
All about A Minimal Normal Form for DNA Expressions
Vliet, R. van

Citation
Vliet, R. van. (2011). All about A Minimal Normal Form for DNA Expressions. LIACS,
Universiteit Leiden. Retrieved from https://hdl.handle.net/1887/36414

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/36414

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/36414

Technical Report 2011-03 July 2011

Universiteit Leiden

Leiden Institute of Advanced Computer Science

All about a Minimal Normal Form

for DNA Expressions

Rudy van Vliet
rvvliet@liacs.nl

Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Technical Report 2011-03 July 2011

Universiteit Leiden

Leiden Institute of Advanced Computer Science

All about a Minimal Normal Form

for DNA Expressions

Rudy van Vliet
rvvliet@liacs.nl

Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

Preface V

Abstract VII

1 Introduction 1

2 Terminology and Notation 3
2.1 Strings, N -words, trees, grammars and complexity 3
2.2 Formal DNA molecules . 9
2.3 Properties, relations and functions of formal DNA molecules 12
2.4 Operators and DNA expressions . 13
2.5 Nesting level of the brackets . 18
2.6 The functions L and R for arguments of DNA expressions 18
2.7 A context-free grammar for D . 19
2.8 The structure tree of a DNA expression 23
2.9 Equivalent DNA expressions . 25

3 Basic Results on DNA Expressions 27
3.1 Expressible formal DNA molecules . 27
3.2 Nick free DNA expressions . 28
3.3 Some equivalences . 28

4 The Length of a DNA Expression 37
4.1 (Blocks of) components of a formal DNA molecule 37
4.2 Lower bounds for the length of a DNA expression 39

5 The Construction of Minimal DNA Expressions 41
5.1 Minimal DNA expressions for a nick free formal DNA molecule 41
5.2 Minimal DNA expressions for a formal DNA molecule with nick letters 52

6 All Minimal DNA Expressions 56
6.1 Reverse construction of a minimal DNA expression 56
6.2 Characterization of minimal DNA expressions 61
6.3 The structure tree of a minimal DNA expression 63
6.4 The number of (operator-)minimal DNA expressions 65

7 An Algorithm for Minimality 68
7.1 The algorithm and its correctness . 68
7.2 The algorithm for an example . 105
7.3 Detailed implementation and complexity of the algorithm 114

III

7.4 Decrease of length by the algorithm . 132

8 A Minimal Normal Form for DNA Expressions 140
8.1 Definition of the minimal normal form 141
8.2 Characterization of the minimal normal form 143
8.3 The structure tree of a DNA expression in minimal normal form 150
8.4 Regularity of DMinNF . 151

9 Algorithms for the Minimal Normal Form 167
9.1 Recursive algorithm for the minimal normal form 167
9.2 Two-step algorithm for the minimal normal form 171
9.3 Implementation and complexity of the algorithm 179

10 Conclusions and directions for future research 192

Bibliography 193

List of Symbols 195

Index 197

IV

Preface

In the summer of 2011, Rudy van Vliet and Hendrik Jan Hoogeboom prepared a
paper entitled “A minimal normal form for DNA expressions”, and submitted it to the
scientific journal Fundamenta Informaticae. As the title suggests, this paper presented
a minimal normal form for DNA expressions. Moreover, it described an algorithm
to rewrite an arbitrary DNA expression into the normal form. This is a two-step
algorithm: it first rewrites the DNA expression into an equivalent, minimal DNA
expression, and then rewrites the result of that into the normal form.

In the summer of 2012, after the paper had been reviewed by the journal, it was
splitted into two papers, allowing for more detailed proofs of the results. The first
paper, entitled “Making DNA expressions minimal”, describes the first step of the two-
step algorithm, i.e., the algorithm to rewrite an arbitrary algorithm into an equivalent,
minimal DNA expression. The second paper, entitled “A minimal normal form for
DNA expressions”, describes the minimal normal form and an algorithm to rewrite an
arbitrary minimal DNA expression into the normal form. The two new papers are self-
contained. They were submitted together, as a diptych, to Fundamenta Informaticae,
and were accepted for publication.

The interested reader of the papers may wish to see more details. Therefore, we
compiled this report. In contains even more detailed proofs of the results from the
papers (including auxiliary results, again with proofs), more examples illustrating the
text and a section with a related topic that is not covered in the papers (§ 7.4).

The following table may serve as a quick reference list from definitions, examples,
results, table and figures in the papers to their equivalents in this report:

In paper 1 In paper 2 In report
Definition 1 Definition 2.5
DNA expression Definition 2.11
Theorem 2 Theorem 3.3
Theorem 3 Theorem 1 Theorem 5.3
Definition 4 Definition 2a Definition 4.3, Definition 5.4
Definition 5 B↓(X), B↑(X) Definition 4.5
Definition 6 Definition 2b Definition 5.8, Definition 5.9

Example 3 Example 5.14
Theorem 7 Theorem 4 Theorem 5.12
Example 8 Example 5 Example 5.14
Example 9 Lemma 6.14(2)
Theorem 10 Theorem 6 Lemma 6.15, Theorem 6.16
Lemma 11 Lemma 7 Lemma 7.21
Example 12 not in this report
Lemma 13 Theorem 7.20

V

In paper 1 In paper 2 In report
Lemma 14 Theorem 7.24
Lemma 15 Theorem 7.27
Theorem 16 Theorem 7.17
Example 17 not in this report
Lemma 18 Lemma 7.34
Lemma 19 Lemma 7.36
Theorem 20 Theorem 7.37, Corollary 7.38, Theorem 7.40

Definition 8 Definition 8.1
Example 9 Example 8.3
Theorem 10 Lemma 8.6, Lemma 8.7, Theorem 8.8
language of minimal
normal form is regular § 8.4
Example 11 Example 9.2
Example 12 Example 9.4
Example 13 Example 9.7
Theorem 14 Theorem 9.8
Theorem 15 Theorem 9.10, Theorem 9.12
Theorem 16 Theorem 9.13

In paper 1 In paper 2 In report
Figure 1 Figure 1 Figure 5.4
Table 1 Table 6.1
Figure 2 Figure 7.1, Figure 7.15
Figure 3 Figure 7.3
Figure 4 Figure 7.4
Figure 5 Figure 4 Figure 7.5
Figure 6 Figure 7.16, Figure 7.17, Figure 7.18

Figure 2 Figure 9.1
Figure 3 Figure 9.4, Figure 9.6

This report was first published in July 2011. This preface is the only part of the report
that has been adjusted since then.

Rudy van Vliet
October 2012

VI

Abstract

DNA expressions consitute a formal language/notation for DNA molecules
that may contain nicks and gaps. Different DNA expressions may denote
the same DNA molecule. We define a (minimal) normal form for this lan-
guage and describe an algorithm to rewrite a given DNA expression into
the normal form.

VII

Chapter 1

Introduction

In the past two decades, DNA computing has become a flourishing research area. Since
[Head, 1987] and [Adleman, 1994], researchers from various disciplines, ranging from
theoretical computer science to molecular biology, investigate the computational power
of DNA molecules, both from a theoretical and an experimental point of view. Nowa-
days, research groups from all over the world contribute to the field, see, e.g., [Deaton
& Suyama, 2009] and [Sakakibara & Mi, 2011]. Current topics of interest include, a.o.,
gene assembly in ciliates, DNA sequence design, self-assembly and nanotechnology,
see, e.g., [Ehrenfeucht et al., 2004], [Kari et al., 2005], [Winfree, 2003], [Reif, 2003],
[Rothemund, 2006] and [Chen et al., 2006]. The basic concepts of DNA computing are
described in [Paun et al., 1998].

Despite the growing interest in DNA computing, not much attention is paid in
literature to formal ways to denote the DNA molecules – exceptions are [Boneh et al.,
1996] and [Li, 1999]. Formal notations can, however, be useful, e.g., to precisely denote
molecules and to compactly describe the computations carried out using them.

In [Van Vliet, 2004], [Van Vliet et al., 2005] and [Van Vliet et al., 2006], we have
introduced DNA expressions as a formal notation for DNA molecules that may contain
nicks (missing phosphodiester bonds between adjacent nucleotides in the same strand)
and gaps (missing nucleotides in one of the strands). Different DNA expressions may
denote the same DNA molecule. Such DNA expressions are called equivalent . In these
three publications, it is also explained how to construct minimal DNA expressions: the
shortest possible DNA expressions denoting a given molecule.

When one wants to decide whether or not two DNA expressions E1 and E2 are
equivalent, one may determine the DNA molecules that they denote and check if these
are the same. In this report, we present a different approach. We define a normal form:
a set of properties, such that for each DNA expression there is exactly one equivalent
DNA expression with these properties. We also describe an algorithm to rewrite an
arbitrary DNA expression into the normal form. Now to decide whether or not E1

and E2 are equivalent, one determines their normal form versions and then checks if
these are the same. This approach is elegant, because it operates at the level of DNA
expressions only, rather than to refer to the denoted DNA molecules.

The report is organized as follows. In Chapters 2–6, we recall a number of definitions
and results which we have published before and which we need for the normal form and
the algorithms. In particular, in Chapter 2, we introduce the concepts of a formal DNA
molecule and a DNA expression. Chapter 3 contains some results on DNA expressions
in general. Chapter 4 deals with (lower bounds on) the length of a DNA expression.

1

2 Ch. 1 Introduction

In Chapter 5, we describe how to construct minimal DNA expressions. In Chapter 6,
we find out that there do not exist minimal DNA expressions other than the ones
constructed in Chapter 5.

For every known definition or result in Chapters 2–6, we mention the corresponding
definition or result in the earlier publications. We do not repeat the proofs for the old
results, as they can simply be looked up, especially in [Van Vliet, 2004]. In addition,
these five chapters contain some new, related results. For those, we do provide the
proofs.

Because the contents of Chapters 2–6 are meant mainly as background material,
we have not put much effort in presenting it as a nice, fluent story. This is different
for Chapters 7–9, which describe the normal form and the algorithms.

In Chapter 7, we present an algorithm to rewrite an arbitrary DNA expression
into an equivalent, minimal DNA expression. By itself, this is not sufficient to yield a
normal form. For many DNA molecules, there exist many (equivalent) minimal DNA
expressions. Depending on the input, the algorithm may yield each of these. However,
the algorithm can function as a first step towards a true normal form.

Such normal form is introduced in Chapter 8. As the DNA expressions that satisfy
the normal form are minimal, it is called a minimal normal form. In Chapter 9, we
describe an algorithm for constructing this normal form. It first uses the algorithm
from Chapter 7 to construct a minimal DNA expression, and then rewrites the result
into the minimal normal form. This turns out to be more efficient than an alternative,
direct algorithm.

Finally, in Chapter 10, we draw conclusions and suggest directions for future re-
search.

Chapter 2

Terminology and Notation

2.1 Strings, N -words, trees, grammars and com-

plexity

An alphabet is a finite set, the elements of which are called symbols or letters . A
finite sequence of symbols from an alphabet Σ is called a string over Σ. For a string
X = x1x2 . . . xr over an alphabet Σ, with xi ∈ Σ for i = 1, 2, . . . , r, the length of X is
r and it is denoted by |X|. The length of the empty string λ equals 0.

For a non-empty string X = x1x2 . . . xr, we define L(X) = x1 and R(X) = xr.
The concatenation of two strings X1 and X2 over an alphabet Σ is usually denoted by
X1X2; sometimes, however, we will write X1 ·X2.

The set of all strings over an alphabet Σ is denoted by Σ∗, and Σ+ = Σ∗ \ {λ} (the
set of non-empty strings). A language over Σ is a subset K of Σ∗.

Let N = {A, C, G, T} be the alphabet of nucleotides. The elements of N are called
N -letters . We reserve the symbol a (possibly with a subscript) to denote N -letters.
A non-empty string over N is called an N -word . Clearly, the set N+ of N -words is
closed under concatenation. We reserve the symbol α (possibly with a subscript) to
denote N -words.

Substrings

A substring of a string X is a (possibly empty) string Xs such that there are (possibly
empty) stringsX1 and X2 with X = X1X

sX2. If X
s 6= X, then Xs is a proper substring

of X. We call the pair (X1, X2) an occurrence of Xs in X. If there exists a (possibly
empty) string X2 such that X = XsX2, then Xs is a prefix of X; if there exists a
(possibly empty) string X1 such that X = X1X

s, then Xs is a suffix of X. If a prefix
of X is a proper substring of X, then it is also called a proper prefix . Analogously, we
may have a proper suffix of X.

If (X1, X2) and (Y1, Y2) are different occurrences of X
s in X, then (X1, X2) precedes

(Y1, Y2) if |X1| < |Y1|. Hence, all occurrences in X of a given string Xs are linearly
ordered, and we can talk about the first, second, . . . occurrence of Xs in X. Although,
formally, an occurrence of a substring Xs in a string X is the pair (X1, X2) surrounding
Xs in X, the term will also be used to refer to the substring itself, at the position in
X determined by (X1, X2).

Note that for a string X = x1x2 . . . xr of length r, the empty string λ has r + 1
occurrences: (λ,X), (x1, x2 . . . xr), . . . , (x1 . . . xr−1, xr), (X, λ).

3

4 Ch. 2 Terminology and Notation

If Xs = a for a letter a from the alphabet Σ, then the number of occurrences of Xs

in X is denoted by #a(X). Obviously, when X = x1x2 . . . xr with x1, x2, . . . , xr ∈ Σ,
#a(X) is the number of xi’s that are equal to a. Sometimes, we are not so much
interested in the number of occurrences of one letter in a string X, but rather in the
total number of occurrences of two different letters a and b in X. This total number is
denoted by #a,b(X).

If a string X is the concatenation of k times the same substring Xs, hence X =
Xs . . . Xs

︸ ︷︷ ︸
k times

, then we may write X in the form (Xs)k.

Let (Y1, Y2) and (Z1, Z2) be occurrences in a string X of substrings Y s and Zs,
respectively. We say that (Y1, Y2) and (Z1, Z2) are disjoint , if either |Y1|+ |Y s| ≤ |Z1|
or |Z1| + |Zs| ≤ |Y1|. Intuitively, one of the substrings occurs (in its entirety) before
the other one.

If the two occurrences are not disjoint, hence if |Z1| < |Y1| + |Y s| and |Y1| <
|Z1|+ |Zs|, then they are said to intersect . Note that, according to this formalization
of intersection, an occurrence of the empty string λ may intersect with an occurrence
of a non-empty string. For example, in the string X = ACATGAT over the alpha-
bet N , the third occurrence of λ (the occurrence (AC,ATGAT)) intersects with the
(only) occurrence of CAT. In the remainder of this report, however, we will not come
across intersections of λ with other strings. Occurrrences of two non-empty substrings
intersect, if and only if the substrings have at least one (occurrence of a) letter in
common.

We say that (Y1, Y2) overlaps with (Z1, Z2), if either |Y1| < |Z1| < |Y1 + |Y s| <
|Z1|+ |Zs| or |Z1| < |Y1| < |Z1|+ |Zs| < |Y1|+ |Y s|. Hence, one of the substrings starts
before and ends inside the other one.

Finally, the occurrence (Y1, Y2) of Y
s contains (or includes) the occurrence (Z1, Z2)

of Zs, if |Y1| ≤ |Z1| and |Z1|+ |Zs| ≤ |Y1|+ |Y s|.
If it is clear from the context which occurrences of Y s and Zs in X are considered,

e.g., if these strings occur in X exactly once, then we may also say that the substrings
Y s and Zs themselves are disjoint, intersect or overlap, or that one contains the other.

Note the difference between intersection and overlap. If (occurrences of) two sub-
strings intersect, then either they overlap, or one contains the other, and these two
possibilities are mutually exclusive For example, in the string X = ACATGAT over
N , the (only occurrence of the) substring Y s = ATGA intersects with both occurrences
of the substring Zs = AT. It contains the first occurrence of Zs and it overlaps with
the second occurrence of Zs.

In Figure 2.1, we have schematically depicted the notions of disjointness, intersec-
tion, overlap and inclusion.

Functions on strings

Let Σ be an alphabet. A function h from Σ∗ to a set K with an operation ◦ is called
a homomorphism if h(X1X2) = h(X1) ◦ h(X2) for all X1, X2 ∈ Σ∗. Hence, to specify h
if suffices to give its values for the letters from Σ.

The empty string λ is the identity 1Σ∗ of Σ∗, i.e., the element satisfying X ◦ 1Σ∗ =
1Σ∗ ◦ X = X for all X ∈ Σ∗. It follows from the definition of a homomorphism that
h(λ) = 1K , where 1K is the identity of K.

We have already seen an example of a homomorphism. The length function | · | is
a homomorphism from Σ∗ to the non-negative integers with addition as the operation.

2.1 Strings, N -words, trees, grammars and complexity 5

X

Y1 Y s Y2

Z1 Zs Z2 (a)

Y1 Y s Y2

Z1 Zs Z2 (b)

Y1 Y s Y2

Z1 Zs Z2 (c)

Figure 2.1: Examples of disjoint and intersecting occurrences (Y1, Y2) of Y s and
(Z1, Z2) of Z

s in a string X. (a) The occurrences are disjoint: |Y1| + |Y s| ≤ |Z1|. (b)
The occurrences overlap: |Z1| < |Y1| < |Z1|+ |Zs| < |Y1|+ |Y s|. (c) The occurrence of
Y s contains the occurrence of Zs: |Y1| ≤ |Z1| and |Z1|+ |Zs| ≤ |Y1|+ |Y s|.

Indeed, |λ| = 0, which is the identity for addition of numbers.
If a homomorphism h maps the elements of Σ∗ into Σ∗ (i.e., if K = Σ∗ and the

operation is concatenation), then h is called an endomorphism.
The symbol c will denote the complement function. It is an endomorphism on N ∗,

specified by

c(A) = T, c(C) = G, c(G) = C, c(T) = A.

Thus, for an N -word α, c(α) results by replacing each letter of α by its Watson-Crick
complement. For example, c(ACATG) = TGTAC.

Directed trees

A tree is a non-empty graph such that for all nodes X and Y in the graph, there is
exactly one path between X and Y . In particular, a tree is connected. Figure 2.2(a)
shows an example of a tree. The distance between two nodes in a tree is the number
of edges on the path between the two nodes. For example, the distance between nodes
X and Y in the tree from Figure 2.2(a) is 3.

A directed tree is a tree with one designated node, which is called the root of the
tree. A non-root in the tree is a node that is not the root of the tree. Let X be a non-
root in a directed tree. The nodes on the path from the root of the tree to X (including
the root, but excluding X) are the ancestors of X. The last node on this path is the
parent of X. X is called a child of its parent. All nodes ‘below’ X in the tree, i.e.,
nodes that X is an ancestor of, are called descendants of X. The subtree rooted in X is
the subtree of t with root X, consisting of X and all its descendants, together with the
arcs connecting these nodes. A leaf in a directed tree is a node without descendants.
Nodes that do have descendants are called internal nodes . We thus have two ways to

6 Ch. 2 Terminology and Notation

vv
v
v

v

v v v
v

vJ
J

@
@@

�
��

�
�
�
�

Q
Q

Y

X

(a)

v
v v

v v
v v v v v

�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

S
S
S

�
�
�

A
A
A

-..............

k

...
...

...
...

6

..

..

..

..

..

..

..

..

..

..

.

i

.....
.....

.....
.....

....

	

........

�

..
..
..
..
..
.

j

..........

root

non-roots

internal nodes

leaves

(b)

Figure 2.2: Examples of trees. (a) A tree with ten nodes. (b) A directed tree with
ten nodes, in which the root and some non-roots, internal nodes and leaves have been
indicated.

partition the nodes in a directed tree: either in a root and non-roots, or in leaves and
internal nodes.

Usually, in a picture of a directed tree, the root is at the top, its children are one
level lower, the children of the children are another level lower, and so on. An example
is given in Figure 2.2(b). In this example we have also indicated the root and some of
the non-roots, internal nodes and leaves.

A level of a directed tree is the set of nodes in the tree that are at the same distance
from the root of the tree. The root is at level 1, the children of the root are at level 2,
and so on. The height of a directed tree is the maximal non-empty level of the tree.
Obviously, this maximal level only contains leaves. For example, the height of the tree
depicted in Figure 2.2(b) is 4, level 2 contains a leaf and an internal node, and level 4
contains five leaves.

It follows immediately from the definition that the height of a tree can be recursively
expressed in the heights of its subtrees:

Lemma 2.1 Let t be a directed tree, and let X1, . . . , Xn for some n ≥ 0 be the children
of the root of t.

1. If n = 0 (i.e., if t consists only of a root), then the height of t is 1.

2. If n ≥ 1, then the height of t is equal to

n
max
i=1

(height of the subtree of t rooted at Xi)+ 1.

A directed tree is ordered if for each internal node X, the children of X are linearly
ordered (‘from left to right’). Finally, an ordered, directed, node-labelled tree is an
ordered directed tree with labels at the nodes.

Grammars

A grammar is a set of rules that describe how the elements (strings) of a certain
language can be derived from a certain initial symbol. We are in particular interested
in context-free grammars and right-linear grammars.

2.1 Strings, N -words, trees, grammars and complexity 7

A context-free grammar is a 4-tuple G = (Σ,∆, P, S), where Σ is the total alphabet
(the set of all symbols that may occur in an intermediate or final string in the grammar),
∆ is the alphabet of terminal symbols (the set of symbols that may occur in the elements
of the language described), P is a finite set of productions (rewriting rules for elements
from Σ \∆) and S is the axiom (the initial symbol). The elements of Σ \∆ are called
non-terminal symbols . Every production is of the form A −→ Z, where A ∈ Σ \∆ and
Z ∈ Σ∗. It allows for rewriting the non-terminal symbol A into the string Z over Σ
(which may contain both terminal and non-terminal symbols).

Let (X1, X2) be an occurrence of the non-terminal symbol A in a string X over Σ.
Hence, X = X1AX2. When we apply the production A −→ Z to this occurrence of A
in X, we substitute A in X by Z. The result is the string X1ZX2.

A string that can be obtained from the axiom S by applying zero or more produc-
tions from P , is called a sentential form. In particular, the string S (containing only
the axiom) is a sentential form. It is the result of applying zero productions.

The language of G (or the language generated by G) is the set of all sentential
forms that only contain terminal symbols, i.e., the set of all strings over ∆ that can be
obtained from the axiom S by the application of zero or more1 productions. We use
L(G) to denote the language of G.

A language K is called context-free, if there exists a context-free grammar G such
that K = L(G).

Let X be an arbitrary string over Σ. A derivation in G of a string Y from X is
a sequence of strings starting with X and ending with Y , such that we can obtain
a string in the sequence from the previous one by the application of one production
from P . If we use X0, X1, . . . , Xk to denote the successive strings (with X0 = X and
Xk = Y), then the derivation is conveniently denoted as X0 =⇒ X1 =⇒ · · · =⇒ Xk.
If the initial string X in the derivation is equal to the axiom S of the grammar, then
we often simply speak of a derivation of Y (and not mention S).

For arbitrary strings X over Σ, the language LG(X) is the set of all strings over ∆
that can be derived in G from X: LG(X) = {Y ∈ ∆∗ | there exists a derivation of Y in
G from X}. If the grammar G is clear from the context, then we will also write L(X).
In particular, L(G) = LG(S) = L(S).

Example 2.2 Consider the context-free grammar G = ({S,A,B, a, b}, {a, b}, P, S),
where

P = {S −→ λ
S −→ ASB
A −→ a
B −→ b }.

A possible derivation in G is

S =⇒ ASB
=⇒ aSB
=⇒ aASBB
=⇒ aaSBB
=⇒ aaBB
=⇒ aabB
=⇒ aabb.

(2.1)

1In practice, of course, because S /∈ ∆, we need to apply at least one production to obtain an
element of the language of G.

8 Ch. 2 Terminology and Notation

In this derivation, we successively applied the second, the third, the second, the third,
the first, the fourth and once more the fourth production from P .

It is not hard to see that L(G) = {ambm | m ≥ 0}.

The notation

A −→ Z1 | Z2 | . . . | Zn

is short for the set of productions

A −→ Z1

A −→ Z2
...

...
...

A −→ Zn

For example, the set of productions from the grammar G in Example 2.2 can be written
as

P = {S −→ λ | ASB
A −→ a
B −→ b }.

With this shorter notation for the productions, we will often use ‘production (i, j)’
to refer to the production with the jth right-hand side from line i. In our example,
production (1, 2) is the production S −→ ASB.

If a sentential form contains more than one non-terminal symbol, then we can
choose which one to expand next. Different choices usually yield different derivations,
which may still yield the same final string.

Example 2.3 Let G be the context-free grammar from Example 2.2. Another deriva-
tion of the string aabb in G is

S =⇒ ASB
=⇒ AASBB
=⇒ AASBb
=⇒ aASBb
=⇒ aASbb
=⇒ aaSbb
=⇒ aabb.

(2.2)

If, in each step of a derivation, we expand the leftmost non-terminal symbol, then the
derivation is called the leftmost derivation. Derivation (2.1) of aabb in our example
context-free grammar is the leftmost derivation,

A right-linear grammar is a special type of context-free grammar, in which every
production is either of the from A −→ λ or of the form A −→ aB with A,B ∈ Σ \∆
and a ∈ ∆. Hence, a production A −→ aB allows for rewriting the non-terminal
symbol A into a terminal symbol a followed by a non-terminal B.

A language K is called regular , if there exists a right-linear grammar G such that
K = L(G).

To prove that a given language is regular, one may prove that it is generated by
a certain right-linear grammar. Sometimes, however, one can also use a result from

2.2 Formal DNA molecules 9

formal language theory, stating that a language generated by a context-free grammar
with a particular property is regular.

Let G be a context-free grammar, let ∆ be the set of terminal symbols in G and
let A be a non-terminal symbol in G. We say that A is self-embedding if there exist
non-empty strings X1, X2 over ∆, such that the string X1AX2 can be derived from
A. Intuitively, we can ‘blow up’ A by rewriting it into X1AX2, rewriting the new
occurrence of A into X1AX2, and so on.

G itself is called self-embedding, if it contains at least one non-terminal symbol that
is self-embedding. In other words: G is not self-embedding, if none of its non-terminal
symbols is self-embedding. Clearly, a right-linear grammar is not self-embedding.
Hence, any regular language can be generated by a grammar that is not self-embedding.
As was proved in [Chomsky, 1959], the reverse is also true: a context-free grammar
that is not self-embedding generates a regular language. We thus have:

Proposition 2.4 A language K is regular, if and only if it can be generated by a
context-free grammar that is not self-embedding.

Complexity of an algorithm

An algorithm is a step-by-step description of an effective method for solving a problem
or completing a task. There are, for example, a number of different algorithms for
sorting a sequence of numbers. In this report, we describe a few algorithms to transform
a given DNA expression into another DNA expression with some desired properties.
In each of these cases, the input of the algorithm is a DNA expression E, which is in
fact just a string over a certain alphabet, satisfying certain conditions.

Algorithms can, a.o., be classified by the amount of time or by the amount of
memory space they require, depending on the size of the input. In particular, one is
often interested in the time compexity (or space complexity) of an algorithm, which
expresses the rate by which the time (space) requirements grow when the input grows.
In our case, the size of the input is the length |E| of the DNA expression E. Hence,
growing input means that we consider longer strings E.

For example, an algorithm is said to have linear time complexity, if its time re-
quirements are roughly proportional to the size of its input: when the input size (the
length |E|) grows with a certain factor, the time required by the algorithm grows with
roughly the same factor. In this case, we may also say that this time is linear in the
input size. An algorithm has quadratic time complexity, if its time requirements grow
with a factor c2 when the input size grows with a factor c.

In the analysis of complexities, we will also use the big O notation. For example,
we may say that the time spent in an algorithm for a given DNA expression E is
in O(|E|). By this, we mean that this time grows at most linearly with the length
|E| of E. In this case, in order to conclude that the algorithm really has linear time
complexity, we need to prove that |E| also provides a lower bound for the growth rate.

2.2 Formal DNA molecules

Every symbol in the upper strand of a double-stranded DNA molecule corresponds to a
symbol in the lower strand. If there are no gaps, then two such corresponding symbols

10 Ch. 2 Terminology and Notation

denote a base pair – two complementary nucleotides that are connected through a hy-
drogen bond. In the formal semantics of our DNA expressions, a pair of corresponding
elements in the upper strand and the lower strand is denoted by a composite symbol

x =
(
x+

x−

)
. Here x+ stands for the nucleotide in the upper strand and x− stands for

the nucleotide in the lower strand. If we happen to have a gap in either of the strands,
the missing nucleotide is denoted by −. Hence, x+, x− ∈ N ∪ {−}. For convenience,
we will speak of a base pair also if one of two complementary nucleotides is missing. If
both nucleotides are present, we may call the base pair complete.

Of course, the value of x+ restricts the value of x−, and vice versa. Because of
the Watson-Crick complementarity and the fact that a missing nucleotide cannot face

another missing nucleotide, only 12 out of the 25 possible composite symbols
(
x+

x−

)
are

really allowed:
(
A
T

)
,
(
C
G

)
,
(
G
C

)
,
(
T
A

)
,
(
A
−

)
,
(
C
−

)
,
(
G
−

)
,
(
T
−

)
,
(
−
A

)
,
(
−
C

)
,
(
−
G

)
,
(
−
T

)
. The set

of these 12 composite symbols is denoted by A.

For the future use, we partition A into three subsets: A± =
{(

A
T

)
,
(
C
G

)
,
(
G
C

)
,
(
T
A

)}
,

A+ =
{(

A
−

)
,
(
C
−

)
,
(
G
−

)
,
(
T
−

)}
and A− =

{(
−
A

)
,
(
−
C

)
,
(
−
G

)
,
(
−
T

)}
. The elements of A

are called A-letters , the elements of A± are called double A-letters , the elements of
A+ are called upper A-letters , and the elements of A− are called lower A-letters.
Consequently, a non-empty string over A is called an A-word , a non-empty string over
A± is called a double A-word , a non-empty string over A+ is called an upper A-word ,
and a non-empty string over A− is called a lower A-word .

We also need symbols to denote nicks. There are three possibilities for the connec-
tion structure of two adjacent base pairs in a double stranded DNA molecule: there
can be a nick in the upper strand, there can be a nick in the lower strand, or there can
be no nick at all between the base pairs. Note that there cannot be both a nick in the
upper strand and a nick in the lower strand between two adjacent base pairs. In such
a situation, there would be no connection whatsoever between the base pairs, so they
would be parts of different DNA molecules.

The case that there is no nick at all is the default; it is not denoted explicitly. A
nick in the upper strand is denoted by ▽ and a nick in the lower strand by △. We call
▽ and △ the nick letters – ▽ is the upper nick letter, and △ the lower nick letter.

Now, a complete description of a linear DNA molecule possibly containing nicks
and gaps can be given by a non-empty string X over A▽△

= A ∪ {▽, △}.

Definition 2.5 (See [Van Vliet, 2004, Definition 2.1], [Van Vliet et al., 2005,
Definition 1], [Van Vliet et al., 2006, Definition 1]) A formal DNA molecule is
a string X = x1x2 . . . xr with r ≥ 1 and for i = 1, . . . , r, xi ∈ A▽△

, satisfying

1. if xi ∈ A+, then xi+1 /∈ A− (i = 1, 2, . . . , r − 1),

if xi ∈ A−, then xi+1 /∈ A+ (i = 1, 2, . . . , r − 1),

2. x1, xr ∈ A,

3. if xi ∈ {▽, △}, then xi−1, xi+1 ∈ A± (i = 2, 3, . . . , r − 1).

The language of all formal DNA molecules is denoted by F . Since X ∈ F is called a
molecule (albeit ‘formal’), we will refer to the sequence of (possibly missing) nucleotides

2.2 Formal DNA molecules 11

x+
i and upper nick letters in X as the upper strand of X. The lower strand of X is

defined analogously.
If a formal DNA molecule does not contain upper nick letters, then we say that its

upper strand is nick free. Similarly, if a formal DNA molecule does not contain lower
nick letters, then its lower strand is nick free. If a formal DNA molecule does not
contain nick letters at all, then the molecule is called nick free.

When we build up a formal DNA molecule from left to right, the choice of a certain
letter completely determines the possibilities for the next letter. For example: a nick
letter must be succeeded by a double A-letter; an upper A-letter may be succeeded by
either an other upperA-letter or a doubleA-letter, or it may terminate the formal DNA
molecule (see Definition 2.5). With this in mind, it is easy to construct a right-linear
grammar that generates the language F . We thus have:

Lemma 2.6 The language F of formal DNA molecules is regular.

Components of a formal DNA molecule

Let X = x1 . . . xr be a formal DNA molecule, with xi ∈ A▽△
for i = 1, . . . , r. A formal

DNA submolecule of X is a substring Xs of X such that Xs is a formal DNA molecule.
It is easy to see that

Lemma 2.7 A substring Xs of a formal DNA molecule X is a formal DNA molecule
if and and only if |Xs| ≥ 1 and L(Xs), R(Xs) ∈ A.

Definition 2.8 (See [Van Vliet, 2004, Definition 2.3], [Van Vliet et al., 2005,
Definition 2], [Van Vliet et al., 2006, page 130]) Let X be a formal DNA molecule.
Then the decomposition of X is the sequence x′

1, . . . , x
′
k of k ≥ 1 non-empty strings over

A▽△
such that

• X = x′
1 . . . x

′
k,

• for i = 1, . . . , k, x′
i is either an upper A-word, or a lower A-word, or a double

A-word, or a nick letter, and

• for i = 1, . . . , k − 1, if x′
i is an upper A-word, then x′

i+1 is not an upper A-word,
and similarly for lower A-words and double A-words.

Hence, the decomposition of X cannot be simplified any further. For the ease of
notation, we will in general write x′

1 . . . x
′
k instead of x′

1, . . . , x
′
k.

If x′
1 . . . x

′
k for some k ≥ 1 is the decomposition of a formal DNA molecule X, then

the substrings x′
i are called the components of X. For i = 1, . . . , k, if x′

i is an upper
A-word (lower A-word or double A-word), then x′

i is called an upper component (lower
component or double component , respectively) of X. If x′

i is not a double component,
then we may also call it a non-double component of X. Upper components and lower
components of X are also called single-stranded components of X.

Corollary 2.9 (See [Van Vliet, 2004, Corollary 2.5]) Let X be a nick free formal
DNA molecule and let x′

1 . . . x
′
k for some k ≥ 1 be the decomposition of X.

1. For i = 1, . . . , k, x′
i is either an upper component, or a lower component, or a

double component.

12 Ch. 2 Terminology and Notation

2. For i = 1, . . . , k − 1,

• if x′
i is a single-stranded component, then x′

i+1 is a double component, and

• if x′
i is a double component then x′

i+1 is a single-stranded component.

2.3 Properties, relations and functions of formal

DNA molecules

Properties

Let X = x1 . . . xr be a formal DNA molecule, with xi ∈ A▽△
for i = 1, . . . , r. Then the

upper strand of X is said to cover the lower strand to the right if R(X) = xr /∈ A−,
hence, if x+

r 6= −; note that, since xr is not allowed to be a nick letter (condition 2 of
Definition 2.5), x+

r is well defined. Intuitively, the upper strand extends at least as far
to the right as the lower strand then.

If R(X) = xr ∈ A+, hence x−
r = − (the upper strand extends even beyond the

lower strand to the right), then the upper strand strictly covers the lower strand to the
right. In an analogous way we can define ‘(strict) covering to the left ’.

Of course, the definition of ‘(strict) covering’ can also be formulated for the lower
strand.

Relations

We say that a formal DNA molecule X1 prefits a formal DNA molecule X2 by upper
strands , denoted by X1⊏X2, if the upper strand of X1 covers the lower strand to
the right and the upper strand of X2 covers the lower strand to the left, hence, if
R(X1) /∈ A− and L(X2) /∈ A−; we also say that X1 is an upper prefit for X2 then.
Intuitively, when we write X1 and X2 after each other in such a case, the respective
upper strands ‘make contact’.

Analogously, we define X1 to prefit X2 by lower strands (to be a lower prefit for X2)
if R(X1) /∈ A+ and L(X2) /∈ A+, and write then X1⊏X2. If either X1⊏X2 or X1⊏X2,
we say that X1 prefits X2 or that X1 is a prefit for X2, and write then X1 ⊏ X2.

If X1 prefits X2 (by upper/lower strands), then, from the perspective of X2, we say
that X2 postfits X1 (by upper/lower strands), or that X2 is an (upper/lower) postfit
for X1.

If the order of the formal DNA molecules is clear, then we may also say that X1

and X2 fit together (by upper/lower strands).

Functions

We define four endomorphisms on the set A∗
▽△

: ν+, ν−, ν and κ. Let x ∈ A▽△
. Then

ν+(x) =

{
x if x ∈ A ∪ {△}
λ if x = ▽ (2.3)

ν−(x) =

{
x if x ∈ A ∪ {▽}
λ if x = △

(2.4)

ν(x) =

{
x if x ∈ A
λ if x ∈ {▽, △}

(2.5)

2.4 Operators and DNA expressions 13

κ(x) =





x if x ∈ A± ∪ {▽, △}(
a

c(a)

)
if x =

(
a
−

)
for a ∈ N(

c(a)
a

)
if x =

(
−
a

)
for a ∈ N

(2.6)

It is easy to see (by inspecting the effect of the functions on the symbols from A▽△
),

that applying the same function more than one time, does not change the result:

h(h(X)) = h(X) for each h ∈ {ν+, ν−, ν, κ} and X ∈ A∗
▽△

. (2.7)

For example, ν(ν(X)) = ν(X) for each X ∈ A∗
▽△

.

Lemma 2.10 (See [Van Vliet, 2004, Lemma 2.7]) For each formal DNA molecule
X,

L(ν+(X)) = L(ν−(X)) = L(ν(X)) = L(X),

R(ν+(X)) = R(ν−(X)) = R(ν(X)) = R(X),

L(κ(X)), R(κ(X)) ∈ A±.

2.4 Operators and DNA expressions

The formal DNA molecules constitute the foundation of our DNA language. They
allow us to define the elements of the DNA language: the DNA expressions.

The basic building blocks of DNA expressions are N -words. DNA expressions
result by applying operators to N -words. The operators we consider in this report are
↑, ↓ and l, to be pronounced as uparrow , downarrow and updownarrow , respectively.
DNA expressions also contain opening and closing brackets: 〈 and 〉, which delimit
the scope of the operators – each (occurrence of an) operator acts only on the part of
the expression that is contained between its opening and closing brackets. Hence, the
set of all DNA expressions, denoted by D, is a language over the alphabet ΣD, where
ΣD = N ∪ {↑, ↓, l, 〈 , 〉} = {A,C,G,T, ↑, ↓, l, 〈 , 〉}.

We will use the symbol E (possibly with annotations like subscripts) to denote a
DNA expression. If a string can be either an N -word or a DNA expression, then we
use ε (possibly with annotations like subscripts) to denote it.

Informally, a DNA expression is a string of the form 〈↑ ε1ε2 . . . εn〉, 〈↓ ε1ε2 . . . εn〉
or 〈l ε1〉, where n ≥ 1 and the εi’s are either N -words or DNA expressions themselves.
The εi’s are called the arguments of the operator involved. We say that an operator is
applied to its arguments. The arguments of the operators ↑ and ↓ must satisfy certain
conditions, which will be explained shortly.

Clearly, not every string over ΣD is a DNA expression. In particular, every DNA
expression contains brackets and at least one operator, which implies that N -words
are not DNA expressions.

If E is a DNA expression, then the semantics of E, denoted by S(E), is the formal
DNA molecule represented by E. For every DNA expression, there is exactly one such
formal DNA molecule, so S is a mapping from the DNA language into the set of formal
DNA molecules. When we precisely define the DNA expressions, we will also describe
the corresponding semantics.

14 Ch. 2 Terminology and Notation

S
(〈
↑ C

G
AT GC

CG

▽ 〉)
= CATGC

G CG
S
(〈
↑ A

T
T
A

〉)
= AT

TA
△

(a)

S
(〈
↓ T CATGC

G CG
AT
TA
△

〉)
= CATGCAT

TG CGTA

▽

(b)

S
(〈
l CATGCAT

TG CGTA

▽ 〉)
= ACATGCAT

TGTACGTA

▽

(c)

Figure 2.3: (See [Van Vliet, 2004, Figure 2.5], [Van Vliet et al., 2005, Fig-
ure 1], [Van Vliet et al., 2006, Figure 1]) Examples of the effects of the three
operators. (a) The effect of the operator ↑. (b) The effect of the operator ↓. (c) The
effect of the operator l.

The operator ↑ can have an arbitrary number n ≥ 1 of arguments. Each argument
εi (i = 1, 2, . . . , n) must be either an N -word α, or a DNA expression E. The resulting
DNA expression is 〈↑ ε1ε2 . . . εn〉.

From the molecular point of view, the effect of the operator ↑ is threefold: (1) it
produces upper strands corresponding to arguments that are N -words α (as in the
basic DNA expression 〈↑ α〉), (2) it repairs all nicks occurring in the upper strands of
its arguments by establishing the missing phosphodiester bonds and (3) it fixes such
connections between the upper strands of consecutive arguments. In short, ↑ connects
all pairs of adjacent nucleotides in the upper strands of its arguments.

The third type of effect imposes a (semantical) restriction on the arguments of
↑: consecutive arguments must prefit each other by upper strands. Otherwise, there
would be a gap in the upper strand ‘between’ two arguments, and we would not be
able to connect the upper strands. Since we have defined ‘prefitting each other by
upper strands’ only for formal DNA molecules and for DNA expressions, we consider
an N -word α here as the DNA expression 〈↑ α〉, which represents the upper A-word(
α
−

)
.

The three types of effect of ↑ are illustrated by the first example in Figure 2.3(a).

Nicks that are present in the lower strands of the arguments are not repaired by
the operator ↑. As a matter of fact, ↑ introduces nicks between the lower strands of
consecutive arguments if these consecutive arguments happen to prefit each other by
lower strands, i.e., if they have a blunt edge at each other’s side. The second example
in Figure 2.3(a) shows such a situation.

The operator ↓ is the dual of ↑. It can have an arbitrary number n ≥ 1 of arguments,
with each argument εi (i = 1, . . . , n) being either an N -word or a DNA expression.
The resulting DNA expression is 〈↓ ε1ε2 . . . εn〉.

The effect of this operator is similar to that of ↑; the only difference is that the roles
of the upper strands and the lower strands of the arguments are changed. Consequently,
also the requirement on consecutive arguments is changed: for i = 1, 2, . . . , n − 1, εi
must prefit εi+1 by lower strands. Here, when an argument εi is an N -word α, it is

interpreted as the DNA expression 〈↓ α〉, which denotes the lower A-word
(
−
α

)
. The

effect of ↓ is illustrated by Figure 2.3(b).

Unlike the other two operators, l can have only one argument ε1. It is either an
N -word or an (arbitrary) DNA expression. The resulting DNA expression is 〈l ε1〉.

If ε1 is a DNA expression E, then, intuitively, in the DNA molecule denoted by E,
the operator l provides a complementary nucleotide for every nucleotide which is not
yet complemented. So it fills up every gap in the DNA molecule. Further, the operator

2.4 Operators and DNA expressions 15

establishes phosphodiester bonds between the nucleotides added and their respective
neighbours in the strand. Hence, it does not introduce new nicks. On the other hand,
if the DNA molecule denoted by E has nicks already, then these nicks are not repaired
by l. The effect of this operator is illustrated in Figure 2.3(c).

