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ABSTRACT

Recent observations have revealed a variety of young star clusters, including embedded systems, young massive
clusters, and associations. We study the formation and dynamical evolution of these clusters using a combination
of simulations and theoretical models. Our simulations start with a turbulent molecular cloud that collapses under
its own gravity. The stars are assumed to form in the densest regions in the collapsing cloud after an initial free-fall
time of the molecular cloud. The dynamical evolution of these stellar distributions is continued by means of direct
N-body simulations. The molecular clouds typical of the Milky Way Galaxy tend to form embedded clusters that
evolve to resemble open clusters. The associations were initially considerably more clumpy, but they lost their
irregularity in about a dynamical timescale, due to the relaxation process. The densest molecular clouds, which are
absent in the Milky Way but are typical in starburst galaxies, form massive, young star clusters. They indeed
are rare in the Milky Way. Our models indicate a distinct evolutionary path from molecular clouds to open clusters
and associations or to massive star clusters. The mass–radius relation for both types of evolutionary tracks
excellently matches the observations. According to our calculations, the time evolution of the half-mass–radius
relation for open clusters and associations follows r tpc 2.7 pch age

2 3( )= , whereas for massive star clusters
r tpc 0.34 Myrh age

2 3( )= . Both trends are consistent with the observed age–mass–radius relation for clusters in
the Milky Way.
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1. INTRODUCTION

Star clusters are classically categorized into two groups:
Galactic open clusters and globular clusters. Open clusters are
generally rather young (1 Gyr) with typically 100–104 stars;
hereafter we call them “classical” open clusters. Globular
clusters are old (10 Gyr), more massive (105Me), and
dense (100Me pc−3). Recent observations indicate that there
is a wide variety among open star clusters in the Milky Way.
These types include

1. embedded clusters, which are very young, 3Myr, and
therefore still embedded in their natal gas cloud (Lada &
Lada 2003); embedded clusters reside in the Galactic disk
and are composed of several 100 stars in a volume with a
radius of ∼1 pc (Figuerêdo et al. 2002);

2. associations, which are considered unbound from the
moment they were born (Gieles & Portegies Zwart
2011); and

3. young massive clusters, which are also young (10Myr)
and extremely dense (103Me pc−3) (Portegies Zwart
et al. 2010).

Some of the embedded clusters evolve into classical open
clusters if they survive gas expulsion (Lada & Lada 2003;
Fujii 2015a).

Young massive clusters are common in nearby starburst
galaxies, such as in M83 (Bastian et al. 2011) and M51 (Chandar
et al. 2011), but they are rare in the Milky Way. Two young
massive star clusters reside close to the Galactic center, namely,

Arches and Quintuplet, and the others are in the spiral arms. This
latter category includes the clusters NGC 3603, Westerlund 1
and 2, and Trumpler 14 (Portegies Zwart et al. 2010).
Pfalzner (2009) suggested another type of young star clusters:

“leaky clusters.” Leaky clusters have a mass similar to those of
the massive clusters (∼104Me), but with a much lower density
(∼1–10Me pc−3). Portegies Zwart et al. (2010) classified the
leaky clusters listed in Pfalzner (2009) as OB associations.
According to the arguments in Gieles & Portegies Zwart

(2011), the distinction between an open cluster and an
association can be made on the ratio between the age of the
stars and the dynamical time of the system (tage/tdyn). If the
ages of the stars exceed the dynamical age of the system, the
stars must be bound together. Otherwise the system is unbound.
In an attempt to clarify the various classes and families of

stellar conglomerates, we discuss in this paper the formation
and dynamical evolution of young star clusters by means of
simulations. The numerical modeling used here allows us to
make a more clear distinction between the difference in initial
conditions and the difference in evolution. It therefore helps us
to differentiate between the various classes and families of
clustered stellar environments.
In previous papers, we performed direct N-body simulations

using initial conditions constructed from the results of
hydrodynamical simulations of turbulent molecular clouds.
There we found that young massive clusters form from
turbulent molecular clouds if the local star-formation efficiency
(SFE) depends on the local gas density (Fujii 2015b; Fujii &
Portegies Zwart 2015). We also found that observed embedded
clusters tend to evolve into classical open clusters
(Fujii 2015b). Our simulations, however, did not provide a
channel for forming associations (or leaky clusters, according
to Pfalzner 2009).
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At this point it is still unclear how leaky clusters form.
Pfalzner (2011) proposed that leaky clusters are born as
embedded clusters, that their mass increases due to a prolonged
phase of star formation, and that the expansion is driven by the
expulsion of the residual gas. This scenario was tested by
means of simulations in Pfalzner & Kaczmarek (2013),
Parmentier & Pfalzner (2013), and Pfalzner et al. (2014), in
which it was concluded that the known embedded clusters in
the Galactic disk are the ancestors of leaky clusters.

In our previous simulations we did not find leaky clusters.
This may have been a result of our selected initial conditions
for the parental molecular cloud, for which we chose rather
massive (105–106Me) and dense (100–1000 cm−3) structures.
The molecular clouds observed in the Milky Way tend to
follow Larsonʼs relation (Larson 1981), which indicates a
relation between cloud mass and density: according to this
relation, massive clouds have a lower density if the clouds are
close to being virialized. The initial conditions in our previous
study would then be biased toward too-dense clouds compared
to the typical massive clouds in the Milky Way.

In this paper, we expand on the initial parameter space by
also allowing massive clouds with a lower density. This
expansion of the parameter space helps in the formation of
associations, as well as in making dense, massive clusters. We
support our numerical models with theoretical arguments in
order to understand the dynamical evolution of each type of
star clusters (classical open, embedded, young massive, and
leaky clusters or associations).

2. SIMULATIONS

We perform a series of N-body simulations based on the
results of hydrodynamical simulations of turbulent molecular
clouds. We first perform simulations of molecular clouds with a
turbulent velocity field using a smoothed particle hydrody-
namics (SPH) code. The resolution of the hydrodynamical
simulations is relatively low, and therefore the simulation
cannot resolve the formation of individual stars, but can resolve
the clumpy structures of the gas. After around one free-fall time
of the initial molecular clouds, we stop the hydrodynamical
simulations and replace a portion of the gas particles with
stellar particles assuming an SFE depending on the local
density. We then remove all residual gas particles and perform
direct N-body simulations only with stellar particles. We
describe the details of the initial conditions and the simulations
in the following (see also Fujii 2015b; Fujii & Portegies
Zwart 2015).

2.1. The Astronomical Multipurpose Software Environment

The hydrodynamical simulations and the data analyses in
this study are performed using the AMUSE framework
(Pelupessy et al. 2013; Portegies Zwart et al. 2013). AMUSE
is not a single code, but an extensive library of more than 50
high-performance simulation codes. The AMUSE consortium
is a spin-off from the modeling and observing DEnse STellar
systems (MODEST) community, which after three workshops
in Lund, Amsterdam, and Split culminated in a first
implementation of what at that time was called the Multi-user
Software Environment (or MUSE) (Portegies Zwart et al.
2009). Later the package was extended from its primary
objective of Noahʼs Arc (two codes per domain) to about a
dozen codes per domain.

Apart from scientific production software, AMUSE also
supports generating the initial conditions for data processing.
The fundamental package is written in the Python language,
and it is freely available via Github and via the project web
page at http://amusecode.org. All the scripts used to run the
simulations in this paper are available via this project
web page.

