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A smart local moving algorithm for large-scale

modularity-based community detection
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{waltmanlr, ecknjpvan}@cwts.leidenuniv.nl

We introduce a new algorithm for modularity-basemmmunity detection in large networks. The
algorithm, which we refer to as a smart local mgvahgorithm, takes advantage of a well-known local
moving heuristic that is also used by other alpong. Compared with these other algorithms, our
proposed algorithm uses the local moving heurigtia more sophisticated way. Based on an analysis
of a diverse set of networks, we show that our sde@al moving algorithm identifies community
structures with higher modularity values than othigorithms for large-scale modularity optimization
among which the popular ‘Louvain algorithm’ intradhd by Blondel et al. (2008). The computational
efficiency of our algorithm makes it possible tafpem community detection in networks with tens of
millions of nodes and hundreds of millions of edgésr smart local moving algorithm also performs
well in small and medium-sized networks. In shamputing times, it identifies community structures
with modularity values equally high as, or almost ldgh as, the highest values reported in the

literature, and sometimes even higher than thedsigéalues found in the literature.

PACS: 89.75.Hc, 02.10.0x

1. Introduction

The problem of community detection in networks rex®ived a lot of attention in
the network science literature (Fortunato, 201@m@unities are clusters of closely
connected nodes within a network. A popular apgra@ccommunity detection is
based on the idea of optimizing a modularity fumetiModularity functions were
introduced by Newman and Girvan (2004), and tha mfedetecting communities by
optimizing a modularity function was proposed bywxsan (2004a). Nowadays,

there are many variants of the modularity-based nconity detection approach.



These variants for instance deal with directed @ighted networks (Leicht &
Newman, 2008; Newman, 2004b), or they offer a tggm parameter (Reichardt &
Bornholdt, 2006) that makes it possible to cust@nrtlze granularity level at which
communities are detected and to mitigate the dedalesolution limit problem
(Fortunato & Barthélemy, 2007). Also, some variawnfs the modularity-based
community detection approach use modularity fumgiavith a somewhat modified
mathematical structure (e.g., Reichardt & Bornho0i06; Traag, Van Dooren, &
Nesterov, 2011; Waltman, Van Eck, & Noyons, 2010).

Optimizing modularity is an NP-hard problem (Brasdet al., 2008). Exact
algorithms (Aloise et al., 2010; Brandes et al.0&0Xu, Tsoka, & Papageorgiou,
2007) can be used only for small networks. Manfedint heuristic algorithms have
been proposed for modularity optimization (Fortana&010), for instance based on
agglomerative hierarchical clustering (Clauset, N&mn, & Moore, 2004; Newman,
2004a), simulated annealing (Guimera, Sales-PadAmaral, 2004; Reichardt &
Bornholdt, 2006), extremal optimization (Duch & Aes, 2005), spectral
optimization (Newman, 2006a, 2006b), mean fieldemting (Lehmann & Hansen,
2007), and conformational space annealing (Lees&r& Lee, 2012). However,
most of the algorithms proposed in the literature suitable only for small and
medium-sized networks.

In this paper, we introduce an optimization aldorntthat produces high-quality
results even for very large networks (e.g., wittstef millions of nodes and hundreds
of millions of edges). For small and medium-sizedworks, our algorithm can be
considered more or less competitive with the blegirahms presently available. The
algorithm that we introduce builds on ideas fronisexg algorithms for large-scale
modularity optimization (Blondel, Guillaume, Lamti®, & Lefebvre, 2008; Rotta &
Noack, 2011). These algorithms will be used as Iercks for assessing the
performance of our algorithm. We refer to our pregub algorithm as a smart local
moving (SLM) algorithm. As discussed in detail lve]dhis is because our algorithm
relies heavily on a well-known local moving heudstCompared with existing
algorithms, our SLM algorithm uses this local mayirheuristic in a more
sophisticated way, and it therefore produces moecarate results.

This paper is organized as follows. In Section & discuss two existing
algorithms for large-scale modularity optimizatioie also introduce an iterative

variant of both algorithms. In Section 3, we prés®am smart local moving algorithm.



We compare the performance of the various algostmSection 4. We first consider
small and medium-sized networks, and we then foonslarge networks. We

summarize the conclusions of our research in Seétio

2. Existing algorithms

Before introducing our SLM algorithm, we first diss two existing algorithms
for large-scale modularity optimization. One is #igorithm proposed by Blondel et
al. (2008), often referred to as the Louvain aldpon. The other is an extension of the
Louvain algorithm with a so-called multilevel refiment procedure, as proposed by
Rotta and Noack (2011). Moreover, for both algonigh we introduce an approach
that allows the results of the algorithms to be rowpd further. Basically, this
approach consists of running the algorithms intarative fashion, with the output of
each run serving as input for the next run.

Both in this section and in the next one, we use well-known karate club
network of Zachary (1977) to illustrate the varioalgorithms. The karate club

network represents the friendships between 34 mesde karate club.

Modularity

The modularity function of Newman and Girvan (2004h be written as

Q:iZ[Aj —ﬁjé(ci,c,»), 1)

2m

where ¢; denotes the community to which nodénas been assigned; denotes
whether there is an edge between nodexlj (A; = 1) or not §;j = 0),
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denotes the total number of edges in the netwohe flinctiondc;, ¢) indicates
whether nodes andj belong to the same community. It equals it ¢ and O
otherwise. The modularity function in (1) also aegl to weighted networks
(Newman, 2004b). The only difference is that in tase of a weighted networ
may take any non-negative value. Higher valueshefmodularity function in (1) are
supposed to indicate a better community structGireen a network oh nodes, the
idea of modularity-based community detection thaneefs to try to find values af,

..., Cy that maximize (1). These values @f ..., ¢, are considered to represent the
optimal community structure for the given network.

