentz-
boosted thermal state. In particular, numerical and analyti-
cal results for the solutions show that the steady state
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energy current is again universal. Quantitatively the effect
of a broadening rarefaction wave is small: for the exper-
imentally relevant dimensions of d ¼ 2, 3, the results for
the energy current across the interface agree to within about
2% of the idealized sharp shock solution over a broad range
of temperatures. In physically realizable systems, shock
broadening will also occur due to viscous corrections [12].
We outline the nonperturbative effects of this broadening in
Sec. III. We also provide a brief discussion of momentum
relaxation in Sec. IV and of charged fluids in Sec. V. We
conclude in Sec. VI with an outlook for future research.

II. UNIVERSAL NESS BETWEEN QUANTUM
CRITICAL HEAT BATHS

The setup we consider is depicted in Fig. 1. Two
infinitely large isolated but identical quantum critical
systems are initially prepared at temperatures TL and TR
and are brought into instantaneous contact along a hyper-
plane at time t ¼ 0 [12,13]. We restrict our attention to
Lorentz invariant quantum critical points with an effective
speed of light vl ¼ 1. On connecting the two systems
together, a NESS forms at the interface between the heat
baths, carrying a ballistic energy current JE ¼ Ttx, where
Tμν is the energy-momentum tensor.1 This “partitioning”
setup may be regarded as a local quantum quench joining
two independent subsystems. Equivalently, we may con-
sider applying an abrupt step temperature profile to an
otherwise uniform system. In the context of hydrodynamics
these initial conditions correspond to the so-called
Riemann problem, to which we will return in Sec. II A.
Let us briefly recall the results in d ¼ 1. In one spatial

dimension a spatially homogeneous NESS is formed in the
vicinity of the interface [13,17,18]. The steady state carries a
universal average energy current JE ¼ cπ2k2BðT2

L − T2
RÞ=6h,

where c is the central charge of the heat baths. This may be
regarded as an application of the Stefan-Boltzmann law to
quantumcritical systems,where the internal energydensity is
proportional to Tdþ1 [19]. The result for JE extends earlier
results for free fermions andbosons [20–23], as confirmedby
transport experiments on ballistic channels [24–26]. The
generalization to arbitrary c has been verified by time-
dependent density matrix renormalization group (DMRG)
methods on quantum spin chains [27–30]. Moreover, the
exact generating function of energy current fluctuations has
also been determined [13,17,18].
In Ref. [12] we discussed this nonequilibrium energy

transport problem from a rather different vantage point. By
combining insights from gauge-gravity duality and the
dynamics of energy and momentum conservation, we
showed that the (1þ 1)-dimensional NESS is completely
equivalent to a Lorentz boosted thermal state: by “running”

past a thermal state at temperature T ¼ ffiffiffiffiffiffiffiffiffiffiffi
TLTR

p
it is

possible to reproduce both the average energy flow and
the full spectrum of energy current fluctuations in the
NESS. Moreover, it is possible to extract the time depend-
ence from the solution of the macroscopic conservation
laws ∂μTμν ¼ 0 in 1þ 1 dimensions. The spatially homo-
geneous region is formed by outgoing “shock waves”
which emanate from the point of contact at the effective
speed of light; see Fig. 2. In particular, the form of the
steady state solution is uniquely determined by energy-
momentum conservation across the shock fronts. This
macroscopic conservation law approach is readily gener-
alized to other equations of state for the energy baths. This
has been recently demonstrated for perturbed (1þ 1)-
dimensional conformal field theories (CFTs) [31]. The
use of conservation laws across large transition regions
has also led to a thermodynamic description for the total,
integrated current in one-dimensional systems [32]. This
growing body of work opens the door to wider applications
of hydrodynamic techniques in low-dimensional quantum
systems; for earlier work in this direction see, for exam-
ple, Ref. [33].

A. The NESS in d > 1

In Ref. [12] we argued that the above results could be
generalized to higher dimensions by invoking the tech-
niques of relativistic hydrodynamics. In particular, we
showed that the numerical solution of conformal hydro-
dynamics leads to a nontrivial NESS in d ¼ 2, which is
robust to a variety of perturbations. Moreover, we showed
that both the average energy current JE and the shock
speeds uL;R were in very good quantitative agreement with
analytical solutions based on idealized two-shock solu-
tions; see Fig. 3(a). In this work we revisit this two-shock
ansatz, which we stressed in Ref. [12] is not a unique
solution, and show that it is necessary to include rarefaction
waves based on thermodynamic arguments; see Fig. 3(b).