2.2. Hydrodynamical Simulations

2.2.1. Initial Conditions for Molecular Clouds

All initial conditions are generated using the AMUSE
framework. We adopt isothermal (30 K) homogeneous spheres
as initial conditions of molecular clouds following Bonnell
et al. (2003). We give a divergence-free, random Gaussian
velocity field vd with a power spectrum v k2 4∣ ∣d µ - (Ostriker
et al. 2001; Bonnell et al. 2003). The spectral index of −4
appears in the case of compressive turbulence (Burgers
turbulence), and recent observations of molecular clouds
(Heyer & Brunt 2004) and numerical simulations (Federrath
et al. 2010; Roman-Duval et al. 2011; Federrath 2013a) also
suggested values similar to −4. Each model is run with a
different random seed for a realization of the initial conditions.
We adopt the virial ratio E E 1k p∣ ∣ ∣ ∣ = (here Ek and Ep are

kinetic and potential energies) and three masses for the
molecular clouds of Mg=104, 4×105, and 106Me. The
densities of these molecular clouds are ρg=17, 170, and
1700 cm−3 (which corresponds to 1, 10, and 100Me pc−3

assuming that the mean weight per particle is 2.33mH,
respectively). The initial conditions are summarized in Table 1.
Once we chose the cloud mass and density, the radius (Rg)

and the velocity dispersion in three dimensions (σg) are
determined. Some of our models (such as models m1M-d1-s15,
m1M-d1-s16, and m1M-d1-s17, with Mg=106Me and
ρg=17 cm−3) roughly follow Larsonʼs relation (Larson 1981):

L

1pc
km s , 1

0.5
1( ) ( )s ~ -

⎛
⎝⎜

⎞
⎠⎟

where σ is the velocity dispersion, and L is the size of the cloud
(Heyer & Brunt 2004; Mac Low & Klessen 2004).
In Figure 1 we present the distribution of mass and density

for the simulations listed in Table 1. In order to determine the
mass of a molecular cloud that is consistent with Larsonʼs
relation, we adopt a velocity dispersion of GM Rg g gs  .
Some models initially have a higher velocity dispersion, which
we motivate through cloud–cloud collisions (Furukawa
et al. 2009; Fukui et al. 2013, 2014) or to simulate molecular
clouds in starburst galaxies. We further motivate and discuss
our choice of the initial conditions in Section 4.

2.2.2. SPH Simulations

We perform hydrodynamical simulations using the
SPH code Fi (Hernquist & Katz 1989; Gerritsen & Icke 1997;
Pelupessy et al. 2004; Pelupessy 2005) in the AMUSE
framework. Our calculations have a relatively low mass
resolution of m=1Me per particle. The gravitational soft-
ening length during the hydrodynamical simulations is 0.1 pc,
and the SPH softening length (h) is chosen such that
ρgh

3=mNnb (Springel & Hernquist 2002). Here Nnb=64 is
the target number of neighbor particles. With the adopted
isothermal gas temperature of 30 K we can resolve the Jeans
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instability down to h∼0.4 pc, which is smaller than the typical
size of known embedded clusters (1 pc) (Lada & Lada 2003)
but somewhat larger than the observed typical width of gas
filaments (∼0.1 pc) (Arzoumanian et al. 2011). With these
limitations, we obviously cannot resolve the formation of
individual stars, but we do resolve dense gas clumps. We think
that the limited resolution of our hydrodynamical simulations
does not pose a serious problem because we are interested in
the global dynamical structure of the molecular cloud after only
about an initial free-fall timescale, tff,i (see Table 1 for the free-
fall timescales for each of the initial models). In fact, after
0.9tff,i we stop the hydrodynamical simulation to analyze the
resulting gas distribution, initialize stars, and continue the
simulations using a gravitational N-body code.

2.3. Star Formation

After stopping the hydrodynamical simulation (around
t0.9 ff, i~ ), we replace some of the SPH particles with stellar

particles. The selection of SPH particles is based, through the
local gas density ρ, on the local SFE òloc:

M100 pc
. 2loc sfe 3

0.5

( ) a
r

=
-



⎛
⎝⎜

⎞
⎠⎟

Here αsfe is a free parameter in our simulations to control the
SFE. The form of òloc (Equation (2)) is motivated by the
observations of individual molecular clouds for which the star-
formation rate is argued to scale with the local free-fall
timescale (Krumholz et al. 2012; Federrath 2013b).
Here we adopt αsfe=0.02, which reproduces the observed

global SFE across an entire molecular cloud of several percent,
but also leads to a 10%–30% SFE in dense regions
(>1000Me cm−3) (Lada & Lada 2003; Higuchi et al. 2009;
Federrath & Klessen 2013). In Table 2 we present the global
SFE (ò) and the SFE for the dense regions (òd) in our
simulations.
Depending on the local SFE, we replace individual gas

particles with individual stellar particles, conserving their
positions and velocities. For each selected particle, we assign a
mass from the Salpeter mass function (Salpeter 1955) between
0.3Me and 100Me, irrespective of the mass of its parent
SPH particle. The mean mass of the adopted mass function is
1Me, which corresponds to the mass of individual
SPH particles. Mass in our simulations is therefore globally
conserved, but not locally.

2.4. N-body Simulations

After the stellar particles are initialized (mass randomly from
the Salpeter mass function, and position and velocity from the
parent SPH particle), we remove the residual gas, leaving only
the stellar particles in the simulations. The instantaneous
removal of the gas does not have a dramatic effect on the stellar
distribution because most stars are formed in the densest
regions where little low-density (residual) gas is present. The

Table 1
Initial Conditions for the Hydrodynamical Simulations

Model Mass Radius Density Velocity Dispersion Initial Free-fall Time
Mg (Me) rg (pc) ρg (cm

−3) σg (km s−1) tff, i (Myr)

m1M-d100-s7 1×106 13.4 1.7×103 19.6 0.81
m1M-d1-s15 1×106 62 17 9.1 8.1
m1M-d1-s16 1×106 62 17 9.1 8.1
m1M-d1-s17 1×106 62 17 9.1 8.1
m400k-d100-s1 4×105 10 1.7×103 14.4 0.82
m400k-d100-s2 4×105 10 1.7×103 14.4 0.82
m400k-d100-s3 4×105 10 1.7×103 14.4 0.82
m400k-d10-s8 4×105 21 170 9.9 2.5
m400k-d10-s9 4×105 21 170 9.9 2.5
m10k-d100-s4 1×104 2.87 1.7×103 4.2 0.81
m10k-d100-s5 1×104 2.87 1.7×103 4.2 0.81
m10k-d100-s6 1×104 2.87 1.7×103 4.2 0.81
m10k-d10-s11 1×104 6.2 170 2.9 2.6
m10k-d10-s12 1×104 6.2 170 2.9 2.6
m10k-d10-s13 1×104 6.2 170 2.9 2.6

Note.All models are supervirial, with E E 1.k p∣ ∣ ∣ ∣ = Here, “s” indicates the random seeds for the turbulence.

Figure 1.Mass–density relation of our initial models (see Table 1). The dashed
line indicates the mass–density relation from Larsonʼs relation (Larson 1981)
for a virialized cloud ( GM Rg

2
g gs = ).
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gas that is insufficiently dense to form stars tends to envelop
the densest stellar conglomerates.

We now switch on the N-body code, for which we adopted
the direct sixth-order Hermite predictor-corrector scheme
(Nitadori & Makino 2008) without gravitational softening
and with an accuracy parameter of η=0.1–0.25. The total
energy error over the time span of the N-body simulations
remained below ∼10−3.