Definition 2.11 (See [Van Vliet, 2004, Definition 2.8 and Definition 2.9],
[Van Vliet et al., 2005, pages 378-380], [Van Vliet et al., 2006, pages 131-
133]) A DNA expression is a string in any of the following forms:

• 〈↑ ε1ε2 . . . εn〉,
where n ≥ 1, for i = 1, 2, . . . , n, εi is either an N -word or a DNA expression,
and for i = 1, 2, . . . , n− 1, S+(εi)⊏S+(εi+1), where the function S+ is defined by

S+(ε) =

{ (
α
−

)
if ε is an N -word α

S(ε) if ε is a DNA expression
. (2.8)

Further,

S(〈↑ ε1ε2 . . . εn〉) = ν+(S+(ε1))y1ν
+(S+(ε2))y2 . . . yn−1ν

+(S+(εn)) (2.9)

with

yi =





△ if S+(εi)⊏S+(εi+1), i.e., if both R(S+(εi)) ∈ A±

and L(S+(εi+1)) ∈ A±

λ otherwise, i.e., if either R(S+(εi)) ∈ A+

or L(S+(εi+1)) ∈ A+ (or both)

(i = 1, 2, . . . , n− 1).

(2.10)

• 〈↓ ε1ε2 . . . εn〉,
where n ≥ 1, for i = 1, 2, . . . , n, εi is either an N -word or a DNA expression,
and for i = 1, 2, . . . , n− 1, S−(εi)⊏S−(εi+1), where the function S− is defined by

S−(ε) =

{ (
−
α

)
if ε is an N -word α

S(ε) if ε is a DNA expression
. (2.11)

Further,

S(〈↓ ε1ε2 . . . εn〉) = ν−(S−(ε1))y1ν
−(S−(ε2))y2 . . . yn−1ν

−(S−(εn))

with

yi =





▽ if S−(εi)⊏S−(εi+1), i.e., if both R(S−(εi)) ∈ A±

and L(S−(εi+1)) ∈ A±

λ otherwise, i.e., if either R(S−(εi)) ∈ A−

or L(S−(εi+1)) ∈ A− (or both)

(i = 1, 2, . . . , n− 1).

16 Ch. 2 Terminology and Notation

• 〈l ε1〉,
where ε1 is either an N -word or a DNA expression.

Further,

S(〈l ε1〉) = κ(S+(ε1)).

for the function S+ defined above.

Example 2.12 (See [Van Vliet, 2004, Equation (2.17)]) (Cf. [Van Vliet et
al., 2005, Equation (4)], [Van Vliet et al., 2006, Equation (4)]) The DNA
expression

E = 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉 〈l T〉〉〉 ,

uses all three operators. It is easily verified that E denotes the DNA molecule from
Figure 2.3(b).

We call a DNA expression of the form 〈↑ ε1 . . . εn〉 an ↑-expression, one of the form
〈↓ ε1 . . . εn〉 a ↓-expression, and one of the form 〈l ε1〉 an l-expression. Hence, the
DNA expression in Example 2.12 is a ↓-expression.

Theorem 2.13 (See [Van Vliet, 2004, Theorem 2.10]) Let E = 〈↑ ε1 . . . εi0−1

εi0 . . . εj0εj0+1 . . . εn〉 be a DNA expression where for i = 1, . . . , i0−1, j0+1, . . . , n, εi is
either an N -word or a DNA expression, and for i = i0, . . . , j0, εi = αi is an N -word.
Let α = αi0 . . . αj0. Then S(E) is the same, regardless of the interpretation of α as
one argument or as a sequence of separate arguments αi0 , . . . , αj0.

By the above, we are free to interpret consecutive N -words in a DNA expression as one
N -word. This motivates the definition of a maximal N -word occurrence in a string X
(e.g., a DNA expression E) as an occurrence (X1, X2) of an N -word α in X such that
(1) if X1 6= λ then R(X1) /∈ N and (2) if X2 6= λ then L(X2) /∈ N . Hence, the N -word
α ‘cannot be extended either to the left or to the right’.

Additional terminology

We say that an operator governs its argument(s) and everything inside its argument(s).
In every DNA expression we can identify an outermost operator. This is the operator
which has been performed last. It governs the entire DNA expression.

Because of the 1–1 correspondence between a DNA expression and its outermost
operator, we will sometimes interchange the terms. In particular, we may speak of the
arguments of a DNA expression, while we actually mean the arguments of the outer-
most operator of a DNA expression. For example, the (three) arguments of the DNA
expression from Example 2.12 are T, 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 and 〈↑ 〈l A〉 〈l T〉〉.

We call (an occurrence of) an operator in a DNA expression E which is not the
outermost operator, an inner occurrence of this operator in E.

An operator may occur more than once in a DNA expression. To denote a specific
occurrence of an operator, we may provide the operator with an index. For example,
we may have ↑0 or ↓1.

A DNA subexpression Es of a DNA expression E is a substring of E which is itself a
DNA expression. If Es 6= E, then we call Es a proper DNA subexpression of E. Clearly,

2.4 Operators and DNA expressions 17

the outermost operator of a proper DNA subexpression of E is an inner occurrence of
this operator in E.

We will use the term ↑-subexpression of E to refer to a DNA subexpression of
E which is an ↑-expression. Analogously, we may have a ↓-subexpression and an l-
subexpression of E.

For every N -word α occurring in a DNA expression E and for every proper DNA
subexpression Es of E we define its parent operator to be the operator which has
the N -word or DNA subexpression as an immediate argument. For example, in the
DNA expression from Example 2.12, the parent operator of the N -word AT is the first
occurrence of the operator ↑ in the DNA expression; for the second occurrence of the
N -word C it is clearly the operator l standing in front of it; and the parent operator
of the DNA subexpression 〈l G〉 is the second occurrence of the operator ↓.

An occurrence of an operator is an ancestor operator of an N -word or a DNA
subexpression ε occurring in E, if ε is contained in an argument of the operator. For
example, the ancestor operators of the second occurrence of the N -word C in the DNA
expression from Example 2.12 are: the first occurrence of ↓ (the outermost operator),
the first occurrence of ↑, the second occurrence of ↓ and the third occurrence of l (the
parent operator of C).

If an argument of a certain (occurrence of an) operator is an N -word, then we may
call it an N -word-argument of the operator. If, on the other hand, the argument is
a DNA expression, then we may call it an expression-argument of the operator. In
particular, if it is an ↑-expression, then we may call it an ↑-argument . In an analogous
way, we define a ↓-argument and an l-argument of an operator. At some point in this
report, it will be useful to have a single term for arguments that are not l-expressions,
i.e., for N -word-arguments, ↑-arguments and ↓-arguments. We call such arguments
non-l-arguments .

We say that an ↑-expression or a ↓-expression E is alternating , if its arguments are
maximal N -word occurrences and DNA expressions, alternately. Because by definition,
a maximal N -word occurrence cannot be preceded or succeeded by another N -word-
argument, this is equivalent to saying that E does not have consecutive expression-
arguments. An occurrence of an operator ↑ or ↓ is alternating, if the corresponding
DNA subexpression is alternating. Examples of alternating DNA expressions are

E1 = 〈↑ α1〉 ,

E2 = 〈↑ 〈l α1〉〉 ,

E3 = 〈↓ 〈↑ α1 〈l α2〉〉α3α4 〈l α5〉〉 ,

E4 = 〈↓ α1 〈↓ 〈l α2〉 〈↑ 〈l α3〉α4〉〉〉 .

Both E1 and E2 have exactly one argument, and are by definition alternating. The
N -word-arguments α3 and α4 of E3 together form a maximal N -word occurrence.
This makes E3 alternating. Finally, E4 is alternating, although its second argument
〈↓ 〈l α2〉 〈↑ 〈l α3〉α4〉〉 is not alternating. The ↓-expression in Example 2.12 is not al-
ternating, because both its second argument 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 and its third
argument 〈↑ 〈l A〉 〈l T〉〉 are DNA expressions.

Let E be a DNA expression, and let α1, . . . , αk for some k ≥ 1 be the maximal
N -word occurrences in E, in the order of their occurrence from left to right. Then
we will sometimes write E as a function of these maximal N -word occurrences, hence
E = E(α1, . . . , αk). Clearly, α1, . . . , αk also show up in the corresponding formal DNA
molecule S(E), and they occur in S(E) in the same order as in E.

18 Ch. 2 Terminology and Notation

Note, however, that different maximal N -word occurrences αi in E may occur in
the same component of S(E). Moreover, if the parent operator of a maximal N -word

occurrence αi is ↓ (which implies that a lower A-word
(
−
αi

)
is introduced into the

semantics), then this lower A-word may be complemented by an occurrence of l. This

would result in a double A-word
(
c(αi)
αi

)
. Hence, the component of S(E) in which a

maximal N -word occurrence αi of E appears, is not necessarily an element of WA(αi)

For example, if E = E(α1, α2) = 〈l 〈↓ α1 〈l α2〉〉〉, then S(E) =
(
c(α1)α2

α1c(α2)

)
.

2.5 Nesting level of the brackets

The brackets in a DNA expression determine a structure with different levels. An
opening bracket 〈 corresponds to an increase of the level by 1, a closing bracket 〉 to
a decrease of the level by 1. The resulting levels are called the nesting levels of the
brackets.

Initially, before the first letter of a DNA expression, the nesting level is 0. Since
every opening bracket precedes the corresponding closing bracket, the nesting level is
non-negative at any position in a DNA expression. Further, because the number of
opening brackets equals the number of closing brackets, the nesting level is back at 0
at the end of a DNA expression.

The maximal nesting level of a DNA expression is of particular interest. For exam-
ple, the maximal nesting level of the DNA expression from Example 2.12 is 4.

A DNA expression consists of an opening bracket, an operator, one or more argu-
ments and a closing bracket. Hence, the nesting level structure of a DNA expression is
determined by the nesting level structure of its arguments. In particular, the maximal
nesting level of a DNA expression is determined by the maximal nesting levels of those
arguments that are DNA expressions themselves:

Lemma 2.14 Let E be a DNA expression and let E1, . . . , Er for some r ≥ 0 be the
expression-arguments of E.

1. If r = 0 (i.e., if E only has N -word-arguments), then the maximal nesting level
of E is 1.

2. If r ≥ 1, then the maximal nesting level of E is equal to

r
max
j=1

(maximal nesting level of Ej)+ 1.

Of course, in the expression in Claim 2, the expression-arguments Ej are viewed as
independent DNA expressions, which start at level 0.

2.6 The functions L and R for arguments of DNA

expressions

An important requirement on the arguments ε1, . . . , εn of an ↑-expression (or ↓-expres-
sion) is that they must fit together by upper strands (lower strands, respectively).
The requirement for ↑-expressions can be expressed formally in terms of R(S+(εi))
and L(S+(εi+1)) for i = 1, . . . , n − 1. If we only want to check whether or not two

2.7 A context-free grammar for D 19

arguments of an operator fit together by upper strands, then we are not interested in
the complete semantics of these arguments. Therefore, it would be desirable if we could
compute L(S+(εi)) and R(S+(εi)) for an N -word or DNA expression εi without having
to compute S+(εi) explicitly. Actually, we only need to know which of the subsets
A+, A− and A± the A-letters L(S+(εi)) and R(S+(εi)) belong to. For consecutive
arguments εi and εi+1, both R(S+(εi)) and L(S+(εi+1)) must be in A+ ∪ A±.

Of course, to check if the arguments ε1, . . . , εn of an operator ↓ fit together by lower
strands, we need to answer a similar question for L(S−(εi)) and R(S−(εi)). Note that
if εi is a DNA expression Ei, then S+(εi) = S−(εi) = S(Ei). Hence, in that case,
L(S+(εi)) = L(S−(εi)) and R(S+(εi) = R(S−(εi)).

We can use the following result to recursively determine the subsets that L(S+(εi)),
R(S+(εi)), L(S−(εi)) and R(S−(εi)) are an element of:

Lemma 2.15 (See [Van Vliet, 2004, Lemma 2.16]) Let εi be an N -word or a
DNA expression.

1. If εi is an N -word α, then

L(S+(εi)), R(S+(εi)) ∈ A+,

L(S−(εi)), R(S−(εi)) ∈ A−.

2. If εi is an l-expression, then

L(S+(εi)) = L(S−(εi)) = L(S(εi)) ∈ A±,

R(S+(εi)) = R(S−(εi)) = R(S(εi)) ∈ A±.

3. If εi is an ↑-expression 〈↑ εi,1 . . . εi,m〉 for some m ≥ 1 and N -words and DNA
expressions εi,1, . . . , εi,m then

L(S+(εi)) = L(S−(εi)) = L(S(εi)) = L(S+(εi,1)),

R(S+(εi)) = R(S−(εi)) = R(S(εi)) = R(S+(εi,m)).

4. If εi is a ↓-expression 〈↓ εi,1 . . . εi,m〉 for some m ≥ 1 and N -words and DNA
expressions εi,1, . . . , εi,m then

L(S+(εi)) = L(S−(εi)) = L(S(εi)) = L(S−(εi,1)),

R(S+(εi)) = R(S−(εi)) = R(S(εi)) = R(S−(εi,m)).

2.7 A context-free grammar for D

As we have established in Lemma 2.6, the language F of formal DNA molecules is
regular. This is not the case with the language D of all DNA expressions. This is
intuitively clear from the fact that every DNA expression contains matching brackets 〈
and 〉, and that these brackets may be deeply nested. We use this intuition in a formal
proof.

20 Ch. 2 Terminology and Notation

Lemma 2.16 The language D of DNA expressions is not regular.

Proof: Let α be an arbitrary N -word. Then E1 = 〈l α〉 is a DNA expression, and

S(E1) =
(

α
c(α)

)
. By definition, also E2 = 〈l 〈l α〉〉 is a DNA expression, with the

same semantics. Using induction, one can easily prove that for arbitrary l ≥ 1, El =(
〈l

)l
α
(
〉
)l

is a DNA expression, with S(El) =
(

α
c(α)

)
. By the pumping lemma for

regular languages, a language requiring brackets to match and containing such DNA
expressions is not regular.

The language D is, however, context-free, because it can be generated by a context-free
grammar. We will give such a grammar, here. It is a 4-tuple G1 = (Σ1,∆1, P1, S1),
which is based on three types of non-terminal symbols: E (which denotes a DNA
expression), U (a sequence of one or more arguments of an ↑-expression) and L (a
sequence of one or more arguments of a ↓-expression).

The crucial issue in the construction of a context-free grammar generating D, is
that we must somehow incorporate the requirement that consecutive arguments of an
operator ↑ or ↓ fit together by upper strands or lower strands, respectively. For this,
the non-terminal symbols E, U and L have two subscripts. The first subscript denotes
whether or not one of the strands of the (sub)molecule represented by the non-terminal
has to cover the other strand to the left. If it is +, then the upper strand must cover
the lower strand to the left; if it is −, then the lower strand must cover the upper
strand to the left; if it is ⋆, then it does not matter if either strand strictly covers the
other strand to the left. The second subscript has the same meaning, however, with
respect to covering to the right. For example, the symbol U+,− denotes a sequence of
arguments of ↑, for which the upper strand (of the first argument) must cover the lower
strand to the left, and the lower strand (of the last argument) must cover the upper
strand to the right.

In addition to the above, G1 has one more non-terminal symbol: α, which represents
an arbitrary N -word. We thus have the following set of non-terminal symbols:

{Ex,y, Ux,y, Lx,y | x, y ∈ {⋆,+,−}} ∪ {α}.

The axiom is S1 = E⋆,⋆, which denotes a DNA expression without restrictions on the
two strands. The alphabet ∆1 of terminal symbols is equal to ΣD: ∆1 = {A,C,G,T, ↑
, ↓, l, 〈 , 〉}.

Before we present the productions in G1 (i.e., the elements of P1) we discuss why
we have exactly those productions.

We first consider the productions for (rewriting) a non-terminal symbol Ex,y with
x, y ∈ {⋆,+,−}, which represents a DNA expression.

By Lemma 2.15(2), for any l-expression E, we have L(S(E)), R(S(E)) ∈ A±.
Hence, the upper strand of E covers the lower strand to both the left and the right,
and vice versa. This implies that, regardless of the subscripts x and y, we may rewrite
Ex,y into any l-expression. Therefore, we have productions Ex,y −→ 〈l α〉 and Ex,y −→
〈l E⋆,⋆〉. Indeed, the non-terminal α occurring in the former production represents an
arbitrary N -word, and the non-terminal E⋆,⋆ of l occurring in the latter production
represents an arbitrary DNA expression, without restrictions on the strands.

By Lemma 2.15(3), for an ↑-expression E, the values of the functions L and R
depend (solely) on the values for the first and the last argument of E, respectively.
Therefore, if we want to rewrite Ex,y into an ↑-expression, then the subscripts x and y

2.7 A context-free grammar for D 21

simply carry over to the non-terminal U representing the arguments of the ↑-expression.
We thus have a production Ex,y −→ 〈↑ Ux,y〉. Analogously, we have Ex,y −→ 〈↓ Lx,y〉.

Next, consider a non-terminal symbol Ux,y for some subscripts x, y ∈ {⋆,+,−}. This
non-terminal must be rewritten into a sequence of n ≥ 1 arguments for an occurrence of
↑. We do this in a right-linear, recursive way: we rewrite Ux,y into a non-terminal α or
E (with some subscripts) representing the first argument, possibly followed by another
non-terminal U (with some subscripts), representing the second and later arguments.

If n ≥ 2, so that we indeed need a new non-terminal symbol U for the second and
later arguments, then the subscripts in the right-hand side of the production reflect
the requirement that the arguments of ↑ fit together by upper strands. In particular, if
the first argument is a DNA expression, then the second subscript of the non-terminal
symbol E representing it must be +. Further, the first subscript of the new non-
terminal symbol U must be +.

Example 2.17 The non-terminal symbol U⋆,+ represents a sequence of arguments of ↑
with no restrictions on the left-hand side of the first argument, but for which the upper
strand of the last argument must cover the lower strand on the right. We have four

productions for this symbol: U⋆,+ −→ α (indeed, the upper strand of S+(α) =
(
α
−

)

covers the lower strand on the right), U⋆,+ −→ E⋆,+, U⋆,+ −→ αU+,+ and U⋆,+ −→
E⋆,+U+,+ (see the productions in line 11 below).

Example 2.18 The non-terminal symbol U−,⋆ represents a sequence of arguments of
↑ for which the lower strand of the first argument must cover the upper strand on the
left, and for which there are no restrictions on the right-hand side of the last argument.

Because the lower strand of S+(α) =
(
α
−

)
does not cover the upper strand on the left,

the first argument cannot be an N -word α. Hence, we have only two productions for
this symbol: U−,⋆ −→ E−,⋆ and U−,⋆ −→ E−,+U+,⋆ (see the productions in line 16
below).

There is, of course, an analogous explanation for the productions for a non-terminal
Lx,y with x, y ∈ {⋆,+,−}.

The grammatical structure of an N -word (represented by the non-terminal symbol
α) is similar to that of the sequence of arguments of ↑ or ↓. An N -word is an arbitrary
sequence of r ≥ 1 N -letters. We obtain this sequence from the non-terminal symbol
α by recursively rewriting this symbol into an N -letter, possibly followed by another
non-terminal α.

Thus, the set P1 consists of the following productions:

1. E⋆,⋆ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U⋆,⋆〉 | 〈↓ L⋆,⋆〉

2. E⋆,+ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U⋆,+〉 | 〈↓ L⋆,+〉

3. E⋆,− −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U⋆,−〉 | 〈↓ L⋆,−〉

4. E+,⋆ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U+,⋆〉 | 〈↓ L+,⋆〉

5. E+,+ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U+,+〉 | 〈↓ L+,+〉

6. E+,− −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U+,−〉 | 〈↓ L+,−〉

7. E−,⋆ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U−,⋆〉 | 〈↓ L−,⋆〉

8. E−,+ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U−,+〉 | 〈↓ L−,+〉

9. E−,− −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U−,−〉 | 〈↓ L−,−〉

22 Ch. 2 Terminology and Notation

10. U⋆,⋆ −→ α | E⋆,⋆ | αU+,⋆ | E⋆,+U+,⋆

11. U⋆,+ −→ α | E⋆,+ | αU+,+ | E⋆,+U+,+

12. U⋆,− −→ E⋆,− | αU+,− | E⋆,+U+,−

13. U+,⋆ −→ α | E+,⋆ | αU+,⋆ | E+,+U+,⋆

14. U+,+ −→ α | E+,+ | αU+,+ | E+,+U+,+

15. U+,− −→ E+,− | αU+,− | E+,+U+,−

16. U−,⋆ −→ E−,⋆ | E−,+U+,⋆

17. U−,+ −→ E−,+ | E−,+U+,+

18. U−,− −→ E−,− | E−,+U+,−

19. L⋆,⋆ −→ α | E⋆,⋆ | αL−,⋆ | E⋆,−L−,⋆

20. L⋆,+ −→ E⋆,+ | αL−,+ | E⋆,−L−,+

21. L⋆,− −→ α | E⋆,− | αL−,− | E⋆,−L−,−

22. L+,⋆ −→ E+,⋆ | E+,−L−,⋆

23. L+,+ −→ E+,+ | E+,−L−,+

24. L+,− −→ E+,− | E+,−L−,−

25. L−,⋆ −→ α | E−,⋆ | αL−,⋆ | E−,−L−,⋆

26. L−,+ −→ E−,+ | αL−,+ | E−,−L−,+

27. L−,− −→ α | E−,− | αL−,− | E−,−L−,−

28. α −→ A | C | G | T | Aα | Cα | Gα | Tα

Note that the first nine lines of the above list can be summarized by

Ex,y −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ Ux,y〉 | 〈↓ Lx,y〉 (x, y ∈ {⋆,+,−}).

The description by nine separate lines, however, makes it easier to refer to a particular
production, as we do in the following example.

Example 2.19 The DNA expression from Example 2.12 is the result of many different
derivations in G1. The leftmost derivation is

E⋆,⋆
1,4
=⇒ 〈↓ L⋆,⋆〉
19,3
=⇒ 〈↓ αL−,⋆〉
28,4
=⇒ 〈↓ TL−,⋆〉
25,4
=⇒ 〈↓ TE−,−L−,⋆〉
9,3
=⇒ 〈↓ T 〈↑ U−,−〉L−,⋆〉
18,2
=⇒ 〈↓ T 〈↑ E−,+U+,−〉L−,⋆〉
8,1
=⇒ 〈↓ T 〈↑ 〈l α〉U+,−〉L−,⋆〉
28,2
=⇒ 〈↓ T 〈↑ 〈l C〉U+,−〉L−,⋆〉
15,2
=⇒ 〈↓ T 〈↑ 〈l C〉αU+,−〉L−,⋆〉
28,5
=⇒ 〈↓ T 〈↑ 〈l C〉AαU+,−〉L−,⋆〉

2.8 The structure tree of a DNA expression 23

28,4
=⇒ 〈↓ T 〈↑ 〈l C〉ATU+,−〉L−,⋆〉
15,1
=⇒ 〈↓ T 〈↑ 〈l C〉ATE+,−〉L−,⋆〉
6,4
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ L+,−〉〉L−,⋆〉
24,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ E+,−L−,−〉〉L−,⋆〉
6,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l α〉L−,−〉〉L−,⋆〉
28,3
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉L−,−〉〉L−,⋆〉
27,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉E−,−〉〉L−,⋆〉
9,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l α〉〉〉L−,⋆〉
28,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉L−,⋆〉
25,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉E−,⋆〉
7,3
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ U−,⋆〉〉
16,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ E−,+U+,⋆〉〉
8,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l α〉U+,⋆〉〉
28,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉U+,⋆〉〉
13,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉E+,⋆〉〉
4,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉 〈l α〉〉〉
28,4
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉 〈l T〉〉〉 .

Here, numbers i, j above an arrow =⇒ indicate that we have used production (i, j) for
the corresponding derivation step.

Because the definition of G1 closely follows the definition of DNA expressions, we have

Theorem 2.20 L(G1) = LG1
(E⋆,⋆) is the language D of all DNA expressions.

and

Corollary 2.21 The language D of DNA expressions is context-free.

2.8 The structure tree of a DNA expression

Let E be an arbitrary DNA expression. We define the structure tree of E as follows.
For each N -word α and each operator occurring in E we have a node, labelled by this
N -word or operator. Recall that there is a 1–1 correspondence between (occurrences
of) DNA subexpressions and operators in E. Therefore, every node labelled by an
operator corresponds to a DNA subexpression of E.

In the structure tree we draw arcs from (nodes labelled by) operators to their
arguments. By definition, these arguments are N -words and DNA subexpressions of
E. Indeed, for every occurrence of an N -word or a DNA subexpression of E, there is
a corresponding node. Hence, the arcs are well defined.

Clearly, the node labelled by an operator is the parent of (the nodes corresponding
to) its arguments. These arguments are the children of the operator. If an operator

24 Ch. 2 Terminology and Notation

n
n n

n n n n
n n

"
"

"
""

�
��

PPPPPPPPP

�
��

@
@@

J
JJ

J
JJ

↓

T ↑ ↑

l AT ↓ l l

C l l A T

G C

Figure 2.4: The structure tree of the DNA expression from Example 2.12.

has two or more arguments, then its children in the structure tree are arranged from
left to right in the same order as the corresponding arguments in the DNA expression.

Because every N -word and every proper DNA subexpression of E has exactly one
parent operator, we indeed obtain a tree. The leaves of the tree are labelled by the
N -words α occurring in E, and the internal nodes by the operators. The node labelled
by the outermost operator of E is the root of the tree. It corresponds to the entire
DNA expression. As an example, in Figure 2.4 we have drawn the structure tree of the
DNA expression from Example 2.12.

There is a very close relation between the maximal nesting level of a DNA expression
and the height of the corresponding structure tree:

Lemma 2.22 Let E be a DNA expression, let l be the maximal nesting level of E,
and let t be the structure tree of E. Then the height of t is l + 1.

As we observed in § 2.5, the maximal nesting level of the DNA expression from Ex-
ample 2.12 is 4. Indeed, the height of the corresponding structure tree in Figure 2.4 is
4 + 1 = 5.

Proof: By induction on the number p of operators occurring in E.

• If p = 1, then E is equal to 〈↑ α〉, 〈↓ α〉 or 〈l α〉 for an N -word α. By
Lemma 2.14(1), the maximal nesting level of E is l = 1. The structure tree
t of E consists of a root, labelled by an operator, with one child node, labelled
by α. Indeed, the height of t is 2 = l + 1.

• Let p ≥ 1, and suppose that the claim holds for all DNA expressions containing
at most p operators (induction hypothesis). Now, assume that E contains p+ 1
operators.

Let E1, . . . , Er for some r ≥ 0 be the expression-arguments of E. Because E
contains p + 1 ≥ 2 operators, we must have r ≥ 1. Each Ej contains at most p
operators. For j = 1, . . . , r, let lj be the maximal nesting level of Ej.

The structure tree t of E has subtrees corresponding to the arguments of E. A
subtree corresponding to an N -word-argument consists of one node labelled by
the N -word concerned. Such a subtree has height 1. By the induction hypoth-
esis, the subtree corresponding to an argument Ej has height lj + 1. Hence, by

2.9 Equivalent DNA expressions 25

Lemma 2.1(2), the height of t is

max
arguments εi of E

(height of the subtree of t corresponding to εi) + 1

= max

(
max

N -word-arguments of E
1,

r
max
j=1

(lj + 1)

)
+ 1 =

r
max
j=1

(lj + 1) + 1.

By Lemma 2.14(2), this equals l + 1.

2.9 Equivalent DNA expressions

Different DNA expressions may correspond to the same DNA molecule. It is, for
example, easy to verify that the DNA expressions 〈↑ α〉 and 〈↑ 〈↑ α〉〉 have the same
semantics. It is also possible that different DNA expressions denote ‘almost the same’
DNA molecule for a certain interpretation of ‘almost the same’. To express these
things, we give a number of definitions. Before that, however, we recall some general
notions.

A binary relation R on a set X is a subset of X × X = {(x, y) | x, y ∈ X}. If
(x, y) ∈ R, we also write xRy; if (x, y) /∈ R, we may write x /Ry. A binary relation R
on X is
- reflexive if for every x ∈ X, xRx
- symmetric if for every x, y ∈ X, xRy implies yRx
- transitive if for every x, y, z ∈ X, (xRy and yRz) implies xRz
If a relation R is reflexive, symmetric and transitive, R is called an equivalence relation;

We return to the world of DNA. We define four binary relations on D.

Definition 2.23 (See [Van Vliet, 2004, Definition 2.17], [Van Vliet et al.,
2005, page 380], [Van Vliet et al., 2006, page 134]) Two DNA expressions E1

and E2 are strictly equivalent, or equivalent for short, if S(E1) = S(E2). We write
E1 ≡ E2 then.

Hence two DNA expressions are equivalent if they denote exactly the same DNA
molecule.

A somewhat weaker version of this relation is

Definition 2.24 (See [Van Vliet, 2004, Definition 2.18]) Two DNA expressions

E1 and E2 are equivalent modulo nicks, if ν(S(E1)) = ν(S(E2)). We write E1=▽E2

then.

Intuitively, E1 and E2 are equivalent modulo nicks, if they denote DNA molecules with
the same nucleotides at the same positions; the DNA molecules may, however, have
nicks at different positions. E1 may have nicks not occurring in E2 and/or the other
way round.

We further define a variant of this last relation.

26 Ch. 2 Terminology and Notation

Definition 2.25 (See [Van Vliet, 2004, Definition 2.19]) A DNA expression E1

is equivalent to a DNA expression E2 pre-modulo nicks, if there are strings X1, . . . , Xr

with r ≥ 1 over A▽△
and symbols c1, . . . , cr−1 ∈ {▽, △} such that S(E1) = X1c1 . . . cr−1Xr

and S(E2) = X1 . . . Xr. We write E1 ▽≡ E2 then.

If E1 ▽≡ E2, we may also write E2 ≡▽ E1 and say that E2 is equivalent post-modulo
nicks to E1.

Chapter 3

Basic Results on DNA Expressions

3.1 Expressible formal DNA molecules

Many formal DNA molecules can be denoted by DNA expressions. We call such formal
DNA molecules expressible.

Lemma 3.1 (See [Van Vliet, 2004, Lemma 3.1]) Let E = 〈↑ ε1 . . . εn〉 for some
n ≥ 1 and N -words and DNA expressions ε1, . . . , εn be an ↑-expression. Then

1. the upper strand of E is nick free;

2. the lower strand of E is nick free if and only if

(a) for i = 1, . . . , n, the lower strand of S+(εi) is nick free, and

(b) for i = 1, . . . , n− 1, either R(S+(εi)) ∈ A+ or L(S+(εi+1)) ∈ A+ (or both).

In an analogous way we prove

Lemma 3.2 (See [Van Vliet, 2004, Lemma 3.2]) Let E = 〈↓ ε1 . . . εn〉 for some
n ≥ 1 and N -words and DNA expressions ε1, . . . , εn be a ↓-expression. Then

1. the lower strand of E is nick free;

2. the upper strand of E is nick free if and only if

(a) for i = 1, . . . , n, the upper strand of S−(εi) is nick free, and

(b) for i = 1, . . . , n− 1, either R(S−(εi)) ∈ A− or L(S−(εi+1)) ∈ A− (or both).

Theorem 3.3 (See [Van Vliet, 2004, Theorem 3.5], [Van Vliet et al., 2005,
Theorem 4], [Van Vliet et al., 2006, Theorem 2]) A formal DNA molecule X
is expressible, if and only if X does not contain both upper nick letters and lower nick
letters.

Because by definition, the semantics of an l-expression does not contain any single-
stranded component, we have

27

28 Ch. 3 Basic Results on DNA Expressions

Corollary 3.4 (Cf. [Van Vliet, 2004, Corollary 2.6]) Let E be an l-expression
and let X = S(E). Then there exist N -words α1, . . . , αm for some m ≥ 1, and a nick
letter y ∈ {▽, △}, such that

X =
(

α1

c(α1)

)
y
(

α2

c(α2)

)
y . . . y

(
αm

c(αm)

)
.

3.2 Nick free DNA expressions

Lemma 3.5 Let E be a DNA expression, and let X = S(E). If each occurrence of ↑
or ↓ in E is alternating, then X is nick free.

Proof: Assume that each occurrence of ↑ or ↓ in E is alternating, i.e., that no occur-
rence of ↑ or ↓ in E has consecutive expression-arguments.

Lower nick letters can only be introduced into the semantics of a DNA expression
by an occurrence of the operator ↑. Let 〈↑1 ε1 . . . εn〉 be an arbitrary ↑-subexpression
of X, and for i = 1, . . . , n, let Xi = S+(εi). Consider any i with 1 ≤ i ≤ n − 1.
By definition, ↑1 introduces a lower nick letter between Xi and Xi+1, if and only if
both R(Xi) ∈ A± and L(Xi+1) ∈ A±. However, by assumption, either εi or εi+1 (or
both) is an N -word. Without loss of generality, assume that εi is an N -word αi. Then

Xi = S+(αi) =
(
αi

−

)
and R(Xi) 6∈ A±. Consequently, ↑1 does not introduce any lower

nick letter into X.
Analogously, no occurrence of ↓ in E introduces an upper nick letter into the se-

mantics. We conclude that X is nick free.

Note that the above result cannot be reversed. If an occurrence of ↑ or ↓ in a DNA
expression E is not alternating, then S(E) may be nick free after all.

3.3 Some equivalences

There are many general rules concerning equivalence between different DNA expres-
sions. Some of them follow immediately from the definition of the semantics of a DNA
expression. For example, for every N -word α,

〈l α〉 ≡ 〈l 〈↑ α〉〉 ≡ 〈l 〈↓ c(α)〉〉 . (3.1)

Lemma 3.6 (See [Van Vliet, 2004, Lemma 3.6]) Let 1 ≤ i0 ≤ j0 ≤ n, and let εi
for i = 1, . . . , n be an N -word or a DNA expression. Then

〈↑ ε1 . . . εi0−1 〈↑ εi0 . . . εj0〉 εj0+1 . . . εn〉 ≡ 〈↑ ε1 . . . εn〉 (3.2)

if either the left-hand side or the right-hand side of the equivalence is a DNA expression.

The following equivalence is clear from the definition of the operator l (see Defini-
tion 2.11) and from property (2.7):

〈l 〈l ε〉〉 ≡ 〈l ε〉 (3.3)

for every N -word or DNA expression ε.

3.3 Some equivalences 29

Lemma 3.7 (See [Van Vliet, 2004, Lemma 3.7]) Let E be a DNA expression and
let Es be (an occurrence of) a DNA subexpression in E. Let Es′ be a DNA expression

such that Es=
▽Es′.

When we substitute (the occurrence of) Es in E by Es′, the resulting string E ′ is

again a DNA expression, and E=
▽E ′.

Lemma 3.8 (See [Van Vliet, 2004, Lemma 3.10]) Let E = 〈l 〈↑ ε1 . . . εn〉〉 with
n ≥ 1 be an l-expression, such that for i = 1, . . . , n, εi is a DNA expression (i.e., not
an N -word). Then E ≡▽ 〈↑ 〈l ε1〉 . . . 〈l εn〉〉.

Corollary 3.9 (See [Van Vliet, 2004, Corollary 3.11]) For all N -words α1, . . . , αn

with n ≥ 1, we have

〈↑ 〈l α1〉 . . . 〈l αn〉〉 ▽≡ 〈l α1 . . . αn〉 .

Theorem 3.10 (See [Van Vliet, 2004, Theorem 3.12]) Let ε1, . . . , εn−1, εn,2, . . . ,
εn,m with n,m ≥ 1 be N -words and DNA expressions, and let En,1 be a DNA expression,
such that

• S+(εi)⊏S+(εi+1) for i = 1, . . . , n− 2,

• S+(εn−1)⊏S(En,1),

• S(En,1)⊏S−(εn,2) and

• S−(εn,i)⊏S−(εn,i+1) for i = 2, . . . ,m− 1.

Let E = 〈↑ ε1 . . . εn−1 〈↓ En,1εn,2 . . . εn,m〉〉 and E ′ = 〈↓ 〈↑ ε1 . . . εn−1En,1〉 εn,2 . . . εn,m〉.

1. The strings E and E ′ are DNA expressions satisfying E=
▽E ′.

2. Each occurrence of ↑ or ↓ in E is alternating, if and only if each occurrence of ↑
or ↓ in E ′ is alternating. In particular, in this case, both E and E ′ are nick free,
and E ≡ E ′.

What we actually do in Theorem 3.10, is moving the outermost operator ↓ of the
last argument 〈↓ En,1εn,2 . . . εn,m〉 of the DNA expression E to the left of the DNA
expression. For the structure tree of the DNA expression E, this action corresponds
to a rotation to the left on the root of the tree. If we want to transform the structure
tree of E ′ back into the structure tree of E, then we have to perform a rotation to the
right on the root of the tree. This is depicted in Figure 3.1.

Proof:

2. Assume that each occurrence of ↑ or ↓ in E is alternating, i.e., that for each
occurrence of ↑ or ↓ in E, the arguments are N -words and DNA expressions,
alternately.

Then in particular, the first n−1 arguments ε1, . . . , εn−1 of the outermost operator
↑ of E are N -words and DNA expressions, alternately. Because the nth argument
is a ↓-expression, εn−1 must be an N -word (provided that n ≥ 2).

Now, let us consider the outermost operator ↓ of the last argument of E. Its last
m − 1 arguments εn,2, . . . εn,m are N -words and DNA expressions, alternately.

30 Ch. 3 Basic Results on DNA Expressions

��
��

��
��

��
��

��
��

�
�

��

@
@
@@

J
J
JJ

�
�

��

@
@
@@

J
J
JJ

↑

ε1 εn−1 ↓

En,1 εn,2 εn,m

=
▽

↓

↑ εn,2 εn,m

ε1 εn−1 En,1

.

. . .

.

. . . .

� �
?

� �
?

Figure 3.1: (See [Van Vliet, 2004, Figure 3.2]) Analogue of Theorem 3.10(1) for
structure trees of DNA expressions.

Because the first argument of ↓ is the DNA expression En,1, εn,2 must be an
N -word (provided that m ≥ 2).

The above observations imply that in E ′, both the first occurrence of ↑ and the
outermost operator ↓ are alternating.

All other occurrences of ↑ and ↓ in E ′ occur inside an argument εi (with i ≤
n− 1), inside the argument En,1 or inside an argument εn,j (with j ≥ 2). These
arguments already occurred in E. By assumption, the occurrences of ↑ or ↓ in
them are alternating.

By Claim 1, E=
▽E ′. By Lemma 3.5, however, both E and E ′ are nick free. This

implies that E and E ′ are (strictly) equivalent: E ≡ E ′.

On the other hand, assume that each occurrence of ↑ or ↓ in E ′ is alternating.
Then we can prove in an analogous way that this is also true for each occurrence
of ↑ or ↓ in E. This implies that both E and E ′ are nick free, and thus that
E ≡ E ′.

Theorem 3.11 Let E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expres-
sions ε1, . . . , εn be a DNA expression. Let εi1 , . . . , εir for some r ≥ 1 and 2 ≤ i1 <
. . . < ir ≤ n − 1 be ↓-arguments of E that have at least two arguments themselves.
Hence, for j = 1, . . . , r, εij =

〈
↓ εij ,1 . . . εij ,mj

〉
for some mj ≥ 2 and N -words and

DNA expressions εij ,1, . . . , εij ,mj
, and

E = 〈↑ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1
〉 εi1+1 . . . εir−1

〈↓ εir,1εir,2 . . . εir,mr−1εir,mr
〉 εir+1 . . . εn 〉 .

1. The string

E ′ = 〈↓〈↑ ε1 . . . εi1−1εi1,1〉 εi1,2 . . . εi1,m1−1

〈↑ εi1,m1
εi1+1 . . .〉 . . . 〈↑ . . . εir−1εir,1〉

εir,2 . . . εir,mr−1 〈↑ εir,mr
εir+1 . . . εn〉 〉

is a DNA expression satisfying E=
▽E ′.

2. If each occurrence of ↑ or ↓ in E is alternating, then so is each occurrence of ↑
or ↓ in E ′. In particular, in this case, both E and E ′ are nick free, and E ≡ E ′.

3.3 Some equivalences 31

Note that in fact, we have n ≥ 3, because we assume that r ≥ 1 and 2 ≤ i1 ≤ n− 1.
Note also that εi1 , . . . , εir are not necessarily all ↓-arguments εi of E with 2 ≤ i ≤

n − 1 and having at least two arguments themselves. There may be others, which we
simply leave unchanged.

Note further that each of the ‘new’ ↑-arguments of E ′, i.e., each of 〈↑ ε1 . . . εi1−1εi1,1〉,〈
↑ εij ,mj

εij+1 . . . εij+1−1εij+1,1

〉
for j = 1, . . . , r−1, and 〈↑ εir,mr

εir+1 . . . εn〉, has at least
two arguments itself.

Proof: Let us consider a ↓-argument εij with 1 ≤ j ≤ r. By assumption, εij is
neither the first argument, nor the last argument of the ↑-expression E. Hence, it must
fit together by upper strands with the preceding argument εij−1 and the succeeding
argument εij+1. This implies that neither the first argument, nor the last argument of
(the ↓-expression) εij can be an N -word. Both εij ,1 and εij ,mj

are DNA expressions.

1. By induction on r, the number of ↓-arguments we consider.

• If r = 1, then we consider only one ↓-argument εi1 .

As we have just observed, both the first argument εi1,1 and the last ar-
gument εi1,m1

of εi1 are DNA expressions. We now successively apply
Lemma 3.6, Theorem 3.10(1) (together with Lemma 3.7) and once more
Theorem 3.10(1):

E = 〈↑ ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1
〉 εi1+1 . . . εn〉

≡ 〈↑ ε1 . . . εi1−1 〈↑ 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1
〉 εi1+1 . . . εn〉 〉

=
▽ 〈↑ ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1 〈↑ εi1,m1

εi1+1 . . . εn〉〉 〉

=
▽ 〈↓ 〈↑ ε1 . . . εi1−1εi1,1〉 εi1,2 . . . εi1,m1−1 〈↑ εi1,m1

εi1+1 . . . εn〉 〉

= E ′.

Indeed, E ′ is a DNA expression satisfying E=
▽E ′.

• Let ρ ≥ 1, and suppose that the claim holds for all ↑-expressions E =
〈↑ ε1 . . . εn〉 and ↓-arguments εi1 , . . . , εir of E, for which 1 ≤ r ≤ ρ, 2 ≤
i1 < . . . < ir ≤ n − 1 and each εij has at least two arguments (induction
hypothesis).

Now, assume that r = ρ+ 1. Hence,

E =
〈
↑ ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1

〉 εi1+1 . . . εiρ−1〈
↓ εiρ,1εiρ,2 . . . εiρ,mρ−1εiρ,mρ

〉
εiρ+1 . . . εiρ+1−1〈

↓ εiρ+1,1εiρ+1,2 . . . εiρ+1,mρ+1−1εiρ+1,mρ+1

〉
εiρ+1+1 . . . εn

〉
.

Recall that the εij ’s occurring in the claim are not necessarily all ↓-arguments
of E. We now simply ignore the first ρ εij ’s. We thus view E as

E =
〈
↑ ε1 . . . εi1−1εi1εi1+1 . . . εiρ−1εiρεiρ+1 . . . εiρ+1−1〈

↓ εiρ+1,1εiρ+1,2 . . . εiρ+1,mρ+1−1εiρ+1,mρ+1

〉
εiρ+1+1 . . . εn

〉
.