FIG. 1. The setup consists of two isolated quantum critical
systems which are initially prepared at temperatures TL and TR
and are instantaneously connected along a hyperplane at time
t ¼ 0. A NESS forms at the interface between the heat baths
carrying an average energy current JE. Within a hydrodynamic
approach based on macroscopic conservation laws, the character
of the NESS is determined by the equation of state of the heat
baths and energy-momentum conservation across the resulting
wave fronts. The latter may take the form of sharp shock waves or
smoothly varying rarefaction waves, depending on the spatial
dimensionality.

1Here and henceforth, we implicitly average over quantum and
thermal fluctuations when defining the stress tensor.
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We show that this leads to even better agreement with our
numerical simulations. Importantly, the solution still con-
tains a NESS, and the properties of this NESS can be
determined analytically, though there is a change in the
exact results compared to the idealized two-shock solution.
The solution is still universal and is solely determined by
TL;R and the analogue of the central charge of the quantum
critical theories.

B. Hydrodynamic limit

As for any interacting theory, with strongly coupled
CFTs describing the quantum critical heat baths in Fig. 1,
the late-time behavior following the local quench is
expected to be captured by relativistic hydrodynamics.
In particular, for a strongly coupled fluid at temperature T,
we expect that hydrodynamics provides a good description
of the nonequilibrium dynamics of conserved quantities on
time scales long compared to 1=T. As the relevant time
scale t → ∞, higher derivative corrections to the hydro-
dynamic equations can be neglected [12].2 Thus the
relevant hydrodynamic equations are the conservation of
energy and momentum,

∂μTμν ¼ 0: ð1Þ

For a quantum critical state in local equilibrium, we know
that

Tμν ¼ CTdþ1½ðdþ 1Þuμuν þ ημν�: ð2Þ

Here ημν ¼ diagð−1; 1;…; 1Þ is the Minkowski space-time
metric and uμ is the local fluid velocity. This formula is
valid both in the asymptotic baths and in the emergent
NESS. The only nonuniversal part of Tμν is the constant C,
which effectively counts the number of degrees of freedom
in the CFT; it can be considered as a generalization of the
central charge of d ¼ 1 dimensional theories. Bringing two
hydrodynamical systems with T ¼ TL for x < 0 and
T ¼ TR for x > 0 into contact along a local interface is
known as the Riemann problem in fluid dynamics. We will
consider the solutions to this problem below.

C. Two-shock solution

The solutions of perfect conformal hydrodynamics are
not unique for d > 1, in contrast to d ¼ 1. Hence, to find a
proper solution to the Riemann problem requires additional
physical input. Guided by the exact shock wave solutions
found in d ¼ 1, we suggested that a NESS would arise
between planar shock waves in d > 1. Using this ansatz we
argued previously [12] that the nonequilibrium steady state
was equivalent to a Lorentz boosted thermal state at
temperature

Ts ¼
ffiffiffiffiffiffiffiffiffiffiffi
TLTR

p
: ð3Þ

FIG. 2. In one spatial dimension a spatially homogeneous steady state region is formed by outgoing shock waves moving at the
effective speed of light vl. The energy current JE and the exact spectrum of energy current fluctuations are completely described as a
Lorentz boosted thermal state with temperature T ¼ ffiffiffiffiffiffiffiffiffiffiffi

TLTR
p

.

(a) (b)

FIG. 3. (a) Idealized solutions to conformal hydrodynamics in d > 1 consisting of two planar shock waves emanating from the contact
region. Thermodynamic consistency requires that the left-moving shock wave is replaced by a smooth rarefaction wave, even for
vanishingly small viscosity. (b) Modified solution consisting of a left-moving rarefaction wave and a right-moving shock wave. The
difference between the average energy current JE across the interface in the two cases is about 2%. Note that a spatially homogeneous
region also occurs to the right of the rarefaction wave as indicated by the solid yellow shading; see Fig. 4.

2This is because one can rescale x → λx and t → λt with
λ → ∞; in this limit the viscosity η → η=λ. If η → 0, Eq. (1) is
invariant under this rescaling. This implies that there cannot be
any intrinsic time scales to the solution to our problem (up to
those set by viscous and other higher derivative corrections). We
will discuss one minor effect due to viscosity in Sec. III.
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The corresponding energy flow was given by [12]

JE ≡ Ttx
s ¼ C

Tdþ1
L − Tdþ1

R

vR þ ðdvRÞ−1
;

vR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d
dTðdþ1Þ=2

L þ Tðdþ1Þ=2
R

dTðdþ1Þ=2
R þ Tðdþ1Þ=2

L

vuut : ð4Þ

In particular, this NESS was separated by two asymmet-
rically moving shock waves that can be identified as
nonlinear sound waves; see Fig. 3(a). Checking this ansatz
against numerical simulations of conformal hydrodynamics
we found very good agreement with our analytical pre-
diction for JE, even far from the linear response regime.
In spite of this agreement, this solution is problematic for

the following physical reason. If we truncate the hydro-
dynamic gradient expansion at zeroth order in derivatives
(perfect hydrodynamics), then Eq. (1) implies conservation
of entropy