The sizes of the stars we adopted from the zero-age main
sequence radii for solar metallicity stars (Hurley et al.2000).
We allow stars to collide using the sticky sphere approach.
New stellar radii are assumed to be the zero-age main sequence
radii for the new mass. Stellar mass loss was incorporated only
at the end of the main sequence (Hurley et al.2000; see Fujii
et al. 2009; Fujii & Portegies Zwart 2013, for the details).

We did not perform the N-body simulations for models
m10k-d10 (Mg=104Me and ρg=10Me pc−3=170 cm−3)
because the hydrodynamical simulations resulted in less than
100 stars, and we aim to have 100Me star clusters. In these
simulations even the densest regions were <1000Me pc−3.

3. RESULTS

3.1. Formation of Embedded, Classical Open,
and Young Massive Clusters

The N-body simulations are started at what we will call
t=0Myr. The initial distribution of stars follows the
distribution of the densest regions in the turbulent molecular
cloud. In Figure 2 we present a time series of snapshots of
model m400k-d100-s3. The entire system continuously
expands because not all stars are bound after gas expulsion.
The distribution of stars is clumpy, and it takes a few Myr
before the stars assemble into a more coherent aggregate.

We interrupt the simulations twice, at t=2 and at
t=10Myr, in order to analyze the stellar distribution and
detect clustered aggregates. Clumps are found in these

snapshots by means of HOP (Eisenstein & Hut 1998) in
AMUSE using an outer cutoff density of M R4.5 4out s h

3( )r p=
(three times the half-mass density of the entire stellar system,

M R8h s h
3( )r p= , where Ms is the total stellar mass and Rh is

the half-mass–radius relation of the entire distribution of the
stars), a saddle-point density threshold (ρsaddle=8ρout), and
the peak density threshold (ρpeak=10ρout), and the number of
particles for the neighbor search (Ndense) and the number of
particles to calculate the local density (Nhop) are set to be 64.
The number of neighbors is used to determine which two
groups merge, Nmerge=4. With these settings, the detection
limit of the clump mass is ∼100Me. Sometimes HOP identifies
multiple clumps as one, but by applying the method repeatedly
we can separate those again. For this iterative procedure we
adopt ρout=ρh,c, where ρh,c is the half-mass density of a
detected clump. We continue this procedure until ρh,c100ρh,
after which the clumps are so dense compared to the
background that they do not separate anymore into substruc-
tures (see Fujii 2015b for the details).
In Figure 3 we present the mass and half-mass radius of the

star clusters obtained from our simulations at t=2 and at
t=10Myr. For comparison, we added a number of observed
open clusters (classical open, embedded, young massive, and
leaky clusters) to the same diagram. The majority of the
identified clusters have masses and radii consistent with those
of classical open clusters (Piskunov et al. 2008) (see also
Fujii 2015b) and of known embedded clusters (Lada &
Lada 2003). The densest initial molecular clouds (m1M-
d100, m400k-d100, and m400k-d10) tend to form massive
compact clusters, similar to young massive clusters. Such
compact clusters do not form in the less-dense or less-massive
molecular clouds (such as m1M-d1 or m10k-d100).
When observing the 10-Myr-old stellar conglomerates from

a distance, they tend to blend into a single star-forming region
with an average density of ∼0.01Me pc−3, which is compar-
able to the mean field density in the solar neighborhood

Table 2
Models for N-body Simulations

Model Mass N of Particles Virial Ratioa SFE (Global) SFE (Dense)
Ms(Me) Ns E Ek p∣ ∣ ∣ ∣ ò òd

m1M-d100-s7 1.1×105 109080 0.9 0.11 0.27
m1M-d1-s16 1.9×104 18760 0.50 0.019 0.63
m1M-d1-s16-t0.75 4.6×103 4566 19 0.0046 0.42
m1M-d1-s16-t0.65 3.9×103 3855 131 0.0039 0.083
m1M-d1-s15-t0.75 5.9×103 5902 1.6 0.0059 0.49
m1M-d1-s15-t0.65 4.0×103 3954 80 0.0040 0.12
m1M-d1-s17-t0.75 5.5×103 5506 6.4 0.0055 0.26
m1M-d1-s17-t0.65 4.3×103 4322 63 0.0043 0.088
m400k-d100-s1 3.2×104 31895 1.3 0.078 0.22
m400k-d100-s2 2.3×104 23273 4.2 0.057 0.16
m400k-d100-s3 4.3×104 42596 0.43 0.096 0.25
m400k-d10-s8 1.5×104 14978 1.4 0.037 0.38
m400k-d10-s9 2.8×104 27891 0.41 0.068 0.39
m10k-d100-s4 4.1×102 406 5.9 0.042 0.11
m10k-d100-s5 2.6×102 256 7.4 0.027 0.079
m10k-d100-s6 2.5×102 246 8.4 0.026 0.078
m10k-d10-s11 49 49 L 0.0049 0.00
m10k-d10-s12 61 61 L 0.0061 0.00
m10k-d10-s13 65 65 L 0.0065 0.00

Notes. Here, “s” indicates the random seeds for the turbulence.
a Ek∣ ∣ and Ep∣ ∣ are the total kinetic and potential energies of the entire stellar system, respectively. For virialized systems, the virial ratio equals 0.5. For models m10k-
d10 we did not perform N-body simulations, and therefore their virial ratio is not calculated.
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Figure 2. Snapshots of model m400k-d100-s3. The size of the white dots indicates the masses of the stars: 8<m/Me<16 for the small dots, 16<m/Me<40 for
middle sized, and m>40Me for the largest dots. Stars with a mass m<8 Me are plotted as small blue dots.

Figure 3. Mass–radius diagram of observed and simulated clusters at t=2 and 10 Myr since the start of the N-body simulations. Colored dots are clusters obtained
from simulations using a clump-finding method. Crosses indicate the median radius and the total mass of the entire stellar system rather than the detected individual
clusters. Red squares indicate observed clusters with an age of 1–5 Myr (left) and 5–15 Myr (right). Data are from Piskunov et al. (2008), Winston et al. (2009),
Luhman et al. (2003), Andersen et al. (2006), Fang et al. (2009), Levine et al. (2006), Flaherty & Muzerolle (2008), Bonatto & Bica (2011), Horner et al. (1997), Drew
et al. (1997), Hodapp & Rayner (1991), and Portegies Zwart et al. (2010). Observed clusters with names are the clusters listed in Pfalzner (2009) and Portegies Zwart
et al. (2010). Black thick solid and dash-dotted lines indicate the lines at which the relaxation time and the dynamical time are equal to the age of the stellar
populations. Gray dashed lines indicate the half-mass densities of 0.01, 1, 100, and 104 Me pc−3, and gray dotted lines indicate the half-mass relaxation times of 1000,
100, 10, and 1 Myr from top to bottom. We used the median radius for the observed leaky clusters (Wolff et al. 2007; Pfalzner 2009).
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(Holmberg & Flynn 2000). Such conglomerates may remain
unrecognizable as a cluster system. For those simulations in
which no clumps are detected down to a limit of 100Me, we
adopt the median distance of the stars from the cluster center.

The masses and half-mass radii of the clusters in our
simulations mainly resemble the populations of observed
embedded and classical open clusters. This result appears to
be independent of the initial molecular-cloud density.
Embedded and classical open clusters cluster around the point
where the cluster age (tage) equals the dynamical time (tdyn) and
the half-mass relaxation time (trh) (see also Fujii 2015b).