A number of variants of the modularity function(i) have been proposed in the
literature. These variants for instance includessolution parameter (Reichardt &
Bornholdt, 2006), or they have a somewhat modifieathematical structure (e.g.,
Reichardt & Bornholdt, 2006; Traag et al., 2011;l¥vian et al., 2010). In general,
optimization techniques developed for the origimaddularity function can also be
applied to the alternative modularity functionscdissed in the literature. In this
paper, our focus is on the optimization of the ioaty modularity function, but our

proposed approach extends to other modularity fonstas well.

Local moving heuristic

A frequently used approach to modularity optimiaatiis the local moving
heuristic. The idea of the local moving heurissctd repeatedly move individual
nodes from one community to another in such a Waye¢ach node movement results
in a modularity increase. The local moving heuisterates over the nodes in a
network in a random order. For each node, it iemeined whether it is possible to
increase modularity by moving the node from itsreat community to a different
(possibly empty) community. If increasing modubaiig indeed possible, the node is
moved to the community that results in the largestularity gain. The local moving
heuristic keeps moving nodes until a situatioreeched in which there are no further
possibilities to increase modularity through indivél node movements. The local
moving heuristic has been quite popular in therditere (Barber & Clark, 2009;
Blondel et al., 2008; Liu & Murata, 2010; Mei, Hehi, Wang, & Li, 2009; Rotta &
Noack, 2011; Schuetz & Caflisch, 2008; Ye, Hu, &,Y2008), probably in part
because it can be implemented in an efficient vlgr(del et al., 2008). The local

moving heuristic plays a central role both in ti texisting algorithms for large-



scale modularity optimization discussed below andur SLM algorithm introduced
in the next section.

Figure 1 shows the karate club network, using sotorindicate an example of a
community structure that has been obtained usiaddtal moving heuristic. Starting
from a situation in which each of the 34 nodesha hetwork belongs to its own
community, the local moving heuristic has identfee solution in which the nodes are
organized into six communities. This solution haw@dularity value of 0.3791. The
solution has the property that it is not possiblencrease modularity by moving an
individual node from one community to another. lthey words, the solution is
locally optimal with respect to individual node nemwents. We emphasize that the
solution shown in Figure 1 is not unique. Dependingthe order in which the local
moving heuristic iterates over the nodes in thevogk, other solutions may be

obtained as well.

Louvain algorithm

The Louvain algorithm proposed by Blondel et abQ@) starts with each node in
a network belonging to its own community. So idifiaesach community is a
singleton, consisting of one node only. The alhonitthen uses the local moving
heuristic to obtain an improved community structudence, individual nodes are
moved from one community to another until no furtimerease in modularity can be
achieved. At this point, a reduced network is carcseéd (Arenas, Duch, Fernandez,
& Gbomez, 2007). This is a network in which each enocbrresponds with a
community in the original network. In the reduceetwork, the weight of an edge
between two nodes equals the total weight of ajlesdetween the nodes in the two
corresponding communities in the original netwdtkges between nodes in the same
community in the original network result in selfiks in the reduced network. As a
consequence of the close relation between thenatigietwork and the reduced one,
merging communities in the original network is e@lent to grouping the
corresponding nodes in the reduced network tog@theecommunity.

The Louvain algorithm proceeds by assigning eactenio the reduced network to
its own singleton community. Next, the local movihguristic is applied in the
reduced network, in exactly the same way as was 8efore in the original network.
Based on the resulting community structure, a sgceduced network is constructed.

This network is treated in the same way as thar@igetwork and the first reduced



network. Hence, the local moving heuristic is aggland another reduced network is
constructed. The Louvain algorithm continues irs tivay until a network is obtained
that cannot be reduced further. One now has a eequef successively smaller
networks. This sequence of networks correspondb witsequence of mergers of
smaller communities into larger ones, and in thiaywt determines the final
assignment of the nodes in the original networkammunities.

Figure 2 summarizes the main steps of the Louvkjarishm! As can be seen,
the algorithm can be conveniently written in a rsote form. The initial assignment
of nodes to communities is not specified in FigAreHowever, as explained above,
the Louvain algorithm normally starts with each @ad a network belonging to its
own community. We will get back to this below.

Figure 3 illustrates the application of the Louvailgorithm to the karate club
network. First, the local moving heuristic is us&dippose this gives the community
structure shown in Figure 1. As already mentiorthy community structure has a
modularity value of 0.3791. Figure 3(a) shows thduced network corresponding
with the community structure shown in Figure 1. Tiesult of applying the local
moving heuristic in the reduced network is showtkigure 3(b). As can be seen, the
local moving heuristic has assigned nodes B amilt@e reduced network to the same
community. The same holds for nodes E and F. Thenaanity structure shown in
Figure 3(b) has a modularity value of 0.4151. Bagedhis community structure, a
second reduced network can be constructed and #gaimcal moving heuristic can
be applied. However, it turns out that no furtheecrease in modularity is possible.

Figure 3(c) shows the final community structuréhe original network.

Louvain algorithm with multilevel refinement

When a community structure has been obtained ubmdouvain algorithm, one
can be sure that the community structure cannoimpeoved further by merging
communities. In other words, the Louvain algoritfimds solutions that are locally
optimal with respect to community merging. Howevsglutions found by the

Louvain algorithm need not be locally optimal witkspect to movements of

Y In the pseudocode presented in this paper, wa B4ATLAB-like syntax when dealing with arrays.
For instancex(y =i) — j, wherex andy are arrays of equal length andndj are scalars, indicates that
the elements aof for which the corresponding elementsyafre equal to are selected and are set equal

toj.



individual nodes between communities. It may besjibs to improve a solution by
moving an individual node from one community to teo.

An extension of the Louvain algorithm with a mutiel refinement procedure
was proposed by Rotta and Noack (2011). The mudileefinement procedure
improves solutions found by the Louvain algorithmsuch a way that they become
locally optimal with respect to individual node nemnents. To accomplish this, the
local moving heuristic is used not only for cregtan initial community structure for
the nodes in a network but also for refining thaficommunity structure. Moreover,
this is done not only at the level of the originatwork but also at the level of each of
the reduced networks.