∂μððdþ 1ÞCTduμÞ≡ ∂μsμ ¼ 0; ð5Þ
on any smooth solution. However, at an infinitely sharp
shock wave this criterion is generally violated. This is not a
problem, as long as ∂μsμ ≥ 0, which is a local statement of
the second law of thermodynamics. This is a constraint of
hydrodynamics at all orders in the gradient expansion. At
first order for a conformal fluid, we have ∂μsμ ∼ ηð∂vÞ2=T
(schematically). The fact that viscosity is required to create
entropy at a shock front is a subtlety we will return to in the
next section. Away from these shock fronts, we will have
∂μsμ ¼ 0 in perfect fluid dynamics.
Consider now a shock wave moving at velocity vshock,

with T< and v< the fluid temperature and velocity to the left
of the shock, and T> and v> the fluid temperature and
velocity to the right of the shock. Then, integrating over a
shock of transverse area A across a time step t, we find thatZ

shock
dtddx∂μððdþ 1ÞCTduμÞ

¼ At × ðdþ 1ÞC
�
Td
>ðv> − vshockÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2>
p −

Td
<ðv< − vshockÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2<
p

�
:

ð6Þ
By the argument above, on a physical solution, the right
hand side must be positive. However, one can show that for
the shock moving into the region of higher temperature in
this two-shock solution (the left-moving one), the entropy
production given by Eq. (6) is negative. We now describe
the modification of this shock wave so that there is no local
entropy loss.

D. Rarefaction waves

Because only the left-moving shock violates the second
law of thermodynamics, we will look for a different

solution to the Riemann problem where the left-moving
shock is replaced with a left-moving rarefaction wave; see
Fig. 3(b). This is a solution that is continuous, but whose
first derivatives are discontinuous [34–38], and where T
and v≡ ux=ut are functions of x=t≡ ξ alone. By
assumption therefore the local configuration is always in
local equilibrium, in contrast to a true shock. Very similar
solutions were presented in [39]. The nontrivial equations
of hydrodynamics are the t and x components of (1) and
may be expressed as ordinary differential equations in ξ,

ξ
d
dξ

�
Tdþ1

dþ v2

1 − v2

�
¼ d

dξ

�
Tdþ1

ðdþ 1Þv
1 − v2

�
; ð7aÞ

ξ
d
dξ

�
Tdþ1

ðdþ 1Þv
1 − v2

�
¼ d

dξ

�
Tdþ1

1þ dv2

1 − v2

�
: ð7bÞ

Note that the coefficient C of the local equilibrium
configuration drops out, and the solution for the rarefaction
profile is independent of the value of this parameter.
As in [39], this pair of equations can be reorganized into

the form

�
0

0

�
¼ MðξÞ

�
dT=dξ

dv=dξ

�
ð8Þ

and is thus only satisfied when detðMðξÞÞ ¼ 0. A straight-
forward calculation reveals that this occurs when

ððdþ 1Þv − ðdþ v2ÞξÞð2v − ð1þ v2ÞξÞ
¼ ð1þ v2 − 2vξÞð1þ dv2 − ðdþ 1ÞvξÞ: ð9Þ

After further algebraic manipulations, we find that this
occurs when

ξ ¼ v� cs
1� csv

; ð10Þ

where

cs ¼
1ffiffiffi
d

p ð11Þ

is the speed of sound in a scale invariant quantum critical
fluid. Equation (10) is the relativistic velocity addition law
between �cs and the local fluid velocity in the x direction,
v. A straightforward inversion reveals that

v ¼ ξ ∓ cs
1 ∓ csξ

: ð12Þ

As this left-moving rarefaction wave should begin (v ¼ 0)
when ξ < 0, we conclude that we must take the minus sign
in Eq. (10) and the plus sign in Eq. (12). Next, we employ
entropy conservation in the rarefaction wave, and obtain
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ξ
d
dξ

�
Tdffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�

¼ d
dξ

�
Tdvffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
: ð13Þ

Using the relation between v and ξ in a left-moving
rarefaction wave, we convert this equation into a differ-
ential equation for dT=dv, which may be solved exactly.
Employing the boundary conditions T ¼ TL at the left edge
of the rarefaction wave gives

T ¼ TL

�
1 − v
1þ v

�
1=2

ffiffi
d

p

: ð14Þ

Let us now describe the rarefaction wave. For ξ < −cs,
the solution is T ¼ TL and v ¼ 0. For −cs < ξ < ξ�, the
solution is described by the relations (14) and (10). For
ξ� < ξ < uR, the solution is given by a homogeneous
region at temperature Th and boosted by a velocity vh.
Equation (14) implies that these are related via