Here the dynamical time and the half-mass relaxation time
are written as

t
M

M

r
2 10

10 1 pc
year 3dyn

4
6

1 2
h

3 2

( )~ ´
-



⎛
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⎞
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⎛
⎝⎜

⎞
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t
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M
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8
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⎝⎜

⎞
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respectively (Portegies Zwart et al. 2010), where M is the
cluster mass, and rh is the half-mass radius. For clarity we
assumed that the virial radius of star clusters is comparable to
the half-mass radius and that the mean stellar mass is 1Me (as
is the case in our simulations). In Figure 3 we present lines on
which the relaxation (black full) and dynamical (black dash-
dotted) times are equal to the age of the clusters, respectively.
Both lines, as well as all the symbols, move upward with time.

For the formation of young massive clusters, we find that a
dense, massive molecular cloud is necessary. The densities
required to form such massive clusters exceed the density
expected by Larsonʼs relation; the velocity dispersion neces-
sary for the formation of young massive clusters is too high.
Such an initial high density may be realized by cloud–cloud
collisions (Fukui et al. 2014). The velocity dispersion of our
dense model is ∼20 km s−1, which is comparable to the typical
relative velocity of molecular clouds associated with young
massive clusters, such as NGC 3603 and Westerlund 2. For
these clusters, a collision between two molecular clouds was
considered to trigger their formation (Furukawa et al. 2009;
Ohama et al. 2010; Fukui et al. 2013, 2014), which is
consistent with our findings here.

To form a star cluster in our simulations, the molecular cloud
must be compressive (a high velocity dispersion due to a high
density), which is consistent with observations (Zinnecker &
Yorke 2007). From various initial conditions, we find that star
clusters similar to open, known embedded, and young massive
clusters form in these simulations, but leaky clusters
(M∼104Me and rh∼10 pc) must form from different initial
conditions. We discuss the formation of leaky clusters in the
following section (Section 3.2).

3.2. Formation of Leaky Clusters

In the previous section, we show that known embedded,
classical open, and young massive clusters form from turbulent
molecular clouds, but no leaky cluster is found in our
simulations. In this section we address the questions, How do
leaky clusters form? Is the formation process different from the
other clusters?

Pfalzner (2011) proposed that observed embedded clusters
grow in mass and size due to star formation and become leaky
clusters as a result of the expulsion of the residual gas. This
scenario was later explored, and the evolutionary tracks of such
a cluster on the mass–radius diagram were suggested
(Parmentier & Pfalzner 2013; Pfalzner & Kaczmarek 2013;
Pfalzner et al. 2014). Portegies Zwart et al. (2010), however,
classified the leaky clusters as OB associations. Here we do not
discuss if the leaky clusters are associations or clusters; we treat
both leaky clusters and associations as less-dense clustered
systems.
We consider leaky clusters (and also OB associations) to

form clumpy distributions but that they lose this structure in the
early dynamical evolution, contrary to the arguments in
Pfalzner (2011). We support our argument with the simulation
model m1M-d1-s16 (see the left panels in Figure 4). This
simulation started with a spherical molecular cloud that
collapsed asymmetrically because of the turbulent velocity
field. Stars that formed mainly in the densest regions result in
the stellar distribution being elongated and clumpy.
After the residual gas has been removed, the clusters tend to

be supervirial, and some stars escape right away (see the virial
ratio given in Table 2). As a consequence, the entire stellar
distribution expands with time. At an age of t=10Myr the
density of the environment has decreased substantially, and the
spatial distribution of the stars resembles leaky clusters and OB
associations. In Figure 5 we present the spatial distribution of O
and B spectral-type stars in the association Scorpius OB2 (Sco
OB2), which can be compared with our simulations in Figure 4.
Sco OB2 is composed of three subgroups: Upper Scorpius

(USco), Upper Centaurus-Lupus (Upper Cen-Lup), and Lower
Centaurus-Crux (Lower Cen-Crux) (Wolff et al. 2007). These
subgroups are listed in Pfalzner (2009) as leaky clusters and as
associations in Portegies Zwart et al. (2010). They are all
located at similar distances from the Sun, at 145 pc, 142, and
118 pc, respectively (Wolff et al. 2007), and therefore they are
considered to be a system. The distribution of massive (O and
B) stars in Sco OB2 is very similar to the distribution of
massive stars in model m1M-d1-s16 at an age of 10Myr.
In Figure 6 we present the result of our clump-finding

analysis for model m1M-d1-s16 at 2 Myr and at 10Myr.
At t=2Myr we detected ∼20 clusters that are similar to
observed embedded star clusters. At t=10Myr no clear
massive clusters remain visible in the snapshot (see Figure 4),
although we still detect several classic open cluster-like
structures; in the epoch between 2 and 10Myr, the stellar
distribution has dispersed.
When interpreting the entire system in each simulation as a

single association, the mass and radius are very similar to those
of observed leaky clusters and OB associations. In Figure 6 we
present these as crosses (near the top of the panels at 2 and
10Myr). Model m1M-d1-s16 has an appearance and dynamical
structure similar to the Sco OB2 system, rather than to the
individual subclusters USco, Upper Cen-Lups, and Lower Cen-
Crux. In this analysis we excluded single stars (those with a
local density ρ6<10−3Me pc−3), which is more than an order
of magnitude lower than the mean density of the solar
neighborhood (ρ6 here is the density measure within the six
nearest neighbors).
We still detected clumps consistent with open clusters in

model m1M-d1-s16. These clumps are the result of the
clumpiness of molecular clouds at a time when we stop the
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hydrodynamical simulations (at ∼0.9tff,i). In the observed star-
forming regions, however, stars appear to form when the local
density exceeds some threshold density for self-gravitating
clouds of ∼103 cm−3 (McKee & Ostriker 2007), and feedback
starts to dominate the hydrodynamics as soon as the first
massive star forms, which may happen well before a free-fall
timescale. The free-fall timescale of model m1M-d1-s16 is
∼8Myr, which is considerably longer than the formation time
for massive stars (∼1Myr) (McKee & Ostriker 2007). In such a
region, where the star-forming timescale is considerably
smaller than the free-fall timescale of the entire molecular
cloud, stellar feedback is expected to terminate the star
formation before the molecular cloud fully collapses. This
would result in a less-clumpy stellar distribution.
Unfortunately, in our simulations, we cannot take such

gradual star formation and feedback processes into account,
although they have been addressed with the AMUSE frame-
work by Pelupessy & Portegies Zwart (2012). In order to
mimic the early star-formation process, we experimented with
stopping the hydrodynamical simulations at an earlier epoch
and replacing the gas particles with stellar particles.
As in our previous simulations, we assumed that the

feedback terminates star formation and causes the residual
gas to be ejected instantaneously. We stop the hydrodynamical

Figure 4. Snapshots at t=2 (top) and 10 (bottom) Myr for model d1-1M, but for different timing of gas removal: t=0.9, 0.75, and 0.65 tff,i (models m1M-d1-s16,
m1M-d1-s16-t0.75, and m1M-d1-s16-t0.65, respectively) from left to right.

Figure 5. Positions of B-type stars that belong to USco (magenta), Upper Cen-
Lup (green), and Lower Cen-Crux (orange). Data are from Wolff et al. (2007).
We assume 140 pc as the distance (Wolff et al. 2007).
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simulation for model m1M-d1-s16 at t=0.65 tff,i and 0.75 tff,i
(5.3 and 6.2 Myr, respectively) and replace gas particles with
stellar particles in the same way as for model m1M-d1-s16, i.e.,
assuming a local SFE given by Equation (2) and the same
values for αsfe=0.02. The numbers of stars that form using
this procedure decrease considerably, and the resulting virial
ratio of the stellar system increases. We also run the same
initial conditions but with different random seeds (m1M-d1-s15
and m1M-d1-s17). In Table 2 we present some global
parameters for these models.