A summary of the main steps of the Louvain algonitivith multilevel refinement
is provided in Figure 4. As can be seen, the Lauwagorithm with multilevel
refinement is identical to the original Louvain @ighm except that at each level of
the recursion the local moving heuristic is usetcéwinstead of once. Like in the
original Louvain algorithm, the local moving hetigsis used for creating an initial
community structure, but in addition it is also dider refining the final community
structure. In this way, it is guaranteed that a mwomity structure is obtained that
cannot be improved further by moving individual eedfrom one community to
another.

In the case of our karate club example, extendiegLbuvain algorithm with the
multilevel refinement procedure has the effect,tlaftier the result shown in Figure
3(c) has been obtained, the local moving heuristiapplied a second time in the
original network. It turns out that modularity ce increased by moving node 28
from the green to the blue community. Next, anothedularity increase is possible
by also moving node 24 to the blue community. Hiedds the community structure
shown in Figure 5. This community structure coroegfs with a modularity value of
0.4198. No further increase in modularity turns wube possible through individual
node movements. In fact, the community structu@wshin Figure 5 is known to be

globally optimal (Aloise et al., 2010).

Iterative variant of the Louvain algorithm
So far, we have discussed two algorithms for lagge modularity optimization:
The original Louvain algorithm of Blondel et al.08) and the Louvain algorithm



extended with the multilevel refinement procedufeRotta and Noack (2011). We
now introduce an approach that aims to further owerthe results of both algorithms.

The basic idea of our proposed approach is to menatgorithms in an iterative
way, where the output of each iteration is usethpst for the next iteration. In the
case of the original Louvain algorithm, we startdsgigning each node in a network
to its own community, and we then run the algoritisrspecified in Figure 2. This is
the first iteration of the algorithm. After thedtriteration has been completed, we run
the algorithm a second time, but this time we dbstart with each node belonging to
its own community. Instead, we start with the comityustructure obtained in the
first iteration of the algorithm. This means thia¢ tsecond iteration allows individual
nodes to move between the communities producedhanfitst iteration. After the
second iteration has been completed, we run theritdgh a third time, using the
community structure obtained in the second itera#is input. In this way, more and
more iterations of the algorithm can be perform€kde iterative approach can be
stopped as soon as performing an additional itevadf the algorithm does not result
in a modularity increase. Alternatively, the apmtoaan be stopped after a certain
maximum number of iterations. Of course, the sametive approach can also be
applied to the Louvain algorithm with multilevefireement.

As we have discussed, the Louvain algorithm findiiteons that are locally
optimal with respect to community merging, but theslutions need not be locally
optimal with respect to individual node movemer@ the other hand, solutions
found by the Louvain algorithm with multilevel re&@ment are locally optimal with
respect to individual node movements, but they needbe locally optimal with
respect to community merging. However, when ourattee approach is applied to
the Louvain algorithm, either with or without migtvel refinement, it becomes
possible to find solutions that are locally optiméth respect to both community
merging and individual node movements. When thatitkee approach has converged
(i.e., the last iteration did not result in a matly increase), one can be sure to have
a community structure that cannot be improved arrtheither by merging

communities or by moving individual nodes from @oenmunity to another.

3. Smart local moving algorithm

Using the above discussed iterative approach, thevdin algorithm, either with

or without multilevel refinement, identifies solotis that are locally optimal with



respect to both community merging and individuadleaanovements. Solutions will in
general not be locally optimal with respect to cammity splitting or with respect to
movements of sets of nodes from one community tdhen. Like the iterative variant
of the Louvain algorithm, the SLM algorithm that witroduce in this section
identifies solutions that are locally optimal witbspect to both community merging
and individual node movements. In addition, howewee SLM algorithm also
searches for possibilities to increase modulantysplitting up communities and by
moving sets of nodes from one community to anothher.we will see, this is
accomplished by using the local moving heuristia imore sophisticated way than is
done in the Louvain algorithm.

Like the Louvain algorithm, the SLM algorithm stawith each node in a network
being assigned to its own singleton community. Aike the Louvain algorithm, the
SLM algorithm uses the local moving heuristic tatam an improved community
structure. However, after the local moving heuridtias been applied, the SLM
algorithm takes a different approach than the Louadgorithm. As we have seen in
the previous section, the Louvain algorithm prose&y constructing a reduced
network. The SLM algorithm will also construct aluveed network, but before it does
S0, it first takes some other steps.

The SLM algorithm iterates over all communities the present community
structure. For each community, a so-called subrdtwgoconstructed. This is a copy
of the original network that includes only the nsdeelonging to the specific
community of interest. The SLM algorithm then usles local moving heuristic to
identify communities in the subnetwork. Each nadée subnetwork is first assigned
to its own singleton community, and then the locaving heuristic is applied. In
some cases, this yields a community structure stingiof one big community that
includes all nodes in the subnetwork. In other sase community structure is
obtained consisting of multiple communities thatkeanclude some of the nodes in
the subnetwork.

After a community structure has been obtained &wheof the subnetworks, the
SLM algorithm constructs a reduced network. In teduced network, each node
corresponds with a community in one of the subneksioThe SLM algorithm then
performs an initial assignment of the nodes inrgguced network to communities.

Nodes corresponding with communities in the sanimetwork are assigned to the



same community in the reduced network. Hence, &mhesubnetwork, there is one
community in the reduced netwafk.

At this point, the entire process starts all ovgaia, but this time based on the
reduced network rather than the original one. &t the local moving heuristic is
applied in the reduced network, and then for eachrounity in the reduced network
a subnetwork is constructed and communities irsthmetwork are identified. This is
the starting point for the construction of a secoeduced network, after which the
entire process again repeats itself. The SLM dlgwrimoves on in this way until a
network is obtained that cannot be reduced further.