We apply the induction hypothesis to E and the ↓-argument εiρ+1
:

E =
▽

〈
↓
〈
↑ ε1 . . . εi1−1εi1εi1+1 . . . εiρ−1εiρεiρ+1 . . . εiρ+1−1εiρ+1,1

〉

εiρ+1,2 . . . εiρ+1,mρ+1−1

〈
↑ εiρ+1,mρ+1

εiρ+1+1 . . . εn
〉 〉

=
〈
↓
〈
↑ ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1

〉 εi1+1 . . . εiρ−1〈
↓ εiρ,1εiρ,2 . . . εiρ,mρ−1εiρ,mρ

〉
εiρ+1 . . . εiρ+1−1εiρ+1,1

〉

εiρ+1,2 . . . εiρ+1,mρ+1−1

〈
↑ εiρ+1,mρ+1

εiρ+1+1 . . . εn
〉 〉

.

32 Ch. 3 Basic Results on DNA Expressions

Let us use E1 to denote the first argument of the resulting ↓-expression. E1

is an ↑-expression with (among others) ↓-arguments εi1 , . . . , εiρ with 2 ≤
i1 < . . . < iρ. Moreover, εiρ is not the last argument of E1, because the last
argument of E1 is εiρ+1,1. By assumption, each of the ↓-arguments εi1 , . . . , εiρ
has at least two arguments.

Hence, we can apply the induction hypothesis to E1 and these ↓-arguments.
When we combine this with Lemma 3.7 and subsequently use Lemma 3.6,
we find

E =
▽

〈
↓
〈
↓ 〈↑ ε1 . . . εi1−1εi1,1〉 εi1,2 . . . εi1,m1−1

〈↑ εi1,m1
εi1+1 . . .〉 . . .

〈
↑ . . . εiρ−1εiρ,1

〉

εiρ,2 . . . εiρ,mρ−1

〈
↑ εiρ,mρ

εiρ+1 . . . εiρ+1−1εiρ+1,1

〉 〉

εiρ+1,2 . . . εiρ+1,mρ+1−1

〈
↑ εiρ+1,mρ+1

εiρ+1+1 . . . εn
〉 〉

≡
〈
↓ 〈↑ ε1 . . . εi1−1εi1,1〉 εi1,2 . . . εi1,m1−1

〈↑ εi1,m1
εi1+1 . . .〉 . . .

〈
↑ . . . εiρ−1εiρ,1

〉

εiρ,2 . . . εiρ,mρ−1

〈
↑ εiρ,mρ

εiρ+1 . . . εiρ+1−1εiρ+1,1

〉

εiρ+1,2 . . . εiρ+1,mρ+1−1

〈
↑ εiρ+1,mρ+1

εiρ+1+1 . . . εn
〉 〉

= E ′.

We conclude again that E ′ is a DNA expression satisfying E=
▽E ′.

2. In the inductive proof of the previous claim, we did not only use Theorem 3.10(1),
but also Lemma 3.6 to rewrite E into E ′. Consequently, in order to prove that
each occurrence of ↑ or ↓ in E ′ is alternating, given that this is the case for E,
it would not suffice to refer to Theorem 3.10(2). We would also need to consider
the effects of Lemma 3.6. Instead of doing that, we give a direct proof, which
resembles the proof of Theorem 3.10(2).

Assume that each occurrence of ↑ or ↓ in E is alternating, i.e., that for each
occurrence of ↑ or ↓ in E, the arguments are N -words and DNA expressions,
alternately.

We first examine the implications of this for the arguments of the outermost
operator ↑ of E. For j = 1, . . . , r, both εij−1 and εij+1 (the arguments preceding
and succeeding the ↓-argument εij) must be N -words. In particular, for j =
1, . . . , r − 1, there must be at least an N -word εij+1 which separates the ↓-
arguments εij and εij+1

.

Next, we consider a ↓-argument εij with 1 ≤ j ≤ r. As we observed at the
beginning of the proof, both the first argument εij ,1 and the last argument εij ,mj

of εij are DNA expressions. By assumption, εij has at least two arguments, and
the arguments are N -words and DNA expressions, alternately. Hence, εij has
an odd number of arguments (at least three), and both εij ,2 and εij ,mj−1 are
N -words.

We now switch to E ′. The arguments of the outermost operator ↓ of E ′ are an
↑-expression 〈↑ ε1 . . . εi1−1εi1,1〉, a sequence of arguments εi1,2, . . . , εi1,m1−1 coming
from εi1 , another ↑-expression, again a sequence of arguments coming from an
εij , and so on. By the above, the sequences of arguments coming from an εij
are N -words and DNA expressions alternately. Moreover, they start with the
N -word εij ,2 and end with the N -word εij ,mj−1. Consequently, the arguments of
the outermost operator ↓ of E ′ are N -words and DNA expressions, alternately.

3.3 Some equivalences 33

Let E ′
1 be the first ↑-argument 〈↑ ε1 . . . εi1−1εi1,1〉 of E

′. The first i1−1 arguments
ε1, . . . , εi1−1 of E ′

1 were consecutive arguments of E. Hence, by assumption,
they are N -words and DNA expressions, alternately. Moreover, the last of these
arguments, εi1−1, is an N -word, and εi1,1 is a DNA expression. Consequently,
the arguments of E ′

1 are N -words and DNA expressions, alternately.

Analogously, the arguments of the last ↑-argument 〈↑ εir,mr
εir+1 . . . εn〉 of E ′

are N -words and DNA expressions, alternately. Finally, for j = 1, . . . , r − 1,
the arguments of the ↑-argument

〈
↑ εij ,mj

εij+1 . . . εij+1−1εij+1,1

〉
of E ′ are the

DNA expression εij ,mj
, an alternating sequence of N -words and DNA expres-

sions εij+1, . . . , εij+1−1 (which starts with the N -word εij+1 and ends with the
N -word εij+1−1), and the DNA expression εij+1,1. Hence, also these arguments
are N -words and DNA expressions, alternately.

All other occurrences of ↑ and ↓ in E ′ occur inside an argument εi (with i 6= ij
for all j’s) or inside an argument εij ,k. These εi’s and εij ,k’s already occurred in
E. By assumption, each occurrence of ↑ or ↓ in them is alternating.

By Claim 1, E=
▽E ′. By Lemma 3.5, however, both E and E ′ are nick free. This

implies that E and E ′ are (strictly) equivalent: E ≡ E ′.

Theorem 3.11 can be reversed. That is, we can also start from E ′ and conclude that
E is a DNA expression satisfying E=

▽E ′ (or even E ≡ E ′):

Theorem 3.12 Let E ′ = 〈↓ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA ex-
pressions ε1, . . . , εn be a DNA expression. Let εi1 , . . . , εir , εir+1

for some r ≥ 1 and
1 = i1 < . . . < ir < ir+1 = n be ↑-arguments of E ′ that have at least two arguments
themselves. Hence, for j = 1, . . . , r, r+ 1, εij =

〈
↑ εij ,1 . . . εij ,mj

〉
for some mj ≥ 2 and

N -words and DNA expressions εij ,1, . . . , εij ,mj
, and

E ′ =
〈
↓ 〈↑ ε1,1 . . . ε1,m1−1ε1,m1

〉 ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2
〉

εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr
〉

εir+1 . . . εn−1

〈
↑ εn,1εn,2 . . . εn,mr+1

〉 〉
.

1. The string

E =
〈
↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εi2−1εi2,1〉 εi2,2 . . . εi2,m2−1

〈↓ εi2,m2
εi2+1 . . .〉 . . . 〈↓ . . . εir−1εir,1〉 εir,2 . . . εir,mr−1

〈↓ εir,mr
εir+1 . . . εn−1εn,1〉 εn,2 . . . εn,mr+1

〉

is a DNA expression satisfying E=
▽E ′.

2. If each occurrence of ↑ or ↓ in E ′ is alternating, then so is each occurrence of ↑
or ↓ in E. In particular, in this case, both E and E ′ are nick free, and E ≡ E ′.

Note that in fact, we have n ≥ 2, because we assume that r ≥ 1 and 1 = i1 < ir+1 = n.

34 Ch. 3 Basic Results on DNA Expressions

Proof:

1. We could prove this claim by induction, similar to the proof of Theorem 3.11(1).
Instead, we give a proof that makes use of Theorem 3.11(1) itself.

We first observe that both the last argument ε1,m1
of ε1 and the first argument

εn,1 of εn must be DNA expressions. Otherwise, the arguments of E ′ would not
fit together by lower strands. When we apply Theorem 3.10(1) two times (the
second time in combination with Lemma 3.7) and subsequently apply Lemma 3.6,
we find

E ′=
▽

〈
↑ ε1,1 . . . ε1,m1−1

〈
↓ ε1,m1

ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2
〉

εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr
〉

εir+1 . . . εn−1

〈
↑ εn,1εn,2 . . . εn,mr+1

〉 〉 〉

=
▽

〈
↑ ε1,1 . . . ε1,m1−1

〈
↑ 〈↓ε1,m1

ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2
〉

εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr
〉

εir+1 . . . εn−1εn,1 〉 εn,2 . . . εn,mr+1

〉 〉

≡
〈
↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2
〉

εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr
〉

εir+1 . . . εn−1εn,1 〉 εn,2 . . . εn,mr+1

〉
.

Let us use E ′′ to denote the resulting DNA expression, and let us use E1 to denote
the ↓-argument

〈↓ε1,m1
ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2

〉
εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr

〉
εir+1 . . . εn−1εn,1 〉

of E ′′.

If r = 1, then i2 = ir+1 = n, E1 reduces to 〈↓ ε1,m1
ε2 . . . εi2−1εn,1〉, and

E ′′ =
〈
↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εi2−1εn,1〉 εn,2 . . . εn,mr+1

〉
,

which equals the string E from the claim. In this case, indeed, E is an ↑-
expression satisfying E=

▽E ′.

If, on the other hand, r ≥ 2, then E1 has at least one ↑-argument 〈↑ εi2,1εi2,2 . . .
εi2,m2−1εi2,m2

〉, which is neither the first argument, nor the last argument of E1

and which has at least two arguments itself. Hence, we can apply Theorem 3.11(1)
(in combination with Lemma 3.7) to E1 and subsequently apply Lemma 3.6:

E ′=
▽

〈
↑ ε1,1 . . . ε1,m1−1 〈↑〈↓ ε1,m1

ε2 . . . εi2−1εi2,1〉 εi2,2 . . . εi2,m2−1

〈↓ εi2,m2
εi2+1 . . .〉 . . . 〈↓ . . . εir−1εir,1〉 εir,2 . . . εir,mr−1

〈↓ εir,mr
εir+1 . . . εn−1εn,1〉 〉 εn,2 . . . εn,mr+1

〉

≡
〈
↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εi2−1εi2,1〉 εi2,2 . . . εi2,m2−1

〈↓ εi2,m2
εi2+1 . . .〉 . . . 〈↓ . . . εir−1εir,1〉 εir,2 . . . εir,mr−1

〈↓ εir,mr
εir+1 . . . εn−1εn,1〉 εn,2 . . . εn,mr+1

〉

= E.

We conclude that also in this case, E is an ↑-expression satisfying E=
▽E ′.

3.3 Some equivalences 35

2. The proof of this claim is similar to that of Theorem 3.11(2). For each occurrence
of ↑ or ↓ in E (whether it is the outermost operator ↑, or an operator ↓ governing a
‘new’ ↓-argument of E, or any other occurrence), we establish that its arguments
are N -words and DNA expressions, alternately, given that this is the case for
each occurrence of ↑ or ↓ in E ′. We leave the details to the reader.

Let E = E(α1, . . . , αk) for some k ≥ 1 be an arbitrary DNA expression. We define
the N -word αE as the concatenation of the N -words α′

1, . . . , α
′
k, where

α′
i =

{
αi if the parent operator of αi in E is l or ↑

c(αi) if the parent operator of αi in E is ↓
(i = 1, . . . , k).

For example, if E = 〈l 〈↑ α1 〈l α2〉 〈↓ 〈l α3〉α4〉〉〉, then αE = α1α2α3c(α4). The no-
tation αE is in particular useful, when E is an l-expression or E is the argument of
an l-expression. This is the case in the final result of this section, which deals with
l-expressions.

Lemma 3.13 Let E = E(α1, . . . , αk) for some k ≥ 1 be an l-expression. Then
E ▽≡ 〈l αE〉,

Proof: By induction on the number p of operators occurring in E.

• If p = 1, then apparently l is the only operator in E, and its (only) argument
must be an N -word α1: E = 〈l α1〉. Then with αE = α1, we have E = 〈l αE〉,
so that certainly E ▽≡ 〈l αE〉.

• If p = 2, then the argument of the (outermost) operator l in E is a DNA ex-
pression E1: E = 〈l E1〉. E1 contains only one operator and this operator can
only have a maximal N -word occurrence α1 as its argument. There are three
possibilities:

– E1 = 〈l α1〉, but then, by (3.3), E = 〈l 〈l α1〉〉 ≡ 〈l α1〉 = 〈l αE〉 with
αE = α1;

– E1 = 〈↑ α1〉, but then, by (3.1), E = 〈l 〈↑ α1〉〉 ≡ 〈l α1〉 = 〈l αE〉 with
αE = α1;

– E1 = 〈↓ α1〉, but then, by (3.1), E = 〈l 〈↓ α1〉〉 ≡ 〈l c(α1)〉 = 〈l αE〉 with
αE = c(α1).

• Let p ≥ 2, and suppose that the claim is valid for all l-expressions containing at
most p operators (induction hypothesis). Now let E be an arbitrary l-expression
with p+ 1 operators. E = 〈l E1〉 for a DNA expression E1.

Again we distinguish three cases:

– E1 is an l-expression 〈l E1,1〉 for a DNA expression E1,1. But then E =
〈l 〈l E1,1〉〉 ≡ 〈l E1,1〉 by equivalence (3.3). Obviously, the resulting DNA
expression contains the same maximal N -word occurrences αi (and in the
same order, with the same parent operators) as E. It contains, however,
only p operators, and thus the claim follows from the induction hypothesis.

36 Ch. 3 Basic Results on DNA Expressions

– E1 is an ↑-expression, so E = 〈l 〈↑ ε1 . . . εn〉〉 for some n ≥ 1 and N -words
and DNA expressions ε1, . . . , εn. For i = 1, . . . , n, let

ε′i =

{
〈↑ α〉 if εi is an N -word α
εi if εi is a DNA expression

.

Then by Lemma 3.6 and Lemma 3.7,

E = 〈l 〈↑ ε1 . . . εn〉〉 ≡ 〈l 〈↑ ε′1 . . . ε
′
n〉〉 .

Because every ε′i is a DNA expression, we can apply Lemma 3.8:

〈l 〈↑ ε′1 . . . ε
′
n〉〉 ≡▽ 〈↑ 〈l ε′1〉 . . . 〈l ε′n〉〉 .

Now consider an argument 〈l ε′i〉 with 1 ≤ i ≤ n. If εi is an N -word α, then
ε′i = 〈↑ α〉 and 〈l ε′i〉 = 〈l 〈↑ α〉〉, which contains 2 ≤ p operators. If, on the
other hand, εi is a DNA expression, then ε′i = εi and 〈l ε′i〉 = 〈l εi〉. This
l-expression contains at most p operators.

In both cases, by the induction hypothesis, 〈l ε′i〉 ▽ ≡
〈
l αε′i

〉
. Now, by

Lemma 3.7 and Corollary 3.9,

〈↑ 〈l ε′1〉 . . . 〈l ε′n〉〉 ▽≡
〈
↑
〈
l αε′

1

〉
. . .

〈
l αε′n

〉〉
▽≡

〈
l αε′

1
. . . αε′n

〉
.

Indeed, αε′
1
. . . αε′n

is the concatenation of all maximal N -word occurrences
αi (or the complement of αi, if its parent operator is ↓) in E: αε′

1
. . . αε′n

=
αE.

When we combine all equivalences (pre-/post-modulo nicks), we conclude

that E=
▽ 〈l αE〉. Because the DNA expression 〈l αE〉 is nick free, we even

have E ▽≡ 〈l αE〉.

– E1 is a ↓-expression. This case can be dealt with completely analogously
to the previous case, using the ‘↓-versions’ of Lemma 3.6, Lemma 3.8 and
Corollary 3.9.

Chapter 4

The Length of a DNA Expression

Let X be a string over A▽△
. We use |X|A to denote the number of A-letters occurring

in X. One can easily verify that | · |A is a homomorphism from A∗
▽△

to the non-negative
integers.

There is a simple relation between the length of a DNA expression E denoting a
formal DNA molecule X and |X|A.

Lemma 4.1 (See [Van Vliet, 2004, Lemma 4.1], [Van Vliet et al., 2005,
Lemma 5], [Van Vliet et al., 2006, Lemma 3]) Let E be a DNA expression
denoting a formal DNA molecule X, and let p be the number of operators occurring in
E. Then

|E| = 3 · p+ |X|A.

Note that a DNA expression consists of operators and corresponding brackets on the
one hand, and N -letters on the other hand. Hence, Lemma 4.1 implies that |X|A does
not only count the number of A-letters occurring in the formal DNA molecule X, but
also the number of N -letters occurring in any DNA expression E denoting X.

4.1 (Blocks of) components of a formal DNA mol-

ecule

Definition 4.2 (See [Van Vliet, 2004, Definition 4.2], [Van Vliet et al., 2005,
page 381], [Van Vliet et al., 2006, page 134]) Let X be a formal DNA molecule
and let x′

1 . . . x
′
k for some k ≥ 1 be the decomposition of X.

• An ↑-component x′
i of X is an upper component or a lower nick letter occurring

in X.

• A ↓-component x′
i of X is a lower component or an upper nick letter occurring

in X.

Definition 4.3 (Cf. [Van Vliet, 2004, Definition 4.3 and Definition 4.33],
[Van Vliet et al., 2005, page 381]) (See [Van Vliet et al., 2006, Definition 4])
Let X be a formal DNA molecule and let x′

1 . . . x
′
k for some k ≥ 1 be the decomposition

of X.
A primitive ↑-block of X is an occurrence (Y1, Y2) of a non-empty substring X1 of

X such that Y1 = x′
1 . . . x

′
a0−1 and Y2 = x′

a1+1 . . . x
′
k for some a0 and a1 with 1 ≤ a0 ≤

a1 ≤ k (hence X1 = x′
a0
. . . x′

a1
), and

37

38 Ch. 4 The Length of a DNA Expression

▽ ▽ ▽ ▽α1 α2 α3 α4 α5
α6

α7 α8 α9 α10 α11 α12 α13 α14 α15
α16 (a)

▽ ▽ ▽ ▽α1 α2 α3 α4 α5
α6

α7 α8 α9 α10 α11 α12 α13 α14 α15
α16ppppppp

pp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp
X1︷ ︸︸ ︷

ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pp
ppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pp

ppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
pp

X2︷ ︸︸ ︷

ppppppp
pp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppppp

ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
pp

X3︷ ︸︸ ︷

(b)

▽ ▽ ▽ ▽α1 α2 α3 α4 α5
α6

α7 α8 α9 α10 α11 α12 α13 α14 α15
α16ppppppp

ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
pp
ppppppp
p
ppppppp
p
ppppppp
pp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
pp
ppppppp
p
ppppppp
p
ppppppp
pp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp

︸ ︷︷ ︸
X′

0

ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp pp
ppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp︸ ︷︷ ︸

X′
1

ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
pp
ppppppp
p
ppppppp
p
ppppppp
pp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp

︸ ︷︷ ︸
X′

2

ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
pp
ppppppp
p
ppppppp
p
ppppppp
pp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppppp
ppp
ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp︸ ︷︷ ︸

X′
3

(c)

Figure 4.1: Primitive ↑-blocks and primitive ↓-blocks. (a) An example formal DNA
molecule X that contains (upper) nick letters. (b) The primitive ↑-blocks of X. Note
that the upper nick letters are not part of these blocks. (c) The primitive ↓-blocks
of X.

• X1 contains at least one non-double component,

• each non-double component of X1 is an ↑-component,

• – either a0 = 1 (hence Y1 is empty),

– or a0 ≥ 2 and x′
a0−1 is a ↓-component,

and

• – either a1 = k (hence Y2 is empty),

– or a1 ≤ k − 1 and x′
a1+1 is a ↓-component.

A primitive ↑-block of a formal DNA molecule X is formally defined as an occurrence
(Y1, Y2) of a substring X1 of X satisfying certain conditions. However, when the oc-
currence is clear from the context, we will often refer to a primitive ↑-block by the
substring X1 itself.

The definition of a primitive ↓-block is completely analogous to that of a primitive
↑-block. We may use the term primitive block to refer to either a primitive ↑-block, or
a primitive ↓-block.

In Figure 4.1, we have indicated the primitive ↑-blocks and the primitive ↓-blocks
of a certain formal DNA molecule containing upper nick letters.

Formal DNA molecules of the form
(

α1

c(α1)

)
for an N -word α1 will come back fre-

quently in the remainder of this chapter and in later chapters. Often, we are not
interested in the actual N -letters occurring in such a molecule (hence in α1), but only
in the shape of the molecule, for example, when we want to except molecules of this
type from a certain statement. In order not to burden the text with unnecessary de-
tails, we may speak of a double-complete formal DNA molecule, when we mean a formal

DNA molecule of the form
(

α1

c(α1)

)
for an N -word α1.

Lemma 4.4 (Cf. [Van Vliet, 2004, Lemma 4.7]) Let X be a formal DNA molecule
which is not double-complete.

1. X can be considered as an alternating sequence of (all its) primitive ↑-blocks and
(all its) primitive ↓-blocks. Any two consecutive primitive blocks in this sequence
share (only) a double component of X.

4.2 Lower bounds for the length of a DNA expression 39

2. (a) The first non-double component of X is an ↑-component, if and only if the
alternating sequence from Claim 1 starts with a primitive ↑-block.

(b) The last non-double component of X is an ↑-component, if and only if the
alternating sequence from Claim 1 ends with a primitive ↑-block.

It is easily verified that all claims are valid for the formal DNA molecule depicted in
Figure 4.1. For this molecule, the alternating sequence is X ′

0, X1, X
′
1, X2, X

′
2, X3, X

′
3.

We now define functions that count the primitive ↑-blocks, the primitive ↓-blocks
and the double components occurring in a formal DNA molecule X.

Definition 4.5 (Cf. [Van Vliet, 2004, Definition 4.8], [Van Vliet et al., 2005,
Definition 6]) (See [Van Vliet et al., 2006, Definition 5]) Let X be a formal
DNA molecule.

• B↑(X) is the number of primitive ↑-blocks of X.

• B↓(X) is the number of primitive ↓-blocks of X.

• nl(X) is the number of double components of X.

Lemma 4.6 (See [Van Vliet, 2004, Lemma 4.10, Lemma 4.25 and Lemma
4.12]) Let X be a nick free formal DNA molecule.

1. (a) B↑(X) = 0 if and only if X does not contain any upper component.

(b) B↓(X) = 0 if and only if X does not contain any lower component.

2. X is not double-complete, if and only if X contains at least one single-stranded
component.

3. Assume that X is not double-complete.

(a) If both the first single-stranded component and the last single-stranded com-
ponent of X are upper components, then B↑(X) = B↓(X) + 1.

(b) If the first single-stranded component of X is a lower component and the
last single-stranded component of X is an upper component, then B↑(X) =
B↓(X).

(c) If the first single-stranded component of X is an upper component and the
last single-stranded component of X is a lower component, then B↑(X) =
B↓(X).

(d) If both the first single-stranded component and the last single-stranded com-
ponent of X are lower components, then B↑(X) = B↓(X)− 1.

4.2 Lower bounds for the length of a DNA expres-

sion

Theorem 4.7 (See [Van Vliet, 2004, Corollary 4.19], [Van Vliet et al., 2005,
Theorem 8], [Van Vliet et al., 2006, Theorem 8]) Let E be a DNA expression,
and let X = S(E).

40 Ch. 4 The Length of a DNA Expression

1. If E is an ↑-expression, then |E| ≥ 3 + 3 · B↓(X) + 3 · nl(X) + |X|A.

2. If E is a ↓-expression, then |E| ≥ 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A.

3. If E is an l-expression, then

|E| ≥ 3 ·B↑(X) + 3 · nl(X) + |X|A and

|E| ≥ 3 ·B↓(X) + 3 · nl(X) + |X|A. (4.1)

4. If E = 〈l α1〉 for an N -word α1, then |E| = 3 · nl(X) + |X|A.

5. If E = 〈l E1〉 for a DNA expression E1, then |E| ≥ 3 + 3 · nl(X) + |X|A.

6. Unless E = 〈l α1〉 for an N -word α1, |E| ≥ 3 + 3 · nl(X) + |X|A.

Chapter 5

The Construction of Minimal DNA
Expressions

Definition 5.1 (See [Van Vliet, 2004, Definition 4.20], [Van Vliet et al., 2005,
page 382], [Van Vliet et al., 2006, page 140]) A DNA expression E is minimal
if for every DNA expression E ′ with E ′ ≡ E, |E ′| ≥ |E|.

Example 5.2 (See [Van Vliet, 2004, page 58]) Let X =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)
. Then

both E = 〈↑ α1 〈↓ 〈l α2〉α3〉〉 and E ′ = 〈↓ 〈↑ α1 〈l α2〉〉α3〉 denote X, and |E| = |E ′|.
It is easy to verify that E and E ′ achieve the lower bounds given in Theorem 4.7(1) and
(2) for ↑-expressions and ↓-expressions, respectively. Hence, there do not exist shorter
↑-expressions or ↓-expressions for X. Because X contains single-stranded components,
it cannot be denoted by an l-expression. Consequently, E and E ′ are indeed minimal.

5.1 Minimal DNA expressions for a nick free formal

DNA molecule

Theorem 5.3 (See [Van Vliet, 2004, Theorem 4.23], [Van Vliet et al., 2005,
Theorem 9(1)], [Van Vliet et al., 2006, Theorem 9]) An l-expression E is
minimal if and only if E = 〈l α1〉 for an N -word α1.

In that case, E is the unique minimal DNA expression denoting S(E) =
(

α1

c(α1)

)
.

In § 4.1, we defined the primitive ↑-blocks and primitive ↓-blocks of a formal DNA
molecule. Here, these notions appear to be useful, again. For a nick free formal DNA
molecule, however, each ↑-component is an upper component and each ↓-component is
a lower component. To reflect this in our terminology, we will use the term primitive
upper blocks rather than primitive ↑-blocks, and the term primitive lower blocks rather
than primitive ↓-blocks. We will use the new, but equivalent terminology only in the
context of nick free formal DNA molecules.

Definition 5.4 (See [Van Vliet, 2004, Definition 4.47, Definition 4.26 and
Definition 4.43]) Let X be a nick free formal DNA molecule, let X1, . . . , Xr0 for
some r0 ≥ 0 be the primitive lower blocks of X in the order of their occurrence in X,
and let Y0, . . . , Yr0 be the substrings of X such that X = Y0X1Y1 . . . Xr0Yr0.

• The primitive lower block partitioning of X is the sequence Y0, X1, Y1, . . . , Xr0 , Yr0.

41

42 Ch. 5 The Construction of Minimal DNA Expressions

• A maximal upper sequence of X is the occurrence (Y0X1Y1 . . . Xj , Xj+1Yj+1 . . .
Xr0Yr0) of a substring Yj with 0 ≤ j ≤ r0 and Yj 6= λ.

• The maximal upper prefix of X is the occurrence (λ,X1Y1 . . . Xr0Yr0) of Y0.

• The maximal upper suffix of X is the occurrence (Y0X1Y1 . . . Xr0 , λ) of Yr0.

• An internal maximal upper sequence of X is the occurrence (Y0X1Y1 . . . Xj , Xj+1

Yj+1 . . . Xr0Yr0) of a substring Yj with 1 ≤ j ≤ r0 − 1.

Hence, if r0 ≥ 1, then the maximal upper prefix of X is the substring of X preceding
the first primitive lower block and the maximal upper suffix of X is the substring of
X succeeding the last primitive lower block. An internal maximal upper sequence of
X is the substring of X separating two consecutive primitive lower blocks.

For notational convenience, we will in general write Y0X1Y1 . . . Xr0Yr0 instead of
Y0, X1, Y1, . . . , Xr0 , Yr0 to describe the primitive lower block partitioning.

As usual, although formally maximal upper sequences, the maximal upper prefix,
the maximal upper suffix and internal maximal upper sequences of a nick free formal
DNA molecule X are defined as occurrences of substrings of X, we will often refer
to them by the substrings themselves (and in fact, we already did this right after the
definition). Implicitly, however, we keep associating to them a position in X. For
example, if both the maximal upper prefix and the maximal upper suffix of X are
equal to λ, then they are not equal, because the occurrence of the maximal upper
prefix is (λ,X) and the occurrence of the maximal upper suffix is (X, λ).

Also, if for example the maximal upper prefix Y0 of X is empty, then we keep
including it in the notation for the primitive lower block partitioning. We will not write
X1Y1 . . . Xr0Yr0 , because formally, the primitive lower block partitioning is defined as
Y0, X1, Y1, . . . , Xr0 , Yr0 , with Y0 and a comma preceding the first primitive lower block
X1. Moreover, by the inclusion of Y0, it is always clear which substrings from the
primitive lower block partitioning Y0X1Y1 . . . Xr0Yr0 denote the primitive lower blocks
(the second one, the fourth one, and so on), the maximal upper prefix (the first one),
the internal maximal upper sequences (the third one, the fifth one, and so on) and the
maximal upper suffix (the last one). Of course, we have the same convention for the
maximal upper suffix.

The primitive upper block partitioning of a nick free formal DNA molecule is defined
analogously to the primitive lower block partitioning. Also, a maximal lower sequence,
the maximal lower prefix , the maximal lower suffix and an internal maximal lower
sequence are defined analogously to the upper counterparts.

For a nick free formal DNA molecule X, we use nmus(X) to denote the number of
maximal upper sequences of X, and we use nimus(X) to denote the number of internal
maximal upper sequences of X.

Lemma 5.5 (See [Van Vliet, 2004, Lemma 4.10(2) and Lemma 4.46(2)]) Let
X be a nick free formal DNA molecule.

1. If B↓(X) = 0, then nimus(X) = 0.

2. If B↓(X) ≥ 1, then nimus(X) = B↓(X)− 1.

Lemma 5.6 (See [Van Vliet, 2004, Lemma 4.31(2)-(3), Lemma 4.50, Lemma
4.44, Lemma 4.45 and Lemma 4.49(2)]) Let X be a nick free formal DNA molecule

5.1 Minimal DNA expressions for a nick free formal DNA molecule 43

ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp
Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷︸︸︷

︸ ︷︷ ︸
X2

Y2︷ ︸︸ ︷

︸ ︷︷ ︸
X3

Y3︷ ︸︸ ︷

(a)

ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp
Y0 = λ

X1︷ ︸︸ ︷

︸ ︷︷ ︸
Y1

X2︷ ︸︸ ︷

︸︷︷︸
Y2

X3︷ ︸︸ ︷

︸︷︷︸
Y3

X4︷ ︸︸ ︷

Y4 = λ

(b)

Figure 5.1: (Cf. [Van Vliet, 2004, Figure 4.5 and Figure 4.6]) (See [Van Vliet
et al., 2006, Figure 4(a)]) Two partitionings of a nick free formal DNA molecule
X. (a) The primitive lower block partitioning of X. X1, X2, X3 are the primitive
lower blocks of X, Y0, Y1, Y2, Y3 are the maximal upper sequences, Y0 is the maximal
upper prefix and Y3 is the maximal upper suffix of X. (b) The primitive upper block
partitioning of X. Here, X1, X2, X3, X4 are the primitive upper blocks and Y1, Y2, Y3

are the maximal lower sequences of X. Both the maximal lower prefix Y0 and the
maximal lower suffix Y4 are empty.

and let Y0X1Y1 . . . Xr0Yr0 for some r0 ≥ 0 be the primitive lower block partitioning of
X.

1. The following two statements are equivalent:

(a) X does not contain any maximal upper sequence.

(b) X does not contain any upper component and contains at least one lower
component.

2. The following seven statements are equivalent:

(a) r0 = 0.

(b) X does not contain any lower component.

(c) Y0 = X.

(d) Yr0 = X.

(e) The maximal upper prefix of X is equal to the maximal upper suffix of X.

(f) X is a maximal upper sequence of itself.

(g) X is the only maximal upper sequence of itself.

3. If X is not double-complete, then the following four statements are equivalent:

(a) The maximal upper prefix of X is empty.

(b) The maximal lower prefix of X is not empty.

(c) The alternating sequence from Lemma 4.4(1) starts with a primitive lower
block.

(d) The first single-stranded component of X is a lower component.

4. If X is not double-complete, then the following four statements are equivalent:

(a) The maximal upper suffix of X is empty.

44 Ch. 5 The Construction of Minimal DNA Expressions

(b) The maximal lower suffix of X is not empty.

(c) The alternating sequence from Lemma 4.4(1) ends with a primitive lower
block.

(d) The last single-stranded component of X is a lower component.

Lemma 5.7 (See [Van Vliet, 2004, Lemma 4.27, Definition 4.26, Lemma 4.30
and Lemma 4.31(1)]) Let X be a nick free formal DNA molecule and let x′

1 . . . x
′
k be

the decomposition of X.

1. Let Y = x′
b0
. . . x′

b1
with 1 ≤ b0 ≤ b1 ≤ k be a maximal upper sequence of X.

(a) If b0 ≥ 2, then b0 ≥ 3, x′
b0−2 is a lower component of X, x′

b0−1 is a double
component of X and x′

b0
is an upper component of X.

(b) If b1 ≤ k − 1, then b1 ≤ k − 2, x′
b1+2 is a lower component of X, x′

b1+1 is a
double component of X and x′

b1
is an upper component of X.

2. Each maximal upper sequence of X is an alternating sequence of upper compo-
nents and double components of X.

3. Each upper component of X occurs in a (exactly one) maximal upper sequence of
X.

4. (a) If X is double-complete, then the only maximal upper sequence of X is X
itself.

(b) If X is not double-complete, then each maximal upper sequence of X contains
at least one upper component.

Definition 5.8 (Cf. [Van Vliet, 2004, Lemma 4.51(3a)]) (See [Van Vliet et al.,
2006, Definition 10]) Let X be a nick free formal DNA molecule and let Y0X1Y1 . . .
Xr0Yr0 for some r0 ≥ 0 be the primitive lower block partitioning of X.

A lower block is an occurrence (Y0X1Y1 . . . Yj1−1, Yj2Xj2+1 . . . Xr0Yr0) of a substring
Xj1Yj1 . . . Xj2 of X for some j1 and j2 with 1 ≤ j1 ≤ j2 ≤ r0.

Often, we will refer to a lower block simply by the substring involved. The actual
occurrence will be clear from the context, e.g., from the indices j1 and j2. To distinguish
a lower block from a primitive lower block, we will use Xj (for a certain index j) to
denote a lower block, instead of Xj.

Indeed, as the name suggests, a lower block is a generalization of a primitive lower
block. If in the definition j1 = j2, then we have the primitive lower block Xj1 . In
general, however, a lower block may contain more than one primitive lower blocks.

The definition of an upper block of a nick free formal DNA molecule is analogous
to that of a lower block.

Definition 5.9 (Cf. [Van Vliet, 2004, Definition 4.47]) (See [Van Vliet et al.,
2006, Definition 10]) Let X be a nick free formal DNA molecule.

A lower block partitioning of X is a sequence Y0, X1, Y1, . . . , Xr, Yr for some r ≥ 0
such that

• X = Y0X1Y1 . . . XrYr, and

• for j = 1, . . . , r, Xj is a lower block of X, and

5.1 Minimal DNA expressions for a nick free formal DNA molecule 45

ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp
Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷︸︸︷

︸ ︷︷ ︸
X2

Y2︷ ︸︸ ︷

︸ ︷︷ ︸
X3

Y3︷ ︸︸ ︷

(a1)

ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp
Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷︸︸︷

︸ ︷︷ ︸
X2

Y2︷ ︸︸ ︷

(a2)

ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp

Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷ ︸︸ ︷

︸ ︷︷ ︸
X2

Y2︷ ︸︸ ︷

(a3)

ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp

Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷ ︸︸ ︷

(a4)

ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppp

pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppp
pp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp pppppppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp ppppp

Y0 = λ

X1︷ ︸︸ ︷

︸ ︷︷ ︸
Y1

X2︷ ︸︸ ︷

︸︷︷︸
Y2

X3︷ ︸︸ ︷

Y3 = λ

(b)

Figure 5.2: (See [Van Vliet, 2004, Figure 4.7], [Van Vliet et al., 2005, Fig-
ure 3], [Van Vliet et al., 2006, Figure 4]) Different partitionings of the formal
DNA molecule X from Figure 5.1, for which B↑(X) = 4 and B↓(X) = 3. (a1) (Once
more) the primitive lower block partitioning of X. (a2),(a3) Two other lower block par-
titionings of X. (a4) Yet another lower block partitioning of X: the one defined by one
lower block X1 containing all primitive lower blocks. (b) An upper block partitioning
of X, different from the primitive upper block partitioning.

• for each primitive lower block X1 of X, there is a j with 1 ≤ j ≤ r, such that X1

is contained in Xj.

Hence, a lower block partitioning of X is a partitioning of X based on (disjoint) lower
blocks, which together contain all primitive lower blocks. In other words, the set of
primitive lower blocks has been partitioned into lower blocks.

Usually, we will write Y0X1Y1 . . . XrYr instead of Y0, X1, Y1, . . . , Xr, Yr to describe
a lower block partitioning. We may also use the symbol P to refer to a particular lower
block partitioning.

Of course, an upper block partitioning of a nick free formal DNA molecule is defined
analogously.

Lemma 5.10 (See [Van Vliet, 2004, Lemma 4.10(2) and Lemma 4.50]) Let X
be a nick free formal DNA molecule. The following four statements are equivalent:

1. B↓(X) = 0.

2. X does not contain any lower component.

3. Y0 = X is a lower block partitioning of X.

46 Ch. 5 The Construction of Minimal DNA Expressions

4. Y0 = X is the only lower block partitioning of X.

Lemma 5.11 (See [Van Vliet, 2004, Lemma 4.48]) Let X be a nick free formal
DNA molecule. Then the number of different lower block partitionings of X is 2nimus(X).

Theorem 5.12 (See [Van Vliet, 2004, Theorem 4.53], [Van Vliet et al., 2006,
Theorem 13]) (Cf. [Van Vliet et al., 2005, Theorem 9(2)-(4)]) Let X be a nick
free formal DNA molecule which contains at least one single-stranded component, and
let x′

1 . . . x
′
k for some k ≥ 1 be the decomposition of X.

1. If B↑(X) ≥ B↓(X), then

• let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary lower block parti-
tioning of X;

• for j = 1, . . . , r, let Ej be an arbitrary minimal DNA expression denoting
Xj;

• for j = 0, 1, . . . , r, let Yj = x′
aj
. . . x′

bj
for some aj ≥ 1 and bj ≤ k;

• for j = 0, 1, . . . , r and for i = aj, . . . , bj, let

εi =

{
αi if x′

i =
(
αi

−

)
for an N -word αi

〈l αi〉 if x′
i =

(
αi

c(αi)

)
for an N -word αi;

and (5.1)

• let

E = 〈↑ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr〉 . (5.2)

Then

(a) all ingredients needed to construct E (i.e., the lower block partitioning P,
the minimal DNA expressions Ej, the indices aj and bj, and the arguments
εi) are well defined, and

(b) E is a minimal DNA expression denoting X, and

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A. (5.3)

2. If B↓(X) ≥ B↑(X), then

• let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary upper block parti-
tioning of X;

• for j = 1, . . . , r, let Ej be an arbitrary minimal DNA expression denoting
Xj;

• for j = 0, 1, . . . , r, let Yj = x′
aj
. . . x′

bj
for some aj ≥ 1 and bj ≤ k;

• for j = 0, 1, . . . , r and for i = aj, . . . , bj, let

εi =

{
αi if x′

i =
(
−
αi

)
for an N -word αi

〈l αi〉 if x′
i =

(
αi

c(αi)

)
for an N -word αi;

and

• let

E = 〈↓ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr〉 . (5.4)

5.1 Minimal DNA expressions for a nick free formal DNA molecule 47

α1 α2
α3

α4
α5

α6 α7 α8
α9

α10 α11 α12 α13 α14
α15

α16 α17 α18

Figure 5.3: (See [Van Vliet, 2004, Figure 4.8], [Van Vliet et al., 2005, Fig-
ure 3], [Van Vliet et al., 2006, Figure 4]) The formal DNA molecule from Fig-
ure 5.1 with occurring N -words indicated.

Then

(a) all ingredients needed to construct E (i.e., the upper block partitioning P,
the minimal DNA expressions Ej, the indices aj and bj, and the arguments
εi) are well defined, and

(b) E is a minimal DNA expression denoting X, and

|E| = 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A. (5.5)

Example 5.13 (See [Van Vliet, 2004, pages 81-82], [Van Vliet et al., 2005,
pages 383-384], [Van Vliet et al., 2006, pages 143-144]) In Figure 5.3, we have
specified names for the components of the formal DNA molecule from (a.o.) Figure 5.1
and Figure 5.2. For this formal DNA molecule X, we have B↑(X) = 4 and B↓(X) = 3.
Hence, by Theorem 5.12(1), we can construct a minimal DNA expression denoting X
from a lower block partitioning of X. Because X has two internal maximal upper

sequences (
(
α7

−

)
and

(
α11

−

)(
α12

c(α12)

)(
α13

−

)
), there are, by Lemma 5.11, four different

lower block partitionings of X. We will consider two of them, the ones depicted in
Figure 5.2(a3) and (a4).

For the former lower block partitioning, r = 2 and

Y0 =
(
α1

−

)
,

X1 =
(

α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
−
α5

)(
α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)(
−
α9

)(
α10

c(α10)

)
,

Y1 =
(
α11

−

)(
α12

c(α12)

)(
α13

−

)
,

X2 =
(

α14

c(α14)

)(
−
α15

)(
α16

c(α16)

)
,

Y2 =
(
α17

−

)(
α18

c(α18)

)
.

We have B↓(X1) = 2 > B↑(X1) = 1. When we (recursively) apply Theorem 5.12(2)

to X1 and Theorem 5.12(1) to the primitive upper block
(

α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)
of X1, we

find that a minimal DNA expression denoting X1 is

E1 = 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉 .

Further, B↓(X2) = 1 > B↑(X2) = 0, and again by Theorem 5.12(2), a minimal DNA
expression denoting X2 is

E2 = 〈↓ 〈l α14〉α15 〈l α16〉〉 .

Now, by Theorem 5.12(1), a minimal DNA expression denoting X is

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉
α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉 α17 〈l α18〉 〉 .

(5.6)

48 Ch. 5 The Construction of Minimal DNA Expressions

Here, we used additional white space to clearly indicate the arguments corresponding
to different substrings Xj and Yj of the lower block partitioning.

According to the lower block partitioning depicted in Figure 5.2(a4), r = 1 and

Y0 =
(
α1

−

)
,

X1 =
(

α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
−
α5

)(
α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)(
−
α9

)

·
(

α10

c(α10)

)(
α11

−

)(
α12

c(α12)

)(
α13

−

)(
α14

c(α14)

)(
−
α15

)(
α16

c(α16)

)
,

Y1 =
(
α17

−

)(
α18

c(α18)

)
.