Snapshots of these models (m1M-d1-s16-t0.75 and m1M-
d1-s16-t0.65) are shown in the middle and right panels of
Figure 4. The distribution of massive stars is less clumpy than
that of model m1M-d1-s16 (standard model, in which the
hydrodynamical simulation is stopped at 0.9 tff; see the left
panels of Figure 4). We also apply the clump-finding algorithm
to these models, the results of which are shown in Figure 6. At
t=2Myr, several clumps are detected in both models, but
they are less dense than those detected in our standard model.
In model m1M-d1-s16-t0.65 in particular, the density of the
detected clumps is only slightly elevated compared to the
background density in the solar neighborhood (0.01Me pc−3)
(Holmberg & Flynn 2000), and these clumps may therefore not
be recognized as clusters. In model m1M-d1-s16-t0.75 some
clumps that resemble open clusters are still detected at
t=10Myr, but none in model m1M-d1-s16-t0.65. If we treat
the entire system as one cluster, the masses are similar to those
of leaky clusters and associations, even though the size remains
larger by about a factor of two. In Figure 6 we present the mass
and half-mass radius of the resulting clusters for stars with
ρ6>10−3Me pc−3.

Our assumption that star formation terminates instanta-
neously throughout the system after about one free-fall time of
the molecular cloud probably overestimates the effect of the
feedback considerably. In observed star-forming regions, the
feedback from massive stars tends to limit star formation
locally, but it may not affect the entire (∼100 pc across) star-
forming region. In the simulations of Pelupessy & Portegies

Zwart (2012), the wind of one massive ∼30Me star blows
the residual gas from the clustered environment in a couple of
Myr, which is much longer than that adopted in our
simulations.
If star formation proceeds as clumpy as simulated here, the

feedback is even more localized, which will result in a
considerable age spread among subgroups. Our simulations
would then be representative for the formation of cluster
complexes such as USco, Upper Cen-Lups, and Lower Cen-
Crux, or OB associations such as Sco OB2. The ages of these
three subgroups are slightly different from each other: 14–15,
11–12, and 5–6Myr for Upper Cen-Lup, Lower Cen-Crux, and
USco, respectively (Wolff et al. 2007). If we could assume
local feedback processes, an association (or leaky clusters)
similar to Sco OB2 might form from an initial condition, such
as models m1M-d1. Less-dense clusters tend to have wider age
spreads (Parmentier et al. 2014), which is also consistent with
our simulations. We therefore argue that the ancestors of
associations are conglomerates of denser embedded clusters.
We detect these as an environment with multiple low-mass but
rather dense clusters that disperse in time. The evaporation of
these clusters is driven by relaxation and feedback, and this
makes them resemble associations.

4. INITIAL CONDITIONS OF MOLECULAR CLOUDS

In the previous section, we showed that our dense models
tend to form young massive clusters and that less-dense models
lead to leaky clusters as well as known embedded and classical
open clusters. The type of the resulting star clusters is sensitive
to the initial conditions of the parental molecular clouds. In this
section, we compare our initial conditions with observed
molecular clouds and discuss a model for the formation of
clusters in the Milky Way and other nearby galaxies.
In Figure 7, we present the mass and density of individual

molecular clouds observed in the Milky Way and those
estimated for local disk and starburst galaxies (Krumholz
et al. 2012). We also show the initial conditions of our
simulations. The dashed line in Figure 7 indicates the Larsonʼs

Figure 6.Mass–radius diagram of detected clusters for models m1M-d1-s16 (green dots), m1M-d1-s16-t0.75 (blue triangles), and m1M-d1-s16-t0.65 (cyan diamonds)
at t=2 and 10 Myr. Red squares indicate observed young clusters; clusters with ages of 1–5 Myr and 5–15 Myr are plotted in the left and right panels, respectively.
The data for the observed clusters are the same as those in Figure 3. The mass and half-mass radii of simulations, interpreted as unresolved clusters, are shown as
crosses; each cross represents a single simulation.
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relation. In order to estimate the mass of molecular clouds
following Larsonʼs relation, we assume that the molecular
clouds are in virial equilibrium (i.e., they satisfy GM rg

2
g gs = ,

where σg, Mg, and rg are the velocity dispersion, mass, and
radius of the molecular clouds, respectively). Observed
molecular clouds, however, are not necessarily virialized.

Molecular clouds in the Milky Way tend to follow Larsonʼs
relation, but with a large scatter of the density. On the other
hand, not all of our initial conditions are consistent with the
mass and density of molecular clouds observed in the
Milky Way. Models m10k-d100 (104Me and 100Me pc−3;
1700 cm−3) and m10k-d10 (104Me and 10Me pc−3;
170 cm−3), for example, are initially indistinguishable from
typical molecular clouds in the Milky Way.

As we described in Section 3, the number of stars formed in
model m10k-d10 was too small (fewer than 100 stars) to be
recognized as a cluster in our analysis. Model m10k-d100
produces a sufficiently large number of stars but does not form
a recognizable cluster after 2 Myr. If we treat the entire region
of this model as a cluster conglomerate, the mass and radius are
similar to that of an open cluster. From this, we conclude that
the molecular clouds typical in the Milky Way tend to form
classical open clusters, but that they are insufficiently massive
and dense to form massive star clusters.

Model m1M-d1 (106Me and 1Me pc−3) represents the most
massive molecular cloud in the Milky Way (Murray 2011), and
it follows Larsonʼs relation. This initial condition results in
several embedded cluster cores, which eventually evolve to a
conglomerate of associations.

The initial conditions that tend to form young massive
clusters are considerably denser than the molecular clouds
observed in the Milky Way (see Figure 7). To form young
massive clusters in our simulations, a mass of at least several

105Me and a mean density of 10Me pc−3 (170 cm−3) are
required. Such initial conditions are common in local starburst
galaxies, but very rare in the Milky Way.
In Figure 7 we present the estimated mass and density of

molecular cloud density typical for local starburst and disk
galaxies. These data are obtained from Krumholz et al. (2012).
We calculated the masses and densities for these molecular
clouds from the free-fall timescale provided by Krumholz et al.
(2012) using the observed surface gas densities ( gS ). Krumholz
et al. (2012) considered two rather distinct regimes of
molecular clouds: the molecular cloud regime and the Toomre
regime. The molecular cloud regime is expected to be common
in local disk galaxies. The molecular clouds are decoupled
from their surrounding interstellar medium and as a result are
self-gravitating (Krumholz et al. 2012). The Toomre regime is
common in starburst galaxies. In this case the interstellar
medium is highly turbulent, and therefore the free-fall timescale
of the molecular clouds should be estimated using the midplane
pressure in the galactic disks (see Krumholz et al. 2012, for the
details).
Following the description of Krumholz et al. (2012), we

estimate the typical mass of molecular clouds for each galaxy
listed in Krumholz et al. (2012). We take the smaller free-fall
timescale for the molecular cloud and Toomre regimes (tff,GMC

and tff,T, respectively) as the free-fall timescale (tff), which is
consistent with Krumholz et al. (2012). We calculate the
density through the free-fall timescale using

Gt

3

32
. 5g

ff
2

( )r
p

=

In the Toomre regime, the midplane pressure in the disk of
surface gas density Σg is

P G
2
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2

g
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p
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Here ρg,T is the molecular cloud density in the Toomre regime,
σg is the velocity dispersion of the gas, and fP is a
dimensionless factor (Krumholz et al. 2012). The Toomre Q
for the gas is written as