Figure 6 offers a summary of the main steps ofhkl algorithm. The algorithm
is again written in a recursive form. The SLM algon is similar to the Louvain
algorithm outlined in Figure 2 except that, duethe idea of applying the local
moving heuristic at the level of subnetworks, comities can be split up and sets of
nodes can be moved from one community to anothehi$ way, the SLM algorithm
has more freedom in searching for high-quality sohs to the modularity
optimization problem.

To illustrate the SLM algorithm, we again consider karate club example. We
first go back to Figure 1. This figure shows thenoounity structure obtained by
applying the local moving heuristic in the originaletwork. There are six
communities, each indicated using a different colas explained above, after
applying the local moving heuristic in the originatwork, for each community a
subnetwork is constructed. The six subnetworks #mat obtained in this way are
shown in Figure 7(a). The local moving heuristic applied in each of these
subnetworks. In the green, blue, purple, and yelbolnetworks, this results in all
nodes being assigned to the same community. Thimtigshe case for the red and
orange subnetworks. These subnetworks are eadhuppinto two communities. In
Figure 7(a), this is indicated by displaying soneeles using circles and others using

squares.

2 Notice that the nodes in the reduced network ateassigned to singleton communities. This would
result in a decrease in modularity in the case mclv a subnetwork has a community structure
consisting of multiple communities while in factvivag one big community would be better from a
modularity point of view. Assigning nodes corresgioig with communities in the same subnetwork to
the same community in the reduced network guararitest modularity increases monotonically in the
SLM algorithm.

10



Figure 7(b) shows the reduced network that is abthi There are eight nodes in
the reduced network, one for each community inkmstwork. Nodes corresponding
with communities in the same subnetwork are inytighssigned to the same
community in the reduced network. The result oflgpg the local moving heuristic
in the reduced network is shown in Figure 7(c).cAa be seen, nodes Al and A2 in
the reduced network have remained in the same cotyniHowever, node C1,
which initially was in a community with node C2,shheen assigned to the same
community as node D. The next step is to constautinetworks based on the
community structure shown in Figure 7(c), to apply local moving heuristic in each
subnetwork, to construct a second reduced netwat,to apply the local moving
heuristic in this network. However, we do not shamy further results, since it turns
out that the community structure shown in Figure) dannot be improved further.
The corresponding community structure in the oagmetwork is shown in Figure 5.
Hence, in this particular example, the SLM algaritidentifies the same community
structure as the Louvain algorithm with multilevefinement. As mentioned before,
this community structure is known to be globallyiol.

Like the Louvain algorithm, the SLM algorithm cae tun in an iterative way. In
the first iteration of the algorithm, we start froamn initial situation in which each
node in a network is assigned to its own communitythe second iteration, we start
with nodes being assigned to the communities obthain the first iteration. In the
third iteration, the communities obtained in thecs®l iteration are our starting point,
and so on. There is one important difference vthiterative variant of the Louvain
algorithm. At some point, the iterative variantteé Louvain algorithm, either with or
without multilevel refinement, converges. This happ when a community structure
is obtained that cannot be improved further eithyermerging communities or by
moving individual nodes from one community to amotin the case of the iterative
variant of the SLM algorithm, there is no convergetike this. When running the
SLM algorithm in an iterative way, the algorithmelps searching for possibilities to
increase modularity by splitting up communities dydmoving sets of nodes from
one community to another. Hence, in the case ofitdrative variant of the SLM
algorithm, it may always be possible to obtain Hartimprovements in community
structure by performing more iterations of the alkion.

11



4. Results

In this section, we compare the performance of ®uM algorithm with the
performance of the Louvain algorithm, both with amithout multilevel refinement.
The performance of the algorithms is compared udiBgmall and medium-sized
networks and six large networks. In the case ofthall and medium-sized networks,
we also make a comparison with the best resultsrteg in the literature. All
networks that we use are unweighted and undireatedddo not have loops. Some
networks have more than one connected componenthan case, all connected
components are included, not only the largest one.

The results presented in this section were obtaisety our own implementations
of the original Louvain algorithm, the Louvain atgbm with multilevel refinement,
and the SLM algorithm. The algorithms were impletedn in Java. The
implementations along with some documentation can downloaded from

www.ludowaltman.nl/sim/ Although in this paper our focus is on unweighted

networks, the implementations also support weightgdorks. In addition, support is
offered for a resolution parameter (Reichardt & Bmidt, 2006) that can be used to
customize the granularity level at which commusitiee detected.

All calculations reported below were performed osyatem with an Intel Xeon
CPU (L5520 @ 2.27 GHz) and 64 GB internal memory.

Results for small and medium-sized networks

To analyze the performance of our SLM algorithmtle case of small and
medium-sized networks, we take an approach th&trdar to the one used by Lee at
al. (2012). Lee et al. introduced a new algorittomrhodularity optimization referred
to as conformational space annealing (CSA). Thed us3 small and medium-sized
networks to evaluate the performance of their aligor. It turned out that for each of
the 13 networks the CSA algorithm was able to ifemt solution with a modularity
value higher than or equal to the highest modylaatue reported in the literature.

Because of the excellent performance of the CShArdlgn, we use it as a
benchmark for assessing the performance of the @lddrithm. We also use the
same 13 networks as were used by Lee et al. (201@).first columns of Table 1
report for each of these networks the number oea@ihd edges as well as the highest

modularity value obtained using the CSA algorithiime networks are listed in

12



increasing order of their number of nodes. The nterty values reported in Table 1
for the CSA algorithm have been taken from Tables@ 3 in the paper by Lee et al.