We now have B↓(X1) = 3 and B↑(X1) = 2. By Theorem 5.12(2), a minimal DNA
expression E1 denoting X1 can be constructed from an upper block partitioning of
X1. Contrary to the previous case, X1 contains an internal maximal lower sequence,(
−
α9

)
. Hence, there exist two different upper block partitionings of X1, which yield

different minimal DNA expressions E1. We arbitrarily choose the primitive upper block

partitioning, which includes all maximal lower sequences of X1, in particular
(
−
α9

)
. For

the primitive upper blocks
(

α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)
and

(
α10

c(α10)

)(
α11

−

)(
α12

c(α12)

)(
α13

−

)(
α14

c(α14)

)

ofX1, we find a minimal DNA-expression with Theorem 5.12(1). The resulting minimal
DNA-expression for X1 is

E1 = 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉 α9

〈↑ 〈l α10〉α11 〈l α12〉α13 〈l α14〉〉 α15 〈l α16〉 〉

and the corresponding minimal DNA-expression denoting X is

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉 α9

〈↑ 〈l α10〉α11 〈l α12〉α13 〈l α14〉〉 α15 〈l α16〉 〉 α17 〈l α18〉 〉 .

Indeed, both minimal DNA expressions for X have length

|E| = 39 + |X|A = 3 + 3 · 3 + 3 · 9 + |X|A = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

Example 5.14 Consider the nick free formal DNA molecule

X =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
α5

−

)(
α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)(
−
α9

)(
α10

c(α10)

)
, (5.7)

for which B↑(X) = B↓(X) = 2. By Theorem 5.12, we can construct minimal ↑-
expressions (based on lower block partitionings) and minimal ↓-expressions (based on
upper block partitionings) for X. By Lemma 5.11 and Lemma 5.5(2), X has two
lower block partitionings and two upper block partitionings. We have depicted them
in Figure 5.4. We carry out the construction for the upper block partitioning Y0X1Y1

from Figure 5.4(d). Here Y0 = λ,

X1 =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
α5

−

)(
α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)

and Y1 =
(
−
α9

)(
α10

c(α10)

)
. By Theorem 5.12(2), the resulting minimal ↓-expression is

Ed = 〈↓ E1α9 〈l α10〉〉, where E1 is a minimal DNA expression denoting X1.

5.1 Minimal DNA expressions for a nick free formal DNA molecule 49

α1 α2
α3

α4 α5 α6 α7 α8
α9

α10

α1 α2
α3

α4 α5 α6 α7 α8
α9

α10

α1 α2
α3

α4 α5 α6 α7 α8
α9

α10

α1 α2
α3

α4 α5 α6 α7 α8
α9

α10

Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷ ︸︸ ︷

︸ ︷︷ ︸
X2

Y2 = λ

(a)

Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1 = λ

(b)

Y0 = λ

X1︷ ︸︸ ︷

︸︷︷︸
Y1

X2︷ ︸︸ ︷

︸ ︷︷ ︸
Y2

(c)

Y0 = λ

X1︷ ︸︸ ︷

︸ ︷︷ ︸
Y1

(d)

Figure 5.4: Partitionings of the formal DNA molecule X from Example 5.14. (a)
The primitive lower block partitioning of X. (b) The second lower block partitioning
of X. (c) The primitive upper block partitioning of X. (d) The second upper block
partitioning of X.

As B↑(X1) = 2 > B↓(X1) = 1, we can (recursively) apply Theorem 5.12(1) to
construct E1. The result is

E1 = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉α7 〈l α8〉〉 .

This way, we can construct a minimal DNA expression denoting X for each of the four
partitionings from Figure 5.4:

Ea = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 α5 〈l α6〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉〉 , (5.8)

Eb = 〈↑ α1 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉〉 , (5.9)

Ec = 〈↓ 〈↑ α1 〈l α2〉〉 α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉 α9 〈l α10〉〉 , (5.10)

Ed = 〈↓ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉α7 〈l α8〉〉 α9 〈l α10〉〉 . (5.11)

All these minimal DNA expressions have length

|E| = 24 + |X|A = 3 + 3 · 2 + 3 · 5 + |X|A

= 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A = 3 + 3 · B↑(X) + 3 · nl(X) + |X|A.

Lemma 5.15 (See [Van Vliet, 2004, Lemma 4.57]) Let X be a nick free formal
DNA molecule which contains at least one single-stranded component, and let E be a
minimal DNA expression denoting X as described in Theorem 5.12 (equation (5.2) or
equation (5.4)).

Then the arguments of E are N -words and DNA expressions, alternately. In par-
ticular, each N -word-argument of E is a maximal N -word occurrence in E.

50 Ch. 5 The Construction of Minimal DNA Expressions

Lemma 5.16 (See [Van Vliet, 2004, Lemma 4.58], [Van Vliet et al., 2005,
Theorem 9(3)-(4)]) Let X be a nick free formal DNA molecule.

1. If B↑(X) > B↓(X), then each minimal DNA expression denoting X is an ↑-
expression.

2. If B↓(X) > B↑(X), then each minimal DNA expression denoting X is a ↓-
expression.

Corollary 5.17 (See [Van Vliet, 2004, Corollary 4.59]) Let X be a nick free
formal DNA molecule.

1. Let Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary lower block partitioning of
X. Then for j = 1, . . . , r, each minimal DNA expression Ej denoting Xj is a
↓-expression.

In particular, if X contains at least one single-stranded component and B↑(X) ≥
B↓(X), then for j = 1, . . . , r, the minimal DNA expression Ej occurring in The-
orem 5.12(1) is a ↓-expression.

2. Let Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary upper block partitioning of
X. Then for j = 1, . . . , r, each minimal DNA expression Ej denoting Xj is an
↑-expression.

In particular, if X contains at least one single-stranded component and B↓(X) ≥
B↑(X), then for j = 1, . . . , r, the minimal DNA expression Ej occurring in The-
orem 5.12(2) is an ↑-expression.

Note that this result is trivially valid if X is double-complete. In that case, by
Lemma 5.10, the only lower (or upper) block partitioning of X is Y0 = X, for which
r = 0.

We can tell exactly when the argument list of the minimal ↑-expression we construct
starts or ends with a ↓-expression.

Lemma 5.18 Let X be a nick free formal DNA molecule which contains at least one
single-stranded component, let B↑(X) ≥ B↓(X), and let E be a minimal ↑-expression
denoting X as described in Theorem 5.12(1).

1. The first single-stranded component of X is a lower component, if and only if the
first argument of E is a ↓-argument.

2. The last single-stranded component of X is a lower component, if and only if the
last argument of E is a ↓-argument.

Of course, there is an analogous result for the minimal ↓-expressions from Theo-
rem 5.12(2).

Proof:

1. =⇒ Assume that the first single-stranded component of X is a lower component.
Then by Lemma 5.6(3a) and (3d), the maximal upper prefix Y0 of X is empty. By
the construction from Theorem 5.12(1) and Corollary 5.17(1), the first argument
of E is a ↓-argument.

5.1 Minimal DNA expressions for a nick free formal DNA molecule 51

⇐= Assume that the first argument of E is a ↓-argument. In the construction
from Theorem 5.12(1), the arguments corresponding to the maximal upper prefix
Y0 of X are N -word-arguments and l-arguments. Because the first argument of
E is not such an argument, Y0 must be empty. By Lemma 5.6(3a) and (3d), the
first single-stranded component of X is a lower component.

2. The proof of this claim is analogous to that of the previous claim.

We can combine this result with Lemma 4.6(3):

Corollary 5.19 Let X be a nick free formal DNA molecule which contains at least one
single-stranded component, let B↑(X) ≥ B↓(X), and let E be a minimal ↑-expression
denoting X as described in Theorem 5.12(1).

1. B↑(X) > B↓(X), if and only if neither the first argument, nor the last argument
of E is a ↓-argument.

2. B↑(X) = B↓(X), if and only if either the first argument, or the last argument of
E is a ↓-argument (and not both of them).

3. It is impossible that both the first argument and the last argument of E are ↓-
arguments.

Again, there is an analogous result for the minimal ↓-expressions from Theorem 5.12(2).
By Theorem 5.3, we know that for a double-complete formal DNA molecule, there

is exactly one minimal DNA expression. Theorem 5.12, however, only provides us
with a particular construction of minimal DNA expressions for nick free formal DNA
molecules containing single-stranded components. We are still far from a complete
description of the language of all minimal DNA expressions for arbitrary , expressible
formal DNA molecules. Nevertheless, we can already draw one conclusion about this
language:

Lemma 5.20 The language of all minimal DNA expressions is not regular.

Note that by Lemma 2.16, the language D of all DNA expressions (minimal or not) is
not regular, either.

Proof: Let α be an arbitrary N -word and let l ≥ 1. Then consider the nick free formal
DNA molecule

Xl =
((

α
c(α)

)(
α
−

)(
α

c(α)

)(
−
α

))l

·
(

α
c(α)

)(
α
−

)(
α

c(α)

)
·
((

−
α

)(
α

c(α)

)(
α
−

)(
α

c(α)

))l

It is not hard to prove by induction on l that B↑(Xl) = 2l + 1 and B↓(Xl) = 2l, that

Pl = Y0X1Y1 with Y0 =
(

α
c(α)

)(
α
−

)

X1 =
(

α
c(α)

)(
−
α

)
·
((

α
c(α)

)(
α
−

)(
α

c(α)

)(
−
α

))l−1

·
(

α
c(α)

)(
α
−

)(
α

c(α)

)
·

((
−
α

)(
α

c(α)

)(
α
−

)(
α

c(α)

))l−1

·
(
−
α

)(
α

c(α)

)

and Y1 =
(
α
−

)(
α

c(α)

)
is a lower block partitioning of Xl, and that

El =
(
〈↑ 〈l α〉α 〈↓ 〈l α〉α

)l
〈↑ 〈l α〉α 〈l α〉〉

(
α 〈l α〉 〉α 〈l α〉 〉

)l

52 Ch. 5 The Construction of Minimal DNA Expressions

α1 α2

α3

α4 α5

α6

α7 α8 α9

α10

α11 α12 α13 α14 α15 α16 α17 α18

α19

α20 α21 α22

△ △ △ △

Figure 5.5: (See [Van Vliet, 2004, Figure 4.9]) (Cf. [Van Vliet et al., 2005,
Figure 4], [Van Vliet et al., 2006, Figure 7]) A formal DNA molecule containing
lower nick letters.

is a minimal DNA expression denoting Xl based on Pl as described in Theorem 5.12.
It follows from the pumping lemma for regular languages, that a language requiring
brackets to match and containing such DNA expressions is not regular.

5.2 Minimal DNA expressions for a formal DNA

molecule with nick letters

Definition 5.21 (See [Van Vliet, 2004, Definition 4.61], [Van Vliet et al.,
2005, page 384], [Van Vliet et al., 2006, page 146]) Let X be a formal DNA
molecule. The nick free decomposition of X is the sequence Z1, y1, Z2, y2, . . . , ym−1, Zm

for some m ≥ 1 such that

• X = Z1y1Z2y2 . . . ym−1Zm, and

• for h = 1, . . . ,m, Zh is nick free, and

• for h = 1, . . . ,m− 1, yh ∈ {▽, △}.

Example 5.22 (See [Van Vliet, 2004, page 90]) (Cf. [Van Vliet et al., 2005,
pages 384], [Van Vliet et al., 2006, Figure 7]) Consider the formal DNA molecule
X depicted in Figure 5.5. This molecule contains four lower nick letters and no upper
nick letters. The nick free decomposition of X is Z1△

Z2△
Z3△

Z4△
Z5, where

Z1 =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)
,

Z2 =
(

α5

c(α5)

)(
−
α6

)(
α7

c(α7)

)(
α8

−

)(
α9

c(α9)

)(
−
α10

)(
α11

c(α11)

)
,

Z3 =
(

α12

c(α12)

)(
α13

−

)(
α14

c(α14)

)(
α15

−

)(
α16

c(α16)

)
, (5.12)

Z4 =
(

α17

c(α17)

)
,

Z5 =
(

α18

c(α18)

)(
−
α19

)(
α20

c(α20)

)(
α21

−

)(
α22

c(α22)

)
.

Definition 5.23 (See [Van Vliet, 2004, Definition 4.63], [Van Vliet et al.,
2005, page 384], [Van Vliet et al., 2006, page 146]) A DNA expression E is
operator-minimal if for every DNA expression E ′ with the same outermost operator as
E and with E ′ ≡ E, |E ′| ≥ |E|.

Example 5.24 (See [Van Vliet, 2004, page 91], [Van Vliet et al., 2005, page
384-385], [Van Vliet et al., 2006, page 146]) We continue with the formal DNA

5.2 Minimal DNA expressions for a formal DNA molecule with. . . 53

molecule X from Example 5.22, which is depicted in Figure 5.5. The second formal
DNA submolecule occurring in the nick free decomposition of X is

Z2 =
(

α5

c(α5)

)(
−
α6

)(
α7

c(α7)

)(
α8

−

)(
α9

c(α9)

)(
−
α10

)(
α11

c(α11)

)
(5.13)

(see (5.12)). We have B↑(Z2) = 1 and B↓(Z2) = 2.
By Lemma 5.16(2), each minimal DNA expression E2 denoting Z2 is a ↓-expression.

When we apply Theorem 5.12 to Z2, we obtain

E2 = 〈↓ 〈l α5〉α6 〈↑ 〈l α7〉α8 〈l α9〉〉α10 〈l α11〉〉 ,

for which (indeed)

|E2| = 18 + |Z2|A = 3 + 3 · 1 + 3 · 4 + |Z2|A = 3 + 3 ·B↑(Z2) + 3 · nl(Z2) + |Z2|A.

Now let E ′
2 be an ↑-expression denoting Z2. By Theorem 4.7(1),

|E ′
2| ≥ 3 + 3 ·B↓(Z2) + 3 · nl(Z2) + |Z2|A = 3 + 3 · 2 + 3 · 4 + |Z2|A = 21 + |Z2|A.

In other words, by Lemma 4.1, the ↑-expression E ′
2 contains at least 7 operators,

whereas the ↓-expression E2 contains 6 operators. Indeed, an ↑-expression denoting Z2

will never be minimal. If, however, |E ′
2| = 21 + |Z2|A, then E ′

2 is operator-minimal.
It is not difficult to construct an operator-minimal ↑-expression denoting Z2. We can
simply take

E ′
2 = 〈↑ E2〉 = 〈↑ 〈↓ 〈l α5〉α6 〈↑ 〈l α7〉α8 〈l α9〉〉α10 〈l α11〉〉〉 , (5.14)

because S(E ′
2) = ν+(S(E2)) = S(E2) = Z2. Another operator-minimal ↑-expression

denoting Z2, which is less directly related to E2, is

E ′′
2 = 〈↑ 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉〉 . (5.15)

Lemma 5.25 (See [Van Vliet, 2004, Lemma 4.64]) If a DNA expression E is
operator-minimal, then each proper DNA subexpression of E is minimal.

Theorem 5.26 (See [Van Vliet, 2004, Theorem 4.65], [Van Vliet et al., 2005,
page 385], [Van Vliet et al., 2006, page 146]) Let X be a nick free formal DNA
molecule and let x′

1 . . . x
′
k for some k ≥ 1 be the decomposition of X.

• Let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary lower block partitioning
of X;

• for j = 1, . . . , r, let Ej be an arbitrary minimal DNA expression denoting Xj;

• for j = 0, 1, . . . , r, let Yj = x′
aj
. . . x′

bj
for some aj ≥ 1 and bj ≤ k;

• for j = 0, 1, . . . , r and for i = aj, . . . , bj, let

εi =

{
αi if x′

i =
(
αi

−

)
for an N -word αi

〈l αi〉 if x′
i =

(
αi

c(αi)

)
for an N -word αi;

and

54 Ch. 5 The Construction of Minimal DNA Expressions

• let

E = 〈↑ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr〉 . (5.16)

Then

(a) all ingredients needed to construct E (i.e., the lower block partitioning P, the
minimal DNA expressions Ej, the indices aj and bj, and the arguments εi) are
well defined, and

(b) E is an operator-minimal ↑-expression denoting X, and

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A. (5.17)

Example 5.27 (See [Van Vliet, 2004, page 93]) Indeed, the two operator-minimal
↑-expressions E ′

2 and E ′′
2 we have given in Example 5.24, which denote the formal

DNA molecule Z2 from (5.13), can be constructed according to the description in
Theorem 5.26. Both the maximal upper prefix and the maximal upper suffix of Z2

are empty, but Z2 does have one internal maximal upper sequence, viz
(
α8

−

)
. Hence,

by Lemma 5.11, there are two lower block partitionings of Z2. The first one is P ′ =
Y ′
0X

′
1Y

′
1 = Y ′

0Z2Y
′
1 , where the (empty) maximal upper prefix and maximal upper suffix

of Z2 are denoted by Y ′
0 and Y ′

1 , respectively. The second one is the primitive lower

block partitioning P ′′ = Y ′′
0 X

′′
1Y

′′
1 X

′′
2Y

′′
2 , where the maximal upper prefix and maximal

upper suffix are denoted by Y ′′
0 and Y ′′

2 , respectively, and

X
′′
1 =

(
α5

c(α5)

)(
−
α6

)(
α7

c(α7)

)
,

Y ′′
1 =

(
α8

−

)
,

X
′′
2 =

(
α9

c(α9)

)(
−
α10

)(
α11

c(α11)

)
.

The DNA expression E ′
2 from (5.14) corresponds to P ′ and the DNA expression E ′′

2

from (5.15) corresponds to P ′′.

Theorem 5.28 (See [Van Vliet, 2004, Theorem 4.67], [Van Vliet et al., 2005,
Theorem 10], [Van Vliet et al., 2006, Theorem 14]) Let X be a formal DNA
molecule which contains at least one lower nick letter △, and does not contain any upper
nick letter ▽.

• Let Z1△
Z2△

. . .
△
Zm for some m ≥ 2 be the nick free decomposition of X;

• for h = 1, . . . ,m, let Eh be an operator-minimal ↑-expression denoting Zh, and let
the string Êh be the sequence of the arguments of Eh (hence, if Eh = 〈↑ εh,1 . . . εh,nh

〉

for some nh ≥ 1 and N -words and DNA expressions εh,1, . . . , εh,nh
, then Êh =

εh,1 . . . εh,nh
); and

• let E =
〈
↑ Ê1 . . . Êm

〉
.

Then

(a) all ingredients needed to construct E (i.e., the nick free decomposition and the
operator-minimal ↑-expressions Ej) are well defined, and

5.2 Minimal DNA expressions for a formal DNA molecule with. . . 55

(b) E is a minimal DNA expression denoting X, and

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A. (5.18)

Example 5.29 (See [Van Vliet, 2004, pages 94-95]) (Cf. [Van Vliet et al.,
2005, pages 385-386], [Van Vliet et al., 2006, pages 147-148]) In Example 5.22,
we have established that the nick free decomposition for the formal DNA molecule from
Figure 5.5 is Z1△

Z2△
Z3△

Z4△
Z5, where Z1, . . . , Z5 are given in (5.12). Because none of

Z1, Z3, Z4, Z5 has an internal maximal upper sequence, there exists exactly one lower
block partitioning for each of them. Hence, for each of them, Theorem 5.26 specifies
one operator-minimal ↑-expression:

E1 = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉〉 ,

E3 = 〈↑ 〈l α12〉α13 〈l α14〉α15 〈l α16〉〉 ,

E4 = 〈↑ 〈l α17〉〉 ,

E5 = 〈↑ 〈↓ 〈l α18〉α19 〈l α20〉〉α21 〈l α22〉〉 .

The formal DNA submolecule Z2 has one internal maximal upper sequence, giving rise
to two different lower block partitionings. As we observed in Example 5.27, the DNA
expressions E ′

2 and E ′′
2 from (5.14) and (5.15) are the operator-minimal ↑-expressions

corresponding to these lower block partitionings.
To construct a minimal DNA expression denoting the entire formal DNA molecule

X, we may arbitrarily choose either of E ′
2 and E ′′

2 . When we choose E ′′
2 , we obtain

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉
〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉
〈↓ 〈l α18〉α19 〈l α20〉〉α21 〈l α22〉 〉 .

(5.19)

Indeed,

|E| = 54 + |X|A = 3 + 3 · 4 + 3 · 13 + |X|A = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

Chapter 6

All Minimal DNA Expressions

6.1 Reverse construction of a minimal DNA ex-

pression

Lemma 6.1 (See [Van Vliet, 2004, Lemma 4.69]) Let E be an operator-minimal
↑-expression denoting a certain formal DNA molecule X (which may contain nick let-
ters).

Then no argument of E is an ↑-expression.

Corollary 6.2 (See [Van Vliet, 2004, Corollary 4.70]) Let E be an operator-
minimal ↑-expression denoting a certain formal DNA molecule X (which may contain
nick letters).

Then each argument of E is either an N -word α, or an l-expression 〈l α〉 for an
N -word α, or a ↓-expression.

Lemma 6.3 (See [Van Vliet, 2004, Lemma 4.71]) Let E = 〈↑ ε1 . . . εn〉, where
n ≥ 1 and ε1, . . . , εn are N -words and DNA expressions, be an operator-minimal DNA
expression denoting a certain formal DNA molecule X (which may contain nick letters).

Then for i = 1, . . . , n, Xi = S+(εi) is nick free.

Corollary 6.4 (Cf. [Van Vliet, 2004, Corollary 4.72]) Let E be an operator-
minimal ↑-expression denoting a certain formal DNA molecule X (which may contain
nick letters). Then each proper DNA subexpression of E is nick free.

Proof: Let E1 be a proper DNA subexpression of E. By Lemma 5.25, E1 is minimal.
Hence, if E1 is an l-subexpression of E, then by Theorem 5.3, E1 = 〈l α1〉 for an
N -word α1, which is indeed nick free.

Now, assume that E1 is a ↓-subexpression of E. Let E0 be the DNA subexpression of
E that E1 is an argument of. If E0 is equal to E, then by assumption E0 is an operator-
minimal ↑-expression. If, on the other hand, E0 is a proper DNA subexpression of E,
then E0 is minimal. Hence, by Theorem 5.3, and Lemma 6.1, E0 is an ↑-expression.
In particular, also in this case, E0 is an operator-minimal ↑-expression. Now for both
cases, the claim follows from Lemma 6.3, applied to E0.

The proof for the case that E1 is an ↑-subexpression of E is analogous. However,
in that case, we do not have to consider the possibility that E0 is equal to E, because
the operator-minimal ↑-expression E cannot have an ↑-argument E1.

56

6.1 Reverse construction of a minimal DNA expression 57

Lemma 6.5 (See [Van Vliet, 2004, Lemma 4.74]) Let E = 〈↑ ε1 . . . εn〉, where
n ≥ 1 and ε1, . . . , εn are N -words and DNA expressions, be an operator-minimal DNA
expression denoting a certain formal DNA molecule X (which may contain nick letters).
For i = 1, . . . , n, let Xi = S+(εi).

1. For i = 1, . . . , n, if εi is a ↓-expression Ei, then Xi = S(Ei) and B↑(Xi) =
B↓(Xi)− 1. Hence, Xi contains at least one single-stranded component and both
the first single-stranded component and the last single-stranded component of Xi

are lower components.

2.
∑

↓-expr. εi

B↓(Xi) = B↓(X1) + · · ·+B↓(Xn) = B↓(X).

Lemma 6.6 (See [Van Vliet, 2004, Corollary 4.73(1)]) Let E = 〈↑ ε1 . . . εn〉,
where n ≥ 1 and ε1, . . . , εn are N -words and DNA expressions, be an operator-minimal
DNA expression denoting a certain formal DNA molecule X. For i = 1, . . . , n, let
Xi = S+(εi).

Then

X = X1y1X2y2 . . . yn−1Xn,

where for i = 1, . . . , n− 1, yi = △ if R(Xi), L(Xi+1) ∈ A±, and yi = λ otherwise.
Here, for i = 1, . . . , n− 1, R(Xi), L(Xi+1) ∈ A±, if and only if both εi and εi+1 are

expression-arguments.

Proof of second part of the claim: Consider any i with 1 ≤ i ≤ n − 1. By
Corollary 6.2, εi is either an N -word α, or an l-expression 〈l α〉 for an N -word α, or
a ↓-expression. By Lemma 6.3, Xi = S+(εi) is nick free.

If εi is an N -word α, then Xi = S+(εi) =
(
α
−

)
and R(Xi) /∈ A±.

If εi an l-expression 〈l α〉 for an N -word α, then Xi = S(εi) =
(

α
c(α)

)
and R(Xi) ∈

A±.
Finally, if εi is a ↓-expression, then by Lemma 6.5(1), Xi contains at least one

single-stranded component and the last single-stranded component of Xi is a lower
component. Because εi has to prefit εi+1 by upper strands, this lower component
cannot be the last component of Xi. By Corollary 2.9(1), the last component of Xi

must be a double component. This implies that R(Xi) ∈ A±.
We conclude that R(Xi) ∈ A±, if and only if εi is an expression-argument. Anal-

ogously, we find that L(Xi+1) ∈ A±, if and only if εi+1 is an expression-argument.
Consequently, R(Xi), L(Xi+1 ∈ A±, if and only if both εi and εi+1 are expression-
arguments.

Corollary 6.7 (See [Van Vliet, 2004, Corollary 4.73(2)]) Let E = 〈↑ ε1 . . . εn〉,
where n ≥ 1 and ε1, . . . , εn are maximal N -word occurrences and DNA expressions, be
an operator-minimal DNA expression denoting a certain nick free formal DNA molecule
X. For i = 1, . . . , n, let Xi = S+(εi).

Then

X = X1X2 . . . Xn, (6.1)

and the arguments ε1, . . . , εn are maximal N -word occurrences and DNA expressions,
alternately.

58 Ch. 6 All Minimal DNA Expressions

Corollary 6.8 (Cf. [Van Vliet, 2004, Lemma 4.76(3)]) Let E be an operator-
minimal ↑-expression denoting a certain formal DNA molecule X. The following four
statements are equivalent:

1. X is nick free.

2. X does not contain lower nick letters.

3. (The outermost operator ↑ of) E is alternating.

4. Each occurrence of ↑ or ↓ in E is alternating.

Proof: The equivalence of statements 1 and 2 follows from Lemma 3.1(1). We now
prove that statements 3 and 4 are also equivalent to statement 1.

1 =⇒ 3 This implication follows directly from Corollary 6.7.

3 ⇐⇒ 4 Consider an arbitrary inner occurrence of ↑ or ↓ in E, and let Es be the
(proper) DNA subexpression of E governed by it. By Lemma 5.25, Es is minimal,
and by Corollary 6.4, Es is nick free. Hence, we can apply Corollary 6.7 to Es,
and conclude that the occurrence of ↑ or ↓ that we consider is alternating.

This implies that the outermost operator ↑ of E is alternating, if and only if each
occurrence of ↑ or ↓ in E is alternating.

4 =⇒ 1 This implication follows directly from Lemma 3.5.

Theorem 6.9 (See [Van Vliet, 2004, Theorem 4.77]) (Cf. [Van Vliet et al.,
2005, page 384], [Van Vliet et al., 2006, page 143]) Let E = 〈↑ ε1 . . . εn〉, where
n ≥ 1 and ε1, . . . , εn are maximal N -word occurrences and DNA expressions, be a
minimal DNA expression denoting a certain nick free formal DNA molecule X. For
i = 1, . . . , n, let Xi = S+(εi).

Let εi1 , εi2 , . . . , εir , with 0 ≤ r ≤ n and i1 < i2 < · · · < ir, be all ↓-arguments of E.
Finally, let Y0, Y1, . . . , Yr be defined by

Y0 =

{
X1 . . . Xn if r = 0
X1 . . . Xi1−1 if r ≥ 1

Yj = Xij+1 . . . Xij+1−1 (j = 1, . . . , r − 1)

Yr =

{
X1 . . . Xn if r = 0
Xir+1 . . . Xn if r ≥ 1

1. P = Y0Xi1Y1Xi2Y2 . . . XirYr is a lower block partitioning of X.

2. E satisfies the description of a minimal DNA expression denoting X and based
on P, given in Theorem 5.12(1).

Theorem 6.10 (See [Van Vliet, 2004, Theorem 4.78]) Let E = 〈↑ ε1 . . . εn〉,
where n ≥ 1 and ε1, . . . , εn are maximal N -word occurrences and DNA expressions, be
an operator-minimal DNA expression denoting a certain nick free formal DNA molecule
X. For i = 1, . . . , n, let Xi = S+(εi).

6.1 Reverse construction of a minimal DNA expression 59

Let εi1 , εi2 , . . . , εir , with 0 ≤ r ≤ n and i1 < i2 < · · · < ir, be all ↓-arguments of E.
Finally, let Y0, Y1, . . . , Yr be defined by

Y0 =

{
X1 . . . Xn if r = 0
X1 . . . Xi1−1 if r ≥ 1

Yj = Xij+1 . . . Xij+1−1 (j = 1, . . . , r − 1)

Yr =

{
X1 . . . Xn if r = 0
Xir+1 . . . Xn if r ≥ 1

1. P = Y0Xi1Y1Xi2Y2 . . . XirYr is a lower block partitioning of X.

2. E satisfies the description of an operator-minimal DNA expression denoting X
and based on P, given in Theorem 5.26.

Theorem 6.11 (See [Van Vliet, 2004, Theorem 4.79]) (Cf. [Van Vliet et al.,
2005, Theorem 10], [Van Vliet et al., 2006, Theorem 14]) Let E = 〈↑ ε1 . . . εn〉,
where n ≥ 1 and ε1, . . . , εn are maximal N -word occurrences and DNA expressions, be a
minimal DNA expression denoting a certain formal DNA molecule X which contains at
least one nick letter. Let Z1△

Z2△
. . .

△
Zm for some m ≥ 2 be the nick free decomposition

of X.

Then E satisfies the description of a minimal DNA expression denoting X given in
Theorem 5.28. Hence, there exist indices i0, i1, . . . , im, such that

• i0 = 0 < i1 < i2 < · · · < im−1 < im = n, and

• for h = 1, . . . ,m,
〈
↑ εih−1+1 . . . εih

〉
is an operator-minimal ↑-expression denoting

Zh.

Summary 6.12 (See [Van Vliet, 2004, Corollary 4.80]) Let X be an expressible
formal DNA molecule.

1. If X =
(

α1

c(α1)

)
for an N -word α1, then the only minimal DNA expression denot-

ing X is E = 〈l α1〉 (see Theorem 5.3).

The length of this minimal DNA expression is

|E| = 3 · nl(X) + |X|A.

2. If X is nick free, contains at least one single-stranded component and B↑(X) =
B↓(X), then the only minimal DNA expressions denoting X are ↑-expressions
based on a lower block partitioning of X as described in Theorem 5.12(1), and
↓-expressions based on an upper block partitioning of X as described in Theo-
rem 5.12(2) (see also Theorem 6.9).

The length of a minimal DNA expression E is

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A

= 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A.

60 Ch. 6 All Minimal DNA Expressions

3. If X is nick free and B↑(X) > B↓(X), then the only minimal DNA expressions
denoting X are ↑-expressions based on a lower block partitioning of X, as de-
scribed in Theorem 5.12(1) (see also Theorem 6.9).

The length of a minimal DNA expression E is

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

4. If X is nick free and B↓(X) > B↑(X), then the only minimal DNA expressions
denoting X are ↓-expressions based on an upper block partitioning of X, as de-
scribed in Theorem 5.12(2) (see also Theorem 6.9).

The length of a minimal DNA expression E is

|E| = 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A.

5. If X contains at least one lower nick letter, then the only minimal DNA expres-
sions denoting X are ↑-expressions based on operator-minimal ↑-expressions for
the formal DNA submolecules Z1, Z2, . . . , Zm occurring in the nick free decomposi-
tion Z1△

Z2△
. . .

△
Zm of X, as described in Theorem 5.28 (see also Theorem 6.11).

The operator-minimal ↑-expressions denoting a (nick free) formal DNA sub-
molecule Zh are in turn based on a lower block partitioning of Zh, as described in
Theorem 5.26 (see also Theorem 6.10).

The length of a minimal DNA expression E denoting X is

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

6. If X contains at least one upper nick letter, then the only minimal DNA expres-
sions denoting X are ↓-expressions based on operator-minimal ↓-expressions for
the formal DNA submolecules Z1, Z2, . . . , Zm occurring in the nick free decompo-
sition Z1

▽Z2
▽ . . . ▽Zm of X, analogous to the description in Theorem 5.28 (see

also Theorem 6.11).

The operator-minimal ↓-expressions denoting a (nick free) formal DNA sub-
molecule Zh are in turn based on an upper block partitioning of Zh, analogous
to the description in Theorem 5.26 (see also Theorem 6.10).

The length of a minimal DNA expression E denoting X is

|E| = 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A.

In each of the cases, a minimal DNA expression achieves the applicable lower bound
on its length from Theorem 4.7.

Corollary 6.13 (See [Van Vliet, 2004, Corollary 4.81]) Let E be a DNA expres-
sion, and let X = S(E).

1. If E is an operator-minimal ↑-expression, then

#↑,↓(E) = 1 + B↓(X) and

#l(E) = nl(X).

6.2 Characterization of minimal DNA expressions 61

2. If E is an operator-minimal ↓-expression, then

#↑,↓(E) = 1 + B↑(X) and

#l(E) = nl(X).

3. If E is a minimal l-expression, then

#↑,↓(E) = 0 and

#l(E) = 1.

Lemma 6.14 (See [Van Vliet, 2004, pages 110-111]) Let X be an expressible
formal DNA molecule.

1. If X is nick free, contains at least one upper component and does not contain
any lower component, then the only minimal DNA expression denoting X is
an ↑-expression whose arguments are maximal N -word occurrences αi and l-
expressions 〈l αi〉 for N -words αi, alternately.

2. If X does not contain any single-stranded component and contains at least one

lower nick letter, then let
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△
. . .

△

(
αm

c(αm)

)
for some m ≥ 2 and N -

words α1, α2, . . . , αm be the nick free decomposition of X. The only minimal DNA
expression denoting X is

E = 〈↑ 〈l α1〉 〈l α2〉 . . . 〈l αm〉〉 .

6.2 Characterization of minimal DNA expressions

Lemma 6.15 (See [Van Vliet, 2004, Definition 4.97 and Theorem 4.100],
[Van Vliet et al., 2005, Theorem 12]) Let E be a minimal DNA expression.

(DMin.1) Each occurrence of the operator l in E has as its argument an N -word α
(i.e., not a DNA expression).

(DMin.2) No occurrence of the operator ↑ in E has an ↑-argument, and no occurrence
of the operator ↓ in E has a ↓-argument.

(DMin.3) Unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each occurrence of an
operator ↑ or ↓ in E has at least two arguments.

(DMin.4) Each inner occurrence of an operator ↑ or ↓ in E is alternating.

(DMin.5) For each inner occurrence of an operator ↑ or ↓ in E,

• the first argument is either an N -word α or an l-expression 〈l α〉 for an
N -word α, and

• the last argument is either an N -word α or an l-expression 〈l α〉 for an
N -word α.

(DMin.6) If the outermost operator of E is ↑ or ↓, then

62 Ch. 6 All Minimal DNA Expressions

Prop. E X = S(E) E∗

(DMin.1) 〈l 〈l α1〉〉
(

α1

c(α1)

)
〈l α1〉

(DMin.1) 〈↑ α1 〈l 〈↑ α2 〈l α3〉〉〉〉
(
α1

−

)(
α2α3

c(α2α3)

)
〈↑ α1 〈l α2α3〉〉

(DMin.2) 〈↑ α1 〈↑ 〈l α2〉α3〉〉
(
α1

−

)(
α2

c(α2)

)(
α3

−

)
〈↑ α1 〈l α2〉α3〉

(DMin.3) 〈↑ 〈l α1〉〉
(

α1

c(α1)

)
〈l α1〉

(DMin.3) 〈↓ α1 〈↑ 〈l α2〉〉〉
(
−
α1

)(
α2

c(α2)

)
〈↓ α1 〈l α2〉〉

(DMin.4) 〈↑ α1 〈↓ 〈l α2〉 〈l α3〉〉〉
(
α1

−

)(
α2α3

c(α2α3)

)
〈↑ α1 〈l α2α3〉〉

(DMin.5) 〈↑ α1 〈↓ 〈↑ α2 〈l α3〉〉α4〉〉
(
α1α2

−

)(
α3

c(α3)

)(
−
α4

)
〈↑ α1α2 〈↓ 〈l α3〉α4〉〉

(DMin.5) 〈↑ 〈↓ α1 〈↑ 〈l α2〉α3〉〉α4〉
(
−
α1

)(
α2

c(α2)

)(
α3α4

−

)
〈↑ 〈↓ α1 〈l α2〉〉α3α4〉

(DMin.6) 〈↑ 〈↓ α1 〈l α2〉〉α3 〈↓ 〈l α4〉α5〉〉
(
−
α1

)(
α2

c(α2)

)(
α3

−

)(
α4

c(α4)

)(
−
α5

)
〈↓ α1 〈↑ 〈l α2〉α3 〈l α4〉〉α5〉

Table 6.1: (See [Van Vliet, 2004, Table 4.3]) Examples of DNA expressions with
all six properties from Lemma 6.15 except one. The first column mentions the property
that is not valid, the second column contains a corresponding DNA expression E, the
third column gives the formal DNA molecule X denoted by E, and the fourth column
contains a minimal DNA expression E∗ denoting X. As usual, the αi’s occurring
represent (arbitrary) N -words.

• either its first argument is an N -word α or an l-expression 〈l α〉 for an
N -word α,

• or its last argument is an N -word α or an l-expression 〈l α〉 for an N -word
α,

• or it has two consecutive expression-arguments.

We use DMin to denote the set of DNA expressions that have Properties (DMin.1)–
(DMin.6).

Theorem 6.16 (See [Van Vliet, 2004, Theorem 4.100], [Van Vliet et al., 2005,
Theorem 12]) A DNA expression E is minimal if and only if E ∈ DMin.

Lemma 6.17 (See [Van Vliet, 2004, Lemma 4.99]) Let E be a minimal DNA
expression.

1. (a) For each proper ↑-subexpression of E, the parent operator is ↓.

(b) For each proper ↓-subexpression of E, the parent operator is ↑.

2. Each proper ↑-subexpression or ↓-subexpression of E has at least two arguments.

3. If E is nick free, then it has at least one N -word-argument α.

4. Each proper DNA subexpression of E has at least one N -word-argument α.

5. (a) Each proper ↑-subexpression or ↓-subexpression of E which is not the first ar-
gument of its parent operator has as its (own) first argument an l-expression
〈l α〉 for an N -word α.

6.3 The structure tree of a minimal DNA expression 63

(b) Each proper ↑-subexpression or ↓-subexpression of E which is not the last ar-
gument of its parent operator has as its (own) last argument an l-expression
〈l α〉 for an N -word α.

6. For each proper ↑-subexpression or ↓-subexpression of E, either the first argu-
ment, or the last argument is an l-expression 〈l α〉 for an N -word α.

7. Each proper ↑-subexpression or ↓-subexpression of E which is neither the first
argument, nor the last argument of E, has an odd number of arguments (at least
three), the first one and the last one of which are l-expressions 〈l α〉 for N -words
α.

Proof:

3. Assume that E is nick free. If E is an l-expression, then the claim follows from
Property (DMin.1).

Now assume that E is an ↑-expression. By Corollary 6.8(1) and (3), E is al-
ternating. Hence, if E has at least two arguments, then at least one of these
arguments is a maximal N -word occurrence. If, on the other hand, E has only
one argument, then by Property (DMin.3), this must be an N -word α.

The proof for a ↓-expression E is analogous.

6.3 The structure tree of a minimal DNA expres-

sion

As we observed in § 2.8, each DNA expression has a unique representation as an
ordered, directed, node-labelled tree: the structure tree. In particular, such a unique
tree-representation exists for every minimal DNA expression. The resulting structure
trees are also called minimal.

In § 6.2, we have given a characterization of minimal DNA expressions by six prop-
erties of the operators occurring in them. These properties can be directly translated
into properties characterizing minimal structure trees.

Let t be the structure tree of a DNA expression E.

Theorem 6.16 (and Lemma 6.15) t is minimal if and only if

(DMin.1) each node labelled by l in t has a (single) child labelled by an N -word
α, and

(DMin.2) no node labelled by ↑ in t has a child labelled by ↑, and no node labelled
by ↓ in t has a child labelled by ↓, and

(DMin.3) unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each node labelled
by either ↑ or ↓ in t has at least two children, and

(DMin.4) for each non-root labelled by either ↑ or ↓ in t, the children are labelled
by an N -word α or by an operator, alternately, and

(DMin.5) for each non-root labelled by either ↑ or ↓ in t, the first child is labelled
by either an N -word α or the operator l, and also the last child is labelled
by either an N -word α or the operator l, and

64 Ch. 6 All Minimal DNA Expressions

n

n n n n

n n n n n n

n n

!!!!!!!!!!

A
A
A

@
@
@@

HHHHHHHH

PPPPPPPPPPPP
��������

�
�

�
�

��

�
�

��

�
�
��

A
A
A

Q
Q
Q
Q
QQ

HHHHHHHH

�
�
�

A
A
A

�
�
�

A
A
A

↑

α1 ↓ α11 l α13 ↓ α17 l

l α3 l α5 ↑ α9 l α12 l α15 l α18

α2 α4 l α7 l α10 α14 α16

α6 α8 (a)

n

n n

n n n

n n

�
�

��

@
@
@@

Q
Q
Q
Q
QQ

��������

�
�

��

A
A
A

@
@
@@

Q
Q
Q
Q
QQ

�
�
�

A
A
A

↓

↑ α9 l

α1 ↓ α5 l α7 l α10

l α3 l α6 α8

α2 α4 (b)

n

n n n n n n n n n

n n n n n n n n

����������������

!!!!!!!!!!

��������

#
#

#
##

�
�
�

C
C
CC

S
S
SS

c
c
c
cc

PPPPPPPPPPPP

XXXXXXXXXXXXXXXX

�
�
��

�
�
��

C
C
C

�
�
��

�
�
��

C
C
C

�
�
�

A
A
A

�
�
�

C
C
CC

S
S
SS

↑

α1 ↓ ↓ α8 ↓ l α13 l α15 l l ↓ α21 l

l α3 l l α6 l l α10 l α12 α14 α16 α17 l α19 l α22

α2 α4 α5 α7 α9 α11 α18 α20

(c)

Figure 6.1: (See [Van Vliet, 2004, Figure 4.10(b)-(c)]) Three minimal structure
trees. (a) The structure tree of the minimal DNA expression from Equation (5.6),
denoting the nick free formal DNA molecule from (a.o.) Figure 5.3. (b) The structure
tree of the minimal DNA expression Ed from Equation (5.11), denoting the nick free
formal DNA molecule from Figure 5.4. (c) The structure tree of the minimal DNA
expression from Equation (5.19), denoting the formal DNA molecule from Figure 5.5,
which contains four lower nick letters.

6.4 The number of (operator-)minimal DNA expressions 65

(DMin.6) if the root of t is labelled by either ↑ or ↓, then either its first child is
labelled by an N -word α or the operator l, or its last child is labelled by an
N -word α or the operator l, or it has two consecutive children labelled by
an operator.

In Figure 6.1, we have drawn the structure trees of three minimal DNA expressions we
have constructed in the course of Chapter 5. One can verify that these structure trees
exhibit all properties we have just listed.