Q
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Here β is the logarithmic index of the rotation curve (β=0 for
a flat rotation curve, whereas for solid-body rotation β=1),
and Ω=2π/torb (torb is the galactic orbital period) is the
angular velocity of galactic rotation (see also Krumholz &
McKee 2005). From these equations, the density of the
molecular cloud becomes
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Here we adopt Q∼1 and β=0 following Krumholz et al.
(2012). If we assume that the cloud is virialized—i.e.,

GM rg
2

g,T gs ~ , where Mg,T and rg are the mass and radius of

the cloud—from Equation (7) and M r3 4g,T g,T g
3( )r p= , we can

estimate the cloud mass using

M G t
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3
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g
3
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Figure 7. Mass–density relation of observed molecular clouds. Green
diamonds indicate individual molecular clouds in the Milky Way galaxy.
Blue circles and red triangles are for molecular clouds typical in individual
local disk and starburst galaxies, respectively. Each point indicates one galaxy.
The data are from Krumholz et al. (2012). Color squares indicate our initial
conditions, which are the same as those shown in Figure 1. The dashed line
indicates the mass–density relation following Larsonʼs relation for a virialized
cloud ( GM Rg

2
g gs = ).
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Because for each galaxy torb and Σg are given in Krumholz
et al. (2012), we can estimate the cloud density and mass from
Equations (8) and (9). Here we adopt fP;3, following
Krumholz et al. (2012).

For the molecular cloud regime (i.e., tff,GMC<tff,T), the
mass is estimated as follows. The mass of molecular clouds is
estimated by the two-dimensional Jeans mass in galactic disks
(Kim & Ostriker 2002; McKee & Ostriker 2007; Chandar
et al. 2011), which is given by

M
G

, 10g,GMC
g
4

2
g

( )
s

=
S

(see Equation(3) of Krumholz et al. 2012). Since the mass
and density of molecular clouds in the molecular cloud
regime are written as Mg,GMC rg

2p= GMCS and g,GMCr =

M r3 4 g,GMC g
3( )p - , where ΣGMC is the surface density of

molecular clouds, using Equation (10) we can calculate the
density of molecular clouds with (Equation(4) in Krumholz
et al. 2012)
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Here we adopt Σ GMC=85Me pc−2 and σg=8 km s−1 for all
galaxies following Krumholz et al. (2012). Using Equa-
tions (10) to (11), we obtain the mass and density in the
molecular cloud regime using the value for Σg from Krumholz
et al. (2012).

The obtained masses and densities for molecular clouds in
the local disk and starburst galaxies are presented in Figure 7.
Most galaxies are in the Toomre regime (and only 13 disk
galaxies are in the molecular cloud regime). The molecular
clouds typical for starburst galaxies are factors of 10–100
denser than those following Larsonʼs relation. Our massive and
dense models (m400k-d100, m400k-d10, and m1M-d100),
which form young massive clusters, are consistent with the
molecular cloud observed in starburst galaxies. Starburst
galaxies such as M83 (Bastian et al. 2011) and M51 (Chandar
et al. 2011) are indeed rich in dense, massive clusters. On the
other hand, molecular clouds typical in local disk galaxies do
follow Larsonʼs relation. Our model m1M-d1, which forms
classical open and leaky clusters (associations), appears to be
quite similar to these molecular clouds.

The typical molecular cloud in a disk galaxy, such as the
Milky Way, tends to form classical open clusters and
associations, but these clouds are insufficiently massive to
form young massive star clusters. This is consistent with the
abundance of open star clusters and associations in the Milky
Way and with the lack of massive star clusters. According to
our simulations, the formation of a massive star cluster requires
a massive (∼105–106Me) and dense (∼10–100Me pc−3)
molecular cloud. Such a massive molecular cloud has, if
virialized, a velocity dispersion of ∼20 km s−1. Such a high
velocity dispersion (under compressive conditions) could result
from the collision between two clouds (Furukawa et al. 2009;
Ohama et al. 2010; Fukui et al. 2014). Comparable high
velocities are observed in the regions surrounding young
massive clusters, such as in the vicinity of NGC 3603 (Fukui
et al. 2014) and Westerlund 2 (Furukawa et al. 2009; Ohama
et al. 2010). These clusters are claimed to have been the result

of cloud–cloud collisions (Furukawa et al. 2009; Ohama
et al. 2010; Fukui et al. 2014). These claims are supported by
three-dimensional magnetohydrodynamic simulations, which
also suggest that such cloud–cloud collisions initiate the
formation of massive cloud cores and potentially form massive
star clusters (Inoue & Fukui 2013).
Although our initial conditions of molecular clouds cover a

relatively wide range of mass and density, they are limited by
our choice to opt for homogeneous-density spheres. Recent
numerical studies indicate that molecular clouds with a
concentrated density profile such as a power law tend to form
one high-mass star in the center surrounded by many low-mass
stars (Girichidis et al. 2011, 2012). Such centrally concentrated
models then may more efficiently lead to the formation
of massive clusters than our adopted homogeneous initial
conditions.

5. MASS AND RADIUS EVOLUTION
OF YOUNG STAR CLUSTERS

Star clusters can be subdivided into several types, which
represent themselves clearly when presented in a mass–radius
diagram. The mass–radius distribution of star clusters changes
with time. Here we discuss the time evolution of the mass and
radius of young clusters.

5.1. Observations

We start with summarizing the mass and radius evolution of
observed young star clusters. These observations are presented
in Figure 8, in particular for observed embedded clusters,
classical open star clusters, young massive (starburst) clusters,
and associations (Hodapp & Rayner 1991; Drew et al. 1997;
Horner et al. 1997; Lada & Lada 2003; Luhman et al. 2003;
Andersen et al. 2006; Levine et al. 2006; Flaherty &
Muzerolle 2008; Piskunov et al. 2008; Fang et al. 2009;
Pfalzner 2009; Winston et al. 2009; Portegies Zwart et al. 2010;
Bonatto & Bica 2011). For clarity we bin the clusters in age in
intervals of tage=1–5Myr, 5–20Myr, and 20–100Myr.
Pfalzner (2009) and Portegies Zwart et al. (2010) list several

young massive clusters, but in many cases the listed radii differ.
We adopt the half-mass radius given in Portegies Zwart et al.
(2010) because the radius presented in Pfalzner (2009)
corresponds to the core radius of the clusters rather than the
half-mass radius. The former gives a more direct comparison
with our simulations. In our analysis we try to stay as much as
possible to the same definition of cluster radius. Piskunov et al.
(2008) present projected core and tidal radii by fitting King
models (King 1966). Because the density profiles for the open
clusters listed in Piskunov et al. (2008) are very shallow, we
adopted their core radii, which for a King model with W0=3
is quite similar to the half-mass radius (the ratio of the three-
dimensional core radius to half-mass radius is 0.65 for a King
model with W0=3).
Embedded clusters observed in the Milky Way galaxy reside

almost exclusively in the left panel of the mass–radius diagram
(t=1–5Myr panel in Figure 8) because they are young by
definition. Embedded and classical open clusters populate the
same region (at the bottom left in the same panel). These
clusters tend to grow in size with age, which is a consequence
of relaxation and outgassing; embedded clusters observed in
the Milky Way therefore appear as ancestors of classical open
clusters (Fujii 2015b). Associations populate the top right
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region of the left and middle panels (t=1–5Myr and
5–20Myr, respectively), and young massive clusters are found
to the right in the diagrams in Figure 8. As was already
suggested by Pfalzner (2009), young massive star clusters are
well separated in mass and radius from embedded and open
clusters. This separation, however, diminishes for the older age
group (20–100Myr; see the right panel of Figure 8).