Th ¼ TL

�
1 − vh
1þ vh

�
1=2

ffiffi
d

p

: ð15Þ

At ξ ¼ uR there is a shock wave, and for ξ > uR, the
temperature is TR and v ¼ 0.
The complete solution still has the undetermined param-

eters: ξ�, uR, Th, and vh. We can fix these as follows.
Equation (10) determines ξ� from vh. We then employ the
Rankine-Hugoniot conditions (corresponding to energy
and momentum conservation) at the right-moving shock
wave to obtain

ðdþ 1ÞTdþ1
h vh

1 − v2h
− uRT

dþ1
h

dþ v2h
1 − v2h

¼ −duRTdþ1
R ; ð16aÞ

1þ dv2h
1 − v2h

Tdþ1
h −

ðdþ 1Þvh
1 − v2h

uRT
dþ1
h ¼ Tdþ1

R : ð16bÞ

These equations fix a relation between Th and vh,

Th ¼ TR

�
2dþ ð1þ d2Þv2h þ ðdþ 1Þvh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4dþ ðd − 1Þ2v2h

p
2dð1 − v2hÞ

�1=ðdþ1Þ
: ð17Þ

At this point, uR is also fixed in terms of vh and Th. We now
have two formulas, Eqs. (15) and (17), for Th. There is a
unique value of vh which satisfies both, and this completely
fixes our solution. We provide a qualitative sketch of the
final temperature profile TðξÞ for two different temperature
ratios TL=TR in Fig. 4, clarifying the role of the parameters
defined above. For an observer at a fixed position x, at late
times (t → ∞) ξ → 0. As we will see, the energy current is
generically nonvanishing, and this defines a NESS, which
is centered at x ¼ 0.

As may be seen from Fig. 4, it is possible for the
rarefaction wave to envelop the contact interface at x ¼ 0.3

Employing Eq. (10) we see that this occurs when the local
speed in the homogeneous region as measured in the
laboratory rest frame exceeds the speed of sound,

FIG. 4. A qualitative sketch of the temperature profile TðξÞ in the rarefaction-shock solution to the Riemann problem with heat baths at
temperatures TL and TR. The curves correspond to different values of TR (for fixed TL) with TL ≳ TR (orange line) and TL ≫ TR (green
line). The profiles coincide up until the homogeneous region in between the rarefaction and the shock. The location of the latter is
dependent on TR. For TL=TR < Γ as given by Eq. (19), a spatially homogeneous profile envelops the contact interface (orange line),
while for TL=TR > Γ the interface resides in the rarefaction region (green line). A steady state energy current JE is established at the
interface in both cases.

3Similar behavior generically happens in free theories [40,41],
in spite of the different physics. Free theories do not contain
rarefaction waves, but the temporal decay toward the NESS away
from the contact region is algebraic, as in a rarefaction wave.
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vh > cs ¼
1ffiffiffi
d

p : ð18Þ

This occurs at a critical temperature ratio

TL

TR
¼ Γ≡

� ffiffiffi
d

p þ 1ffiffiffi
d

p
− 1

�1=2
ffiffi
d

p

×

�
3dþ d−1 þ ðdþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ðd − 1Þ2d−3=2

p
2ðd − 1Þ

�1=ðdþ1Þ

≈
�
3.459 d ¼ 2

2.132 d ¼ 3
: ð19Þ

When TL=TR < Γ, the rarefaction wave does not include
the origin, and so the NESS is spatially homogeneous about
x ¼ 0 at finite time t. When TL=TR > Γ, the NESS is
contained in the rarefaction wave, and only becomes
spatially homogeneous asymptotically as t → ∞;
see Fig. 4.
It is interesting that the equations derived above for a

rarefaction wave coincide with the exact (two-shock)
results in d ¼ 1 [12,13]. However, we stress that there is
no rarefaction wave in d ¼ 1.