6.4 The number of (operator-)minimal DNA ex-

pressions

Definition 6.18 (See [Van Vliet, 2004, Definition 4.82]) Let X be an expressible
formal DNA molecule. Then

• nmin(X) is the number of minimal DNA expressions denoting X,

• nmin↑(X) is the number of minimal ↑-expressions denoting X,

• nmin↓(X) is the number of minimal ↓-expressions denoting X,

• nminl(X) is the number of minimal l-expressions denoting X,

• nopermin↑(X) is the number of operator-minimal ↑-expressions denoting X,

• nopermin↓(X) is the number of operator-minimal ↓-expressions denoting X,

• noperminl(X) is the number of operator-minimal l-expressions denoting X.

Corollary 6.19 (See [Van Vliet, 2004, Corollary 4.96], [Van Vliet et al., 2005,
Theorem 11]) Let X be an expressible formal DNA molecule.

1. If X is double-complete, then

nmin↑(X) = 0,

nopermin↑(X) = 1,

nmin↓(X) = 0,

nopermin↓(X) = 1,

nminl(X) = noperminl(X) = 1 and

nmin(X) = 1.

2. If X is nick free, contains at least one single-stranded component and B↑(X) =
B↓(X) = p for some p ≥ 1, then

nmin↑(X) = nopermin↑(X) =
1

p+ 1

(
2p
p

)
,

nmin↓(X) = nopermin↓(X) =
1

p+ 1

(
2p
p

)
,

nminl(X) = noperminl(X) = 0 and

nmin(X) =
2

p+ 1

(
2p
p

)
.

66 Ch. 6 All Minimal DNA Expressions

3. If X is nick free, B↑(X) = p1 and B↓(X) = p2 for some p1 and p2 with p1 > p2 ≥
0, then

nmin↑(X) = nopermin↑(X) =
1

p2 + 1

(
2p2
p2

)
,

nmin↓(X) = 0,

nopermin↓(X) =
1

p1 + 1

(
2p1
p1

)
,

nminl(X) = noperminl(X) = 0 and

nmin(X) =
1

p2 + 1

(
2p2
p2

)
.

4. If X is nick free, B↑(X) = p1 and B↓(X) = p2 for some p1 and p2 with p2 > p1 ≥
0, then

nmin↑(X) = 0,

nopermin↑(X) =
1

p2 + 1

(
2p2
p2

)
,

nmin↓(X) = nopermin↓(X) =
1

p1 + 1

(
2p1
p1

)
,

nminl(X) = noperminl(X) = 0 and

nmin(X) =
1

p1 + 1

(
2p1
p1

)
.

5. If X contains at least one lower nick letter, then let Z1△
Z2△

. . .
△
Zm for some

m ≥ 2 be the nick free decomposition of X, and let for h = 1, . . . ,m, ph = B↓(Zh).

nmin↑(X) = nopermin↑(X) =
1

p1 + 1

(
2p1
p1

)
× · · · ×

1

pm + 1

(
2pm
pm

)
,

nmin↓(X) = nopermin↓(X) = 0,

nminl(X) = 0 and

nmin(X) =
1

p1 + 1

(
2p1
p1

)
× · · · ×

1

pm + 1

(
2pm
pm

)
.

(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|.

(b) If X contains at least one single-stranded component, then

noperminl(X) = 0.

6. If X contains at least one upper nick letter, then let Z1
▽Z2

▽ . . . ▽Zm for some
m ≥ 2 be the nick free decomposition of X, and let for h = 1, . . . ,m, ph = B↑(Zh).

nmin↑(X) = nopermin↑(X) = 0,

nmin↓(X) = nopermin↓(X) =
1

p1 + 1

(
2p1
p1

)
× · · · ×

1

pm + 1

(
2pm
pm

)
,

nminl(X) = 0 and

nmin(X) =
1

p1 + 1

(
2p1
p1

)
× · · · ×

1

pm + 1

(
2pm
pm

)
.

6.4 The number of (operator-)minimal DNA expressions 67

(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|.

(b) If X contains at least one single-stranded component, then

noperminl(X) = 0.

Chapter 7

An Algorithm for Minimality

In Chapter 5, we have described how to construct a minimal DNA expression denoting
a given formal DNA molecule. In Chapter 6, we have given a characterization of
minimal DNA expressions (Theorem 6.16).

Now, given an arbitrary DNA expression E, we can use the characterization to
check whether or not it is minimal. If it is not, then, in order to save space, we
may wish to replace it by an equivalent, minimal DNA expression, i.e., a minimal
DNA expression with the same semantics. An indirect way to achieve such a minimal
DNA expression consists of first determining the semantics S(E), and then using the
applicable construction(s) from Chapter 5.

In this chapter, we follow a different, more elegant approach. We describe an
algorithm to rewrite E into an equivalent, minimal DNA expression. This algorithm
executes local string manipulations on E directly, based on violations of the properties
in the characterization. It does not refer to the underlying semantics S(E) at all. Step
by step, the DNA expression obtains all six properties from Lemma 6.15.

In § 7.1, we describe the algorithm and prove that it is correct. We illustrate
the different steps in the algorithm by example DNA expressions, which are DNA
subexpressions of a single, large DNA expression. In § 7.2, we systematically work out
the algorithm for this DNA expression as a whole.

The description of the algorithm in § 7.1 is not entirely complete. In particular,
we sometimes say that certain arguments of a DNA expression must be considered ‘in
some order’. Because the actual order used does not matter for the correctness of the
algorithm, we do not specify one. In addition, at other places, we consider or select
certain types of arguments of a DNA expression, but we do not specify how to find
these types of arguments. We fill in such details and analyse the complexity of the
algorithm in § 7.3. Finally, in § 7.4, we relate the time spent by the algorithm on
actual rewriting steps to the resulting decrease of |E|.

7.1 The algorithm and its correctness

In this section, we describe an algorithm for rewriting an arbitrary DNA expression
E into an equivalent, minimal DNA expression. This algorithm is recursive: we first
construct equivalent, minimal DNA expressions for the expression-arguments of E.
The resulting expression-arguments have the six properties from Lemma 6.15. We use
that in the second phase, where we construct a DNA expression E ′ that is equivalent
to E and has these properties itself. By Theorem 6.16, E ′ must be minimal.

68

7.1 The algorithm and its correctness 69

Note that this second phase is not trivial. If the arguments of a DNA expression
E are minimal, then E itself may be far from minimal. For example, if E is an
l-expression with an expression-argument, then by Property (DMin.1), E cannot be
minimal, even if this expression-argument is minimal. Similarly, if E is an ↑-expression
with ↑-arguments, then by Property (DMin.2), E cannot be minimal, even if the ↑-
arguments are minimal.

Another important issue is that Properties (DMin.3)–(DMin.6) are more restrictive
for inner occurrences of operators ↑ and ↓ than for the outermost operator of a DNA ex-
pression. For example, by Property (DMin.3), an occurrence of ↑ may only have a single
N -word-argument α, if it is the outermost operator. Also, by Properties (DMin.4) and
(DMin.6), an inner occurrence of an operator ↑ must be alternating, whereas an out-
ermost operator ↑ may have consecutive expression-arguments. Finally, by Properties
(DMin.5) and (DMin.6), the first (or last) argument of an inner occurrence of ↑ cannot
be a ↓-argument, wheras this is possible for an outermost operator ↑. Of course, there
are analogous differences between an inner occurrence of ↓ and an outermost operator
↓.

Now suppose that E is a DNA expression and that Ei is a minimal ↑-argument of
E. When we view Ei by itself, then its outermost operator ↑0 may have, for example,
consecutive expression-arguments. However, when we view Ei as an argument of E,
then ↑0 is an inner occurrence of ↑, which implies that it should be alternating.

Consequently, after we have (recursively) rewritten the expression-arguments of a
DNA expression E into equivalent, minimal expression-arguments, we may still have
to perform a number of rewriting steps to make E minimal itself. We can see this in
Figure 7.1, where we give the pseudo-code of a recursive function MakeMinimal, which
implements the algorithm.

The description of the function contains four instructions in a style like

substitute E by a minimal DNA expression E ′ satisfying E ′ ≡ E; (proce-
dure . . .)

These instructions will be worked out in detail later, by the procedures mentioned
between the brackets. We prove that both the general description of the algorithm and
all procedures are correct, i.e., that they indeed produce the type of DNA expression
specified, with the right semantics.

When we have an instruction of the above form, there may be many different
minimal DNA expressions E ′ that satisfy the equivalence. Different choices may result
in different outcomes of the algorithm. At this point, it does not matter which DNA
expression we take. We will prove that regardless of the choice we make, the overall
algorithm is correct. As we work out the procedures, however, we will see that we
do not just make a random choice. For a given DNA expression E, we systematically
construct a DNA expression E ′ that satisfies the requirements.

Note that an instruction of the above form bears a notion of semantics in it. The
new DNA expression E ′ must satisfy E ′ ≡ E, i.e., its semantics must be equal to S(E).
We use such formulations, to be able to prove the correctness of the general algorithm
without knowing the procedures. Again, as we work out the procedures, we will see
that we merely perform local string manipulations on the DNA expression, based on
its properties as a string. Hence, the complete, detailed algorithm does not refer to the
semantics of the DNA expressions involved, at all.

70 Ch. 7 An Algorithm for Minimality

1. MakeMinimal (E)
// recursively rewrites an arbitrary DNA expression E
// into an equivalent, minimal DNA expression

2. {
3. if (E is an l-expression)
4. then if (the argument of E is a DNA expression E1)
5. then MakeMinimal (E1);

// we proceed with the new (minimal) version of E1

6. if (E1 is an l-expression)
7. then substitute E by E1; (DMin.1)
8. else // E1 is an ↑-expression or a ↓-expression
9. substitute E by a minimal DNA expression E ′

satisfying E ′ ≡ E; (procedure MakelExprMinimal) (DMin.1)
10. fi
11. fi

12. else // E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is
// an ↑-expression

13. for all expression-arguments Ei of E (in some order)
14. do MakeMinimal (Ei);
15. od

// we proceed with the new (minimal) expression-arguments Ei

16. for all ↓-arguments Ei of E (in some order)
17. do if (Ei is not alternating)
18. then substitute Ei in E by a minimal, nick free

DNA expression E ′
i satisfying E ′

i ≡▽ Ei;
(procedure Denickify) (DMin.4)

19. fi
20. od

// we proceed with the new expression-arguments
21. for all ↓-arguments Ei of E (in some order)
22. do if (the first argument or the last argument of Ei

is an ↑-argument)
23. then substitute Ei in E by a minimal ↑-expression E ′

i

satisfying E ′
i ≡ Ei; (procedure RotateToMinimal) (DMin.5)

24. fi
25. od

// we proceed with the new expression-arguments
26. for all ↑-arguments Ei = 〈↑ εi,1 . . . εi,ni

〉 of E (in some order)
27. do substitute Ei in E by its arguments εi,1 . . . εi,ni

; (DMin.2)
28. od

29. if (E has only one argument ε1)
30. then if (ε1 is a DNA expression E1)
31. then substitute E by E1; (DMin.3)
32. fi
33. else // E has at least two arguments
34. if (E is alternating and both its first argument

and its last argument are ↓-arguments)
35. then substitute E by a minimal ↓-expression E ′

satisfying E ′ ≡ E; (procedure RotateToMinimal) (DMin.6)
36. fi
37. fi
38. fi
39. }

Figure 7.1: Pseudo-code of the recursive function MakeMinimal.

7.1 The algorithm and its correctness 71

We want to emphasize that (additional) recursive calls of MakeMinimal itself would
not be appropriate to obtain the minimal DNA expressions E ′ or E ′

i that we need in
the four instructions involved. We really need specialized procedures. For each of the
instructions, we explain now why this is the case.

For the substitution in line 9, we need to find a minimal DNA expression E ′ satis-
fying E ′ ≡ E. Although this is exactly what the function MakeMinimal is meant for,
a recursive call MakeMinimal(E) would not work at this point. It would trigger an
infinite sequence of recursive calls of the function, with the same argument E.

The minimal DNA expression E ′
i that we substitute in line 18 is not equivalent to

Ei. As follows from Corollary 6.8, Ei contains nicks, whereas E ′
i must be nick free.

Because the function MakeMinimal yields an equivalent , minimal DNA expression, it
is not applicable. Apart from that, it would not make sense to call the function here,
because we have just done so in line 14.

In line 23, we do not just need any equivalent, minimal DNA expression, but we
need one of a particular type: an ↑-expression E ′

i for a ↓-expression Ei. MakeMinimal
does not make this distinction. In fact, as a result of lines 13-20, the ↓-expression Ei

is minimal already. As we will see later, MakeMinimal(Ei) would simply yield Ei. It
would never produce the desired ↑-expression.

Although the situation in line 35 looks similar, the actual problem is more serious.
Just like in line 9, a call MakeMinimal(E) there would start an infinite sequence of
recursive calls, with the same argument E.

Each substitution in the function MakeMinimal is justified by the violation of a par-
ticular property from Lemma 6.15. Such a violation implies that the DNA expression is
not (yet) minimal. In the pseudo-code, we indicate the properties involved. We briefly
discuss the relation between the different substitutions and the properties violated.

Assume that the DNA expression E is an l-expression. Then MakeMinimal only
rewrites E, if its argument is a DNA expression E1 (in lines 5–11), i.e., not if it is an
N -word α1. This is justified by Theorem 5.3: an l-expression E with an expression-
argument is not minimal. Indeed, such a DNA expression violates (at least) Prop-
erty (DMin.1), and thus needs to be rewritten. On the other hand, an l-expression E
with an N -word-argument is minimal already, and there is no reason to rewrite it.

There is not such a clear distinction for ↑-expressions and ↓-expressions. If E is
an ↑-expression or a ↓-expression which is minimal already, then we do execute lines
13–37. However, in Theorem 7.12, we will see that also in that case, in fact nothing
happens.

We consider the action of MakeMinimal for an ↑-expression E. First of all, we
recursively rewrite the expression-arguments Ei of E into equivalent, minimal DNA
expressions. In the second for-loop, we substitute ↓-arguments of E which are not al-
ternating. Let Ei be such a ↓-argument. Because Ei makes E violate Property (DMin.4),
we indeed have reason to rewrite this expression-argument. By (the analogue for ↓-
expressions of) Corollary 6.8(2) and (3), S(Ei) contains upper nick letters. Since these
upper nick letters are removed by the outermost operator ↑ of E anyway, it does not
hurt to substitute Ei by a nick free version E ′

i. That is what we do in this loop.

In the third for-loop, we substitute ↓-arguments Ei for which either the first argu-
ment of the last argument is an ↑-argument. Such ↓-arguments cause a violation of
Property (DMin.5). If the ↑-expression E has ↑-arguments Ei, then it violates Prop-
erty (DMin.2). Therefore, in the last for-loop, we substitute such arguments.

In line 31, we have an ↑-expression E with one argument, which is an expression-

72 Ch. 7 An Algorithm for Minimality

α1 α2 α3 α4
α5

α6
α7

α8 α9 α10 α11
α12

α13 α14 α15
α16

α17 α18 α19 α20
α21

α22 α23

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

Figure 7.2: The formal DNA molecule X denoted by the DNA expression E∗
1 in (7.1),

with primitive upper blocks and primitive lower blocks indicated.

argument E1. Hence, E violates Property (DMin.3). As we will see in the proof of
Theorem 7.17, E1 is nick free. This implies that the outermost operator ↑ of E does
not have any effect on the semantics, and E = 〈↑ E1〉 ≡ E1. Therefore, we can safely
substitute E by E1.

Finally, in line 35, we deal with a violation of Property (DMin.6).

We illustrate the different steps in the algorithm by a number of examples. All
these examples are derived from the following DNA expression:

E∗
1 =

〈
↓
〈
↓

〈
↑ 〈l 〈↓ 〈l 〈↑ α1 〈l 〈l α2〉〉α3 〈↓ 〈l α4〉α5〉〉〉 〈l α6〉 α7 〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(7.1)

where α1, . . . , α23 are arbitrary N -words. It denotes the formal DNA molecule X
depicted in Figure 7.2. We use the notation E∗

1 to clearly distinguish the DNA expres-
sion as a whole from the parameter E of (a recursive call of) MakeMinimal and the
expression-arguments Ei. We will use the notation E∗

i also in a more general setting,
to denote the input to algorithms on DNA expressions like MakeMinimal and to denote
the resulting output.

It requires a number of steps to rewrite the DNA expression E∗
1 from (7.1) into an

equivalent, minimal DNA expression. Both for the general description of the algorithm
and for each of the procedures, we select some of these steps as an illustration.

We start with examples of the substitutions that are carried out in MakeMinimal,
as it is described in Figure 7.1. As said before, the substitutions in lines 9, 18, 23
and 35 are phrased in terms of the semantics of the DNA expressions involved, simply
because we do not know the procedures that are mentioned there, yet. Therefore, in
the corresponding examples, we also refer to these semantics. Later, however, when
we work out the procedures and consider examples of their usage, we will see that
the semantics does not play any explicit role. Hence, as desired, the algorithm merely
performs string manipulations, based on syntactic properties of the DNA expressions.

Moreover, there may be more than one DNA expression E ′ or E ′
i that satisfy the

(semantical) conditions in lines 9, 18, 23 and 35. If this is the case in an example,
we give all possible DNA expressions. Recall, however, that the procedures that are
mentioned in these lines, systematically construct a particular DNA expression E ′ or
E ′

i for a given E or Ei.

Example 7.1 Let E = 〈l 〈l α2〉〉. E is an l-expression, for which S(E) =
(

α2

c(α2)

)
.

The argument E1 of E is the minimal l-expression 〈l α2〉. Hence, E violates Property
(DMin.1). According to line 7 of MakeMinimal, E is substituted by E1 = 〈l α2〉. Indeed,
E1 is a minimal DNA expression satisfying E1 ≡ E.

In the proof of Theorem 7.17, we will see that, apart from the particular N -word α2,
this example is the only possibility in line 7.

7.1 The algorithm and its correctness 73

Example 7.2 Let

E = 〈l 〈↑ α1 〈l α2〉α3 〈↓ 〈l α4〉α5〉〉〉 .

E is an l-expression, for which

S(E) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
.

The argument of E is a minimal ↑-expression E1. Hence, E violates Property (DMin.1).
In line 9 of MakeMinimal, we substitute E by a minimal DNA expression E ′ that
satisfies E ′ ≡ E. By Theorem 5.3, there exists exactly one such DNA expression:
E ′ = 〈l α1α2α3α4c(α5)〉.

The minimal, nick free DNA expression E ′
i that we substitute for the non-alternating ↓-

argument Ei in line 18, may be again a ↓-expression, but it may also be an ↑-expression
or an l-expression. We consider two examples covering these three possibilities.

Example 7.3 Let

E =
〈
↑ 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
,

for which

X = S(E) =
(
α1α2α3α4c(α5)α6c(α7)
c(α1α2α3α4)α5c(α6)α7

)
△

(
α8α9

c(α8α9)

)(
α10

−

)(
α11

c(α11)

)(
−
α12

)
·

(
α13

c(α13)

)
△

(
α14

c(α14)

)
△

(
α15

c(α15)

)(
−
α16

)(
α17

c(α17)

)(
α18

−

)(
α19

c(α19)

)
△

(
α20

c(α20)

)
.

All expression-arguments of E are minimal. The first argument of E is

E1 = 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉 ,

which is not alternating and for which

S(E1) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
▽
(
α6c(α7)
c(α6)α7

)
.

Hence, E1 makes E violate Property (DMin.4). E1 is not nick free. If E ′
1 is a nick free

DNA expression satisfying E ′
1 ≡▽ E1, then

S(E ′
1) =

(
α1α2α3α4c(α5)α6c(α7)
c(α1α2α3α4)α5c(α6)α7

)
.

By Theorem 5.3, there is exactly one minimal DNA expression with this semantics:

E ′
1 = 〈l α1α2α3α4c(α5)α6c(α7)〉 ,

which is an l-expression.

Example 7.4 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

74 Ch. 7 An Algorithm for Minimality

This is the result when we substitute the first ↓-argument E1 of the ↑-expression E
from Example 7.3 by the corresponding l-expression E ′

1. The second argument of E is

E2 = 〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 ,

which is not alternating and for which

S(E2) =
(

α8

c(α8)

)
▽
(

α9

c(α9)

)(
α10

−

)(
α11

c(α11)

)(
−
α12

)(
α13

c(α13)

)
.

Hence, E2 makes E violate Property (DMin.4). E2 is not nick free. If E ′
2 is a nick free

DNA expression satisfying E ′
2 ≡▽ E2 and X ′

2 = S(E ′
2), then

X ′
2 =

(
α8α9

c(α8α9)

)(
α10

−

)(
α11

c(α11)

)(
−
α12

)(
α13

c(α13)

)
.

We have B↑(X
′
2) = B↓(X

′
2) = 1. By Summary 6.12(2) and the recursive construction

from Theorem 5.12, there are two diffent minimal DNA expressions denoting X ′
2:

E ′
2 = 〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉

and

E ′
2 = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 .

In principle, in line 18, we may choose either of these minimal DNA expressions. If we
choose the first one, then E ′

2 is an ↑-expression. If we choose the second one, then E ′
2

is a ↓-expression.

Note that in the second for-loop (in lines 16–20) of MakeMinimal, we only substitute
the ↓-arguments that are not alternating. We ignore the non-alternating ↑-arguments
(if these are present) there. It is only in the fourth for-loop that we substitute the
↑-arguments of the ↑-expression E (whether they are alternating or not). It would not
be very useful to do this earlier in the function, because the first three for-loops may
introduce new ↑-arguments.

The ↓-arguments we substitute in the third for-loop (in lines 21–25) may have been
introduced in the second for-loop, but they may also have been arguments of E from
before that loop. We consider examples of both possibilities now.

Example 7.5 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

This is the result when we substitute the second argument E2 of the ↑-expression E
from Example 7.4 by the corresponding ↓-expression E ′

2. The (new) second argument
of E is

E2 = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 .

The first argument of E2 is an ↑-argument. Hence, E2 makes E violate Property
(DMin.5). As we have seen in Example 7.4, there is exactly one minimal ↑-expression
E ′

2 satisfying E ′
2 ≡ E2:

E ′
2 = 〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 .

7.1 The algorithm and its correctness 75

Example 7.6 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

This is the result when we substitute the second argument E2 of the ↑-expression E
from Example 7.5 by the corresponding ↑-expression E ′

2. The fourth argument of E is

E4 = 〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 ,

for which

X4 = S(E4) =
(

α15

c(α15)

)(
−
α16

)(
α17

c(α17)

)(
α18

−

)
.

The last argument of E4 is an ↑-argument. Hence, E4 makes E violate Property
(DMin.5). We have B↑(X4) = B↓(X4) = 1. By Summary 6.12(2) and the recursive
construction from Theorem 5.12, there is exactly one minimal ↑-expression E ′

4 with
S(E ′

4) = X4, i.e., with E ′
4 ≡ E4:

E ′
4 = 〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉 .

When we substitute the argument E4 of the ↑-expression E from the last example
by the corresponding ↑-expression E ′

4, E does not have any ↓-argument left. This is
not necessarily the case after the first three for-loops. E may still have (minimal) ↓-
arguments then. These must be alternating (i.e., nick free), and by Properties (DMin.1)
and (DMin.2), both the first argument and the last argument of such a ↓-argument must
be either an N -word α, or an l-expression 〈l α〉 for an N -word α.

Recall that the substitutions in the third for-loop of MakeMinimal were justified
by violations of Property (DMin.5) by an inner occurrence of the operator ↓. Both in
Example 7.5 and in Example 7.6, we have obtained an ↑-expression E ′

i, whose first
argument or last argument is a ↓-argument. In other words: the outermost operator
↑ of E ′

i (which is an inner occurrence in E) also violates Property (DMin.5). As we
will see shortly, this is not really a problem. It is, however, good to realize that this is
always the case:

Lemma 7.7 Let E ′
i be a minimal ↑-expression that is substituted for a ↓-argument Ei

in the third for-loop of the function MakeMinimal. Then either the first argument, or
the last argument of E ′

i is a ↓-argument.

Proof: As we observed before, either the ↓-argument Ei has been an argument of E
from before the second for-loop, or it has been substituted for another ↓-argument in
this second for-loop. In both cases, Ei is minimal.

Let Xi = S(Ei) = S(E ′
i). By Summary 6.12, the fact that there exists both a

minimal ↓-expression Ei and a minimal ↑-expression E ′
i denoting Xi, implies that Xi is

nick free, contains at least one single-stranded component and B↑(Xi) = B↓(Xi). Both
Ei and E ′

i satisfy the construction from Theorem 5.12.
Now, when we apply Corollary 5.19(2) to E ′

i, we conclude that either the first
argument, or the last argument of E ′

i is a ↓-argument.

The fourth for-loop (in lines 26–28) of the function MakeMinimal deals with violations
of Property (DMin.2). However, it also resolves the violations of Properties (DMin.4)
and (DMin.5) by the outermost operators of (new) ↑-arguments Ei. We proceed with
an example of the substitutions carried out in that loop.

76 Ch. 7 An Algorithm for Minimality

Example 7.8 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

This is the result when we substitute the fourth argument E4 of the ↑-expression E
from Example 7.6 by the corresponding ↑-expression E ′

4. The ↑-expression E has three
↑-arguments. Hence, it violates Property (DMin.2). In lines 26–28, we substitute these
three ↑-arguments by their respective arguments. The result is

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉
.

The function MakeMinimal ends with an if-then-else construction (in lines 29–37). De-
pending on the properties of the DNA expression E resulting from the for-loops, the
if-then-else construction does or does not yield one more modification of the DNA
expression. We conclude this series of examples with one example where the DNA ex-
pression remains the same, and two examples (one very simple and one more involved)
where it is modified in the if-then-else construction.

Example 7.9 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉
.

This is the result of Example 7.8. E has more than one argument and is not alternating.
According to line 34, E is not modified any further. E denotes the formal DNAmolecule
X from Example 7.3. Hence, it is indeed equivalent to the original DNA expression.
Moreover, it is easily verified that E has all six properties from Lemma 6.15 and thus
is minimal.

Example 7.10 Let E = 〈↑ 〈↓ α21〉〉, for which S(E) =
(

−
α21

)
. The only argument

of the ↑-expression E is the ↓-expression E1 = 〈↓ α21〉. Hence, E violates Property
(DMin.3). E1 is an alternating ↓-argument, whose only argument is the N -word α21.
According to line 31, E is substituted by E1. By Summary 6.12(4) and the construction
from Theorem 5.12(2), this is the only minimal DNA expression denoting S(E).

Example 7.11 Let

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

α21 〈↑ 〈l α22〉α23〉
〉
,

which, like DNA expression E∗
1 from (7.1), denotes the formal DNA molecule X from

Figure 7.2. The ↓-expression E has three arguments: two minimal, alternating ↑-
arguments, separated by an N -word α21. Because E itself is also alternating, it violates
Property (DMin.6) and line 35 of the function MakeMinimal is applicable.

The formal DNA molecule X is nick free. As indicated in Figure 7.2, B↑(X) = 3
and B↓(X) = 2. Hence, by Summary 6.12(3) and the recursive construction from

7.1 The algorithm and its correctness 77

Theorem 5.12, there are two different minimal DNA expressions E ′ denoting X, i.e.,
with E ′ ≡ E:

E ′ =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18

〈↓ 〈l α19α20〉α21 〈l α22〉〉 α23

〉

and

E ′ =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10〈

↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈↑ 〈l α17〉α18 〈l α19α20〉〉 α21 〈l α22〉
〉

α23

〉
.

In principle, in line 35 of MakeMinimal, we may choose either of these minimal DNA
expressions.

The recursive function MakeMinimal may be applied to a DNA expression E that is
minimal already. Before we prove the correctness of the function in general, we examine
its effect in this particular case. On page 71, we already observed that the function
MakeMinimal does nothing to a minimal l-expression. We now consider arbitrary
minimal DNA expressions.

Theorem 7.12 Let E be a minimal DNA expression. When the function MakeMinimal

is applied to E, it does not perform any rewriting step.

Hence, MakeMinimal leaves every minimal DNA expression unchanged.

Proof: By induction on the number p of operators occurring in E.

• If p = 1, then E is 〈l α1〉, 〈↑ α1〉 or 〈↓ α1〉 for an N -word α1. Indeed, these DNA
expressions are minimal.

It is easily verified that in each of these cases, MakeMinimal leaves E unchanged.
In particular, for an ↑-expression E = 〈↑ α1〉, nothing happens in the four for-
loops, because E has no expression-arguments.

• Let p ≥ 1, and suppose that MakeMinimal leaves all minimal DNA expressions
containing at most p operators unchanged (induction hypothesis). Now let E be
a minimal DNA expression that contains p+ 1 operators.

Because, by Theorem 5.3, a minimal l-expression contains only one operator, E
has to be an ↑-expression or a ↓-expression. Without loss of generality, assume
it is an ↑-expression.

Because E is minimal, each expression-argument of E is also minimal. Because
an expression-argument Ei has at most p operators, by the induction hypothesis,
the recursive calls in the first for-loop have no effect on E.

By Property (DMin.4), each proper ↓-subexpression of E is alternating. In par-
ticular, each ↓-argument of E is alternating. Hence, the second for-loop of
MakeMinimal has no effect on E, either.

By Property (DMin.5), E does not have any proper ↓-subexpression, for which
either the first argument or the last argument is an ↑-argument. In particular,
E does not have any ↓-argument for which this is the case. Hence, the third
for-loop of the function has no effect on E, either.

78 Ch. 7 An Algorithm for Minimality

By Property (DMin.2), no occurrence of ↑ in E has an ↑-argument. In particular,
the outermost operator ↑ of E has no ↑-argument. Hence, the fourth for-loop of
the function has no effect on E, either.

We finally consider the if-then-else construction at the end of the function. If E
has only one argument, then by Property (DMin.3), this is an N -word α. Indeed,
in this case, E is not rewritten.

If on the other hand, E has at least two arguments, then by Property (DMin.6),
either E has consecutive expression-arguments, or its first argument is an N -
word α or an l-expression 〈l α〉 for an N -word α, or its last argument is an
N -word α or an l-expression 〈l α〉 for an N -word α. In each of the three cases,
the condition in line 34 of the function becomes false, and E is not rewritten.

We will come back to the effect of MakeMinimal on minimal DNA expressions, at the
end of § 7.4. Note that for many formal DNA molecules, there exists more than one
minimal DNA expression, see, e.g., Corollary 6.19). When we apply MakeMinimal to
different equivalent, minimal DNA expressions, the outputs (which equal the inputs)
are also different. This implies in particular that MakeMinimal does not always produce
the same minimal DNA expression, when it is applied to different, equivalent DNA
expressions. To state it formally:

Corollary 7.13 Let E1 and E2 be equivalent DNA expressions. When we apply the
function MakeMinimal to E1 and E2, the resulting minimal DNA expressions are not
necessarily equal.

We now focus on a particular aspect of MakeMinimal, which is important for its
correctness. This aspect will come back in the implementation of line 18, in procedure
Denickify.

In lines 23 and 35 of MakeMinimal, we need a minimal ↑-expression E ′
i or a minimal

↓-expression E ′ that is equivalent to a certain DNA expression. Obviously, for each
DNA expression, there exist one or more equivalent, minimal DNA expressions. For
certain DNA expressions, however, there does not exist an equivalent, minimal ↑-
expression or an equivalent, minimal ↓-expression, simply because all minimal DNA
expressions are of another type. We prove that under certain conditions, the desired
equivalent, minimal ↑-expression or ↓-expression does exist.

Lemma 7.14 Let E be an ↑-expression denoting a certain formal DNA molecule X.
If E is nick free, has Properties (DMin.3)–(DMin.5), and either the first argument

or the last argument of E (or both arguments) is a ↓-argument, then there exists a
minimal ↓-expression E ′ satisfying E ′ ≡ E.

Proof: Assume that E is nick free, has Properties (DMin.3)–(DMin.5), and either the
first argument or the last argument of E (or both arguments) is a ↓-argument.

Without loss of generality, assume that the first argument of E is a ↓-argument E1.
Let X1 = S(E1). By Property (DMin.4) and Lemma 3.5, X1 is nick free. Hence, the
semantics X of the ↑-expression E starts with ν+(X1) = X1.

By Property (DMin.3), E1 has at least two arguments. By Property (DMin.5), the
first argument of E1 is either an N -word α1, or an l-expression 〈l α1〉 for an N -word
α1. In the latter case, by Property (DMin.4), the second argument of E1 is an N -word

7.1 The algorithm and its correctness 79

α2. In both cases, X1 = S(E1) has at least one single-stranded component, and the
first single-stranded component of X1 is a lower component. But then also X = S(E)
has at least one single-stranded component, and its first single-stranded component is
a lower component.

By Lemma 4.6(3b) and (3d), B↓(X) ≥ B↑(X). Hence, by Theorem 5.12(2), there
exists a minimal ↓-expression E ′ denoting X, i.e., a minimal ↓-expression E ′ satisfying
E ′ ≡ E.

If an ↑-expression E is alternating and has Property (DMin.4), then each occurrence of
↑ or ↓ in E is alternating. By Lemma 3.5, E is nick free. But then we also have

Corollary 7.15 Let E be an ↑-expression denoting a certain formal DNA molecule X.
If E is alternating, has Properties (DMin.3)–(DMin.5), and either the first argument

or the last argument of E (or both arguments) is a ↓-argument, then there exists a
minimal ↓-expression E ′ satisfying E ′ ≡ E.

Note that the DNA expression E in Lemma 7.14 and Corollary 7.15 is not necessarily
operator-minimal. Hence, Corollary 6.8 is not applicable: the adjectives ‘nick free’
and ‘alternating’ are not equivalent, here. There exist DNA expressions E for which
Lemma 7.14 is applicable, but Corollary 7.15 is not, because they are nick free but not
alternating.

Example 7.16 Consider the ↑-expression

E = 〈↑ 〈↓ α1 〈l α2〉〉 〈↑ α3 〈l α4〉〉〉

for N -words α1, . . . , α4. E is nick free, but not alternating, E has Properties (DMin.3)–
(DMin.5), and its first argument is a ↓-argument. The formal DNA molecule denoted

by E is X =
(
−
α1

)(
α2

c(α2)

)(
α3

−

)(
α4

c(α4)

)
, for which B↑(X) = B↓(X) = 1. It follows from

Summary 6.12(2) and the construction from Theorem 5.12 that the (only) minimal
↓-expression E ′ denoting X is

E ′ = 〈↓ α1 〈↑ 〈l α2〉α3 〈l α4〉〉〉 .

We now prove that the global algorithm is correct:

Theorem 7.17 Let E∗
1 be an arbitrary DNA expression, and let E∗

2 be the result of
applying the function MakeMinimal to E∗

1 .

1. MakeMinimal is well defined.

2. The string E∗
2 is a minimal DNA expression satisfying E∗

2 ≡ E∗
1 .

3. If E∗
1 is an l-expression, then E∗

2 is independent of choices made in the procedures
MakelExprMinimal, Denickify and RotateToMinimal.

Note that in Claim 3, the procedures Denickify and RotateToMinimal are not irrele-
vant for an l-expression E∗

1 . If E
∗
1 has ↑-subexpressions or ↓-subexpressions, then the

procedures may be used in the recursive call for such a DNA subexpression.
In the proof, we will see that the equivalence E∗

2 ≡ E∗
1 in Claim 2 relies heavily on

two types of observations. First, sometimes an operator occurring in a DNA expression

80 Ch. 7 An Algorithm for Minimality

E does not contribute to the semantics of E, at all. We can as well skip such an opera-
tor. This is the case in lines 7, 27 and 31 of MakeMinimal. Second, by Lemma 3.7, when
we substitute an expression-argument Ei of E by an equivalent expression-argument,
E remains a DNA expression with the same semantics. This is the case in lines 5, 14
and 23 of MakeMinimal, and the substitution in line 18 is not too different.

Proof: We first discuss some aspects of the well-definedness of MakeMinimal. For each
DNA expression E, there exists at least one equivalent, minimal DNA expression E ′.
In principle, we could use the constructions mentioned in Summary 6.12 to obtain E ′.
Hence, the substitution in line 9 of MakeMinimal is well defined.

For the substitution in line 18, let us consider an arbitrary DNA expression Ei,
with Xi = S(Ei). By definition, the formal DNA molecule X ′

i = ν(Xi) is nick free
and satisfies X ′

i ≡▽ Xi. By Theorem 3.3, X ′
i is expressible. In particular, there exists

at least one minimal DNA expression E ′
i denoting X ′

i, i.e., satisfying E ′
i ≡▽ Ei. This

holds for an arbitrary DNA expression Ei. Then it certainly holds for the ↓-expression
Ei we consider in line 18. Hence, the substitution in this line is also well defined.

Now the only instructions in MakeMinimal that are not obviously well defined, are
the substitutions in lines 23 and 35. These lines presuppose the existence of a minimal
↑-expression or a minimal ↓-expression, which is equivalent to a given DNA expression.
The proof that these minimal DNA expressions indeed exist, exploits some properties
of the DNA expression E which emerge in the proof of Claim 2. Therefore, we combine
the proofs of Claim 1 and Claim 2.

1, 2. We prove these claims by induction on the number p of operators occurring in
E∗

1 .
• If p = 1, then E∗

1 is 〈l α1〉, 〈↑ α1〉 or 〈↓ α1〉 for anN -word α1. These DNA expressions
are minimal already. Hence, by Theorem 7.12, MakeMinimal does not perform any
rewriting step on E∗

1 . The only thing the function does, is checking some conditions.
In particular, we do not have recursive calls of MakeMinimal and the substitutions in
lines 23 and 35 are not executed. As a result, E∗

2 = E∗
1 .

Indeed, in this case, MakeMinimal is well defined, and E∗
2 is a minimal DNA ex-

pression satisfying E∗
2 ≡ E∗

1 .
• Let p ≥ 1, and suppose that both claims are valid for all DNA expressions containing
at most p operators (induction hypothesis). Now let E∗

1 be a DNA expression that
contains p+ 1 operators.

If E∗
1 is an l-expression, then its argument must be a DNA expression E1, with

p operators. By the induction hypothesis, the recursive call in line 5 yields a
minimal DNA expression E ′

1 satisfying E ′
1 ≡ E1. By Lemma 3.7, the resulting

(overall) string E = 〈l E ′
1〉 is a DNA expression, which satisfies E = 〈l E ′

1〉 ≡
〈l E1〉 = E∗

1 .

We subsequently execute lines 6–10 of the function. In accordance with the
pseudo-code, we use E1 to denote the (new and minimal) expression-argument
E ′

1 of E.

If E1 is an l-expression, then by Theorem 5.3, E1 = 〈l α1〉 for an N -word α1, and
E = 〈l E1〉 = 〈l 〈l α1〉〉. Applying the same operator l to the same argument
for a second time, does not change the result. In this case, we execute line 7,
yielding E∗

2 = E1 = 〈l α1〉. Indeed, this is a minimal DNA expression, which
satisfies E∗

2 ≡ E = 〈l 〈l α1〉〉 ≡ E∗
1 .

7.1 The algorithm and its correctness 81

If, on the other hand, E1 is an ↑-expression or a ↓-expression, then we execute
line 9, yielding E∗

2 = E ′, where E ′ is a minimal DNA expression satisfying E ′ ≡
E ≡ E∗

1 .

If E∗
1 is not an l-expression, then without loss of generality, assume it is an ↑-

expression. In this case, lines 13–37 of MakeMinimal are applicable. In accordance
with the pseudo-code, we use E to denote the ‘working DNA expression’ in this
part of the function. We prove that step by step, E becomes minimal.

We first consider the effect of the first for-loop. We prove that the following
property is an invariant for this loop:

E is an ↑-expression satisfying E ≡ E∗
1 . (7.2)

Note that, becauseE∗
1 contains at least two operators, it has at least one expression-

argument. Hence, the first for-loop has at least one iteration.

� Initially, before the first iteration of the for-loop, E is equal to E∗
1 . By

assumption, the property is valid then.

� Suppose that Property (7.2) is valid before a certain iteration of the for-
loop. In this iteration, we consider an expression-argument Ei of E. Ei

contains at most p operators. By the induction hypothesis, the recursive call
MakeMinimal (Ei) in line 14 yields a minimal DNA expression E ′

i satisfying
E ′

i ≡ Ei. When we apply Lemma 3.7, we find that after substituting Ei by
E ′

i, the (overall) string E is still a DNA expression satisfying E ≡ E∗
1 . Of

course, it is still an ↑-expression.

After the loop, all expression-arguments of E are minimal.

We proceed with the second for-loop. We prove that the following property is an
invariant for this loop:

E is an ↑-expression satisfying E ≡ E∗
1 , and each expression-

argument of E is minimal.
(7.3)

By Lemma 6.15, this property implies that the expression-arguments of E have
Properties (DMin.1)–(DMin.6). Because each occurrrence of the operator l in the
↑-expression E must be in such an expression-argument, Property (DMin.1) is also
valid for E itself. E does not necessarily have Properties (DMin.2)–(DMin.6). For
example, E may be any of the DNA expressions from Table 6.1, except the first
two (because they do not have Property (DMin.1)) and the fifth one (the second
example for Property (DMin.3)).

� Clearly, before the first iteration of the for-loop, the property is valid.

� Suppose that Property (7.3) is valid before a certain iteration of the for-loop.
Let E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn, let X = S(E) and for i = 1, . . . , n, let Xi = S+(εi). By definition,

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn), (7.4)

where for i = 1, . . . , n − 1, yi = △ if R(Xi), L(Xi+1) ∈ A± and yi = λ
otherwise.

82 Ch. 7 An Algorithm for Minimality

In the iteration, we consider a ↓-argument Ei. If it is alternating, then E
is not changed, and Property (7.3) is obviously still valid at the end of the
iteration.

Now, assume that Ei is not alternating. By (the analogue for ↓-expressions
of) Corollary 6.8, Xi = S(Ei) contains upper nick letters.

In line 18, we substitute Ei by a minimal, nick free DNA expression E ′
i

satisfying E ′
i ≡▽ Ei. Let X ′

i = S(E ′
i). Then X ′

i is nick free and satisfies
X ′

i ≡▽ Xi. Hence, X ′
i = ν(Xi). This is equal to ν+(Xi), because, by

Lemma 3.2(1), Xi does not contain lower nick letters.

By Lemma 3.7, after the substitution of Ei by E ′
i, E is still a DNA ex-

pression. In particular, it is an ↑-expression. Moreover, because ν+(X ′
i) =

ν+(ν+(Xi)) = ν+(Xi), and by Lemma 2.10, L(X ′
i) = L(Xi) and R(X ′

i) =
R(Xi), the semantics of E is the same before and after the substitution (see
(7.4)). In particular, E ≡ E∗

1 after the substitution.

Clearly, because we substitute a minimal expression-argument of E by an-
other minimal expression-argument, each expression-argument of E is min-
imal after the substitution, just like before the substitution.

We conclude that indeed, Property (7.3) is an invariant for the second for-loop.

We zoom in a bit more on the effect of line 18. Here, we substitute a minimal,
non-alternating ↓-argument Ei of E by a minimal, nick free DNA expression
E ′

i. If E ′
i is again a ↓-expression, then by Corollary 6.8, Ei is alternating. This

implies that by every substitution, the number of non-alternating ↓-arguments of
E decreases by 1. After the second for-loop, each (remaining) ↓-argument of E
is alternating. When we add this property to Property (7.3), we obtain

E is an ↑-expression satisfying E ≡ E∗
1 , each expression-argument

of E is minimal and each ↓-argument of E is alternating.
(7.5)

Now, consider an arbitrary inner occurrence ↓1 of ↓ in E. This is either an inner
occurrence in an expression-argument of E, or the outermost operator of a ↓-
argument of E. If ↓1 is an inner occurrence in an expression-argument of E, then
by Property (DMin.4) of the (minimal) expression-argument, ↓1 is alternating. If,
on the other hand, ↓1 is the outermost operator of a ↓-argument Ei of E, then
by Property (7.5), it is also alternating.