5.2. Analytical Model for the Dynamical Evolution
of Young Star Clusters

The distribution and evolution of the observed star clusters
in mass and radius can be understood from our models of the
dynamical evolution for star clusters.

The lower limit of the cluster density can be understood by
considering the background density in the field. The magenta
dashed line in the diagram indicates ρ=0.1Me pc−3, which is
an order of magnitude higher than the mean density of the field
stars in the solar neighborhood (Holmberg & Flynn 2000). We
adopt ρ=0.1Me pc−3 as a lower limit for the cluster density
(magenta dashed line in Figure 8). Star clusters with a density
similar to or lower than the mean stellar density would
therefore not be recognizable as clusters. And indeed, only a
few of the most massive clusters reside above this curve, and
those have a relatively high concentration. As a consequence,
their core densities exceed the local density considerably,
which helps to identify them as clusters in observational
campaigns.

The blue dash-dotted lines in Figure 8 indicate the mass–
radius relation for which the dynamical timescale (see
Equation (3)) is equal to the age of the cluster. Each panel
contains two lines, one for the minimum and one for the
maximum age of the clusters shown in the panels. The region
between these lines is shaded blue. Clusters between or below
the blue lines will be recognizable as bound systems unless the
lines exceed the magenta dashed line. Portegies Zwart et al.
(2010) and Gieles & Portegies Zwart (2011) argued that the
ratio between cluster age and dynamical time provides a good
indicator for separating the bound from the unbound systems:
they adopt as a criterion t t 3age dyn  to make this distinction.
Using this criterion, they categorized the leaky clusters in
Pfalzner (2009) as associations. The blue region in Figure 8

moves upward with time, together with the observed clusters.
At t>20Myr (the right panel in Figure 8) the blue lines are
located above the magenta line, indicating that these clusters
have a density too low to be recognized as clusters.
The evolution of dense star clusters is quite different from

those of open clusters or associations. Dense star cluster
evolution can roughly be divided into two phases: before core
collapse and after core collapse. In the former phase, the core
radius of the star clusters shrinks, and as a consequence its core
density increases (Hénon 1965; Lynden-Bell & Wood 1968).
From the moment the first hard binaries form in the cluster core
(Spitzer & Hart 1971; Aarseth 1974), they act as energy
sources (Heggie 1975; Hut 1983), causing the core to re-
expand. From this moment on, the core- and half-mass radii of
clusters increases. These processes proceed on the half-mass
relaxation time:

t
G m
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Here σ and ρ are the velocity dispersion and density of the
cluster, respectively, and lnL is the Coulomb logarithm
(Spitzer 1987). We rewrite Equation (12) to include some
common dimensions in Equation (4).
Gieles et al. (2011) modeled the postcollapse evolution of

the half-mass radius and density of star clusters due to the
energy flux from the core, following the description of Hénon
(1965). We attempt to understand the dynamical evolution of
young star clusters using their description. We ignore the
precollapse phase and consider only the evolution in the
postcollapse (expansion) phase because the precollapse phase
is much shorter than the postcollapse. The core-collapse time,
which is the time for the precollapse phase, scales with the
relaxation time (see Equation (4) or (12)). This timescale
depends on the stellar mass function, and for clusters with a
realistic mass function the core-collapse time is generally
shorter than one relaxation (Portegies Zwart & McMillan 2002;
Gürkan et al. 2004; Fujii & Portegies Zwart 2014). Since most
of the young open clusters in our observed sample have a
relaxation time 10Myr (see the left panel of Figure 8), they
probably reach core collapse well within a few Myr. We also
ignore the effect of the Galactic tidal field because the timescale

Figure 8. Mass–radius diagrams of observed young star clusters for tage=1–5, 5–20, and 20–100 Myr from left to right. The data are from Lada & Lada (2003) for
embedded clusters (red circles), Piskunov et al. (2008), Winston et al. (2009), Luhman et al. (2003), Andersen et al. (2006), Fang et al. (2009), Levine et al. (2006),
Flaherty & Muzerolle (2008), Bonatto & Bica (2011), Horner et al. (1997), Drew et al. (1997), and Hodapp & Rayner (1991) for open clusters (red plus signs), and
Portegies Zwart et al. (2010) for young massive clusters and leaky clusters (red crosses). The data for the leaky clusters are overlapped with Pfalzner (2009). The
clusters listed in Portegies Zwart et al. (2010) are shown with the names.
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we treat here is short (<100Myr) compared to the timescale for
the tidal disruption (∼1 Gyr) (Gieles et al. 2007).

The time of the half-mass radius of clusters due to binary
heating in the core is given by Equation (B7) in Gieles et al.
(2011):
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Here N is the initial number of stars in the cluster. In Equation
(B7) in Gieles et al. (2011), the cluster mass is assumed as
M m N= á ñ , where má ñ is the mean stellar mass. They adopted
a scaled mass of m 0.5á ñ = , and as a result their Equation (B7)
is slightly different from our equation. If we assume that
m M0.5á ñ = , we can write this equation as

r
M

M

t
2.0

Myr
pc. 14h

2 3
1 3

age
2 3

( )z
-




⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Here we adopt t=tage because we ignore the precollapse
phase. The expansion-rate coefficient, ζ, depends on the ratio of
the maximum to the minimum mass in the stellar mass
function, μ≡mmax/mmin. In Gieles et al. (2011) we use
ζ;0.2, which corresponds to μ;10, and which is appro-
priate for globular clusters. Young clusters, however, should
have a larger value of μ because of the presence of massive
stars. For some of these clusters, mmax/mmin;100Me/
0.01Me;104. Following Gieles et al. (2011) and assuming
ζ∝μ1/2, we obtain ζ;20 for μ;104. Equation (14) with
ζ=20 for t=tage=2, 10, 40Myr is shown as green dashed
lines in Figure 8.

The majority of the observed clusters are located below this
evolutionary line rather than straddling the line, which indicates
that they have ζ<20. The green dotted lines in each panel of
Figure 8 show Equation (14) with ζ=0.2. Most of the
observed embedded and classical open clusters are located
between the dotted green (for ζ=0.2) and the dashed green
(ζ=20) lines. This may be caused by the large dispersion in ζ,
as we discussed here, or because the precollapse time is not
taken into account in our analysis. By ignoring the precollapse
time we reduce the evolution time of a star cluster compared to
the expectation.

The descriptions of Gieles et al. (2011) (Equations (13) and
(14)) give infinite density at t=0Myr, which hardly seems
realistic for actual young star clusters. Instead, we adopt
Equation(B4) of Gieles et al. (2011):
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which gives the half-mass density as a function of time. We
also adopt m M0.5á ñ = . We assume a (maximum) half-mass
density of 104Me pc−3 at tage=0.1 Myr irrespective of the
cluster mass; we obtain M tpc 100 Myrh

3 2( ) ( )r =- -
 . Since

M r3 8h h
3( )r p= , the relation can be written as
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Equation (16) is presented in Figure 8 as the solid green line.
One naively expects that clusters with an initial density smaller
than 104Me pc−3 populate the area above this line, which is

consistent with the observations. From a theoretical perspective
we argue that star clusters are expected to reside in the green
and blue regions in Figure 8, which for the majority of
observed clusters appears to be the case.
From these results, the regions in which clusters are expected

to exist on mass–radius diagrams are shown by the green and
blue shades in Figure 8, and the observed distribution of star
clusters matches them. Furthermore, our analytical models
suggest two distinct populations of massive ( M104~ ) clusters,
which are called starbursts and leaky clusters by Pfalzner
(2009). We argue that these two populations naturally appear if
we consider the formation and the dynamical evolution process
of star clusters.