E. Energy transport at the interface

Having established the rarefaction-shock solution, we
now examine the energy current at the interface x ¼ 0, the
location of the emergent NESS. The energy current at the
interface JE ¼ Ttx follows by computing Tðξ ¼ 0Þ≡ T0

and vðξ ¼ 0Þ≡ v0, and employing Eq. (2)

JE ¼ ðdþ 1ÞCTdþ1
0

v0
1 − v20

: ð20Þ

Consider first the limit where TL ≈ TR. In this regime, the
rarefaction wave does not envelop the origin. We find T0 ≈
ðTL þ TRÞ=2 and (see Appendix A)

JE ≈
C

ffiffiffi
d

p ðdþ 1Þ
2

�
TL þ TR

2

�
d
ðTL − TRÞ: ð21Þ

The rarefaction-shock and two-shock solutions both repro-
duce this result, at leading order in TL − TR. When
TL=TR > Γ, the rarefaction wave envelops the origin,
and we find a universal result

JE ¼ C
ðdþ 1Þ ffiffiffi

d
p

d − 1

� ffiffiffi
d

p
− 1ffiffiffi

d
p þ 1

�ðdþ1Þ=2 ffiffi
d

p

Tdþ1
L : ð22Þ

Surprisingly, Eq. (22) is independent of TR.
More generally, we can numerically solve (15) and (17)

to compute JE at any TL;R. Notably, the rarefaction-shock
result for JE is very close to the one predicted using the
two-shock solution, even as TL=TR → ∞. The two pre-
dictions are within 2% of each other in the TL=TR → ∞
limit in both d ¼ 2 and d ¼ 3; see Fig. 5.
The difference between the rarefaction-shock and two-

shock solutions is most transparent in the spatial profile of
physical observables. This is clearly seen in Fig. 6 which
compares the x and t dependence of the rarefaction-shock
and two-shock solutions to the numerical solution of
perfect conformal hydrodynamics given in Ref. [12].
Note that at the rather extreme pressure ratio of PL=PR >
100 (where P ¼ CTdþ1 in the fluid rest frame), where the
rarefaction wave envelops the origin, finite size effects are
present in our numerical results.

III. VISCOUS CORRECTIONS

In this section we clarify the qualitative role of dis-
sipative viscous corrections to the rarefaction-shock
dynamics above, and we describe the width of the right-
moving shock wave when TL > TR. We focus on TL −
TR ≪ TR for simplicity. Perturbatively, we showed [12] at
intermediate time scales that the shock width will grow
diffusively: lshock ∼

ffiffiffiffiffiffi
Dt

p
with diffusion constant D ∼

ηT−d−1 and viscosity η. Our purpose in this section is to

FIG. 5. A comparison of the rarefaction-shock prediction for JE ¼ Ttxðx ¼ 0Þ (blue curve), compared to the two-shock prediction (red
curve), in d ¼ 2, 3. It is readily seen that results are numerically very close to each other. For simplicity, we have measured JE in units of
CTdþ1

R in the above plots.
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expand on this result, and to argue that perturbation theory
fails at late times.
We know from Eq. (6) that the entropy production at

the shock front, per unit transverse area per unit time, is
given by

S ¼ ðdþ 1ÞC
�
Td
hðuR − vhÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2h
p − Td

RuR

�
: ð23Þ

In terms of δ≡ TL=TR − 1, we find (using results from
Appendix A)

S ¼
ffiffiffi
d

p ðd2 − 1Þ
48

CTd
Rδ

3 þ Oðδ4Þ: ð24Þ

As in the nonrelativistic case [42], S vanishes at leading
order in δ and only appears at order δ3. We can relate S to
the width of the shock by noting that in a conformal fluid,
the only source of entropy production (at leading order) is
through viscous dissipation, so a scaling argument immedi-
ately leads to

Spert ∼
Z
shock

dx
η

T
ð∂xvxÞ2: ð25Þ

Evaluating this on the perturbative solution corresponding
to a Gaussian profile with width lshock ∼

ffiffiffiffiffiffi
Dt

p
one obtains

Spert ∼
ηv2h

Tlshock
: ð26Þ

At late times this entropy production rate is not sufficient to
be compatible with Eq. (24). We conclude that perturbation
theory breaks down at a characteristic time scale

tshock ∼
η

Tdþ1
R δ2

; ð27Þ

making it clear that this effect is nonperturbative in δ. This
effect cannot be seen by directly solving the hydrodynamic
equations perturbatively with the step (Riemann) profile. In
nonrelativistic fluids, it is typically the case that the shock
simply stops growing and maintains a finite width, similar
to a soliton [42]. It would be interesting to confirm this for
the relativistic fluid.
In the regime where TL ≫ TR, the above argument

breaks down. Noting by dimensional analysis that
η ∼ Td, we estimate that perturbation theory breaks down
when

FIG. 6. A comparison of the hydrodynamic variables Tðx; tÞ, vðx; tÞ, and the resulting energy current, Ttxðt; xÞ, in the rarefaction-
shock solution versus the two-shock solution. We have also included the numerical solution of [12] of the Riemann problem (with a
smoothed temperature profile) in d ¼ 2, with TL ¼ 5 and TR ¼ C ¼ 1. The numerical data are taken at time t ¼ 1.25, with initial
conditions Tðx; t ¼ 0Þ ¼ ðTL þ TRÞ=2 − ðTL − TRÞ tanhð6.5 sinðxÞÞ, with periodic boundary conditions at x ¼ �π. It is readily seen
that the rarefaction-shock solution provides a better fit to the data than the two-shock solution.
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lshock ∼
1

TL
: ð28Þ

It would be interesting to study this problem more carefully
in future work, most likely through numerical simulations.
Since our estimate of lshock is comparable to the scale at
which hydrodynamics itself breaks down, higher derivative
corrections to the hydrodynamic equations cannot be
neglected. This work could potentially be carried out using
gauge-gravity duality, as this holographic approach auto-
matically “resums” hydrodynamics to all orders in the
gradient expansion.