Hence, as far as the inner occurrences of ↓ are concerned, E has Property (DMin.4).
However, there may be inner occurrences of ↑ in E that have consecutive expression-
arguments.

We prove that line 23 of MakeMinimal is well defined and that Property (7.5) is
an invariant for the third for-loop.

� Clearly, before the first iteration of the for-loop, the property is valid.

� Suppose that Property (7.5) is valid before a certain iteration of the for-loop.
In the iteration, we consider a ↓-argument Ei of E.

By Property (7.5), Ei is minimal and alternating. Then by Property (DMin.6),
either the first argument, or the last argument of Ei (or both) is an N -word
α or an l-expression 〈l α〉 for an N -word α. It is impossible that both
arguments are ↑-arguments.

7.1 The algorithm and its correctness 83

If neither the first argument, nor the last argument of Ei is an ↑-argument,
then E is not changed. Obviously, in that case, Property (7.5) is still valid
at the end of the iteration.

Now, assume that either the first argument, or the last argument of Ei is
an ↑-argument. Because Ei is minimal, it has Properties (DMin.1)–(DMin.6).
Then by Corollary 7.15, there indeed exists a minimal ↑-expression E ′

i sat-
isfying E ′

i ≡ Ei. In particular, line 23 of MakeMinimal is well defined.

By Lemma 3.7, when we substitute Ei in E by E ′
i, E remains an ↑-expression

with the same semantics. Moreover, after the substitution, each expression-
argument of E is still minimal, and each remaining ↓-argument is the same
as before and thus alternating.

Indeed, Property (7.5) is an invariant for the third for-loop. Clearly, by every
substitution in line 23, the number of ↓-arguments of E for which either the
first argument or the last argument is an ↑-expression decreases by 1. After
the loop, there are no such ↓-arguments left. Because the remaining (minimal)
↓-arguments of E have (a.o.) Properties (DMin.1) and (DMin.2), the following,
extended property is valid:

E is an ↑-expression satisfying E ≡ E∗
1 , each expression-argument

of E is minimal, each ↓-argument of E is alternating, and for each
↓-argument of E,

� the first argument is either an N -word α or an l-expression
〈l α〉 for an N -word α, and

� the last argument is either an N -word α or an l-expression
〈l α〉 for an N -word α.

(7.6)

Again, consider an arbitrary inner occurrence ↓1 of ↓ in E. If it is an inner
occurrence in an expression-argument of E, then by Property (DMin.5) of this
(minimal) expression-argument, the first argument of ↓1 is either an N -word α
or an l-expression 〈l α〉 for an N -word α, and the last argument of ↓1 is either an
N -word α or an l-expression 〈l α〉 for an N -word α. If, on the other hand, ↓1 is
the outermost operator of an expression-argument of E, then the first argument
and the last argument of ↓1 have the same property by Property (7.6).

Hence, as far as the inner occurrences of ↓ are concerned, E has Property (DMin.5).
However, there may be inner occurrences of ↑ in E, for which either the first
argument, or the last argument (or both) is a ↓-expression. In particular, by
Lemma 7.7, this is the case for the outermost operator of each ↑-expression E ′

i

that we have substituted for a ↓-argument Ei of E in the third for-loop.

We prove that Property (7.6) is an invariant for the fourth for-loop.

� Clearly, before the first iteration of the for-loop, the property is valid.

� Suppose that Property (7.6) is valid before a certain iteration of the for-loop.
In the iteration, we substitute an ↑-argument Ei of E by its arguments.

Because E was an ↑-expression before the substitution, by Lemma 3.6, it is
still a DNA expression (and in particular, an ↑-expression) with the same
semantics, after the substitution. The outermost operator ↑ of Ei that we

84 Ch. 7 An Algorithm for Minimality

have skipped, did not really contribute to the semantics of E. Further, be-
cause the expression-arguments of the minimal DNA expression Ei are also
minimal, each expression-argument of E is minimal after the substitution.

Finally, let E ′
j be a new ↓-argument of E after the substitution, i.e., a

↓-argument that used to be an argument of the ↑-expression Ei we have
substituted. Because Ei is minimal, by Property (DMin.4), its ↓-argument
E ′

j is alternating. Moreover, by Property (DMin.5) of Ei, the first argument
of E ′

j is either an N -word α, or an l-expression 〈l α〉 for an N -word α, and
the last argument of E ′

j is either an N -word α, or an l-expression 〈l α〉 for
an N -word α.

Consequently, each new ↓-argument of E after the substitution has the prop-
erties required by Property (7.6). All other ↓-arguments of E after the sub-
stitution also have these properties, simply because they had them before
the substitution and they have not been changed.

We also zoom in a bit more on the effect of line 27. Here, we substitute a minimal
↑-argument Ei of E by its arguments. By Property (DMin.2) of Ei, none of these
arguments is an ↑-expression. This implies that by every substitution, the number
of ↑-arguments of E decreases by 1. After the fourth for-loop, the ↑-expression
E does not have any ↑-arguments, anymore.

All occurrences of ↑ in E different from the outermost operator, and all occur-
rences of ↓ in E occur in the expression-arguments of E. These expression-
arguments are minimal. Hence, by Property (DMin.2), no occurrence of ↑ in E
has an ↑-argument, and no occurrence of ↓ in E has a ↓-argument. In other
words, E itself has Property (DMin.2).

Earlier in the proof, we deduced from Property (7.3) that E has Property (DMin.1).
As Property (7.3) is still valid, E still has Property (DMin.1).

Later, we deduced from Property (7.5) that each inner occurrence of ↓ in E
is alternating. Even later, we deduced from Property (7.6) that for each inner
occurrence of ↓ in E, the first argument is an N -word α or an l-expression 〈l α〉
for an N -word α, and the last argument is an N -word α or an l-expression 〈l α〉
for an N -word α. As both Property (7.5) and Property (7.6) are still valid, the
inner occurrences of ↓ in E still have these properties.

Now, consider an inner occurrence ↑1 of ↑ in E. Because E does not have any
↑-arguments anymore, this occurrence of ↑ must be an inner occurrence in an
expression-argument Ei (in fact, in a ↓-argument Ei) of E. This expression-
argument Ei is minimal. By Property (DMin.4), ↑1 is alternating. By Prop-
erty (DMin.5), the first argument of ↑1 is either an N -word α or an l-expression
〈l α〉 for an N -word α, and the last argument of ↑1 is either an N -word α or an
l-expression 〈l α〉 for an N -word α.

We conclude that E also has Property (DMin.4) and Property (DMin.5).

Note that by Property (DMin.1), Property (DMin.2) and Property (7.5), the ar-
guments of E are N -words α, l-expressions 〈l α〉 for N -words α, and minimal,
alternating ↓-expressions. In particular, all arguments of E are nick free.

We finally analyse the if-then-else construction in lines 29–37 of MakeMinimal.
We prove that for every possible case, the resulting string E∗

2 is a minimal DNA

7.1 The algorithm and its correctness 85

expression satisfying E∗
2 ≡ E∗

1 .

� Assume that E has only one argument, and that this argument is a DNA
expression E1. Then, because E1 is nick free, the outermost operator ↑ of E
has no effect. Hence, in this case, E∗

2 = E1 ≡ 〈↑ E1〉 = E ≡ E∗
1 . Moreover,

by Property (7.3), E∗
2 = E1 is minimal.

� Assume that E has only one argument, and that this argument is an N -
word α1. In this case, E∗

2 = E = 〈↑ α1〉, which is indeed a minimal DNA
expression. Moreover, E∗

2 = E ≡ E∗
1 .

� Assume that E has at least two arguments, that E is alternating and both
the first argument and the last argument of E are ↓-arguments.

We first analyse the consequences of E having at least two arguments. Be-
cause the arguments of (the ↑-expression) E fit together by upper strands,
none of these arguments can be a ↓-expression 〈↓ α〉 for an N -word α.
By Property (DMin.2) of E, none of the arguments can be an ↑-expression
〈↑ α〉 for an N -word α, either. Hence, by Property (DMin.3) of the minimal
expression-arguments of E, each occurrence of ↑ or ↓ in such an argument
has at least two arguments itself. But then each occurrence of ↑ or ↓ in
E has at least two arguments. Hence, in addition to Properties (DMin.1),
(DMin.2), (DMin.4) and (DMin.5), E has Property (DMin.3).

Now by Corollary 7.15, there exists a minimal ↓-expression E ′ satisfying
E ′ ≡ E. This implies that line 35 of MakeMinimal is well defined. Clearly,
in this case E∗

2 = E ′ ≡ E ≡ E∗
1 .

� Finally, assume that E has at least two arguments, and that either E is
not alternating, or the first argument of E is not a ↓-argument, or the last
argument of E is not a ↓-argument. Again, because E has at least two
arguments, it has Property (DMin.3).

If the first argument of E is not a ↓-argument, then it is an N -word α or
an l-expression 〈l α〉 for an N -word α. Analogously, if the last argument
of E is not a ↓-argument, then it is an N -word α or an l-expression 〈l α〉
for an N -word α.

In every case, E has Property (DMin.6). This implies that E∗
2 = E has all

properties from Lemma 6.15, and thus is minimal. Moreover, E∗
2 = E ≡ E∗

1 .

3. Assume that E∗
1 is an l-expression, and let X = S(E∗

1). By Corollary 3.4, there
exist N -words α1, . . . , αm for some m ≥ 1 and a nick letter y ∈ {▽, △}, such that

X =
(

α1

c(α1)

)
y
(

α2

c(α2)

)
y . . . y

(
αm

c(αm)

)
.

Without loss of generality, assume that y = △.

If m = 1, i.e., if X =
(

α1

c(α1)

)
, then by Theorem 5.3, there is exactly one minimal

DNA expression denoting X. If m ≥ 2, then Lemma 6.14(2) leads us to the same
conclusion.

In other words, in both cases, there is exactly one minimal DNA expression E∗
2

satisfying E∗
2 ≡ E∗

1 . Hence, given the l-expression E∗
1 , the resulting DNA expression

E∗
2 is fixed. It is independent of choices made in the procedures MakelExprMinimal,

Denickify and RotateToMinimal.

86 Ch. 7 An Algorithm for Minimality

MlM.1. MakelExprMinimal (E)
// rewrites an l-expression E = 〈l E1〉 whose argument E1

// is a minimal ↑-expression, into a minimal DNA expression E ′

// satisfying E ′ ≡ E
MlM.2. {
MlM.3. Ê1 = E1;

MlM.4. for all ↓-arguments E1,i of Ê1 (in some order)

MlM.5. do substitute E1,i in Ê1 by
〈
l αE1,i

〉
;

MlM.6. od

// arguments of Ê1 are N-words α1,i and l-expressions 〈l α1,i〉
MlM.7. for all N-word-arguments α1,i of Ê1 (in some order)
MlM.8. do if (α1,i is preceded by an argument 〈l α1,i−1〉)
MlM.9. then if (α1,i is succeeded by an argument 〈l α1,i+1〉)
MlM.10. then substitute 〈l α1,i−1〉α1,i 〈l α1,i+1〉 in Ê1

by 〈l α1,i−1α1,iα1,i+1〉;
MlM.11. else substitute 〈l α1,i−1〉α1,i in Ê1 by 〈l α1,i−1α1,i〉;
MlM.12. fi
MlM.13. else if (α1,i is succeeded by an argument 〈l α1,i+1〉)
MlM.14. then substitute α1,i 〈l α1,i+1〉 in Ê1 by 〈l α1,iα1,i+1〉;
MlM.15. else substitute α1,i in Ê1 by 〈l α1,i〉;
MlM.16. fi
MlM.17. fi
MlM.18. od

// Ê1 = 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉 for m ≥ 1
// and N-words α1,1, . . . , α1,m

MlM.19. if (m == 1)

MlM.20. then substitute Ê1 by 〈l α1,1〉; (DMin.3)
MlM.21. fi

MlM.22. E ′ = Ê1;
MlM.23. }

Figure 7.3: Pseudo-code of the procedure MakelExprMinimal.

This completes the proof of Theorem 7.17.

Now that we have established the correctness of the global description of the algo-
rithm, we can start working out the details. In Figure 7.3, we give the pseudo-code
of procedure MakelExprMinimal (for line 9 of MakeMinimal), for the case that E1 is
an ↑-expression. The code for a ↓-expression E1 is similar. We address one difference
soon.

As we will see in the proof of Theorem 7.20(1), initially each argument of Ê1 = E1 is
either an N -word α1,i or an l-expression 〈l α1,i〉 for an N -word α1,i, or a ↓-expression.

Ê1 does not have ↑-arguments.

In the first for-loop of MakelExprMinimal, we substitute the ↓-arguments E1,i of

Ê1 by l-arguments
〈
l αE1,i

〉
. Recall that the N -word αE1,i

is the concatenation of all
N -words (possibly complemented) occurring in E1,i, in the order of their occurrence.
For the moment, it is not important how exactly we determine αE1,i

. In the proof
of Lemma 7.34, where we analyse the time complexity of MakelExprMinimal, we will
describe a straightforward implementation for this.

In the second for-loop of the procedure, we try to combine N -word-arguments α1,i

7.1 The algorithm and its correctness 87

with preceding and/or succeeding l-arguments. Indeed, at that point in the procedure,

these are the only types of arguments left. Clearly, if α1,i is the first argument of Ê1,
then it is not preceded by an l-argument 〈l α1,i−1〉 for an N -word α1,i−1. In fact, if

we assume that the N -word-arguments are maximal N -word occurrences in Ê1,
1 then

this is the only case in which α1,i is not preceded by an l-argument 〈l α1,i−1〉. Under
the same assumption, α1,i is not succeeded by an l-argument 〈l α1,i+1〉, if and only if

α1,i is the last argument of Ê1. Note that in all four cases considered in this loop, the
required substitution can simply be achieved by a few insertions and/or removals of
brackets and operators in the DNA expression.

After the second for-loop, each argument of Ê1 is an l-argument 〈l α1,i〉 for an

N -word α1,i. As we will see in the proof of Theorem 7.20(1), at that point, Ê1 is
equivalent to the original l-expression E. However, it is not necessarily minimal.

If Ê1 = 〈↑ 〈l α1,1〉〉 for an N -word α1,1, then it violates Property (DMin.3). It is not
hard to prove that this will be the case, if and only if the original, minimal ↑-expression
E1 is alternating, i.e., nick free. According to line MlM.20, in this case, we substitute

Ê1 by its only argument. If on the other hand Ê1 = 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉 for some
m ≥ 2, then it is minimal already (see Lemma 6.14(2)) and we can skip line MlM.20.

If E1 is not an ↑-expression, but a ↓-expression, then lines MlM.8–MlM.17 are
a bit different. In all four cases, the new l-argument does not have α1,i as (part
of) its own argument but c(α1,i). For example, if the N -word-argument α1,i is pre-
ceded by an l-argument 〈l α1,i−1〉 and succeeded by an l-argument 〈l α1,i+1〉, then
〈l α1,i−1〉α1,i 〈l α1,i+1〉 must be substituted by 〈l α1,i−1c(α1,i)α1,i+1〉.

We illustrate procedure MakelExprMinimal by two examples:

Example 7.18 (cf. Example 7.2) Let

E = 〈l 〈↑ α1 〈l α2〉α3 〈↓ 〈l α4〉α5〉〉〉 .

E is an l-expression, for which

S(E) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
.

The argument E1 of E is a minimal, alternating ↑-expression. E1 itself has one
↓-argument, E1,i = 〈↓ 〈l α4〉α5〉. In line MlM.5, we substitute it by

〈
l αE1,i

〉
=

〈l α4c(α5)〉, yielding

Ê1 = 〈↑ α1 〈l α2〉α3 〈l α4c(α5)〉〉 .

Subsequently, in lines MlM.7–MlM.18, we substitute the two N -word-arguments α1

and α3 of Ê1 (in some order). For both possible orders, the result is

Ê1 = 〈↑ 〈l α1α2α3α4c(α5)〉〉 .

Ê1 has m = 1 argument left, which is an l-argument. Hence, it violates Property
(DMin.3). According to line MlM.20, E ′ is set to this l-argument: E ′ = 〈l α1α2α3α4

c(α5)〉. By Theorem 5.3, E ′ is the only minimal DNA expression with S(E ′) = S(E),
i.e., with E ′ ≡ E.

1This is a very natural assumption, but is not necessary for the correctness of procedure
MakelExprMinimal.

88 Ch. 7 An Algorithm for Minimality

Example 7.19 (cf. Example 7.3) Let

E = 〈l 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6〉α7〉〉 .

E is an l-expression, for which

S(E) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
▽
(
α6c(α7)
c(α6)α7

)
.

The argument E1 of E is a minimal, non-alternating ↓-expression. E1 does not have
↑-arguments, but it does have an N -word-argument α7. In line MlM.11, we substitute
〈l α6〉α7 by 〈l α6c(α7)〉, yielding

Ê1 = 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉 .

This time, Ê1 has m = 2 arguments left. Hence, E ′ = Ê1. By (the analogue for
upper nick letters of) Lemma 6.14(2), E ′ is the only minimal DNA expression with
S(E ′) = S(E), i.e., with E ′ ≡ E.

We prove that procedure MakelExprMinimal is correct, not only for the two examples
we considered, but for any l-expression E with a minimal ↑-argument (or ↓-argument)
E1.

Theorem 7.20 Let E = 〈l E1〉 be an l-expression whose argument E1 is a minimal
↑-expression, and let E ′ be the result of applying procedure MakelExprMinimal to E.

1. The string E ′ is a minimal DNA expression satisfying E ′ ≡ E.

2. E ′ is independent of the order in which ↓-arguments are considered in line MlM.4
and independent of the order in which N -word-arguments are considered in line
MlM.7.

Proof:

1. E1 is a minimal ↑-expression. By Corollary 6.2, each argument of E1 is either
an N -word α1,i, or an l-expression 〈l α1,i〉 for an N -word α1,i, or a ↓-expression
E1,i.

We prove that the following property of our ‘working DNA expression’ Ê1 is an
invariant for the first for-loop:

Ê1 is a minimal ↑-expression satisfying
〈
l Ê1

〉
≡ E. (7.7)

• Initially, before the first iteration of the for-loop, the property is valid, be-

cause then Ê1 = E1 and thus
〈
l Ê1

〉
= 〈l E1〉 = E.

• Suppose that Property (7.7) is valid before a certain iteration of the for-

loop. Let Ê1 = 〈↑1 ε1,1, . . . , ε1,n〉 for some n ≥ 1 and N -words and DNA
expressions ε1,1 . . . ε1,n, before the iteration.

In the iteration, we substitute a ↓-argument ε1,i0 = E1,i0 of Ê1 by the l-
expression

〈
l αE1,i0

〉
. By Lemma 2.15(2), L(S(

〈
l αE1,i0

〉
)), R(S(

〈
l αE1,i0

〉
))

∈ A±. In particular, the upper strand of the new argument covers the lower
strand both to the left and to the right. Because the arguments of ↑1 fitted
together by upper strands before the substitution, they certainly do so after

7.1 The algorithm and its correctness 89

the substitution. Hence, Ê1 is still a DNA expression after the substitution.
In particular, it is an ↑-expression.

By Theorem 6.16, Ê1 has Properties (DMin.1)–(DMin.6) before the substi-

tution. It is easily verified that Ê1 still has these properties, and thus is
minimal, after the substitution.

We now consider the semantics of
〈
l Ê1

〉
. In order for the invariant to be

valid, this semantics must be the same before and after the substitution.

For i = 1, . . . , n, let X1,i = S+(ε1,i). By the definition of the semantics of
an l-expression and Lemma 6.6, before the substitution,

S(
〈
l Ê1

〉
) = κ(X1,1 y1 X1,2 y2 . . . yi0−2 X1,i0−1 yi0−1·

S(E1,i0) yi0 X1,i0+1 yi0+1 . . . yn−1 X1,n)
= κ(X1,1) y1 κ(X1,2) y2 . . . yi0−2 κ(X1,i0−1) yi0−1·

κ(S(E1,i0)) yi0 κ(X1,i0+1) yi0+1 . . . yn−1 κ(X1,n),

where for i = 1, . . . , n − 1, yi = △ if both ε1,i and ε1,i+1 are expression-
arguments, and yi = λ otherwise.

After the substitution of E1,i0 by
〈
l αE1,i0

〉
,

S(
〈
l Ê1

〉
) = κ(X1,1 y1 X1,2 y2 . . . yi0−2 X1,i0−1 y′i0−1·

S(
〈
l αE1,i0

〉
) y′i0 X1,i0+1 yi0+1 . . . yn−1 X1,n)

= κ(X1,1) y1 κ(X1,2) y2 . . . yi0−2 κ(X1,i0−1) y
′
i0−1·(αE1,i0

c(αE1,i0
)

)
y′i0 κ(X1,i0+1) yi0+1 . . . yn−1 κ(X1,n),

where the yi’s are as before, and

y′i0−1 =





△ if both ε1,i0−1 and
〈
l αE1,i0

〉

are expression-arguments
λ otherwise,

y′i0 =





△ if both
〈
l αE1,i0

〉
and ε1,i0+1

are expression-arguments
λ otherwise.

We must prove that

yi0−1 κ(S(E1,i0)) yi0 = y′i0−1

(αE1,i0

c(αE1,i0
)

)
y′i0 . (7.8)

Note that if i0 = 1, then yi0−1 and y′i0−1 do not exist, and we have less to
check. Analogously, if i0 = n, then yi0 and y′i0 do not exist, and we have less
to check.

Now assume that i0 ≥ 2. Because clearly, the ↓-argument E1,i0 is an
expression-argument, yi0−1 = △, if and only if ε1,i0−1 is an expression-
argument. Similarly, the l-argument

〈
l αE1,i0

〉
is an expression-argument

and y′i0−1 = △, if and only if ε1,i0−1 is an expression-argument. This implies
that yi0−1 = y′i0−1.

Analogously, we can prove that if i0 ≤ n− 1, then yi0 = y′i0 .

Finally, by definition, κ(S(E1,i0)) is equal to S(〈l E1,i0〉). We can apply
Lemma 3.13 to the l-expression 〈l E1,i0〉:

〈l E1,i0〉 ▽≡
〈
l α〈lE1,i0〉

〉
.

90 Ch. 7 An Algorithm for Minimality

Because, by Lemma 6.3, E1,i0 is nick free, 〈l E1,i0〉 is also nick free and we
have (strict) equivalence here. Clearly, the N -words occurring in 〈l E1,i0〉
and the ones occurring in E1,i0 are the same, and so are their parent opera-
tors. This implies that α〈lE1,i0〉

= αE1,i0
. When we combine all ingredients,

we find

κ(S(E1,i0)) = S(〈l E1,i0〉) = S(
〈
l α〈lE1,i0〉

〉
)

= S(
〈
l αE1,i0

〉
) =

(αE1,i0

c(αE1,i0
)

)

Indeed, Equality (7.8) holds.

We conclude that Property (7.7) is indeed an invariant for the first for-loop.

Clearly, in every iteration of this loop, the number of ↓-arguments of Ê1 decreases
by 1.

After the last iteration of the loop, there are no ↓-arguments left. By

then, Ê1 is a minimal ↑-expression satisfying
〈
l Ê1

〉
≡ E, and each

argument of Ê1 is either an N -word α1,i or an l-expression 〈l α1,i〉 for
an N -word α1,i. Hence, the comment after line MlM.6 in Figure 7.3 is correct.

We prove that a relaxed version of this property, by which Ê1 is not necessarily
minimal, is an invariant for the second for-loop of the procedure:

Ê1 is an ↑-expression satisfying
〈
l Ê1

〉
≡ E, and each argument

of Ê1 is either an N -word α1,i or an l-expression 〈l α1,i〉 for an
N -word α1,i.

(7.9)

It is easily verified that an ↑-expression E, for which each argument is either anN -
word α1,i, or an l-expression 〈l α1,i〉 for an N -word α1,i has Properties (DMin.1),
(DMin.2), (DMin.4), (DMin.5) and (DMin.6). Hence, E is not minimal, if and only
if it violates Property (DMin.3). This is the case, if and only if E = 〈↑ 〈l α1,1〉〉
for an N -word α1,1. This case is dealt with after the second for-loop, in lines
MlM.19–MlM.21.

A minimal DNA expression is in particular operator-minimal and a DNA expres-
sion of the form 〈↑ 〈l α1,1〉〉 is also operator-minimal. Hence, whether or not our

‘working DNA expression’ Ê1 is minimal, it is certainly operator-minimal.

As long as Ê1 has N -word-arguments, it cannot be of the form 〈↑ 〈l α1,1〉〉 for an

N -word α1,1. This implies that before any iteration of the second for-loop, Ê1 is
minimal, after all.

The global structure of the proof that Property (7.9) is an invariant for the second
for-loop, is the same as that of the proof of Property (7.7) for the first for-loop.
Because the details are different, especially the ones involved with the semantics

of
〈
l Ê1

〉
, we give the full proof.

• Clearly, Property (7.9) is valid before the first iteration of the second for-
loop.

7.1 The algorithm and its correctness 91

• Suppose that Property (7.9) is valid before a certain iteration of the for-loop.

Let Ê1 = 〈↑1 ε1,1 . . . ε1,n〉 for some n ≥ 1 and N -words and l-expressions
ε1,1, . . . , ε1,n, before the iteration. Each l-expression is of the form 〈l α1,i〉
for an N -word α1,i.

In the iteration, we substitute anN -word-argument ε1,i0 = α1,i0 and possibly

a preceding l-argument and a succeeding l-argument of Ê1 by a new l-
argument 〈l α〉. Again, because L(S(〈l α〉)), R(S(〈l α〉)) ∈ A± and the

arguments of Ê1 fitted together before the substitution, they certainly fit
together after the substitution. Hence, Ê1 is indeed an ↑-expression after the
substitution. Moreover, because the new argument is 〈l α〉, the arguments

of Ê1 are still of the types occurring in Property (7.9). As we discussed

above, Ê1 is still operator-minimal.

The only thing left to be verified is that the semantics of
〈
l Ê1

〉
does

not change by the substitution. We assume that the N -word-argument
ε1,i0 = α1,i0 of Ê1 is both preceded by an l-argument ε1,i0−1 = 〈l α1,i0−1〉
and succeeded by an l-argument ε1,i0+1 = 〈l α1,i0+1〉. If α1,i0 is a maximal

N -word occurrence in Ê1, then this is the case, if and only if 2 ≤ i0 ≤ n−1.
The other three cases in lines MlM.8–MlM.17 can be checked in a similar
way.

For i = 1, . . . , n, let X1,i = S+(ε1,i). Before the substitution,

S(
〈
l Ê1

〉
) = κ(X1,1 y1 X1,2 y2 . . . yi0−2 S(〈l α1,i0−1〉) yi0−1·

S+(α1,i0) yi0 S(〈l α1,i0+1〉) yi0+1 . . . yn−1 X1,n)

= κ(X1,1) y1 κ(X1,2) y2 . . . yi0−2

(α1,i0−1

c(α1,i0−1)

)
yi0−1·(α1,i0

c(α1,i0)

)
yi0

(α1,i0+1

c(α1,i0+1)

)
yi0+1 . . . yn−1 κ(X1,n),

where for i = 1, . . . , n − 1, yi = △ if both ε1,i and ε1,i+1 are expression-
arguments, and yi = λ otherwise.

After the substitution of 〈l α1,i0−1〉α1,i0 〈l α1,i0+1〉 by 〈l α1,i0−1α1,i0α1,i0+1〉,

S(
〈
l Ê1

〉
) = κ(X1,1 y1 X1,2 y2 . . . y′i0−2·

S(〈l α1,i0−1α1,i0α1,i0+1〉) y′i0+1 . . . yn−1 X1,n)
= κ(X1,1) y1 κ(X1,2) y2 . . . y′i0−2·(α1,i0−1α1,i0α1,i0+1

c(α1,i0−1α1,i0α1,i0+1)

)
y′i0+1 . . . yn−1 κ(X1,n),

where the yi’s are as before, and

y′i0−2 =





△ if both ε1,i0−2 and 〈l α1,i0−1α1,i0α1,i0+1〉
are expression-arguments

λ otherwise,

y′i0+1 =





△ if both 〈l α1,i0−1α1,i0α1,i0+1〉 and ε1,i0+2

are expression-arguments
λ otherwise.

We must prove that

yi0−2

(α1,i0−1

c(α1,i0−1)

)
yi0−1

(α1,i0

c(α1,i0)

)
yi0

(α1,i0+1

c(α1,i0+1)

)
yi0+1

= y′i0−2

(α1,i0−1α1,i0α1,i0+1

c(α1,i0−1α1,i0α1,i0+1)

)
y′i0+1.

(7.10)

92 Ch. 7 An Algorithm for Minimality

Clearly, if i0 − 1 = 1, then neither yi0−2, nor y
′
i0−2 exists, and we have less

to check. Analogously, if i0+1 = n, then neither yi0+1, nor y
′
i0+1 exists, and

we have less to check. We now assume that 2 ≤ i0 − 1 and i0 + 1 ≤ n− 1.

Because ε1,i0−1 = 〈l α1,i0−1〉 is an expression-argument, ε1,i0 = α1,i0 is an N -
word-argument, and ε1,i0+1 = 〈l α1,i0+1〉 is again an expression-argument,
we have

yi0−2 = △, if and only if ε1,i0−2 is an expression-argument
yi0−1 = yi0 = λ, and
yi0+1 = △, if and only if ε1,i0+2 is an expression-argument.

On the other hand, because obviously 〈l α1,i0−1α1,i0α1,i0+1〉 is an expression-
argument, we have

y′i0−2 = △, if and only if ε1,i0−2 is an expression-argument
y′i0+1 = △, if and only if ε1,i0+2 is an expression-argument.

This implies that

yi0−2 = y′i0−2,(α1,i0−1

c(α1,i0−1)

)
yi0−1

(α1,i0

c(α1,i0)

)
yi0

(α1,i0+1

c(α1,i0+1)

)
=
(α1,i0−1α1,i0α1,i0+1

c(α1,i0−1α1,i0α1,i0+1)

)
, and

yi0+1 = y′i0+1.

Indeed, Equality (7.10) holds, and S(
〈
l Ê1

〉
) is the same before and after

the substitution.

We conclude that Property (7.9) is indeed an invariant for the second for-loop
of procedure MakelExprMinimal. Clearly, in every iteration of this loop, the

number of N -word-arguments of Ê1 decreases by 1.

After the last iteration of the loop, there are no N -word-arguments
left. By then, each argument of Ê1 is an l-expression 〈l α1,i〉 for an
N -word α1,i. Hence, there exist m ≥ 1 and N -words α1,1, . . . , α1,m such

that Ê1 = 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉. Indeed, the comment after line MlM.18 in
Figure 7.3 is correct.

Moreover, by the invariant, Ê1 satisfies
〈
l Ê1

〉
≡ E. Because S(Ê1) =

S(〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉) does not contain single-stranded components, the out-

ermost operator l in
〈
l Ê1

〉
has no effect. This implies that Ê1 ≡

〈
l Ê1

〉
≡ E.

Now, if m = 1, then Ê1 = 〈↑ 〈l α1,1〉〉. In this case, the outermost operator ↑ has

no effect, either. Hence, E ′ = 〈l α1,1〉 ≡ Ê1 ≡ E. Indeed, E ′ is a minimal DNA
expression.

After the formulation of Property (7.9), we deduced that a DNA expression Ê1

with that property, which is not of the form 〈↑ 〈l α1,1〉〉 for an N -word α1,1 is

minimal. If m ≥ 2, then obviously Ê1 is not of this form. Hence, in this case,
E ′ = Ê1 is minimal. Moreover, E ′ = Ê1 ≡ E.

2. In the proof of the previous claim, we did not make any assumption on the order
in which ↓-arguments andN -word-arguments of Ê1 are considered in lines MlM.4
and MlM.7, respectively. For all possible orders, E ′ is a minimal DNA expression
satisfying E ′ ≡ E = 〈l E1〉.

7.1 The algorithm and its correctness 93

As we have seen in the proof of Theorem 7.17(3), there exists exactly one such
DNA expression E ′ (regardless of the minimality of E1). Then certainly, E ′ must
be independent of the orders in which ↓-arguments and N -word-arguments are
considered.

This completes the proof of Theorem 7.20.

The next instruction from MakeMinimal we refine is the one in line 18. In Figure 7.4 we
describe procedure Denickify. Line Dni.24 of this description will be implemented by
the same procedure RotateToMinimal that we use for lines 23 and 35 of MakeMinimal.
Again, all substitutions can be achieved by a few insertions and removals of brackets
and operators in the DNA expression.

In Lemma 6.6, we have related the presence of consecutive expression-arguments in
an operator-minimal ↑-expression E to the presence of nicks in its semantics S(E). In
order to understand the effect of the while-loop in procedure Denickify, it is useful to
establish such a relation for a more general set of ↑-expressions.

Lemma 7.21 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences and DNA expressions, be an ↑-expression denoting a certain formal DNA
molecule X. For i = 1, . . . , n, let Xi = S+(εi).

If E has Properties (DMin.2), (DMin.4) and (DMin.5), then for i = 1, . . . , n, Xi is
nick free, and

X = X1y1X2y2 . . . yn−1Xn,

where for i = 1, . . . , n− 1, yi = △ if R(Xi), L(Xi+1) ∈ A±, and yi = λ otherwise.
Here, for i = 1, . . . , n− 1, R(Xi), L(Xi+1) ∈ A±, if and only if both εi and εi+1 are

expression-arguments. In particular, in this case, E is nick free, if and only if E is
alternating.

Of course, there is an analogous result for ↓-expressions. The proof of this result is
similar to that of Lemma 6.6. At several places in the proof, however, we have to
use different arguments to conclude that a certain property is valid. For the sake of
clearness, we give the full proof.

Proof: Assume that E has Properties (DMin.2), (DMin.4) and (DMin.5). By the defini-
tion of the semantics of an ↑-expression (equation (2.9)),

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn),

where for i = 1, . . . , n − 1, yi = △ if R(Xi), L(Xi+1) ∈ A±, and yi = λ otherwise. By
Property (DMin.4), each occurrence of an operator ↑ or ↓ in an argument εi of E is
alternating. Hence, by Lemma 3.5, for i = 1, . . . , n, Xi = S+(εi) is nick free, and in
particular, ν+(Xi) = Xi. We can thus reduce the semantics to

X = X1y1X2y2 . . . yn−1Xn,

with yi’s as before. This is the first part of the claim.
Next, consider any i with 1 ≤ i ≤ n − 1. By Property (DMin.2), εi is either an

N -word α, or an l-expression, or a ↓-expression.

If εi is an N -word α, then Xi = S+(εi) =
(
α
−

)
and R(Xi) /∈ A±.

If εi an l-expression, then by Lemma 2.15(2), R(Xi) = R(S(εi)) ∈ A±.

94 Ch. 7 An Algorithm for Minimality

Dni.1. Denickify (Ei)
// rewrites a minimal ↓-expression Ei which is not alternating,
// into a minimal, nick free DNA expression E ′

i

// satisfying E ′
i ≡▽ Ei;

// uses local rearrangements of the DNA expression for this
Dni.2. {
Dni.3. Êi = Ei;

Dni.4. while (Êi is not alternating)

Dni.5. do select two consecutive expression-arguments ε̂j−1, ε̂j of Êi;
Dni.6. if (ε̂j−1 is an ↑-expression

〈
↑ . . .

〈
l αj−1,mj−1

〉〉
)

Dni.7. then if (ε̂j is an ↑-expression 〈↑ 〈l αj,1〉 . . .〉)
Dni.8. then substitute ε̂j−1ε̂j in Êi

by
〈
↑ . . .

〈
l αj−1,mj−1

αj,1

〉
. . .

〉
;

Dni.9. else // ε̂j is an l-expression 〈l αj,1〉
Dni.10. substitute ε̂j−1ε̂j in Êi

by
〈
↑ . . .

〈
l αj−1,mj−1

αj,1

〉〉
;

Dni.11. fi
Dni.12. else // ε̂j−1 is an l-expression 〈l αj−1,1〉
Dni.13. if (ε̂j is an ↑-expression 〈↑ 〈l αj,1〉 . . .〉)
Dni.14. then substitute ε̂j−1ε̂j in Êi

by 〈↑ 〈l αj−1,1αj,1〉 . . .〉;
Dni.15. else // ε̂j is an l-expression 〈l αj,1〉
Dni.16. substitute ε̂j−1ε̂j in Êi

by 〈l αj−1,1αj,1〉;
Dni.17. fi
Dni.18. fi
Dni.19. od

// Êi is alternating

Dni.20. if (Êi has only one argument Ei,1 left)

Dni.21. then substitute Êi by Ei,1; (DMin.3)

Dni.22. else // Êi has at least two arguments

Dni.23. if (both the first argument and the last argument of Êi

are ↑-arguments)
Dni.24. then substitute Êi by a minimal ↑-expression Ê ′

i

satisfying Ê ′
i ≡ Êi;

(procedure RotateToMinimal) (DMin.6)
Dni.25. fi
Dni.26. fi

Dni.27. E ′
i = Êi;

Dni.28. }

Figure 7.4: Pseudo-code of the procedure Denickify.

Finally, if εi is a ↓-expression, then by Property (DMin.5), the last argument of εi is
either an N -word α, or an l-expression 〈l α〉 for an N -word α. If it were an N -word
α, then by Lemma 2.15(4), R(Xi) = R(S(εi)) = R(S−(α)) ∈ A−. In that case, the
arguments εi and εi+1 would not fit together by upper strands, as is required by the
outermost operator ↑ of E. Hence, the last argument of εi must be an l-expression
〈l α〉 for an N -word α. By Lemma 2.15(4), R(Xi) = R(S(εi)) = R(S(〈l α〉)) ∈ A±.

We conclude that R(Xi) ∈ A±, if and only if εi is an expression-argument. Anal-
ogously, we find that L(Xi+1) ∈ A±, if and only if εi+1 is an expression-argument.

7.1 The algorithm and its correctness 95

Consequently, R(Xi), L(Xi+1) ∈ A±, if and only if both εi and εi+1 are expression-
arguments.

In the while-loop of procedure Denickify, the ‘working DNA expression’ Êi is a ↓-
expression. Moreover, as we will see in the proof of Theorem 7.24, it then has (among
others) Properties (DMin.2), (DMin.4) and (DMin.5). Hence, the outermost operator ↓
introduces a nick letter between every pair of consecutive expression-arguments, and
these are the only nick letters in S(Êi).

In every iteration of the while-loop, two consecutive expression-arguments of Êi are
substituted by a single expression-argument. In other words, in every iteration, one
nick letter is removed from S(Êi). Step by step, Êi becomes nick free.2 As we will see
in (the proof of) Theorem 7.24(3), the result of the while-loop is independent of the
order in which we select pairs of consecutive expression-arguments.

After the while-loop, Êi is nick free, but it is not necessarily minimal anymore. The
if-then-else construction at the end of the procedure ensures that the DNA expression
E ′

i resulting from the procedure is not only nick free, but also minimal. Lines Dni.21
and Dni.24 tackle violations of Properties (DMin.3) and (DMin.6), respectively.

We illustrate procedure Denickify by two examples. In the first example, Êi is not
minimal after the while-loop, and the DNA expression is modified by the if-then-else
construction. In the second example, Êi is still minimal after the while-loop. Hence,
it does not have to be modified any further.

Example 7.22 (cf. Example 7.3) Let

Ei = 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉 ,

for which

S(Ei) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
▽
(
α6c(α7)
c(α6)α7

)
.

Ei is minimal and not nick free. Its two arguments are expression-arguments. For this
DNA expression, the while-loop has only one iteration, in which the two expression-
arguments are merged according to line Dni.16. The result is:

Êi = 〈↓ 〈l α1α2α3α4c(α5)α6c(α7)〉〉 .

Indeed Êi is nick free, but it is not minimal. It violates Property (DMin.3), as the
outermost operator ↓ has only one argument Ei,1. In this case, line Dni.21 of the
procedure is applicable, and the result of the procedure is

E ′
i = Ei,1 = 〈l α1α2α3α4c(α5)α6c(α7)〉 .

Clearly, E ′
i satisfies E

′
i ≡▽ Ei. Moreover, by Theorem 5.3, E ′

i is minimal.

Example 7.23 (cf. Example 7.8) Let

Ei =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉
,

2We could have reached this conclusion also using Lemma 6.6 instead of Lemma 7.21. For that,
however, we would have to prove that Êi is operator-minimal in the while-loop. It is possible to do
that, but it is more elegant to use Lemma 7.21.

96 Ch. 7 An Algorithm for Minimality

for which

S(Ei) =
(
α1α2α3α4c(α5)α6c(α7)
c(α1α2α3α4)α5c(α6)α7

)
△

(
α8α9

c(α8α9)

)(
α10

−

)(
α11

c(α11)

)(
−
α12

)
·

(
α13

c(α13)

)
△

(
α14

c(α14)

)
△

(
α15

c(α15)

)(
−
α16

)(
α17

c(α17)

)(
α18

−

)(
α19

c(α19)

)
△

(
α20

c(α20)

)
.

Ei is minimal and not nick free. It has seven expression-arguments, clustered in
three groups of consecutive expression-arguments. There are four pairs of consecutive
expression-arguments. Hence, the while-loop has four iterations. If in each iteration,
we consider the leftmost (remaining) pair of consecutive expression-arguments ε̂j−1 and
ε̂j, then we successively get

Êi =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉

(by applying line Dni.16),

Êi =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14〉〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉

(by applying line Dni.10),

Êi =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉
〉

(by applying line Dni.8), and

Êi =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

(by applying line Dni.16 again). The final version of Êi would have been achieved also
if we had considered consecutive expression-arguments in a different order.

Êi is nick free now. It has more than one argument left and neither its first argu-
ment, nor its last argument is a ↓-argument. Hence, the if-then-else construction at
the end of Denickify leaves Êi unchanged, and E ′

i = Êi. We have

S(E ′
i) =

(
α1α2α3α4c(α5)α6c(α7)α8α9

c(α1α2α3α4)α5c(α6)α7c(α8α9)

)(
α10

−

)(
α11

c(α11)

)(
−
α12

)
·

(
α13α14α15

c(α13α14α15)

)(
−
α16

)(
α17

c(α17)

)(
α18

−

)(
α19α20

c(α19α20)

)
.

Indeed, E ′
i ≡▽ Ei. Moreover, it is easily verified that E ′

i has all six properties from
Lemma 6.15 and thus is minimal.

We have seen two examples for which procedure Denickify works well. We now prove
that the procedure is correct in general.

Theorem 7.24 Let Ei be a minimal ↓-expression which is not alternating, and let E ′
i

be the result of applying procedure Denickify to Ei.

1. Procedure Denickify is well defined.

2. The string E ′
i is a minimal, nick free DNA expression satisfying E ′

i ≡▽ Ei.

7.1 The algorithm and its correctness 97

3. E ′
i is independent of the order in which pairs of consecutive expression-arguments

ε̂j−1 and ε̂j are selected in line Dni.5.

Proof: The only instruction in procedure Denickify that is not obviously well defined,
is the one in line Dni.24. This instruction presupposes the existence of a minimal ↑-
expression Ê ′

i satisfying Ê ′
i ≡ Êi.