For each of the 13 networks, we tested three dlgos: The original Louvain
algorithm, the Louvain algorithm with multilevelfrgement, and the SLM algorithm.
Each algorithm was run 100 times using differemdman numberd.Each algorithm
run consisted of 100 iterations. For each comlonatif a network and an algorithm,
we determined the highest modularity value obtaiaethe end of the 100th iteration
of the 100 algorithm runs. In addition, in orderaoalyze the effect of performing
multiple iterations of an algorithm, we also detarad the highest modularity value
obtained at the end of the first iteration of ti®® hlgorithm runs.

All results are reported in Table 1. The table doatsshow the modularity values
themselves. Instead, the table shows the differblet@een a modularity value and
the corresponding modularity value obtained using €SA algorithm. Negative
values indicate that an algorithm is performing seorthan the CSA algorithm.
Positive values indicate a better performance thanCSA algorithm. In the case of
an equal performance, no value is shown.

Based on Table 1, the following observations cambde:

* In the case of the smallest networks, the origioalivain algorithm, the
Louvain algorithm with multilevel refinement, antlet SLM algorithm all
perform equally well as the CSA algorithm, evenhwinly one iteration per
algorithm run. In fact, in the case of the firsufoetworks listed in Table 1,
all algorithms identify solutions with modularityalues equal to those
obtained using exact algorithms (Aloise et al.,®01

* With 100 iterations per algorithm run, the SLM aigfam can be considered
more or less competitive with the CSA algorithmefiénare four networks for
which the SLM algorithm performs worse than the C&gorithm, but the
differences are small (at most 0.2% difference wduatarity value). On the
other hand, there is one network for which the SAllybrithm outperforms the

CSA algorithm, but again the difference is not viemge (0.5% difference in

% These random numbers determine the order in wttiehlocal moving heuristic iterates over the
nodes in a network. Different random numbers resulé different order in which the nodes in a
network are visited. Depending on the order in Wwhike nodes in a network are visited, the local

moving heuristic may identify different communityutures.

13



modularity value). Except for the smallest netwaliscussed above, the SLM
algorithm consistently outperforms the original kain algorithm and the
Louvain algorithm with multilevel refinement, wittifferences in modularity
value of at most 1.0%. Notice that the original ‘@ algorithm and the
Louvain algorithm with multilevel refinement havelrfost) the same
performance.

* With only one iteration per algorithm run, the SLdgorithm performs
significantly worse than the CSA algorithm (exciptthe smallest networks).
Moreover, the SLM algorithm is also significantlyutperformed by the
Louvain algorithm with multilevel refinement. The.l8 algorithm performs
at about the same level as the original Louvairordlgm. Notice that the
Louvain algorithm with multilevel refinement has Inf@st) the same
performance regardless of the number of iterat{@nsr 100) per algorithm
run.

In summary, it can be concluded that in the cassall and medium-sized networks
the SLM algorithm is able to compete with the kdgorithms presently available, but
in order to do so it is crucial to perform a su#itly large number of iterations per
algorithm run.

The importance of performing a sufficiently largawber of iterations of the SLM
algorithm is also illustrated in Figure 8. Based 1800 runs of the SLM algorithm
(i.e., 100 runs for each of the 13 networks), tigere shows for each iteration the
percentage of all runs that resulted in a modylanitrease. The same statistics are
also reported for the original Louvain algorithmdafior the Louvain algorithm with
multilevel refinement. In the case of the origihaluvain algorithm, it turns out that
after four iterations all 1300 algorithm runs hasheerged. In the case of the Louvain
algorithm with multilevel refinement, it took onlthree iterations for all 1300
algorithm runs to converge. The results obtainedguthe SLM algorithm are quite
different. As discussed in Section 3, the SLM alpon keeps searching for
possibilities to increase modularity. Indeed, Fegg8r shows that in iteration 10 still
about 19% of the 1300 runs of the SLM algorithnulesl in a modularity increase.
Even in iteration 100, a modularity increase dbk place in almost 2% of the

algorithm runs.
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Finally, let us consider the issue of computingetirtt turns out that in terms of
computing time the SLM algorithm compares quite ofably with the CSA
algorithm. The total time required to perform 1003 of the SLM algorithm was less
than 10 seconds for the nine smallest networkgefims of number of nodes), less
than one minute for the E-mail and Erdos02 netwaaksl less than two minutes for
the PGP network. For the condmat2003 network, dhgekt network among our 13
small and medium-sized networks, it took 555 sesaiwdperform 100 runs of the
SLM algorithm. Because of the use of different catep systems, these computing
times are not directly comparable with the onesregl by Lee et al. (2012, Table 2)
for the CSA algorithm. Nevertheless, it is cleaattlfor larger networks the SLM
algorithm is computationally much more efficienaththe CSA algorithm. In the case
of the condmat2003 network, for instance, 50 ruhshe CSA algorithm require
about 100 times more computing time than 100 rdnke SLM algorithm (57 609
vs. 555 seconds).

From a computational point of view, the original uMain algorithm and the
Louvain algorithm with multilevel refinement perforeven better than the SLM
algorithm, especially when working with somewhag& networks. For instance, in
the case of the condmat2003 network, these algosittequire only about 25% of the
computing time of the SLM algorithm. Of course, th#erence in computing time
between the SLM algorithm and the Louvain algoritstrongly depends on the
number of iterations performed per algorithm rung¢es the Louvain algorithm tends
to converge after a few iterations while the SLMjaaithm keeps trying to find
possibilities to increase modularity. Below, in @malysis of large networks, we will
compare the computational performance of the SLybrathm, the original Louvain

algorithm, and the Louvain algorithm with multilévefinement in more detail.

Results for large networks
The main focus of our SLM algorithm is on communikgtection in large and
very large networks. We have selected six large/owds, originating from a number
of different domains, to analyze the large-scaldopmance of the SLM algorithm.
The following networks are considered:
* Amazon. Network of frequently co-purchased products anAmazon website
(Yang & Leskovec, 2012).
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* DBLP. Co-authorship network obtained from the DBLP catep science
bibliography (Yang & Leskovec, 2012).