IV. MOMENTUM RELAXATION

In the previous sections, we have focused on
fluids without impurities or other lattice effects which
break translation invariance. In many realistic physical
systems (such as electron fluids in metals), these effects
are present, but if weak, they may be systematically
accounted for within a hydrodynamic framework. As
these effects violate momentum conservation,4 we may
extend the hydrodynamic equations (1) on very long
wavelengths to

∂μTμt ¼ 0; ð29aÞ

∂μTμi ¼ −
Tti

τ
: ð29bÞ

Here, τ is a phenomenological parameter corresponding to
the time scale over which momentum decays. The validity
of this hydrodynamic approximation has been shown
explicitly in the limit where the fluid velocity is
small compared to the speed of light by coupling the fluid
to sources that break translational symmetry [43].
However, Eq. (29) has been used for quite some time
(see, e.g., [44–46]). When the rate is small and momentum
relaxation is weak, the stress tensor of the fluid will be
approximately unchanged from the clean fluid [43], and we
may continue to use the stress tensor (2). The validity of
(29) for flow velocities comparable to the speed of light is
less clear, but as we will see, the fluid velocities tend to be
small at late times. We therefore expect that our discussion
is qualitatively right.
As we discussed earlier for the Riemann problem, the

temperatures in the problem do not introduce a relevant
time scale for hydrodynamic phenomena. At the perfect
fluid level, the only time scale in the problem is τ. For
t ≪ τ, the dynamics of the fluid is effectively described by
the solution of Sec. II D. For t ≫ τ, if the system reaches a
steady state where ∂t and ∂x are “small,” the energy flow is
determined by the equation

Ttx ≈ −τ∂xTxx: ð30Þ

Hence, if a steady state forms, the fluid velocity and Ttx

vanish as t → ∞, yielding an equilibrium state with

Ttt ≈ dTxx: ð31Þ
Hence, the momentum-relaxing hydrodynamic equations
lead to a diffusion equation for the energy density ϵ ¼
Ttt ¼ dCTdþ1 (and pressure) for t ≫ τ,

∂tϵ ≈
τ

d
∂2
xϵ; ð32Þ

where the diffusion constant is τc2s ; since this is perfect
conformal hydrodynamics, the speed of sound is c2s ¼ 1=d.
Remarkably, although the dynamics for t ≪ τ is highly
nonlinear, momentum relaxation reduces the late time
dynamics to simple diffusion. We conclude that when t ≫ τ,

FIG. 7. An intensity plot of Ttx as a function of x and t, in
conformal hydrodynamics with momentum relaxation. We use
the same initial conditions as in Fig. 6, but with TL ¼ 2. The left
panel shows τ ¼ 3, and the right panel shows τ ¼ 0.3. The value
of the energy current, and the width of the region between the
shock waves, is evidently reduced in the right panel.

FIG. 8. The algebraic decay of the energy current at the
interface obtained by conformal hydrodynamics with momentum
relaxation. We use the same initial conditions as in Fig. 7 and
set τ ¼ 0.3.

4The heat current, not energy, is exactly conserved [43];
however, upon spatial averaging this effect is not important.
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ϵ ¼ dC

�
Tdþ1
R þ Tdþ1

L

2
þ Tdþ1

R − Tdþ1
L

2
erf

xffiffiffiffiffiffiffiffiffi
tτ=d

p
�
: ð33Þ

This late time behavior can also be seen by considering the
fate of sound modes in the linear response regime [45].
Figure 7 shows a numerical simulation of the equations of
momentum relaxing hydrodynamics. It is clear that the NESS
does not persist for times t≳ τ. Indeed, as t → ∞,
Ttx ∼ t−1=2, as is readily shown from Eqs. (30), (31), and
(33). We have confirmed this numerically in Fig. 8.
Experimental observation of the NESS thus requires probing
the quantum dynamics of these inhomogeneous systems on
fast time scales compared to τ.