5.3. Time Evolution of Cluster Radius:
Leaky and Starburst Clusters

Young star clusters with M∼104Me are divided into two
groups, as can be seen in Figure 8. Pfalzner (2009) named them
starburst (young massive) clusters and leaky clusters (following
Portegies Zwart et al. 2010 we identify the latter category as
associations). Pfalzner (2009, 2011) showed that both
families of clusters expand with time, but at a different rate:
r/pc=0.16(tage/Myr) for the starburst clusters and
r tpc 3.5 Myrage

2 3( )= for the associations. In this section,
we discuss the origin of these different evolutionary tracks.
In Figure 9 we present the age and radius of observed young

star clusters with a mass of 103<M<105Me. The time
evolution for cluster radii, plotted as the solid green lines, is
obtained from the analytic models discussed in Section 5.2.
Associations are about one dynamical timescale old, and

therefore we can hardly confirm whether they are bound or not.
If we consider them to be one dynamical timescale old, i.e.,

Figure 9. Cluster radius as a function of time for clusters with a mass of 103–
105 Me. Red cross signs are from Portegies Zwart et al. (2010) and red pluses
from the others (see the caption of Figure 8). Blue dashed lines are the relations
given in Pfalzner (2009, 2011): r t3.5 age

2 3= and r=0.16 tage for top and
bottom, respectively. Green lines are cluster radii as a function of time obtained
from our model: r t2.7h age

2 3= and r t0.34h age
2 3= for top and bottom,

respectively. Note that for starburst clusters we plot the half-mass radii given
in Portegies Zwart et al. (2010) instead of “size” in Pfalzner (2009).
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t tage dyn , Equation (3) gives r tpc 2.7 pch age
2 3( )= . We

present this relation in Figure 9 as the top green line. The model
is consistent with the observed clusters, and the power-law
index of our model is consistent with that of Pfalzner (2011).

For starburst clusters, we adopt the results based on Gieles
et al. (2011). By adopting M=104Me in Equation (16), we
obtain r tpc 0.34 Myrh age

2 3( )= . We present this relation in
Figure 9 as the bottom green line. In part due to the large
scatter, this relation is also consistent with the observed radius
evolution of starburst clusters.

The magenta dash-dotted line in Figure 9 gives the relation
ρh=0.1Me pc−3. This is an order of magnitude higher than
the field density in the solar neighborhood (0.01Me pc−3)
(Holmberg & Flynn 2000), and we assume this to be a
minimum to the (observable) cluster density. This predicts that
associations will not survive more than ∼20Myr, and indeed
no such a cluster has been observed.

6. SUMMARY

We performed a series of simulations of star-forming
regions. Our calculations start with hydrodynamical simula-
tions of turbulent molecular clouds. These simulations are
continued for about one initial free-fall timescale, after which
we replace gas particles with stars, adopting a local SFE
(Krumholz et al. 2012). The stellar masses are selected
randomly from the adopted initial mass function, and the stars
receive the position and velocity of the gas particles they
replace. We subsequently remove all residual gas and continue
the evolution of the young emerging star cluster by means of
N-body simulations with stellar evolution.

The types of star clusters that formed in our simulations
depend on the initial conditions (mass and density) of the
molecular cloud. The clouds with initial conditions typical for
those observed in the Milky Way ( M104

 and 100–1000 cm−3)
lead to classical open clusters. More massive clouds (105–
106Me) with the same density evolve into dense, massive
clusters. These massive molecular clouds are common in
starburst galaxies, but are very rare in local disk galaxies such
as the Milky Way. This result is consistent with observations
that young massive clusters are common in starburst galaxies,
but only several have been found in the Milky Way. We argue
that such massive clouds must be able to form in the Milky
Way Galaxy, even though they are probably rare.

Dense, massive clusters in our simulation form from
molecular clouds with a mass of 106Me and a density of
∼1000 cm−3 (100Me pc−3), leading to a velocity dispersion of
∼20 km s−1. This is consistent with the relative velocity of
molecular clouds observed near young massive clusters in the
Milky Way, such as near NGC 3603 (Fukui et al. 2014) and
Westerlund 2 (Furukawa et al. 2009; Ohama et al. 2010). We
argue that massive clusters in the Milky Way can therefore not
form from individual clouds, but their formation may have
been initiated in cloud–cloud collisions (Furukawa et al. 2009;
Ohama et al. 2010; Fukui et al. 2014).

Molecular clouds with a mass of ∼106Me and a low density
of ∼10 cm−3 (∼1Me pc−3), which follow Larsonʼs relation,
tend to form associations (“leaky clusters” in the terminology
of Pfalzner 2009). These relatively low-density and massive
molecular clouds form a number of small clumps. They might
be detected as embedded or classical open clusters when they
are young, but they evolve to less-dense clusters by gas

expulsion and relaxation. After several Myr, these systems lose
their clumpiness and become recognizable as associations.
In our simulations, we assumed that stars form instanta-

neously upon the expulsion of the residual gas (after an initial
free-fall time of the molecular cloud). Our prescription for star
formation is simple compared to reality, in which star
formation triggers the expulsion of the residual gas by means
of feedback processes. Regardless of the simplicity of our
approach, we are still able to make a distinction between the
formation of associations, open clusters, and massive star
clusters.
The young stellar system, Sco OB2, is an assembly of

associations of slightly different ages: USco, Upper Cen-Lups,
and Lower Cen-Crux. A stellar system similar to Sco OB2
naturally originates in our simulations of relatively massive and
low-density molecular clouds, although the age spread cannot
be reproduced with our method. The relation that less-dense
clusters have wider age spreads of stars is observationally and
theoretically suggested (Parmentier et al. 2014).
In addition, we compared our simulations with theoretical

models for cluster expansion that are due to the dynamical
evolution (Gieles et al. 2011). These models satisfactorily
explain the evolution in radius of simulated clusters as well as
of the observed clusters.
We also found that the distribution of clusters on the mass–

radius diagram is also limited by the density with which the
dynamical timescale is equal to the cluster age. This implies
that, if the cluster age is much shorter than the dynamical time,
such clusters cannot be recognized as (bound) systems (Gieles
& Portegies Zwart 2011). After ;20Myr the density of these
associations drops below the background density, and they
dissolve.
The gap of the radius distribution for associations and young

massive clusters suggested by Pfalzner (2009) is consistent
with our simulation results. Whereas young massive clusters
evolve following the cluster expansion model, leaky clusters
have tage∼tdyn. With our models, the evolution of radius for
observed leaky and young massive clusters are described
by r tpc 2.7 pch age

2 3( )= and r tpc 0.34 Myrh age
2 3( )= ,

respectively. These are also consistent with observations.
Pfalzner et al. (2014) claimed that star formation continues in
embedded clusters and that after the gas expulsion they expand
and become associations. Our models, however, indicate that
clumpy star-forming regions are observed as a conglomerate of
embedded clusters, but at a later time these systems lose their
clumpiness through the expulsion of the residual gas and two-
body relaxation. Because our coverage of parameter space
remains limited and much is still to be uncovered, we hope to
explore a much wider range of initial conditions of molecular
clouds (different masses, radii, and density distributions) and
other assumptions for star formation (different epochs for star
formation and gradual gas removal rather than instantaneous
gas expulsion).
Our results suggest that the difference in the parental

molecular clouds results in the formation of various types of
star clusters if we assume the same star-formation process and
that the cluster-formation process does not depend on the
condition of the galaxy, either normal disk or starburst.
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