The proof that such an ↑-expression indeed exists uses some properties of Êi which
emerge in the proof of Claim 2. Therefore, we combine the proofs of Claims 1 and 2.

1, 2. We first analyse the while-loop of procedure Denickify. We prove that the
following property is an invariant of the loop:

Êi is a ↓-expression satisfying Êi ≡▽ Ei, Êi has at least one
expression-argument, has Properties (DMin.1), (DMin.2), (DMin.4)

and (DMin.5), and each inner occurrence of ↑ or ↓ in Êi has at least
two arguments.

(7.11)

Before we proceed with the proof, we mention two implications of this property.
Suppose that the property is valid. Then let ε̂j be an arbitrary expression-

argument of Êi. Clearly, ε̂j also has Properties (DMin.1), (DMin.2), (DMin.4) and

(DMin.5). Moreover, each occurrence of ↑ or ↓ in ε̂j is an inner occurrence in Êi

and thus has at least two arguments. Hence, ε̂j has Property (DMin.3). Finally,

by Property (DMin.5) of Êi, ε̂j has Property (DMin.6). This implies that ε̂j has
all six properties from Lemma 6.15, and thus is minimal. By Property (DMin.4)
and Lemma 3.5, ε̂j is nick free.

Suppose that in addition, Êi is not alternating, i.e., that it has at least two con-
secutive expression-arguments. Then by definition, Êi has Property (DMin.6).

Moreover, the total number of arguments of (the outermost operator ↓ of) Êi is

certainly at least two. This implies that Êi also has Property (DMin.3). Conse-

quently, in this case, Êi itself is also minimal.

• Initially, before the first iteration of the while-loop, Êi is equal to the min-
imal ↓-expression Ei. Then obviously, Êi ≡▽ Ei, and by Lemma 6.15, Êi

has Properties (DMin.1)–(DMin.6). In particular, by Lemma 6.17(2), each

inner occurrence of ↑ or ↓ in Êi has at least two arguments. Finally, because
Êi = Ei is not alternating, it has at least two (consecutive) expression-
arguments. Hence, Property (7.11) is valid.

• Suppose that before a certain operation of the while-loop, Property (7.11)

is valid. Let Êi = 〈↓ ε̂1 . . . ε̂n〉 for some n ≥ 1 and N -words and DNA
expressions ε̂1, . . . , ε̂n.

Êi is not alternating at the start of the iteration. Hence, as we have just
observed, Êi is minimal. In the iteration, we substitute two consecutive
expression-arguments ε̂j−1 and ε̂j of Êi by a single expression-argument ε̂′j.

By Corollary 6.2, each expression-argument of Êi is either an l-expression
〈l α〉 for an N -word α, or an ↑-expression. Hence, there are four possible
combinations for the pair of expression-arguments ε̂j−1 and ε̂j. We now
assume that both ε̂j−1 and ε̂j are ↑-expressions. The proof for the other
three possibilities is similar (and in fact easier).

98 Ch. 7 An Algorithm for Minimality

Let ε̂j−1 =
〈
↑ ε̂j−1,1 . . . ε̂j−1,mj−1

〉
and ε̂j =

〈
↑ ε̂j,1 . . . ε̂j,mj

〉
for some mj−1,

mj ≥ 1 and N -words and DNA expressions ε̂j−1,1, . . . , ε̂j−1,mj−1
and ε̂j,1, . . . ,

ε̂j,mj
. In fact, by Property (7.11), mj−1,mj ≥ 2. By Property (DMin.5),

the first argument ε̂j−1,1 of ε̂j−1 is either an N -word α or an l-expression
〈l α〉 for an N -word α. The same goes for the last argument ε̂j,mj

of ε̂j.
By Lemma 6.17(5), the last argument ε̂j−1,mj−1

of ε̂j−1 is an l-expression〈
l αj−1,mj−1

〉
for an N -word αj−1,mj−1

, and the first argument ε̂j,1 of ε̂j is
an l-expression 〈l αj,1〉 for an N -word αj,1. Indeed, ε̂j−1 and ε̂j satisfy
the description of the ↑-arguments in lines Dni.6 and Dni.7 of procedure
Denickify. By Property (DMin.4) of Êi, both ε̂j−1 and ε̂j are alternating.

As we argued after the formulation of Property (7.11), the ↑-arguments ε̂j−1

and ε̂j of Êi are minimal and nick free. Hence, by Corollary 6.7,

S(ε̂j−1) = S+(ε̂j−1,1) . . .S
+(ε̂j−1,mj−1−1)

(αj−1,mj−1

c(αj−1,mj−1
)

)
,

S(ε̂j) =
(αj,1

c(αj,1)

)
S+(ε̂j,2) . . .S

+(ε̂j,mj
) and

S(〈↓ ε̂j−1ε̂j〉) = S+(ε̂j−1,1) . . .S
+(ε̂j−1,mj−1−1)

(αj−1,mj−1

c(αj−1,mj−1
)

)
▽

(αj,1

c(αj,1)

)
S+(ε̂j,2) . . .S

+(ε̂j,mj
). (7.12)

Now, let

ε̂′j =
〈
↑ ε̂j−1,1 . . . ε̂j−1,mj−1−1

〈
l αj−1,mj−1

αj,1

〉
ε̂j,2 . . . ε̂j,mj

〉
.

The arguments of ε̂′j fit together by upper strands, because the arguments
of ε̂j−1 and ε̂j do so. Hence, ε̂′j is an ↑-expression. It is easily verified that
ε̂′j also has Properties (DMin.1)–(DMin.6), and thus is minimal. Moreover,
ε̂′j is alternating, because ε̂j−1 and ε̂j are. Hence, ε̂′j is nick free, and by
Corollary 6.7,

S(ε̂′j) = S+(ε̂j−1,1) . . .S
+(ε̂j−1,mj−1−1)

(αj−1,mj−1
αj,1

c(αj−1,mj−1
αj,1)

)
·

S+(ε̂j,2) . . .S
+(ε̂j,mj

). (7.13)

It follows from (7.12) and (7.13) that ε̂′j ≡▽ 〈↓ ε̂j−1ε̂j〉. In fact, ε̂′j is nick free.
whereas S(〈↓ ε̂j−1ε̂j〉) contains one upper nick letter, between the semantics
of ε̂j−1 and the semantics of ε̂j.

Because L(S(ε̂′j)) = L(S(ε̂j−1)) and R(S(ε̂′j)) = R(S(ε̂j)), the arguments of

Êi still fit together by lower strands when we substitute ε̂j−1ε̂j in Êi by ε̂′j.

Hence, Êi is still a DNA expression after the substitution. In particular, it is
a ↓-expression. Moreover, by Lemma 3.7, Lemma 3.6 and Property (7.11),

〈
↓ ε̂1 . . . ε̂j−2ε̂

′
j ε̂j+1 . . . ε̂n

〉
≡▽ 〈↓ ε̂1 . . . ε̂j−2 〈↓ ε̂j−1ε̂j〉 ε̂j+1 . . . ε̂n〉

≡ 〈↓ ε̂1 . . . ε̂j−2ε̂j−1ε̂j ε̂j+1 . . . ε̂n〉

≡▽ Ei. (7.14)

Hence, after the substitution, Êi still satisfies Êi ≡▽ Ei. The upper nick

letter between S(ε̂j−1) and S(ε̂j), which was present in S(Êi) before the

substitution, is no longer present after the substitution. For the rest, S(Êi)
is the same before and after the substitution.

Because ε̂′j is a DNA expression, Êi still has at least one expression-argument
after the substitution.

7.1 The algorithm and its correctness 99

The outermost operator ↑ of ε̂′j has mj−1 + mj − 1 ≥ 3 arguments. As
we observed before, these are maximal N -word occurrences and DNA ex-
pressions, alternately. Now, it is easily verified, that after the substitution,
Êi has Properties (DMin.1), (DMin.2), (DMin.4) and (DMin.5), and that each

inner occurrence of ↑ or ↓ in Êi has at least two arguments, because this
was the case before the substitution.

We conclude that Property (7.11) is indeed an invariant of the while-loop. In ev-
ery iteration of the loop, we substitute a pair of consecutive expression-arguments
of Êi by a single expression-argument. Thus, the number of pairs of consecutive
expression-arguments decreases by 1. After the last iteration of the loop, Êi is
alternating. By Lemma 7.21, this implies that Êi is nick free.

At the beginning of the proof, we deduced from Property (7.11), that each

expression-argument of Êi is minimal and nick free. Because Êi has become al-
ternating, it does not necessarily have Property (DMin.3) and Property (DMin.6),

anymore. Hence, after the last iteration of the while-loop, Êi itself is not neces-
sarily minimal.

This is made up for in the if-then-else construction following the while-loop. We
prove that for every possible case, the resulting string E ′

i is a minimal, nick free
DNA expression satisfying E ′

i ≡▽ Ei.

• Assume that Êi has only one argument. By Property (7.11), this must be an
expression-argument Ei,1. This argument is minimal and nick free. Because

it is nick free, the outermost operator ↓ of Êi has no effect. In this case,

E ′
i = Ei,1 ≡ 〈↓ Ei,1〉 = Êi ≡▽ Ei.

• Assume that Êi has at least two arguments, and that both the first argument
and the last argument of Êi are ↑-arguments.

Because Êi has at least two arguments, by Property (7.11), each occur-

rence of ↑ or ↓ in Êi has at least two arguments. This implies that, in
addition to Properties (DMin.1), (DMin.2), (DMin.4) and (DMin.5), Êi has
Property (DMin.3).

Êi is nick free. Hence, by Lemma 7.14, there exists a minimal ↑-expression
Ê ′

i satisfying Ê ′
i ≡ Êi. In particular, line Dni.24 of the procedure is well

defined. In this case,

E ′
i = Ê ′

i ≡ Êi ≡▽ Ei.

• Finally, assume that Êi has at least two arguments, and that either the first
argument, or the last argument of Êi is not an ↑-argument. Without loss
of generality, assume that the first argument of Êi is not an ↑-argument.
As in the previous case, because Êi has at least two arguments, it has
Property (DMin.3).

By Property (DMin.1) and Property (DMin.2), the first argument of Êi must
be either an N -word α or an l-expression 〈l α〉 for an N -word α. Hence,

Êi also has Property (DMin.6).

This implies that Êi has all six properties from Lemma 6.15, and thus is
minimal. In this case

E ′
i = Êi ≡▽ Ei,

100 Ch. 7 An Algorithm for Minimality

and indeed, E ′
i = Êi is nick free.

3. We prove that the DNA expression Êi that is left after the while-loop is independent
of the order in which pairs of consecutive expression-arguments ε̂j−1 and ε̂j are
selected for substitution in line Dni.5. Then the final result E ′

i of the procedure
is certainly independent of this order. In the remainder of this proof, we call this
order the substitution order .

Let ε1, . . . , εn for some n ≥ 1 be the arguments of the original ↓-expression Ei.
In this sequence of arguments, we can distinguish (maximal) subsequences of
expression-arguments. Such a subsequence is succeeded by a maximal N -word
occurrence, which is in turn succeeded by a (maximal) subsequence of expression-
arguments, and so on. Hence, the different subsequences of expression-arguments
are separated by the maximal N -word occurrences, which are not affected by the
while-loop. The substitution of pairs of consecutive expression-arguments in one
subsequence of expression-arguments does not affect the expression-arguments in
another subsequence. In fact, the different subsequences are rewritten indepen-
dently in the while-loop. Therefore, we only have to consider the substitution
order of the expression-arguments within the same (maximal) subsequence.

Let εj0 , . . . , εj1 with 1 ≤ j0 ≤ j1 ≤ n be a (maximal) subsequence of expression-
arguments of Ei. If j0 = j1, then the subsequence does not contain any pair
of consecutive expression-arguments, and the subsequence is not affected by the
while-loop. Now assume that j0 < j1. In the course of the while-loop, the sub-
sequence of expression-arguments εj0 . . . εj1 is rewritten into a single expression-
argument ε̂′j1 .

By Corollary 6.2, each expression-argument εj of the minimal ↓-expression Ei is
either an l-expression 〈l αj,1〉 for an N -word αj,1 or an ↑-expression.

We first assume that for j = j0, . . . , j1, εj is an l-expression 〈l αj,1〉 for anN -word
αj,1. Then it is easy to prove by induction on j1 − j0 that

ε̂′j1 = 〈l αj0,1 . . . αj1,1〉 ,

regardless of the substitution order.

From now on, we assume that there is at least one εj with j0 ≤ j ≤ j1 which is an
↑-expression. We establish three properties of the resulting expression-argument
ε̂′j1 , which are independent of the substitution order. We then prove that these
properties completely determine ε̂′j1 .

Suppose that in the while-loop in procedure Denickify, two consecutive expression-
arguments ε̂j−1 and ε̂j of Êi are substituted by a single expression-argument
ε̂′j, and that at least one of the two expression-arguments substituted is an ↑-
argument. Then it follows from a simple inspection of the code of the procedure
that ε̂′j is also an ↑-argument. This implies that after any substitution, there
is at least one ↑-argument left in the subsequence of arguments corresponding
to εj0 . . . εj1 . In particular, after the last iteration of the while-loop, when the
subsequence has been reduced to a single expression-argument, this expression-
argument ε̂′j1 is an ↑-argument.

Moreover, when we substitute ε̂j−1 and ε̂j by ε̂′j, the N -word-arguments and ↓-
arguments of the ↑-argument ε̂′j come straight from ε̂j−1 and ε̂j. There is just

7.1 The algorithm and its correctness 101

one l-argument of ε̂′j that is new, i.e., that is a combination of two original,
‘adjacent’ l-arguments. In particular, after any substitution, the ↓-arguments of
the subsequence of arguments corresponding to εj0 , . . . , εj1 are the same as before
the substitution, and they occur at corresponding positions in the subsequence,
in the same order. This is still the case after the last iteration of the while-loop,
when the entire subsequence εj0 . . . εj1 has been rewritten into the ↑-expression
ε̂′j1 . That is, the ↓-arguments of ε̂′j1 are exactly all ↓-arguments of the original
expression-arguments εj0 , . . . , εj1 , in the same order. This is independent of the
substitution order.

As we have seen in the proof of Claims 1 and 2, ε̂′j1 is minimal and nick free. More-
over, by a derivation similar to (7.14), we can prove that ε̂′j1 ≡▽ 〈↓ εj0 . . . εj1〉.
Hence, S(ε̂′j1) = X ′

j1
, where

X ′
j1
= ν(S(〈↓ εj0 . . . εj1〉)).

Again, this is independent of the substitution order.

By Theorem 6.9, the ↓-arguments of ε̂′j1 define a lower block partitioning P of
X ′

j1
, and ε̂′j1 satisfies the construction from Theorem 5.12(1) based on P .

Now, because the ↓-arguments of ε̂′j1 (and the order of their occurrence in ε̂′j1) and
the semantics X ′

j1
of ε̂′j1 are independent of the substitution order, so is the lower

block partitioning P . Moreover, in the construction from Theorem 5.12(1), the
arguments corresponding to the lower blocks in P are precisely the ↓-arguments
of ε̂′j1 , which (thus) are independent of the substitution order. Because the ar-
guments corresponding to the other parts of P (N -words α and l-expressions
〈l α〉 for N -words α) are fixed by the construction, the entire ↑-expression ε̂′j1 is
independent of the substitution order. We have thus proved the claim.

In fact, it is possible to completely specify ε̂′j1 . For each l-argument εj with

j0 ≤ j ≤ j1, let mj = 1. Hence, εj = 〈l αj,1〉 =
〈
l αj,mj

〉
.

For each ↑-argument εj with j0 ≤ j ≤ j1, let εj =
〈
↑ εj,1 . . . εj,mj

〉
for some

mj ≥ 1 and N -words and DNA expressions εj,1, . . . , εj,mj
. By Lemma 6.17(2),

mj ≥ 2. By Lemma 6.17(5), if j ≥ j0+1, then εj,1 = 〈l αj,1〉 for an N -word αj,1,
and if j ≤ j1 − 1, then εj,mj

=
〈
l αj,mj

〉
for an N -word αj,mj

.

One can prove by induction on j1 − j0 that

ε̂′j1 =
〈
↑ εj0,1 . . . εj0,mj0

−1

〈
l αj0,mj0

αj0+1,1

〉

εj0+1,2 . . . εj0+1,mj0+1−1

〈
l αj0+1,mj0+1

αj0+2,1

〉

. . .
〈
l αj1−1,mj1−1

αj1,1

〉
εj1,2 . . . εj1,mj1

〉
.

Here, if for some j with j0 + 1 ≤ j ≤ j1 − 1, εj is an l-argument 〈l αj,1〉 (which
is the case, if and only if mj = 1), then the sequence of arguments

〈
l αj−1,mj−1

αj,1

〉
εj,2 . . . εj,mj−1

〈
l αj,mj

αj+1,1

〉

must be understood as
〈
l αj−1,mj−1

αj,1αj+1,1

〉
.

Otherwise the N -word αj,1 = αj,mj
would occur twice in ε̂′j1 . This interpretation

extends in a natural way to two or more consecutive l-arguments εj.

102 Ch. 7 An Algorithm for Minimality

RtM.1. RotateToMinimal (E)
// rewrites an alternating ↓-expression E = 〈↓ ε1 . . . εn〉
// with Properties (DMin.1)-(DMin.5), for which either
// the first argument ε1 or the last argument εn (or both)
// is an ↑-argument, into a minimal ↑-expression E ′

// satisfying E ′ ≡ E;
// uses local rearrangements of the DNA expression for this

RtM.2. {
RtM.3. if (ε1 is an ↑-expression 〈↑ ε1,1 . . . ε1,m1−1ε1,m1

〉)
RtM.4. then if (εn is an ↑-expression 〈↑ εn,1εn,2 . . . εn,mn

〉)
RtM.5. then E ′ = 〈↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mn
〉;

(DMin.6)
RtM.6. else E ′ = 〈↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εn−1εn〉〉;
RtM.7. fi
RtM.8. else // εn must be an ↑-expression 〈↑ εn,1εn,2 . . . εn,mn

〉
RtM.9. E ′ = 〈↑ 〈↓ ε1ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mn

〉;
RtM.10. fi
RtM.11. }

Figure 7.5: Pseudo-code of the procedure RotateToMinimal.

This completes the proof of Theorem 7.24.

There are three instructions left in the recursive function MakeMinimal and procedure
Denickify, which have to be worked out in detail.

In line 23 of MakeMinimal, we have to determine a minimal ↑-expression E ′
i satis-

fying E ′
i ≡ Ei. Here, Ei is a ↓-expression for which either the first argument or the

last argument is an ↑-argument. In the proof of Theorem 7.17(1) and (2), we have
established that in addition, Ei is minimal and alternating. By Lemma 6.15, Ei has
Properties (DMin.1)–(DMin.6).

The situation in line 35 of MakeMinimal is not too different. We have to determine
a minimal ↓-expression E ′ satisfying E ′ ≡ E. Here, E is an alternating ↑-expression
with at least two arguments, for which both the first argument and the last argument
are ↓-arguments. In the proof of Theorem 7.17(1) and (2), we have established that in
addition, E has Properties (DMin.1)–(DMin.5).

Finally, the situation in line Dni.24 of procedure Denickify is completely analogous
to the previous situation: we have to determine a minimal ↑-expression Ê ′

i satisfying

Ê ′
i ≡ Êi. Here, Êi is an alternating ↓-expression with at least two arguments, for

which both the first argument and the last argument are ↑-arguments. In the proof
of Theorem 7.24(1) and (2), we have established that in addition, Êi has Properties
(DMin.1)–(DMin.5).

As the three cases are so similar, it is not surprising that they can be tackled by
the same procedure RotateToMinimal. As usual, ↑-expressions and ↓-expressions are
rewritten in analogous ways. In Figure 7.5, we give the procedure for ↓-expressions. In
fact, the procedure is just a (nested) if-then-else statement. In all cases, the result can
be achieved by a few insertions and removals of brackets and operators in the DNA
expression.

The name RotateToMinimal is derived from the procedure’s effect on the structure
trees of the DNA expressions involved. In the proof of Theorem 7.27, we will see that
the procedure is justified by Theorem 3.10 and Theorem 3.12. As we have depicted
in Figure 3.1, Theorem 3.10 corresponds to a rotation in the structure tree. In the

7.1 The algorithm and its correctness 103

present situation, Theorem 3.12, which is based on Theorem 3.10, corresponds to two
rotations in the structure tree.

We illustrate procedure RotateToMinimal by two examples.

Example 7.25 (cf. Example 7.5) Let

E = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 ,

for which

S(E) =
(

α8α9

c(α8α9)

)(
α10

−

)(
α11

c(α11)

)(
−
α12

)(
α13

c(α13)

)
.

The ↓-expression E is minimal and alternating, its first argument is an ↑-argument and
its last argument is not an ↑-argument. According to line RtM.6,

E ′ = 〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 .

Indeed, S(E ′) = S(E), i.e., E ′ ≡ E. Moreover, |E ′| = |E|, which implies that E ′ is
minimal just like E.

Example 7.26 (cf. Example 7.11) Let

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

α21 〈↑ 〈l α22〉α23〉
〉
,

which denotes the formal DNA molecule X from Figure 7.2. The ↓-expression E
is alternating, has Properties (DMin.1)–(DMin.5), and both its first argument and its
last argument are ↑-arguments. Hence, it violates Property (DMin.6). According to
line RtM.5,

E ′ =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18

〈↓ 〈l α19α20〉α21 〈l α22〉〉 α23

〉
.

E ′ also denotes X, i.e., E ′ ≡ E. Moreover, it is easily verified that E ′ has all six
properties from Lemma 6.15 and thus is minimal.

Procedure RotateToMinimal is also correct:

Theorem 7.27 Let E be an alternating ↓-expression with Properties (DMin.1)–(DMin.5),
for which either the first argument or the last argument (or both) is an ↑-argument.

Then the string E ′ resulting from procedure RotateToMinimal is a minimal ↑-
expression satisfying E ′ ≡ E.

Proof: Let E = 〈↓ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn. Without loss of generality, assume that the first argument of E is an
↑-argument: ε1 = 〈↑ ε1,1 . . . ε1,m1−1ε1,m1

〉 for some m1 ≥ 1 and N -words and DNA
expressions ε1,1, . . . , ε1,m1−1, ε1,m1

.
By Property (DMin.3), n,m1 ≥ 2. Because the arguments of the ↓-expression E

must fit together by lower strands, the last argument ε1,m1
of ε1 cannot be an N -word.

Hence, by Property (DMin.5), it is an l-expression 〈l α〉 for an N -word α. By the same
property, the first argument ε1,1 of ε1 is either an N -word α or an l-expression 〈l α〉
for an N -word α.

104 Ch. 7 An Algorithm for Minimality

Because E is alternating and has Property (DMin.4), each occurrence of ↑ or ↓ in E
is alternating.

By Property (DMin.1) and Property (DMin.2), each argument εi of E is either an
N -word α, or an l-expression 〈l α〉 for an N -word α, or an ↑-expression. The string
E ′ resulting from procedure RotateToMinimal depends on whether or not the last
argument εn of E is an ↑-expression. We prove that in both cases, E ′ is a minimal
↑-expression satisfying E ′ ≡ E.

• Assume that εn is an ↑-argument, which implies in particular that E does not
have Property (DMin.6) and thus is not minimal. Let εn = 〈↑ εn,1εn,2 . . . εn,mn

〉
for some mn ≥ 1 and N -words and DNA expressions εn,1, εn,2 . . . , εn,mn

. Hence,

E = 〈↓ 〈↑ ε1,1 . . . ε1,m1−1ε1,m1
〉 ε2 . . . εn−1 〈↑ εn,1εn,2 . . . εn,mn

〉〉 .

By Property (DMin.3), mn ≥ 2. When we apply Theorem 3.12(1) and (2) (with
r = 1) to E, we find that

E ′ = 〈↑0 ε1,1 . . . ε1,m1−1 〈↓1 ε1,m1
ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mn

〉

is a DNA expression (and in particular, an ↑-expression) satisfying E ′ ≡ E.
Moreover, each occurrence of ↑ or ↓ in E ′ is alternating. In particular, E ′ has
Property (DMin.4).

As we observed before, the first argument ε1,m1
of ↓1 (which used to be the last

argument of ε1) is an l-expression 〈l α〉 for an N -word α. Analogously, the last
argument εn,1 of ↓1 is an l-expression 〈l α〉 for an N -word α. Clearly, ↓1 has
at least two arguments.3 Because m1,mn ≥ 2, the outermost operator ↑0 of E ′

has at least three arguments. Now, it is easily verified that E ′ has Properties
(DMin.1)–(DMin.3) and (DMin.5), simply because E has these properties.

Finally, because the first argument ε1,1 of ↑0 is either an N -word α, or an l-
expression 〈l α〉 for an N -word α, E ′ also has Property (DMin.6). We conclude
that E ′ has all six properties from Lemma 6.15 and thus is minimal.

• Assume that εn is not an ↑-argument. Hence,

E = 〈↓ 〈↑ ε1,1 . . . ε1,m1−1ε1,m1
〉 ε2 . . . εn〉 ,

where εn is either an N -word α or an l-expression 〈l α〉 for an N -word α. This
implies that E also has Property (DMin.6), and thus is minimal itself.

By Theorem 3.10(1) and (2),

E ′ = 〈↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1
ε2 . . . εn〉〉

is a DNA expression (and in particular, an ↑-expression) satisfying E ′ ≡ E. Each
occurrence of ↑ or ↓ in E ′ is alternating. Because E is minimal and E ′ is equally
long, E ′ is also minimal.

3In fact, by Property (DMin.4). the two expression-arguments ε1,m1
and εn,1 of ↓1 must be sepa-

rated by at least an N -word-argument. Hence, the operator has at least three arguments.

7.2 The algorithm for an example 105

7.2 The algorithm for an example

In the previous section, we have illustrated each stage of our algorithm by some example
DNA expressions. It is instructive, though, to see the effect of the algorithm as a whole
for a single DNA expression. Therefore, we systematically work out the algorithm for
the DNA expression E∗

1 from (7.1). Step by step, we rewrite this DNA expression into
an equivalent, minimal DNA expression. For simplicity, whenever we have to consider
certain arguments of a DNA expression ‘in some order’, we consider them from left to
right. To visualize the effect of the algorithm on the structure of the DNA expression,
we also give the structure trees of a number of the intermediate DNA expressions.

Recall that the algorithm is recursive: we first rewrite the expression-arguments of
a DNA expression E into equivalent, minimal expression-arguments, and then consider
E as a whole. For the structure tree of E, this means that it is reshaped in a bottom-up
fashion.

Example 7.28 Let E be the DNA expression E∗
1 from (7.1):

E =
〈
↓
〈
↓

〈
↑ 〈l 〈↓ 〈l 〈↑ α1 〈l 〈l α2〉〉α3 〈↓ 〈l α4〉α5〉〉〉 〈l α6〉 α7 〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(7.15)

as depicted in Figure 7.6. When we apply the function MakeMinimal to E, we ob-
serve a cascade of recursive calls. The first time that E is actually rewritten, is when
MakeMinimal is called for the DNA subexpression Es = 〈l 〈l α2〉〉. This is an l-
expression with a minimal l-argument. As we have seen in Example 7.1, by line 7 of
MakeMinimal, Es is simply substituted in E by its argument 〈l α2〉, yielding

E =
〈
↓
〈
↓

〈
↑ 〈l 〈↓ 〈l 〈↑ α1 〈l α2〉α3 〈↓ 〈l α4〉α5〉〉〉 〈l α6〉 α7 〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
.

We subsequently consider the DNA subexpression

Es = 〈l 〈↑ α1 〈l α2〉α3 〈↓ 〈l α4〉α5〉〉〉 ,

which is an l-expression with a minimal, alternating ↑-argument. As we have seen in
Example 7.18, by procedure MakelExprMinimal, Es is substituted in E by 〈l α1α2α3α4

c(α5)〉. This yields

E =
〈
↓
〈
↓

〈
↑ 〈l 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6〉 α7 〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(7.16)

as depicted in Figure 7.7.

We subsequently consider the DNA subexpression

Es = 〈l 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6〉 α7 〉〉 ,

106 Ch. 7 An Algorithm for Minimality

n

n n n

n n n

n n n n n

n n n n n n n n

n n n n n

n

n n

n n

��������

@
@
@@

Q
Q
Q
Q
QQ

A
A
AA

������������

�
�

��

A
A
A

Q
Q
Q
Q
QQ

aaaaaaaaaa

�
�

��

A
A
AA

@
@
@@

�
�
�

A
A
A

A
A
A

�
�
�

A
A
AA

�
�
�

A
A
A

�
�
�

�
�
��

A
A
AA

@
@
@@

�
�
�

C
C
CC

↓

↓ ↑ ↑

↑ ↓ l α23

l ↓ l ↓ ↑ α21 α22

↓ l ↑ α12 l α14 l α16 ↑ l l

l l α7 α8 l α10 l α13 α15 l α18 α19 α20

↑ α6 α9 α11 α17

α1 l α3 ↓

l l α5

α2 α4

Figure 7.6: Structure tree of the example DNA expression E∗
1 for the algorithm for

minimality, (7.15).

which is an l-expression, with a minimal, non-alternating ↓-argument. Hence, Es

violates Property (DMin.1). As we have seen in Example 7.19, by procedure MakelExpr-
Minimal, Es is substituted in E by 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉. This yields

E =
〈
↓
〈
↓

〈
↑ 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(7.17)

as depicted in Figure 7.8.
We subsequently consider the DNA subexpression

Es =
〈
↑ 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
,

which is an ↑-expression with five minimal expression-arguments. In the second for-
loop of MakeMinimal, we consider ↓-arguments of Es that are not alternating. There

7.2 The algorithm for an example 107

n

n n n

n n n

n n n n n

n n n n n n n n

n n n n n

��������

@
@
@@

Q
Q
Q
Q
QQ

A
A
AA

������������

�
�

��

A
A
A

Q
Q
Q
Q
QQ

aaaaaaaaaa

�
�

��

A
A
AA

@
@
@@

�
�
�

A
A
A

A
A
A

#
#

#
##

A
A
AA

�
�
�

A
A
A

�
�
�

↓

↓ ↑ ↑

↑ ↓ l α23

l ↓ l ↓ ↑ α21 α22

↓ l ↑ α12 l α14 l α16 ↑ l l

l l α7 α8 l α10 l α13 α15 l α18 α19 α20

α1α2α3α4c(α5) α6 α9 α11 α17

Figure 7.7: Structure tree of the example DNA expression for the algorithm for
minimality, after two substitutions, (7.16). The dashed box encloses the part of the
tree that has changed as compared to Figure 7.6.

n

n n n

n n n

n n n n n

n n n n n n nn n

n n n

��������

@
@
@@

Q
Q
Q
Q
QQ

A
A
AA

������������

�
�

��

A
A
A

Q
Q
Q
Q
QQ

aaaaaaaaaa

�
�

��

A
A
AA

@
@
@@

�
�
�

A
A
A

A
A
A

�
�
�

C
C
C

�
�
�

A
A
A

�
�
�

↓

↓ ↑ ↑

↑ ↓ l α23

↓ ↓ l ↓ ↑ α21 α22

l ↑ α12 l α14 l α16 ↑ l ll l

α8 l α10 l α13 α15 l α18 α19 α20

α1α2α3α4c(α5)

α6c(α7)

α9 α11 α17

Figure 7.8: Structure tree of the example DNA expression for the algorithm for
minimality, after three substitutions, (7.17). The dashed box encloses the part of the
tree that has changed as compared to Figure 7.7.

108 Ch. 7 An Algorithm for Minimality

are two such arguments, viz the first two arguments. As we have seen in Example 7.22,
by procedure Denickify, the first argument

E1 = 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉

is substituted in E by 〈l α1α2α3α4c(α5)α6c(α7)〉, yielding

E =
〈
↓
〈
↓

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
.

We also apply procedure Denickify to the second argument

E2 = 〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉

of Es. The first two arguments of this minimal ↓-expression are consecutive expression-
arguments. In the only iteration of the while-loop in procedure Denickify, these
arguments are merged according to line Dni.14. The result is

Ê2 = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 .

This ↓-expression has more than one argument and its last argument is not an ↑-
argument. Hence, Ê2 is not modified any further in procedure Denickify (cf. Exam-

ple 7.4). When we substitute E2 in E by Ê2, we obtain

E =
〈
↓
〈
↓

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(7.18)

as depicted in Figure 7.9. In this overall DNA expression, the DNA subexpression Es

that we consider has become

Es =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

We proceed with the third for-loop of MakeMinimal, in which we consider ↓-arguments
Ei of Es, such that either the first argument, or the last argument of Ei is an ↑-
argument. There are two such arguments, viz the (new) second argument and the
fourth argument. As we have seen in Example 7.25, by procedure RotateToMinimal,
the second argument

E2 = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉

is substituted in E by

〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 ,

yielding

E =
〈
↓
〈
↓

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
.

7.2 The algorithm for an example 109

n

n n n

n n n

n n n n n

n n n n n n

n n n

��������

@
@
@@

Q
Q
Q
Q
QQ

A
A
AA

������������

�
�
�

A
A
A

Q
Q
Q
Q
QQ

aaaaaaaaaa

�
�
�

A
A
A

�
�
�

A
A
A

A
A
A

�
�
�

A
A
A

�
�
�

↓

↓ ↑ ↑

↑ ↓ l α23

l ↓ l ↓ ↑ α21 α22

α1α2α3α4c(α5)α6c(α7) ↑ α12 l α14 l α16 ↑ l l

l α10 l α13 α15 l α18 α19 α20

α8α9 α11 α17

Figure 7.9: Structure tree of the example DNA expression for the algorithm for
minimality, after five substitutions, (7.18). The dashed box encloses the part of the
tree that has changed as compared to Figure 7.8.

We also apply procedure RotateToMinimal to the fourth argument

E4 = 〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 .

The ↓-expression E4 is minimal and alternating, its first argument is not an ↑-argument,
but its last argument is an ↑-argument. According to line RtM.9, E4 is substituted in
E by

〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉

(cf. Example 7.6). This yields

E =
〈
↓
〈
↓

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(7.19)

as depicted in Figure 7.10. In this overall DNA expression, the DNA subexpression Es

that we consider has become

Es =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

We proceed with the fourth for-loop of MakeMinimal. As we have seen in Example 7.8,
in this loop, we substitute the three ↑-arguments of Es by their respective arguments.

110 Ch. 7 An Algorithm for Minimality

n

n n n

n n n

n n n n n

n n n n n

n n n n

��������

@
@
@@

Q
Q
Q
Q
QQ

A
A
AA

������������

�
�
�

S
S
SS

Q
Q
Q
Q
QQ

aaaaaaaaaa

�
�
��

�
�
��

A
A
A

A
A
AA

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

↓

↓ ↑ ↑

↑ ↓ l α23

l ↑ l ↑ ↑ α21 α22

α1α2α3α4c(α5)α6c(α7) l α10 ↓ α14 ↓ α18 l l

α8α9 l α12 l l α16 l α19 α20

α11 α13 α15 α17

Figure 7.10: Structure tree of the example DNA expression for the algorithm for
minimality, after seven substitutions, (7.19). The dashed box encloses the part of the
tree that has changed as compared to Figure 7.9.

The overall DNA expression resulting from these three substitutions is

E =
〈
↓
〈
↓

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(7.20)

as depicted in Figure 7.11. As we have seen in Example 7.9, the DNA subexpression
Es of E that we consider is not modified any further in its own call of MakeMinimal.

We subsequently consider the DNA subexpression

Es =
〈
↓

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉 〉
,

which is a ↓-expression whose only argument is a minimal ↑-argument E1 that is not
alternating. Hence, E1 makes Es violate Property (DMin.4). In the second for-loop
of MakeMinimal, we make this argument nick free. In particular, as we have seen in
Example 7.23, by procedure Denickify, E1 is substituted in E by

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉
.

This yields

E =
〈
↓
〈
↓

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(7.21)

7.2 The algorithm for an example 111

n

n n n

n n n

n n n n n n n

n n n n

��������

@
@
@@

Q
Q
Q
Q
QQ

A
A
AA

����������������

��������

�
�

�
�

��

�
�

��

@
@
@@

Q
Q
Q
Q
QQ

HHHHHHHH

aaaaaaaaaa

�
�
�

A
A
A

�
�
�

A
A
A

↓

↓ ↑ ↑

↑ ↓ l α23

l l α10 ↓ l ↓ α18 l l α21 α22

α1α2α3α4c(α5)α6c(α7) α8α9 l α12 l α14 l α16 l α19 α20

α11 α13 α15 α17

Figure 7.11: Structure tree of the example DNA expression for the algorithm for
minimality, after ten substitutions, (7.20). The dashed box encloses the part of the
tree that has changed as compared to Figure 7.10.

n

n n n

n n n

n n n

n n n

��������

@
@
@@

Q
Q
Q
Q
QQ

A
A
AA

������������

�
�

��

@
@
@@

HHHHHHHH

�
�

��

�
�
��

A
A
AA

@
@
@@

↓

↓ ↑ ↑

↑ ↓ l α23

l α10 ↓ α18 l α21 α22

α1α2α3α4c(α5)α6c(α7)α8α9 l α12 l α16 l α19α20

α11 α13α14α15 α17

Figure 7.12: Structure tree of the example DNA expression for the algorithm for
minimality, after eleven substitutions, (7.21). The dashed box encloses the part of the
tree that has changed as compared to Figure 7.11.

112 Ch. 7 An Algorithm for Minimality

as depicted in Figure 7.12. In this overall DNA expression, the DNA expression Es

that we consider has become

Es =
〈
↓

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉 〉

.

The third and the fourth for-loop of MakeMinimal do not affect Es. In the if-then-
else construction at the end of the function, we observe that Es still has one argument,
which is a DNA expression. Hence, Es violates Property (DMin.3). According to line 31,
Es is substituted in E by this expression-argument, yielding

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
.

We subsequently consider the DNA subexpression Es = 〈↑ 〈↓ α21〉〉, which is an ↑-
expression whose only argument is the minimal, alternating ↓-argument 〈↓ α21〉. The
for-loops of MakeMinimal do not affect Es. As we have seen in Example 7.10, by
the if-then-else construction at the end of the function, Es is substituted in E by its
argument 〈↓ α21〉, yielding

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

〈↓ α21〉 〈↑ 〈l α22〉α23〉
〉
.

At last, we consider E itself, which is a ↓-expression with three minimal expression-
arguments. The second and the third for-loop of MakeMinimal do not affect E. In the
fourth for-loop, we discover that the second argument of E is the ↓-expression 〈↓ α21〉.
Hence, E violates Property (DMin.2). According to line 27, we substitute 〈↓ α21〉 in E
by its own argument α21. This yields

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

α21 〈↑ 〈l α22〉α23〉
〉
,

(7.22)

as depicted in Figure 7.13. In the if-then-else construction at the end of MakeMinimal,
we observe that the ↓-expression E has more than one argument, is alternating and
that both its first argument and its last argument are ↑-arguments. Hence, according to
line 35, we apply procedure RotateToMinimal to E. As we have seen in Example 7.26,
E is substituted by

E ′ =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18

〈↓ 〈l α19α20〉α21 〈l α22〉〉 α23

〉
.

(7.23)

This is the final result E∗
2 of the algorithm, and has been depicted in Figure 7.14.

We encountered E∗
2 already in Example 7.11. There, it appeared to be one of the

two minimal DNA expressions that are equivalent to the original DNA expression E∗
1

from (7.1) and (7.15). Note, however, that in Example 7.11, we obtained the two
minimal DNA expressions from the semantics of E∗

1 , using the recursive construction
from Theorem 5.12. Here, we have simply performed string manipulations on the DNA
expression itself, as prescribed by procedure RotateToMinimal.

7.2 The algorithm for an example 113

n

nn

nn n n

n n n

Q
Q
Q
Q
QQ

�
�

�
�

��

A
A
AA

������������

�
�

��

@
@
@@

HHHHHHHH

@
@
@@

�
�

��

�
�
��

A
A
AA

@
@
@@

↓

↑↑

l α23l α10 ↓ α18 l

α21

α22α1α2α3α4c(α5)α6c(α7)α8α9 l α12 l α16 l α19α20

α11 α13α14α15 α17

Figure 7.13: Structure tree of the example DNA expression for the algorithm for
minimality, after fourteen substitutions, (7.22). The dashed box encloses the part of
the tree that has changed as compared to Figure 7.12.

n

n n n

n n n n n

����������������

��������

�
�

��

@
@
@@

HHHHHHHH

�
�

��

�
�
��

A
A
AA

@
@
@@

�
�
�

C
C
CC

S
S
SS

↑

l α10 ↓ α18 ↓ α23

α1α2α3α4c(α5)α6c(α7)α8α9 l α12 l α16 l l α21 l

α11 α13α14α15 α17 α19α20 α22

Figure 7.14: Structure tree of the example DNA expression E∗
2 for the algorithm for

minimality, after all fifteen substitutions, (7.23).

In the above example, when we compare the original DNA expression E∗
1 and its

structure tree (in Figure 7.6) to the final DNA expression E∗
2 and its structure tree

(in Figure 7.14), we can conclude that the latter are not only smaller, but also much
better readable.

One may be surprised by some of the differences between the two structure trees.
For example, in the original tree, the N -words α1, . . . , α7 are in one subtree, and the
N -words α8, . . . , α13 are in an adjacent subtree. In the final tree, α8 and α9 have joined
α1, . . . , α7, whereas α10, . . . , α13 have not made this move.

At first sight, one might think that it requires very complex steps to achieve such
changes. This is, however, not the case. Every substitution performed by the algorithm
corresponds to a relatively simple, local rearrangement of the structure tree.

The substitution that probably has the largest effect on the tree, is the one in
line MlM.5 of procedure MakelExprMinimal. There, we substitute a ↓-expression E1,i

by the l-expression
〈
l αE1,i

〉
. The effect on the structure tree is that the subtree

114 Ch. 7 An Algorithm for Minimality

corresponding to E1,i must be replaced by a node labelled by l, with a child node
labelled by αE1,i

. This N -word αE1,i
is the concatenation of all N -words (possibly

complemented) in the leaves of the subtree of E1,i. Since this effect is restricted to a
subtree of the total structure tree, and is uniform for the entire subtree, we may also
view this as a local change.

In our running example, we have used line MlM.5 of MakelExprMinimal once, in
Example 7.18. There, we substituted the (small) ↓-expression E1,i = 〈↓ 〈l α4〉α5〉 by〈
l αE1,i

〉
= 〈l α4c(α5)〉. Part of the difference between the structure trees in Figure 7.6

and Figure 7.7 can be traced back to this substitution.

7.3 Detailed implementation and complexity of the

algorithm

In § 7.1, we have described an algorithm for rewriting an arbitrary DNA expression
into an equivalent, minimal DNA expression, and we have proved that the algorithm
is correct. However, we have not specified all details of the algorithm. We now work
out these details in an implementation of the algorithm. The details concerning the
datastructure for the DNA expression have immediate consequences for the complexity
of the algorithm. Therefore, we discuss these details in the context of an analysis of
the complexity.

The recursive function MakeMinimal contains four successive for-loops. In each for-
loop we consider (some of) the expression-arguments of E ‘in some order.’ Because dif-
ferent expression-arguments are rewritten independently, the actual orders used within
the loops do not influence the result. We choose to consider the expression-arguments
in the order of their occurrence in the DNA expression, like we did in Example 7.28.
This is the most natural order.