V. CHARGED FLUIDS

A straightforward extension of our results in d > 1 is to
quantum critical systems with a conserved charge. In that
case, the two asymptotic heat baths may have different
chemical potentials μL;R, in addition to different temper-
atures TL;R. Equation (1) is then supplemented by charge
conservation,

∂μJμ ¼ 0: ð34Þ
For a perfect fluid,

Jμ ¼ nuμ; ð35Þ
where n is the charge density. In a relativistic gapless fluid,
Eq. (2) is unchanged (see, e.g., [11]), up to replacing CTdþ1

with Pðμ; TÞ, the pressure in the local fluid rest frame.
Hence, the dynamics ofP and uμ closes and decouples from
the dynamics of n. The energy-momentum dynamics is
therefore the same as described in Sec. II D, after making the
replacements CTdþ1

L;R → PL;R, where PL;R denote the pres-
sures in the left and right baths at t ¼ 0.
In the rarefaction wave, a straightforward analysis

similar to that for energy and momentum gives us the

local charge density nðx; tÞ ¼ nðξÞ. Clearly to the left of the
rarefaction wave it is identical to the left asymptotic bath
value, and to the right of the shock wave it equals the right
asymptotic bath value. Within the left-moving rarefaction
wave,

nðξÞ ¼ nL

�
1 − v
1þ v

� ffiffi
d

p
=2
; ð36Þ

where nL;R are the initial charge densities in the left/right
reservoirs. At the right edge of the rarefaction wave, we
have

n ¼ nL;h ≡ nL

�
1 − vh
1þ vh

� ffiffi
d

p
=2
: ð37Þ

Just to the left of the right shock wave n ¼ nR;h, with nR;h
given by a Rankine-Hugoniot equation,

nR;hvhffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2h

p − uR
nR;hffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2h

p ¼ −uRnR: ð38Þ

For generic values of nL;R, it will be the case that
nL;h ≠ nR;h. A new shock wave appears where the charge
density jumps between these two values; see Fig. 9. Such a
shock must move at vh, the velocity of the fluid in the
steady state.5 This follows directly from studying the
charge conservation equation in the local rest frame of
the fluid, in the uniform boosted region between the

FIG. 9. A qualitative sketch of the charge density nðξÞ in the hydrodynamic Riemann problem for a charged fluid without momentum
relaxation.

5This is commonly called a contact discontinuity in the
literature on non-relativistic shocks. The presence of quantum
critical charge diffusive processes [44] means that unlike for a
Galilean invariant fluid, entropy will be produced at this dis-
continuity (charge diffusion occurs without fluid flow). However,
this entropy production cannot be computed in the ideal fluid
limit, as it could for the right-moving shock wave, and so the rate
of entropy production likely vanishes algebraically with t. In the
linear response regime, this decay rate is t−1=2.
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rarefaction and shock waves. This slowly moving shock
wave will also exhibit diffusive broadening, analogous to
the discussion in Sec. III. Only at late times will this
diffusive correction to the NESS be convected away; hence,
numerically detecting this NESS may require some care. In
the special case where PL ¼ PR, the dynamics is entirely
governed by (nonlinear) charge diffusion. In this case we do
not expect a NESS with a nonzero charge current to appear
as t → ∞; with PL ¼ PR the energy current and the fluid
velocity are zero; hence Jx ¼ nux ¼ 0.
For a discussion of entropy balance for the right-moving

shock wave, see Appendix B.

VI. DISCUSSION AND CONCLUSIONS

In this manuscript we have examined the nonequilibrium
energy flow between quantum critical heat baths in arbitrary
dimensions. We have shown that it is necessary to consider
both shock waves and rarefaction waves in order to describe
the steady state energy flow in d > 1. This yields minor
corrections to the numerical value of JE in the resulting
NESS, compared to our previous work [12]. However, there
is a qualitative change in the approach to the NESS for large
temperature ratios TL=TR > Γ, where Γ ≈ 3.459 in d ¼ 2
and Γ ≈ 2.132 in d ¼ 3. We have also discussed extensions
of our previous work to account for viscous broadening of
shock waves, and the generalization of our hydrodynamic
solution to inhomogeneous fluids as well as charged fluids.
Although the exact analytical characterization of the NESS
presented in [12] has been modified in d > 1, other aspects
of the hydrodynamic discussion—including the robustness
of JE against perturbations inhomogeneous in the transverse
spatial directions [12]—are unchanged.
Though our focus in this paper has been on the appearance

of a nonequilibrium steady state, we hope to return to the
quantum and thermal fluctuations of this energy current,
captured by higher point correlation functions of JE. In the
idealized two-shock solutionwe showed that all higher order
moments of the (total) energy current in the NESS are
recursively related to the average (total) current (across the
contact interface). These extended fluctuation relations
(EFR) are exact in (1þ 1)-dimensional conformal theories
[13] and are asymptotically correct in free field theories in
d > 1 [17,41], where the dynamics is qualitatively similar to
rarefaction waves. It will be interesting to revisit the argu-
ments for deriving the EFRs in higher dimensional systems,
presented in [12], in light of our new hydrodynamic results
for TL=TR > Γ.
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APPENDIX A: PERTURBATIVE COMPARISON
OF SOLUTIONS