* [MDb. Network of actors playing in the same movie aid from the
Internet Movie Database (Barabasi & Albert, 1999).

* LiveJournal. Friendship network of the LiveJournal online ldow
community (Yang & Leskovec, 2012).

*  WoS Citation network of all scientific articles indhWWeb of Science database
in the period 2002—-2011. This network is similarthe citation network that
we studied in an earlier paper (Waltman & Van ExKl 2).

*  Web uk-2005. Web network obtained from a crawl of the .uk domia 2005.
The crawl was performed using UbiCrawler (Boldi,dénotti, Santini, &
Vigna, 2004), and the network is made availablehgy Laboratory for Web

Algorithmics athttp://law.di.unimi.it The network was also used by Blondel

et al. (2008) to evaluate the performance of thevian algorithm.
Table 2 shows the number of nodes and edges in &faitte above networks. The
number of nodes ranges between 0.4 million (DBLE WADb) and 39.5 million
(Web uk-2005). The number of edges ranges betwegrmilion (Amazon) and
783.0 million (Web uk-2005).

Like in the case of the small and medium-sized n&ta; we compare the SLM
algorithm with the original Louvain algorithm andtlwthe Louvain algorithm with
multilevel refinement. Since community detection large networks can be
computationally quite expensive, the number of @allgm runs that were performed is
smaller than in the case of the small and mediweesnetworks. Instead of 100 runs,
for each of the six large networks we performedul® of each algorithm. Moreover,
each algorithm run consisted of 10 rather thanifé@tions. Modularity values were
calculated at the end of the first and the 10ttatten of each algorithm run. For each
combination of a network and an algorithm, we répot only the highest modularity
value obtained in 10 algorithm runs but also theelst one. In the case of large
networks, it may in practice not always be feastoleperform multiple runs of an
algorithm. The lowest modularity value obtainedLihruns of an algorithm provides
an indication of the worst-case performance thathm expected when the algorithm

is run only once.
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The modularity values obtained for the six largemoeks are reported in Table 2.

Computing times are reported as well. For each aoatibn of a network and an

algorithm, the table shows the average number obre¥s it took to perform one

algorithm run.

Our observations based on Table 2 can be summarizédiows:

With 10 iterations per algorithm run, the SLM algom consistently
outperforms the original Louvain algorithm and theuvain algorithm with
multilevel refinement. The difference in modulariglue is largest for the
DBLP network (more than 1%) and almost negligilbe the Web uk-2005
network (about 0.04%). Interestingly, for all netk® except IMDb, the worst
run of the SLM algorithm still gives better resutt&n the best run of each of
the other two algorithms. Like in the case of timal and medium-sized
networks, the original Louvain algorithm and theuiain algorithm with
multilevel refinement have (almost) the same pentoice.

With only one iteration per algorithm run, the SLBlgorithm slightly
outperforms the original Louvain algorithm, but tkiéference is almost
negligible. On the other hand, the SLM algorithrmeyally performs worse
than the Louvain algorithm with multilevel refinentesometimes with a quite
significant modularity difference of more than 1%lotice that the
performance of the Louvain algorithm with multiléwefinement is hardly
affected by the number of iterations (1 or 10) @gorithm run.

In terms of computing time, when only one iteratiper algorithm run is
performed, the SLM algorithm is about equally exgea as the original
Louvain algorithm and in general somewhat less esipe than the Louvain
algorithm with multilevel refinement. When perfomgi 10 iterations per
algorithm run, the original Louvain algorithm arigetLouvain algorithm with
multilevel refinement require more or less the sameunt of computing time
and the SLM algorithm requires considerably monethle case of the IMDb
network, the SLM algorithm even needs almost foues as much computing
time as the other two algorithms. The relativead#hce in computing time is
smallest for the Web uk-2005 network, which is taegest network in our
analysis. In the case of this network, a run of $hé/ algorithm on average
takes almost five hours, which is about 45% moenth run of the original
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Louvain algorithm and about 70% more than a rutheflLouvain algorithm
with multilevel refinement.

Based on the above observations, it is clear thatSLM algorithm is able to
identify better community structures, in terms obdularity, than the original
Louvain algorithm and the Louvain algorithm with itilevel refinement. To identify
high-quality community structures, it is essent@luse the iterative variant of the
SLM algorithm. This is in line with our findings fosmall and medium-sized
networks. From the point of view of computing tintiee iterative variant of the SLM
algorithm is more expensive than the iterative arats of the other two algorithms.
However, it turns out that a single run of the SkMorithm typically gives better
results than multiple runs of the other two aldgons, meaning that in the case of the
SLM algorithm there is less need to perform mudtiglgorithm runs. Hence, although
from a computational perspective a single run & 8LM algorithm is relatively
expensive, this is counterbalanced by the fact fimaer algorithm runs need to be
performed.

Figure 9 offers some additional insight into theeeff of performing multiple runs
and multiple iterations of the SLM algorithm. Farat networks, DBLP and WoS, the
figure shows the modularity value at the end oheaicthe 10 iterations in each of the
10 runs of the SLM algorithm. For both networks figure also shows the highest
modularity value obtained using the iterative watsa of the original Louvain
algorithm and the Louvain algorithm with multilewefinement. We note that in the
case of the latter two algorithms convergence abatapk place within at most four
iterations.

As can be seen in Figure 9, in the case of the DBbE Wo0S networks,
modularity increases in each iteration of the SLModathm, but after the second
iteration increases in modularity tend to be re&yi small. For both networks, the
highest modularity value at the end of the secte@tion turns out to be higher than
the highest modularity value obtained using theVaou algorithm. (Although not
shown in Figure 9, the same observation can be niade¢he other four large
networks included in our analysis.) In the caséhefDBLP network, even the lowest
modularity value at the end of the second iterationhigher than the highest
modularity value obtained using the Louvain aldornt (The same observation can be
made for the Amazon and Web uk-2005 networks.héncase of the WoS network, it

takes five iterations before the lowest modulangiue obtained using the SLM
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algorithm exceeds the highest modularity value iabthusing the Louvain algorithm.
The general picture emerging from Figure 9 is thafew iterations of the SLM
algorithm are usually sufficient to outperform theuvain algorithm. Additional
iterations of the SLM algorithm lead to further ieases in modularity, but the gain

tends to be relatively small.

5. Conclusions

In this paper, we have introduced our SLM algoritlion modularity-based
community detection. Our algorithm is intended faiity for community detection in
large networks, and we have therefore focused ampaong our algorithm with two
other algorithms for large-scale modularity-basechmunity detection: The Louvain
algorithm proposed by Blondel et al. (2008) and extension of the Louvain
algorithm with a so-called multilevel refinemenbpedure, as suggested by Rotta and
Noack (2011). In addition to introducing a new aitjon, we have also proposed
iterative variants of the original Louvain algorithand of the Louvain algorithm with
multilevel refinement.

Despite being interested mostly in community débecin large networks, we
have also analyzed the performance of our SLM dlgarin small and medium-sized
networks. In the case of these networks, we hawepaced the SLM algorithm not
only with the original Louvain algorithm and the uxain algorithm with multilevel
refinement but also with the CSA algorithm introdddy Lee et al. (2012). The CSA
algorithm is among the best algorithms presentlyailaile for modularity
optimization in small and medium-sized networkst &gange of different networks,
Lee et al. show that the CSA algorithm is abledentify community structures with
modularity values higher than or equal to the hsgjvalues reported in the literature.
Because of its computational demands, the CSA ighgordoes not seem suitable for
modularity optimization in large networks.

Based on an analysis involving 13 small and medsizad networks and six large
and very large networks (with up to 40 million nedend up to 800 million edges),
we conclude that our SLM algorithm consistentlypautorms the original Louvain
algorithm and the Louvain algorithm with multilew&finement. Only in the case of
very small networks, we find that all three algomits perform equally well. The
excellent results of the SLM algorithm are obtairnmdy if in each run of the

algorithm a sufficiently large number of iteratiom® performed. Compared with the
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original Louvain algorithm and the Louvain algornttwith multilevel refinement, the
SLM algorithm then turns out to require consideyabtore computing time to
perform a single algorithm run. However, this isicterbalanced by the fact that in
the case of the SLM algorithm there is less neegetéorm multiple algorithm runs.
In the analysis of the six large networks, we fih@t a single run of the SLM
algorithm almost always yields a higher modulaviéyue than 10 runs of the original
Louvain algorithm or the Louvain algorithm with rildvel refinement.

In the case of the 13 small and medium-sized nétsyowe find that our SLM
algorithm can be considered more or less competitith the CSA algorithm of Lee
et al. (2012). There are four networks for whicle tBSA algorithm gives slightly
better results than the SLM algorithm, but therals one network for which the
SLM algorithm yields better results. Furthermone, the medium-sized networks, the
SLM algorithm turns out to require much less cormmuuttime than the CSA
algorithm. This means that there may be room tth&urimprove the performance of
the SLM algorithm by performing more algorithms rand more iterations per
algorithm run.

Finally, let us note that in this paper we havérigied ourselves to the use of the
SLM algorithm for optimizing the original modulayritfunction of Newman and
Girvan (2004). We emphasize, however, that the Sllddrithm can also be used for
optimizing many of the variants of this functionathhave been proposed in the
literature, for instance variants that include aotetion parameter (Reichardt &
Bornholdt, 2006) or that have a somewhat modifieath@matical structure (e.qg.,
Reichardt & Bornholdt, 2006; Traag et al., 2011;l¥van et al., 2010).
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LouvainAlgorithm

input:

A: Adjacency matrix of a network

c: Initial assignment of nodes to communities
output:

c: Final assignment of nodes to communities

/I Run the local moving heuristic.

¢ « LocalMovingHeuristic(A, c)

if NumberOfCommunities(c) < NumberOfNodes(A) then
/I Construct a reduced network.
Areduced — ReducedNetwork(A, c)
Creduced < [1.--NumberOfNodes(Aequced)]

/I Perform a recursive call to identify the community structure of the reduced network.

Creduced < LouvainAlgorithm(Areduced- Creduced)

/l Merge communities based on the community structure of the reduced network.
Cold < C
fori « 1 to NumberOfCommunities(cqq) do
C(Cold = 1) < Creduced(i)
end for

end if

Figure 2. Summary of the main steps of the Louadgorithm.
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Figure 3. Result of applying the Louvain algorithenthe karate club network. (a)
Reduced network before applying the local movingriséic. (b) Reduced network
after applying the local moving heuristic. (c) Hisalution in the original network.
Notice that self links in the reduced network aoé shown.
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LouvainAlgorithmWithMultilevelRefinement

input:

A: Adjacency matrix of a network

c: Initial assignment of nodes to communities
output:

c: Final assignment of nodes to communities

/I Run the local moving heuristic.

¢ « LocalMovingHeuristic(A, c)

if NumberOfCommunities(c) < NumberOfNodes(A) then
/I Construct a reduced network.
Areduced — ReducedNetwork(A, c)
Creduced < [1.--NumberOfNodes(Aequced)]

/I Perform a recursive call to identify the community structure of the reduced network.

Creduced — LouvainAlgorithmWithMultilevelRefinement(Areguceds Creduced)

/l Merge communities based on the community structure of the reduced network.
Cod < C
fori « 1 to NumberOfCommunities(cqq) do

C(Cold = |) - Creduced(i)

end for

/I Run the local moving heuristic.
¢ « LocalMovingHeuristic(A, c)
end if

Figure 4. Summary of the main steps of the Louvaligorithm with multilevel

refinement.
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Figure 5. Result of applying the Louvain algoritkvith multilevel refinement to the
karate club network. Final solution in the originmatwork.
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SmartLocalMovingAlgorithm

input:

A: Adjacency matrix of a network

c: Initial assignment of nodes to communities
output:

c: Final assignment of nodes to communities

/I Run the local moving heuristic.