In this appendix we compute the properties of the NESS
to third order in perturbation theory as a function of the
perturbative parameter

δ≡ TL

TR
− 1: ðA1Þ

One finds for the rarefaction-shock solution that

Th ¼ TR

�
1þ δ

2
−
δ2

8
þ 23þ 2d − d2

384
δ3
�
þ Oðδ4Þ; ðA2aÞ

vh ¼
ffiffiffi
d

p �
δ

2
−
δ2

4
þ 65 − 18dþ d2

384
δ3
�
þ Oðδ4Þ: ðA2bÞ

For the two-shock solution, one finds instead

T2-shock
h ¼ TR

�
1þ δ

2
−
δ2

8
þ δ3

16

�
þ Oðδ4Þ; ðA3aÞ

v2-shockh ¼
ffiffiffi
d

p �
δ

2
−
δ2

4
þ 33 − 10dþ d2

192
δ3
�
þ Oðδ4Þ:

ðA3bÞ

Note that deviations between the two solutions occur only
at Oðδ3Þ, and for d > 1. In addition, the change in the
coefficients is quite small for the physical dimensions of
d ¼ 2, 3.
An alternative way to write these equations is to note that

T2-shock
h ¼ ffiffiffiffiffiffiffiffiffiffiffi

TLTR
p

[12]. Using this in (A2a) we may recast
the rarefaction-shock solution in the form

Th ¼
ffiffiffiffiffiffiffiffiffiffiffi
TLTR

p �
1 −

ðd − 1Þ2
384

δ3 þ Oðδ4Þ
�
: ðA4Þ

It is readily seen that Th ¼
ffiffiffiffiffiffiffiffiffiffiffi
TLTR

p
in d ¼ 1, but it receives

cubic corrections in δ for d ≠ 1. Similarly,

vh ¼ v2-shockh

�
1 −

ðd − 1Þ2
192

δ2 þ Oðδ3Þ
�
: ðA5Þ
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Again, the results for the rarefaction-shock and two-shock
solutions coincide in d ¼ 1, but quadratic corrections in δ
appear for d ≠ 1.

APPENDIX B: ENTROPY CHANGE ACROSS
THE RIGHT-MOVING SHOCK

In this appendix, we demonstrate that the entropy change
across the right-moving shock remains compatible with the
second law of thermodynamics, even in the presence of
charge degrees of freedom. Specifically, we show that the
entropy density just to the left of the right-moving shock,
sR;h, is larger than the entropy density of the right heat bath,
sR, in a scale invariant relativistic charged fluid; see Figs. 4
and 9. In this pursuit, we first review some thermodynamic
preliminaries.
In equilibrium, the entropy density is constrained by

scale invariance and dimensional analysis to have the form

s ¼ ϵd=ðdþ1Þf
�

n

ϵd=ðdþ1Þ

�
; ðB1Þ

where ϵ is the energy density, n is the charge density, and f
is a function of the dimensionless ratio

X ¼ nϵ−d=ðdþ1Þ: ðB2Þ

Although the function f is specific to the model under
consideration, it satisfies some general properties. For
example, charge conjugation symmetry about n ¼ 0
implies that fðXÞ ¼ fð−XÞ. Further, using the first law
of thermodynamics

ds ¼ 1

T
dϵ −

μ

T
dn; ðB3Þ

we see that ð∂s=∂nÞϵ ¼ −μ=T. Using charge conjugation
symmetry, we find f0ð0Þ ¼ 0, as μ ¼ 0 when n ¼ 0. More
generally, we conclude that f0ðXÞ > 0 if X < 0 and
f0ðXÞ < 0 if X > 0, corresponding to fðXÞ having a
maximum at X ¼ 0.6

Without loss of generality we may take XR > 0, due to
charge conjugation symmetry. In order to show that
sR;h − sR ≥ 0, it is sufficient to show that fðXR;hÞ ≥
fðXRÞ, since ϵR;h > ϵR. In Fig. 10 we plot the ratio
XR;h=XR in d ¼ 2, 3, as obtained from Eqs. (17) and
(38) using our numerical values for vh and uR. It is readily
seen that XR;h=XR ≤ 1. It follows that fðXR;hÞ ≥ fðXR;hÞ,
and thus sR;h − sR ≥ 0, as required.
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