¢ « LocalMovingHeuristic(A, c)

if NumberOfCommunities(c) < NumberOfNodes(A) then

/I For each community, construct a subnetwork and run the local moving heuristic.

/I Construct a reduced network based on the community structure of the subnetworks.

Cold « C
j<0
fori « 1 to NumberOfCommunities(cqq) do
Asup — Subnetwork(A, cog, i)
Csub < [1...NumberOfNodes(Asub)]
Csun < LocalMovingHeuristic(Asyb, Csup)
C(Coig =1) « Csup *]
Creduced([j + 1]--.[ + NumberOfCommunities(Cgyp)]) < i
j < j + NumberOfCommunities(csyp)
end for

Areduced — ReducedNetwork(A, c)

/I Perform a recursive call to identify the community structure of the reduced network.

Creduced — SMartLocalMovingAlgorithm(A educeds Creduced)

/l Merge communities based on the community structure of the reduced network.
Cold < C
fori « 1 to NumberOfCommunities(cqq) do
C(Cold = 1) « Creduced(l)
end for
end if

Figure 6. Summary of the main steps of the SLM ratigm.
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Figure 7. Result of applying the SLM algorithm tetkarate club network. (a) Six
subnetworks. Using the local moving heuristic, tbeé and orange subnetworks have
been split up into two communities. Nodes in thesenetworks are displayed using
either a circle or a square, depending on the camtgnto which they belong. (b)
Reduced network before applying the local movingristéic. (c) Reduced network
after applying the local moving heuristic. Notiteat self links in the reduced network

are not shown.
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Table 1. Results for 13 small and medium-sized agtsv For each network, the number of nodes andsgreported as well as the highest
modularity valueQcsa obtained using the CSA algorithm of Lee et al.120 In addition, results are reported for the io@g Louvain algorithm
(L), the Louvain algorithm with multilevel refineme(LMR), and the SLM algorithm. These results laased on 100 algorithm runs consisting
of either one or 100 iterations. The values thatsmown are the differences between the highesulaay values obtained using the L, LMR,
and SLM algorithms and the highest modularity valabtained using the CSA algorithm. Negative (pasitvalues indicate that an algorithm

is performing worse (better) than the CSA algorithmihe case of an equal performance, no valshasvn.

Nodes Edges  Qcsa 1 iteration 100 iterations
L LMR SLM L LMR SLM

Dolphins 62 159 0.5285%
Les Misérables 77 254  0.5600
Political books 105 441  0.5272
College football 115 613 0.6046
Jazz 198 2742 0.4451
USAIr97 332 2126 0.368 -0.0015 -0.0006 -0.0002 .0606 -0.0006
Netscience_main 379 914 0.8486 -0.0004 -0.0002 Oe&®(0 -0.0002 -0.0002
C. elegans 453 2025 0.453 -0.0060 -0.0045 -0.0064 -0.004%.0045 -0.0004
Electronic circuit (s838) 512 819 0.8194 -0.0157 .0639 -0.0197 -0.0039 -0.0039 -0.0018
E-mail 1133 5451 0.582 -0.0055 -0.0021 -0.00610.0021 -0.0021
Erdos02 6 927 11850 0.7184 -0.0189 -0.0041 -0.018R.0041 -0.0041 -0.0005
PGP 10 680 24316 0.8867 -0.0027 -0.0018 -0.0021.00i@ -0.0018 -0.0004
condmat2003 27519 116181 0.7675 -0.0088 -0.004D0.0083| -0.0041 -0.0041 0.0039
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Table 2. Results for six large networks. For eaetwork, the number of nodes and edges is showineiffitst column. Results are reported for
the original Louvain algorithm (L), the Louvain alithm with multilevel refinement (LMR), and the BlLalgorithm. These results are based on
10 algorithm runs consisting of either one or Hiations.Qmin» and Qnax denote, respectively, the lowest and the highesduarity value
obtained in 10 algorithm runs, ahdenotes the average computing time per algorithm{in seconds).

1 iteration 10 iterations
L LMR SLM L LMR SLM

Amazon Qhmin 0.9257 0.9293 0.926L 0.9293 0.9293 0.9335
(0.5M / 0.9M) Qrmax 0.9264 0.9298 0.926f 0.9299 0.9299 0.9338

6 7 7 9 9 28
DBLP Qmin 0.8203 0.8243 0.82183 0.8243 0.8243 0.8357
(0.4M / 1.0M) Qrmax 0.8227 0.8271 0.823L 0.8271 0.8271 0.8367

7 8 8 9 9 26
IMDb Qmin 0.6976 0.6994 0.6978 0.6994 0.6994 0.7050

=3

Qmax | 0.7041 0.7051 0.7061 0.7052 0.7052 0.7077
(0.4M/15.0M)

18 22 23 26 26 100

Qmin 0.7441 0.7576  0.747 0.7578 0.7578 0.7676
Qmax 0.7557 0.7658 0.756 0.7658 0.7658 0.7720
t 350 505 375 566 582 1549

Qmin 0.7714 0.7851 0.773 0.7851 0.7851 0.7918
Qmax 0.7786 0.7902 0.779 0.7902 0.7902  0.7957
6 800 8 113 6812 8 398 8415 19994
Qmin 0.9793 0.9796 0.979 0.9796 0.9796 0.9801
Qrmax 0.9795 0.9797 0.979 0.9797 0.9797 0.9801
11 006 9698 1057 11736 9993 17074

[98)

LiveJournal
(4.0M / 34.7M)

[0¢]

[¢2)

WoS
(10.6M / 104.5M)

W

Web uk-2005
(39.5M / 783.0M)

) (6] [00)
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