The fact that different expression-arguments are rewritten independently, also im-
plies that the aggregate effect of the four loops on a particular expression-argument Ei

of E depends only on Ei itself. We can as well perform all operations (at most four)
on Ei first, before proceeding to the next expression-argument. This way, the four
for-loops can be replaced by a single for-loop. The conceptual advantage of this is that
each expression-argument is considered only once, instead of (at most) four times.

When we modify the algorithm in the above way, and also refer to the procedures
MakelExprMinimal, Denickify and RotateToMinimal more directly, we obtain the
function in Figure 7.15.

One may wonder why we did not use a single for-loop in MakeMinimal from the very
beginning. The reason is, that it is easier to formulate invariants for the four separate
loops, than it would be for a single loop with all four types of substitutions. We need
such invariants to prove the correctness of MakeMinimal, see the proof of Theorem 7.17.

We now examine the time complexity of the algorithm. In our analysis, we will
frequently use the big O notation. For example, we will say that the time spent in (a
specific part of) the algorithm for a given DNA expression E is in O(|E|). Recall from
§ 2.1, that in this case, in order to conclude that this time really is linear in |E|, we
have to establish that |E| also provides a lower bound for the growth rate.

When we apply the function MakeMinimal to a DNA expression E, all arguments
of E are examined individually. By a cascade of recursive calls of the function, the

7.3 Detailed implementation and complexity of the algorithm 115

1′. MakeMinimal (E)
// recursively rewrites an arbitrary DNA expression E
// into an equivalent, minimal DNA expression

2′. {
3′. if (E is an l-expression)
4′. then if (the argument of E is a DNA expression E1)
5′. then MakeMinimal (E1);

// we proceed with the new (minimal) version of E1

6′. if (E1 is an l-expression)
7′. then substitute E by E1; (DMin.1)
8′. else // E1 is an ↑-expression or a ↓-expression
9′. substitute E by the result

of procedure MakelExprMinimal; (DMin.1)
10′. fi
11′. fi

12′. else // E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is
// an ↑-expression 〈↑ ε1 . . . εn〉 for some n ≥ 1
// and N-words and DNA expressions ε1, . . . , εn

13′. for (i = 1 to n)
14′. do if (εi is a DNA expression Ei)
15′. then MakeMinimal (Ei);

// we proceed with the new (minimal) version of Ei

16′. if (Ei is a ↓-expression which is not alternating)
17′. then substitute Ei in E by the result

of procedure Denickify; (DMin.4)
18′. fi

19′. if (Ei is a ↓-expression for which the first argument
or the last argument is an ↑-argument)

20′. then substitute Ei in E by the result
of procedure RotateToMinimal; (DMin.5)

21′. fi

22′. if (Ei is an ↑-expression)
23′. then substitute Ei in E by its arguments; (DMin.2)
24′. fi
25′. fi
26′. od

27′. if (E has only one argument ε1)
28′. then if (ε1 is a DNA expression E1)
29′. then substitute E by E1; (DMin.3)
30′. fi
31′. else // E has at least two arguments
32′. if (E is alternating and both its first argument

and its last argument are ↓-arguments)
33′. then substitute E by the result

of procedure RotateToMinimal; (DMin.6)
34′. fi
35′. fi
36′. fi
37′. }

Figure 7.15: More detailed pseudo-code of the recursive function MakeMinimal (cf.
Figure 7.1).

116 Ch. 7 An Algorithm for Minimality

〈 ↑ 〈 l 〈 lα1 〉 〉 〈 ↓ 〈 ↑α2〈 lα3 〉 〉α4〈 lα5 〉 〉 〉
(a)

〈 ↑ 〈 lα1 〉 〈 ↓ 〈 ↑α2〈 lα3 〉 〉α4〈 lα5 〉 〉 〉� � � � � � � � � ��
 �
 �
� �& %& %
6

1

6
2

63

(b)

〈 ↑ 〈 lα1 〉 〈 ↑α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〉 〉
(c)

Figure 7.16: First two features of the datastructure used in the implementation of
the algorithm for minimality. (a) An example DNA expression, where the letters are
stored in a doubly-linked list (indicated by the dashes). (b) The result after substitut-
ing the l-subexpression 〈l 〈l α1〉〉 by 〈l α1〉. Corresponding brackets are connected,
and the first letter and the last letter of each maximal N -word occurrence are con-
nected. Note that each of the maximal N -word occurrences α1, . . . , α5 may consist
of many more than one N -letter. We can use connections 1, 2 and 3 as indicated to
step through the DNA expression efficiently, for the substitution of the ↓-subexpression
〈↓ 〈↑ α2 〈l α3〉〉α4 〈l α5〉〉 by 〈↑ α2 〈↓ 〈l α3〉α4 〈l α5〉〉〉. (c) The result after this sub-
stitution.

expression-arguments of E are examined up to the highest nesting level of the brackets.
This way, in principle every letter of E is considered. Hence, the time required for
executing the function is at least linear in the length of E.

We demonstrate that the function can indeed be executed in linear time, if we use
a proper datastructure to store E in. We now discuss two features of a possible, proper
datastructure. We later introduce two more features.

First, it is useful to store (the letters of) E in a doubly-linked list. Then letters
can be inserted and removed in constant time. For example, in line 7′ of the function,
substituting an l-expression E by its (minimal) l-argument E1 corresponds to removing
three redundant letters: an occurrence of l, and the corresponding brackets. We have
depicted this in Figure 7.16(a) and (b) for the DNA subexpression 〈l 〈l α1〉〉 of an
example DNA expression.

As another example, in line 20′ of the function, substituting a ↓-argument

Ei = 〈↓ 〈↑ ε1,1 . . . ε1,m1−1ε1,m1
〉 ε2 . . . εn〉 (7.24)

for some m1, n ≥ 1 and N -words and DNA expressions ε1,1, . . . , ε1,m1
and ε2, . . . , εn by

an equivalent ↑-argument

E ′
i = 〈↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εn〉〉 (7.25)

(the result of procedure RotateToMinimal) corresponds to moving the operator ↓, an
opening bracket and a closing bracket to new positions. Moving a letter to a new
position means that we remove it from its old position and insert it at its new position.

It is important that we can easily approach the positions in the DNA expression
where operations like removals and insertions must be performed. In particular, it
is useful if we can step directly from, for example, the first letter to the last letter
of an argument, and vice versa. This is the second feature of the datastructure: we

7.3 Detailed implementation and complexity of the algorithm 117

connect each opening bracket to the corresponding closing bracket, and for each N -
word-argument of an operator, we connect the first letter to the last letter. Moreover, if
we allow N -word-arguments of an operator that are not maximal N -word occurrences,
then we also connect the first letter of each maximal N -word occurrence to the last
letter. We establish such connections both from left to right and from right to left.

For example, with these connections it is easy to rewrite the ↓-expression Ei from
(7.24) into the ↑-expression E ′

i from (7.25). Let us use ε1 to denote the first argument
〈↑ ε1,1 . . . ε1,m1−1ε1,m1

〉 of Ei. We can step directly from the end of Ei (where a closing
bracket must be inserted), via the beginning of Ei (where the operator ↓ and an opening
bracket must be removed), and the end of ε1 (where a closing bracket must be removed),
to the beginning of ε1,m1

(where an opening bracket and an operator ↓must be inserted).
This way, the entire substitution can be performed in constant time, independent of
the length of Ei or the length of ε1. In Figure 7.16(b) and (c), we carry out this
substitution for the DNA subexpression Ei = 〈↓ 〈↑ α2 〈l α3〉〉α4 〈l α5〉〉 of our example
DNA expression.

We can also use the connections to travel efficiently along all arguments of a given
operator. In two steps we can move from the beginning of an argument, via the end
of that argument, to the beginning of the next argument. This requires constant time,
independent of the length of the argument.

All connections can be initialized in linear time. For any (basic) operation applied
to E, the connections can be updated in constant time. Hence, the overhead for
maintaining the connections is linear in the time required for the function MakeMinimal

itself.

The connections enable us to perform most instructions in the function in constant
time. There are, however, two places in the function, where we may spend more than
constant time. These places are line 9′, where we apply procedure MakelExprMinimal,
and line 17′, where we apply procedure Denickify. Moreover, the test if Ei is not
alternating in line 16′ and the test if E is alternating in line 32′ may be time consuming.
We may have to examine all arguments of a DNA expression, before we can decide
whether or not it is alternating.

If the datastructure for the DNA expression E does not have more features than
we have described so far, then the function MakeMinimal requires quadratic time for
specific instances of E. We illustrate this by two examples, one for line 9′ and one for
line 17′ of the function.

In procedure MakelExprMinimal, we first substitute all ↓-arguments of the ‘working

DNA expression’ Ê1, and then substitute all N -word-arguments. As it is, in order
to find all ↓-arguments (or N -word-arguments) of a given DNA expression, we have
to examine all arguments, and check if they are ↓-arguments (N -word-arguments,
respectively).

Example 7.29 Let α be an arbitrary N -word, and let

E1 = 〈l αα〉
E2p = 〈↑ E2p−1 〈l α〉α〉 (p ≥ 1)
E2p+1 = 〈l E2p〉 (p ≥ 1).

Hence,

E1 = 〈l αα〉

118 Ch. 7 An Algorithm for Minimality

E2 = 〈↑ 〈l αα〉 〈l α〉α〉

E3 = 〈l 〈↑ 〈l αα〉 〈l α〉α〉〉

E4 = 〈↑ 〈l 〈↑ 〈l αα〉 〈l α〉α〉〉 〈l α〉α〉

. . .

It is easy to prove by induction on p, that for any p ≥ 1,

• both E2p and E2p+1 are DNA expressions,

•

S(E2p) =
(

αα
c(αα)

)
△
. . .

(
αα

c(αα)

)
△

︸ ︷︷ ︸
p times

(
α

c(α)

)(
α
−

)

S(E2p+1) =
(

αα
c(αα)

)
△
. . .

(
αα

c(αα)

)
△

︸ ︷︷ ︸
p times

(
αα

c(αα)

)

• |E2p| = 3 · 3p+ (2p+ 2) · |α| and |E2p+1| = 3 · (3p+ 1) + (2p+ 2) · |α|.

In particular, the lengths of E2p and E2p+1 are linear in p.
Moreover, by Summary 6.12(5), Theorem 5.28 and Theorem 5.26, for p ≥ 1, the

only minimal DNA expression denoting S(E2p), i.e., the only minimal DNA expression
that is equivalent to E2p is

E ′
2p =

〈
↑ 〈l αα〉 . . . 〈l αα〉︸ ︷︷ ︸

p times

〈l α〉α

〉
.

By Lemma 6.14(2), the only minimal DNA expression denoting S(E2p+1) is

E ′
2p+1 =

〈
↑ 〈l αα〉 . . . 〈l αα〉︸ ︷︷ ︸

p times

〈l αα〉

〉
.

Now, let p ≥ 1 and let us apply the function MakeMinimal to the l-expression E2p+1,
with argument E2p. When we call the function recursively for E2p, this argument is
rewritten into E ′

2p, as that is the only minimal DNA expression that is equivalent to
E2p. The ↑-expression E ′

2p has p+ 2 arguments. In procedure MakelExprMinimal, we
need time that is linear in p to examine them all, to see if they are ↓-arguments or
N -word-arguments.

Likewise, at a higher level of the recursion, we have had to examine the p+1, p, p−
1, . . . , 3 arguments of E ′

2(p−1), E
′
2(p−2), E

′
2(p−3), . . . , E

′
2, respectively. Altogether, this

takes time that is quadratic in p, and thus in the length of E2p+1.

In every iteration of the while-loop in procedure Denickify, we select two consecutive
expression-arguments of the ‘working DNA expression’ Êi, and merge them into a
single new argument. We have not specified how to select these consecutive expression-
arguments. We have not even specified how to find them. As it is, we must examine all
pairs of consecutive arguments of Êi to see if both of them are expression-arguments.
Without further care, this may lead to a quadratic number of steps, as we see in the
next example.

7.3 Detailed implementation and complexity of the algorithm 119

Example 7.30 Let α be an arbitrary N -word, and let

E1 = 〈l αα〉
E2p = 〈↑ E2p−1 α 〈l α〉 〈l α〉〉 (p ≥ 1)
E2p+1 = 〈↓ E2p〉 (p ≥ 1).

Hence,

E1 = 〈l αα〉

E2 = 〈↑ 〈l αα〉α 〈l α〉 〈l α〉〉

E3 = 〈↓ 〈↑ 〈l αα〉α 〈l α〉 〈l α〉〉〉

E4 = 〈↑ 〈↓ 〈↑ 〈l αα〉α 〈l α〉 〈l α〉〉〉α 〈l α〉 〈l α〉〉

. . .

It is easy to prove by induction on p, that for any p ≥ 1,

• both E2p and E2p+1 are DNA expressions,

•

S(E2p) =
(

αα
c(αα)

)(
α
−

)
. . .

(
αα

c(αα)

)(
α
−

)
︸ ︷︷ ︸

p times

(
α

c(α)

)
△

(
α

c(α)

)

S(E2p+1) =
(

αα
c(αα)

)(
α
−

)
. . .

(
αα

c(αα)

)(
α
−

)
︸ ︷︷ ︸

p times

(
αα

c(αα)

)

• |E2p| = 3 · 4p+ (3p+ 2) · |α| and |E2p+1| = 3 · (4p+ 1) + (3p+ 2) · |α|.

In particular, the lengths of E2p and E2p+1 are linear in p.
Moreover, by Summary 6.12(5), Theorem 5.28 and Theorem 5.26, for p ≥ 1, the

only minimal DNA expression denoting S(E2p), i.e., the only minimal DNA expression
that is equivalent to E2p is

E ′
2p =

〈
↑ 〈l αα〉α . . . 〈l αα〉α︸ ︷︷ ︸

p times

〈l α〉 〈l α〉

〉
.

By Lemma 6.14(1), the only minimal DNA expression denoting S(E2p+1) is

E ′
2p+1 =

〈
↑ 〈l αα〉α . . . 〈l αα〉α︸ ︷︷ ︸

p times

〈l αα〉

〉
.

Now, let p ≥ 1 and let us apply the function MakeMinimal to the ↓-expression E2p+1,
with argument E2p. When we call the function recursively for E2p, this argument is
rewritten into E ′

2p, as that is the only minimal DNA expression that is equivalent to
E2p. The ↑-expression E ′

2p has 2p + 2 arguments. In procedure Denickify, we need
time that is linear in p to examine them all, to see if there are consecutive expression-
arguments.

Likewise, at a higher level of the recursion, we have had to examine the 2p, 2p −
2, 2p − 4, . . . , 4 arguments of E ′

2(p−1), E
′
2(p−2), E

′
2(p−3), . . . , E

′
2, respectively. Altogether,

this takes time that is quadratic in p, and thus in the length of E2p+1.

120 Ch. 7 An Algorithm for Minimality

〈 ↑ 〈 lα1 〉 〈 ↑α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〉 〈 l 〈 ↑ 〈 lα6 〉 〈 lα7 〉α8 〉 〉 〈 ↑ 〈 lα9 〉 〉 〉� �
 	 � �
 	 ��� �� �� �� �� �" !
(a)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 l 〈 ↑ 〈 lα6 〉 〈 lα7 〉α8 〉 〉 〈 ↑ 〈 lα9 〉 〉 〉� �
 	 � �
 	 ��� �� �� �� �
(b)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 ↑ 〈 lα6 〉 〈 lα7α8〉 〉 〈 ↑ 〈 lα9 〉 〉 〉� �
 	 �� ��� �� �� �� �
(c)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 lα6 〉 〈 lα7α8〉 〈 ↑ 〈 lα9 〉 〉 〉� �
 	 ��� �� �� �� �
(d)

Figure 7.17: Third feature of the datastructure used in the implementation of the
algorithm for minimality. Each occurrence of ↑ or ↓ has a circular, doubly-linked list
of its non-l-arguments. (a) The lists for an example DNA expression. Note that the
list is empty for the last occurrence of ↑. (b) The result after substituting the ↑-
subexpression 〈↑ α2 〈↓ 〈l α3〉α4 〈l α5〉〉〉 by its arguments. (c) The result after using
procedure MakelExprMinimal to substitute the l-argument 〈l 〈↑ 〈l α6〉 〈l α7〉α8〉〉 by
〈↑ 〈l α6〉 〈l α7α8〉〉. As explained in the text, we do not need to insert the resulting ↑-
argument into the list of non-l-arguments of the outermost operator ↑. (d) The result
after substituting the ↑-subexpression 〈↑ 〈l α6〉 〈l α7α8〉〉 by its arguments.

In order to avoid the quadratic time consumption of the algorithm due to the execution
of procedures MakelExprMinimal and Denickify, we add two more features to our
datastructure, one for each procedure. We first focus on a feature that is useful for
MakelExprMinimal: for each occurrence of ↑ or ↓ in E we maintain a circular, doubly-
linked list of its non-l-arguments. In fact, the list contains (the positions of) the first
letters of the non-l-arguments. This is the third feature of our datastructure. In
Figure 7.17(a), we show the lists for all occurrences of ↑ and ↓ in an example DNA
expression.

The time required to initialize the lists for all occurrences of ↑ and ↓ in E is linear in
|E|. One can verify that for almost every operation performed on E in the course of the
algorithm, the lists can easily be updated in constant time. For example, in line 23′ of
MakeMinimal, we substitute an ↑-argument Ei of an ↑-expression by its own arguments.
In principle, we can simply substitute Ei (which is a non-l-argument itself) in the list
of non-l-arguments of its parent operator by the list of its own non-l-arguments (see
Figure 7.17(b)).4 As both lists are doubly-linked lists, we can do this in constant time.

4There is a little subtlety one has to consider when implementing this: if Ei is preceded by an
N -word-argument and its own first argument εi,1 is also an N -word-argument, then these N -word-
arguments merge into one maximal N -word occurrence. Hence, instead of two N -word-arguments
in the new list of non-l-arguments, one may have a single maximal N -word occurrence. In the
example from Figure 7.17(a), this would be the case if the first argument of the DNA expression were
α1 instead of 〈l α1〉. We may have an analogous situation with the last argument of Ei and the
argument succeeding Ei.

7.3 Detailed implementation and complexity of the algorithm 121

The only exception is line 9′ of the recursive function. There, we substitute an l-
expression E = 〈l E1〉, where E1 is a minimal ↑-expression or ↓-expression, by the result
of (precisely) procedure MakelExprMinimal. If, for example, E1 is an ↑-expression, then
the result may also be an ↑-expression E ′ = 〈↑ 〈l α1〉 . . . 〈l αm〉〉 for some m ≥ 2 and
N -words α1, . . . , αm. If E is not the entire DNA expression and its parent operator
is ↑ or ↓, then E ′ should be inserted into the list of non-l-arguments of the parent
operator.

There are ways to do this in constant time, but we may as well omit it. Suppose
that we omit it, like we do in Figure 7.17(c). We examine what the next step of the
algorithm is, after substituting E by E ′.

MakeMinimal had been called recursively for E (as expression-argument of a larger
DNA expression) in line 15′. If the parent operator of E is ↓, then according to lines
16′–18′, the next step of the algorithm is to substitute E ′ (which is not alternating)
by the result of procedure Denickify, which is the nick free l-expression 〈l α1 . . . αm〉.
If, on the other hand, the parent operator is ↑, then according to lines 22′–24′, the
next step of the algorithm is to substitute E ′ by its l-arguments 〈l α1〉 , . . . , 〈l αm〉,
as in Figure 7.17(d). In both cases, it does not hurt that E ′ was not in the list of
non-l-arguments of its parent operator. It is substituted by only l-arguments, after
all.

We conclude that for every operation performed on E, we can (sufficiently) update
the lists of non-l-arguments in constant time. Hence, if the total number of operations
performed by the algorithm is in O(|E|), then so is the time spent on updating these
lists.

In procedure MakelExprMinimal, both the ↓-arguments and theN -word-arguments
are substituted ‘in some order’. Hence, the order of the non-l-arguments in the lists
is not important. It is, however, natural to have the arguments in the order of their
occurrence in the DNA expression. This property can easily be achieved. In fact, it is
very natural to implement the initialization and updatings of the lists in such a way,
that the lists always have this property.

Example 7.31 In Example 7.29, we defined a series of DNA expressions E1, E2, E3, . . .,
for which the function MakeMinimal spent at least quadratic time in procedure MakelExpr-
Minimal. This complexity was based on the assumption that for p ≥ 1, all p + 2
arguments of the ↑-expression

E ′
2p =

〈
↑ 〈l αα〉 . . . 〈l αα〉︸ ︷︷ ︸

p times

〈l α〉α

〉

have to be examined to see if they are ↓-arguments orN -word-arguments. This requires
time that is linear in p.

Now that we have a list of non-l-arguments for each occurrence of ↑ or ↓, we can
do better. We can simply traverse the list of the outermost operator ↑ of E ′

2p. Because
the only element of this list is the last argument α of E ′

2p, this requires constant time.

We prove that the current features of the datastructure are indeed sufficient to execute
procedure MakelExprMinimal efficiently. For this proof and a later proof, we need
some additional notation:

122 Ch. 7 An Algorithm for Minimality

Definition 7.32 Let E be an arbitrary DNA expression.

• nα(E) is the number of maximal N -word occurrences in E.

• nαl(E) is the number of maximal N -word occurrences in E for which the parent
operator is an occurrence of l.

• nα↑↓(E) is the number of maximal N -word occurrences in E for which the parent
operator is an occurrence of either ↑ or ↓.

• nN↑↓(E) is the number of N -letters occurring in E, for which the parent operator
(of the maximal N -word occurrence that the N -letter is part of) is an occurrence
of either ↑ or ↓.

Let X be an arbitrary formal DNA molecule.

• n↑↓(X) is the number of single-stranded components of X.

Note the difference between nα↑↓(E) and nN↑↓(E): nα↑↓(E) denotes the number of
certain maximalN -word occurrences, whereas nN↑↓(E) denotes their total length. Note
also that in Definition 4.5, we introduced the notation nl(X), for the number of double
components of a formal DNA molecutle X. The notation n↑↓(X) is the natural variant
for single-stranded components. Obviously, for each DNA expression E, nα(E) =
nαl(E) + nα↑↓(E) and nα↑↓(E) ≤ nN↑↓(E).

Example 7.33 Let E be the DNA expression E∗
1 from (7.1) and let X = S(E) (see

Figure 7.2). Then

nα(E) = 23,

nαl(E) = 13,

nα↑↓(E) = 10,

nN↑↓(E) = |α1|+ |α3|+ |α5|+ |α7|+ |α10|+ |α12|+ |α16|+ |α18|+ |α21|+ |α23|,

n↑↓(X) = 6.

Lemma 7.34 Let E∗
1 be an arbitrary DNA expression. The total time that the function

MakeMinimal applied to E∗
1 spends in procedure MakelExprMinimal is in O(|E∗

1 |).

Proof: Let Es = 〈l E1〉 be an l-expression whose argument E1 is a minimal ↑-
expression, and let us apply procedure MakelExprMinimal to Es. We first analyse the
time required for this single application of the procedure. We will use the outcome of
this analysis to prove the claim about the total time spent in the procedure during the
execution of MakeMinimal for E∗

1 .
The main part of procedure MakelExprMinimal consists of the two for-loops. The

other instructions of the algorithm require constant time. We assume that we have a
list containing the non-l-arguments of E1.

Clearly, if E1 does not have any non-l-argument, then also the for-loops require
constant time. In that case, the total time spent in procedure MakelExprMinimal for
Es is constant.

7.3 Detailed implementation and complexity of the algorithm 123

Now, assume that E1 has at least one non-l-argument. We prove that the number
of non-l-arguments is at most nN↑↓(E

s). 5

By Corollary 6.2, the arguments of E1 are N -words α1,i, or l-expressions 〈l α1,i〉
for N -words α1,i, or ↓-expressions. In particular, the non-l-arguments are N -words
α1,i and ↓-expressions. By Lemma 6.3, the expression-arguments of E1 are nick free.

For each N -word-argument α1,i of E1, the parent operator is ↑. Hence, this ar-
gument contributes its length |α1,i| ≥ 1 to nN↑↓(E

s). By definition, an l-argument
〈l α1,i〉 of E1 does not contribute at all to nN↑↓(E

s). Finally, each ↓-argument E1,i of
E1 contributes nN↑↓(E1,i) to nN↑↓(E

s). As all occurrences of N -letters in Es are in
arguments of E1, we have

nN↑↓(E
s) =

∑

N -words α1,i

|α1,i|+
∑

↓-expr. E1,i

nN↑↓(E1,i). (7.26)

Consider a ↓-argument E1,i of E1. E1,i is in particular a proper DNA subexpression of
E1. Hence, by Lemma 6.17(4), it has at least one N -word-argument α. Because the
parent operator of this N -word-argument is ↓, nN↑↓(E1,i) ≥ |α| ≥ 1. This implies that
nN↑↓(E

s) is an upper bound for the number of non-l-arguments of E1.
Because there is a list of the non-l-arguments of E1, the time needed to just it-

erate along all ↓-arguments and N -word-arguments is linear in the number of non-l-
arguments, which thus is in O(nN↑↓(E

s)).
We now examine the operations performed for the non-l-arguments.

• Let E1,i be a ↓-argument of E1. In line MlM.5, we substitute E1,i by
〈
l αE1,i

〉
.

For this, we first have to determine αE1,i
. We prove that we can do this in time

that is in O(nN↑↓(E1,i)).

We can determine αE1,i
by traversing E1,i from left to right, skipping the operators

and the brackets, and linking the maximal N -word occurrences we encounter.
Those maximalN -word occurrences that have (an occurrence of) ↓ as their parent
operator, must be complemented first, before they are added to αE1,i

. For the
moment, however, we ignore these complementations.

Each operator occurring in E1,i corresponds to a DNA subexpression of E1,i.
This DNA subexpression is a proper DNA subexpression of E1. Hence, by
Lemma 6.17(4) the total number of operators occurring in E1,i is limited by the
number of maximal N -word occurrences in E1,i, which we denote by nα(E1,i).

As for the maximal N -word occurrences themselves, recall that we can step di-
rectly from the beginning of a maximalN -word occurrence to the end. Therefore,
the upper bound on the number of operators implies that the total time required
for traversing E1,i from left to right, skipping the operators and the brackets, and
linking maximal N -word occurrences is linear in nα(E1,i).

We now relate nα(E1,i) (the total number of maximal N -word occurrences in
E1,i) to nα↑↓(E1,i) (the maximal N -word occurrences with parent operator ↑ or
↓). Consider an arbitrary minimal, nick free ↑-expression or ↓-expression E,

5Under the natural assumption that eachN -word-argument of E1 is a maximalN -word occurrence,
we could easily derive a tighter upper bound on the number of non-l-arguments, viz nα↑↓(E

s). How-
ever, this would not be sufficient as an upper bound for the total time spent in the call of procedure
MakelExprMinimal for Es. As we will see later in the proof, we have to determine the elementwise

complement of maximal N -word occurrences with parent operator ↓. We cannot do this in time in
O(nα↑↓(E

s)). We come back to this in § 7.4.

124 Ch. 7 An Algorithm for Minimality

and let X = S(E). By Summary 6.12, X contains at least one single-stranded
component and E is constructed according to Theorem 5.12. It is not difficult
to prove by induction on the lower of B↑(X) and B↓(X), that there is a 1–1
correspondence between components of X and maximal N -word occurrences in

E. Each upper component
(
αi

−

)
(or lower component

(
−
αi

)
or double component(

αi

c(αi)

)
) for an N -word αi corresponds to a maximal N -word occurrence αi whose

parent operator is ↑ (or ↓ or l, respectively).

This holds in particular for the minimal, nick free ↓-expression E1,i. Let X1,i =
S(E1,i). Then

nα↑↓(E1,i) = n↑↓(X1,i) ≥ 1,

nαl(E1,i) = nl(X1,i).

Because, by Corollary 2.9, double components and single-stranded components
alternate in X1,i, we have

nl(X1,i) ≤ n↑↓(X1,i) + 1 ≤ 2 · n↑↓(X1,i).

Combining the above equations, we find that

nα(E1,i) = nα↑↓(E1,i) + nαl(E1,i)

= nα↑↓(E1,i) + nl(X1,i)

≤ nα↑↓(E1,i) + 2 · n↑↓(X1,i)

= 3 · nα↑↓(E1,i).

In words: the total number of maximal N -word occurrences in E1,i is at most
3 times the number of maximal N -word occurrences in E1,i with parent opera-
tor ↑ or ↓. This implies that the time required for traversing E1,i from left to
right, skipping the operators and the brackets, and linking maximal N -word oc-
currences is linear in nα↑↓(E1,i). Because nα↑↓(E1,i) ≤ nN↑↓(E1,i), this time is in
O(nN↑↓(E1,i)).

We finally examine the time required for complementing the maximal N -word
occurrences in E1,i that have ↓ as their parent operator. Clearly, these maximal
N -word occurrences contain at most nN↑↓(E1,i) N -letters. Moreover, it does
not really cost time to find these maximal N -word occurrences: we encounter all
maximal N -word occurrences anyway while traversing E1,i from left to right, and
it is not difficult to keep track of their parent operators (a stack of operators that
are currently ‘active’ is sufficient). This implies that the additional time needed
to determine the elementwise complements of the maximal N -word occurrences
with parent operator ↓ is in O(nN↑↓(E1,i)).

We conclude that the time required for determining αE1,i
is in O(nN↑↓(E1,i)).

Having determined αE1,i
, we can substitute E1,i by

〈
l αE1,i

〉
in constant time.

Hence, the total time requirement for line MlM.5 is also in O(nN↑↓(E1,i)).

• Let α1,i be an N -word-argument of E1. In lines MlM.8–MlM.17 of procedure
MakelExprMinimal, we substitute α1,i (possibly together with a preceding and a

7.3 Detailed implementation and complexity of the algorithm 125

succeeding l-argument) by a new l-argument. We can do this in constant time.
Hence, we can certainly do this in time that is in O(|α1,i|).

Recall that if E1 is not an ↑-expression, but a ↓-expression, then we must com-
plement the N -word-argument α1,i, before we make it (part of) the argument of
l. Determining the elementwise complement of αi,1 requires time that is linear
in |α1,i|. Also in this case, the total time required for the substitution of αi,1 is
in O(|α1,i|).

When we combine the time requirements for the operations on the two types of argu-
ments, we find that the total time required for the operations on all non-l-arguments
is in

∑

↓-expr. E1,i

O(nN↑↓(E1,i)) +
∑

N -words α1,i

O(|α1,i|).

By (7.26), this is in O(nN↑↓(E
s)). Hence, the total time spent in procedure MakelExpr-

Minimal for the case that E1 has at least one non-l-argument is in O(nN↑↓(E
s)).

For the general case (E1 with or without non-l-arguments), the time spent in the
procedure is in O(1 + nN↑↓(E

s)). The resulting DNA expression Es′ is equal either to
〈l α1,1〉 for an N -word α1,1, or to 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉 for some m ≥ 2 and N -words
α1,1, . . . , α1,m. In both cases, nN↑↓(E

s′) = 0. Now, let E be the overall ‘working DNA
expression’ of the algorithm. When we substitute Es in E by Es′, nN↑↓(E) decreases
by an amount of nN↑↓(E

s).

When we use function MakeMinimal to determine an equivalent, minimal DNA
expression for the original DNA expression E∗

1 , there may be several l-subexpressions
Es for which we apply procedure MakelExprMinimal. Let Es

1, . . . , E
s
r for some r ≥ 0

be all these l-subexpressions. For h = 1, . . . , r, we spend O(1 + nN↑↓(E
s
h)) time in

procedure MakelExprMinimal, and as a result nN↑↓(E) decreases by nN↑↓(E
s
h). The

total time spent in the procedure is in

O(1 + nN↑↓(E
s
1)) + · · ·+O(1 + nN↑↓(E

s
r)),

which is in

O(r + nN↑↓(E
s
1) + · · ·+ nN↑↓(E

s
r)).

In the course of the algorithm, we also perform other operations on DNA subex-
pressions of E. It is easily verified that none of these operations changes the parent op-
erator of any N -word α occurring in E. In particular, none of them increases nN↑↓(E).
Hence, the sum of the decreases of nN↑↓(E) caused by the application of procedure
MakelExprMinimal to Es

1, . . . , E
s
r is bounded by the initial value of nN↑↓(E):

nN↑↓(E
s
1) + · · ·+ nN↑↓(E

s
r) ≤ nN↑↓(E

∗
1).

But then the total time spent in procedure MakelExprMinimal is in O(r + nN↑↓(E
∗
1)).

It follows directly from lines 5′–10′ of MakeMinimal, that r is bounded by the number
of recursive calls of MakeMinimal. It is not hard to prove by induction that this number
(including the call for E∗

1 itself) equals the number of operators occurring in E∗
1 , which

is in O(|E∗
1 |). By definition, nN↑↓(E

∗
1) is also in O(|E∗

1 |). We conclude that the total
time spent in procedure MakelExprMinimal while executing function MakeMinimal for
E∗

1 is in O(|E∗
1 |).

126 Ch. 7 An Algorithm for Minimality

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 ↑ 〈 lα6 〉 〈 lα7 〉α8 〉 〈 ↑ 〈 lα9 〉 〈 lα10〉 〉 〉�� � �
 	 � �
 	� �� �� �
(a)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 lα6 〉 〈 lα7 〉α8〈 ↑ 〈 lα9 〉 〈 lα10〉 〉 〉�� � �
 	� �� �� �
(b)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 lα6 〉 〈 lα7 〉α8〈 lα9 〉 〈 lα10〉 〉��� �� �� �� �
(c)

Figure 7.18: Fourth feature of the datastructure used in the implementation of the
algorithm for minimality. Each occurrence of ↑ or ↓ has a circular, doubly-linked list of
its consecutive expression-arguments. (a) The lists for an example DNA expression. (b)
The result after substituting the ↑-subexpression 〈↑ 〈l α6〉 〈l α7〉α8〉 by its arguments.
(c) The result after substituting the ↑-subexpression 〈↑ 〈l α9〉 〈l α10〉〉 by its arguments.

This completes the proof of Lemma 7.34.

By introducing lists of non-l-arguments, we have managed to spend at most linear
time in procedure MakelExprMinimal of our rewriting algorithm. We now add a fourth
feature to our datastructure to achieve the same result for procedure Denickify. For
each occurrence of ↑ or ↓ in E, we maintain a circular, doubly-linked list of its consec-
utive expression-arguments. To be more precise: for each expression-argument ε̂j of
the operator, which is preceded by another expression-argument ε̂j−1, the list contains
the position of the first letter of ε̂j (which is an opening bracket). In Figure 7.18(a),
we show the lists for all occurrences of ↑ and ↓ in an example DNA expression.

The time needed to initialize these new lists for all occurrences of ↑ and ↓ in a DNA
expression E is linear in |E|. After any basic operation performed on E, the lists can
be updated in constant time.

As an example, we again consider line 23′ of MakeMinimal, where we substitute an
↑-argument Ei of an ↑-expression by its own arguments. Let Ei = 〈↑1 εi,1 . . . εi,ni

〉 for
some ni ≥ 1 and N -words and DNA expressions εi,1, . . . εi,ni

. In principle, we can just
remove Ei from the list of consecutive expression-arguments of its parent operator ↑0
(if it is in that list) and insert the list of consecutive expression-arguments of Ei into
that list. The borders of Ei, however, require a special treatment.

Assume, for example, that the ↑-argument Ei is preceded by another expression-
argument Ei−1. Then (the opening bracket of) Ei is in the list of consecutive expression-
arguments of ↑0. After the substitution, Ei−1 is succeeded by the first argument εi,1 of
Ei. If εi,1 is an N -word, then Ei−1 is no longer succeeded by an expression-argument.
Hence, the parent operator ↑0 loses a pair of consecutive expression-arguments. If, on
the other hand, εi,1 is a DNA expression, then it takes over the role of Ei. Whereas
εi,1 was not in the list of consecutive expression-arguments of ↑1 (because it was not
preceded by any argument in Ei), it must be inserted into the list of ↑0. Similar
situations may occur if Ei is succeeded by another expression-argument Ei+1. This
description is illustrated by Figure 7.18(b).

In the above, either Ei or Ei+1 (or both) used to be in the list of consecutive

7.3 Detailed implementation and complexity of the algorithm 127

expression-arguments of ↑0. In that case, it is natural and easy to insert the list of
consecutive expression-arguments of ↑1 into the list of ↑0 at the position corresponding
to Ei. If, however, Ei is neither preceded, nor succeeded by an expression-argument,
then we should first determine this position. There are ways to do this in constant time,
but we may as well omit it. In fact, we may insert the list of consecutive expression-
arguments of ↑1 anywhere into the list of ↑0, because in procedure Denickify, the
order in which we select pairs of consecutive expression-arguments is not specified.
By Theorem 7.24(3), the result of the procedure is completely independent of this
order. In Figure 7.18(c), we have arbitrarily inserted the l-argument 〈l α10〉 (which
is preceded by another expression-argument), at the end of the list of consecutive
expression-arguments of the outermost operator ↑.

Although we have to distinguish a number of cases to update the lists of consecutive
expression-arguments after substituting the ↑-argument Ei by its own arguments, we
can still do this in constant time.

For the other operations we perform in the course of the algorithm, updating these
lists is relatively easy. A number of operations simply consist of substituting one DNA
subexpression by another, which does not really affect the occurrence of consecutive
expression-arguments. As we observed in the proof of Theorem 7.27, in procedure
RotateToMinimal, we deal with DNA expressions for which each occurrence of ↑ or ↓
is alternating. For those operators, the lists are and remain empty.

We can use the lists of consecutive expression-arguments also to check if a DNA
expression Ei or E is alternating, in lines 16′ and 32′ of MakeMinimal, respectively. This
is the case, if and only if the list of consecutive expression-arguments of the outermost
operator is empty. We can check this in constant time.

Example 7.35 In Example 7.30, we defined a series of DNA expressions E1, E2, E3, . . .,
for which the function MakeMinimal spent at least quadratic time in procedure Denickify.
This complexity was based on the assumption that for p ≥ 1, all 2p + 2 arguments of
the ↑-expression

E ′
2p =

〈
↑ 〈l αα〉α . . . 〈l αα〉α︸ ︷︷ ︸

p times

〈l α〉 〈l α〉

〉
.

have to be examined to see if there are consecutive expression-arguments. This requires
time that is linear in p.

Now that we have a list of consecutive expression-arguments for each occurrence of
↑ or ↓, we can do better. We can simply traverse the list of the outermost operator ↑
of E ′

2p. Because the only element of this list is the last argument 〈l α〉 of E ′
2p (which

is preceded by another argument 〈l α〉), this requires constant time.

We now prove that the lists of consecutive expression-arguments indeed enable us to
execute procedure Denickify efficiently.

Lemma 7.36 Let E∗
1 be an arbitrary DNA expression. The total time that the function

MakeMinimal applied to E∗
1 spends in procedure Denickify is in O(nα(E

∗
1)), which is

in O(|E∗
1 |).

Proof: Let Ei be a minimal ↓-expression which is not alternating, and let us apply
procedure Denickify to Ei. We first analyse the time required for this single appli-
cation of the procedure. We will use the outcome of this analysis to prove the claim

128 Ch. 7 An Algorithm for Minimality

about the total time spent in the procedure during the execution of MakeMinimal for
E∗

1 .
The main part of procedure Denickify is formed by the while-loop. The other

instructions of the procedure require constant time. We assume that we have a list
containing the consecutive expression-arguments of Ei.

At the beginning of each iteration of the while-loop, we test the condition “Êi is not
alternating.” This is the case, if and only if the list with the consecutive expression-
arguments is not empty. We can test this in constant time.

In each iteration of the while-loop, we select two consecutive expression-arguments
ε̂j−1 and ε̂j of the ‘working DNA expression’ Êi, and substitute ε̂j−1ε̂j in Êi by a single
expression-argument. Again, because we have a list with the consecutive expression-
arguments, we can perform the selection of ε̂j−1 and ε̂j in constant time. For the
substitution, we have to distinguish four different cases. Both the distinction of these
cases and the subsequent substition can be carried out in constant time. Consequently,
each iteration of the while-loop requires constant time, and the total time spent in the
while-loop is linear in the number of iterations.

Let us use niter(Ei) to denote this number of iterations. Then the time spent in
procedure Denickify for Ei (outside and inside the while-loop) is in O(1 + niter(Ei)).
As Ei is not alternating, niter(Ei) ≥ 1. Hence, the time spent in the procedure for Ei

is in O(niter(Ei)). In fact, because niter(Ei) also provides a lower bound, the time is
linear in niter(Ei).

In the course of the execution of MakeMinimal for E∗
1 , procedure Denickify may

be applied to several different DNA subexpressions Ei. If we use niter(E
∗
1) to denote

the total number of iterations of the while-loop in the procedure during all these ap-
plications, then the total time spent in the procedure is linear in niter(E

∗
1).

It is immediate from the pseudo-code of procedure Denickify that the substitution
performed in an iteration of the while-loop leads to a decrease of the number of maximal
N -word occurrences in Êi by 1. Of course, this corresponds to an equal decrease of
the number of maximal N -word occurrences in the overall ‘working DNA expression’
E, which we denote by nα(E).

Now, it is easily verified that at no point in the algorithm, nα(E) increases.6 Hence,
niter(E

∗
1) ≤ nα(E

∗
1). This implies that the total time spent in procedure Denickify is

in O(nα(E
∗
1)). Obviously, nα(E

∗
1) is in O(|E∗

1 |).

By now, we know the time requirements of procedures MakelExprMinimal and
Denickify. There is one more point we like to make before we determine the total
time complexity of the function MakeMinimal.

The (only) parameter of MakeMinimal is a DNA expression E. When we (recur-
sively) call the function for an expression-argument Ei of E, we do not have to explicitly
copy this expression-argument as a sequence of individual characters into the actual
parameter of the call. It is sufficient to pass the starting position of Ei (the position
of its opening bracket) to the call. This implies that both the time needed to set the
actual parameter and the space required to store it are constant for a single call.

Actually, we should have addressed this issue also when we analysed the time re-
quirements of the procedures MakelExprMinimal and Denickify. The fact that we

6If in procedure MakelExprMinimal, we allow N -word-arguments of E1 that are not maximal N -
word occurrences, then nα(E) may temporarily increase. However, at the end of that procedure, nα(E)
cannot be higher than at the beginning. For example, if E1 = 〈↑ α1,1α1,2 〈l α1,3〉〉, then 〈l E1〉 may be
successively rewritten into 〈l 〈↑ 〈l α1,1〉α1,2 〈l α1,3〉〉〉, 〈l 〈↑ 〈l α1,1α1,2α1,3〉〉〉 and 〈l α1,1α1,2α1,3〉.

7.3 Detailed implementation and complexity of the algorithm 129

ignored it there, does not mean that Lemma 7.34 and Lemma 7.36 are not valid. For
both procedures, as with MakeMinimal, the time needed to set the actual parameter
(a DNA expression) can be considered constant. In the proofs of both lemmas, we can
simply include this constant time in the time required by the instructions outside the
loop(s). The proofs can then proceed in the same way.

We now establish the time complexity of MakeMinimal.

Theorem 7.37 Let E∗
1 be an arbitrary DNA expression. The time required by the

function MakeMinimal for E∗
1 is in O(|E∗

1 |).

Proof: For an arbitrary DNA expression E, let us use TCM(E) to denote the time re-
quired by MakeMinimal for E, except the time spent in procedures MakelExprMinimal
and Denickify. We prove that TCM(E) is in O(|E|). Then the claim follows from
Lemma 7.34 and Lemma 7.36.

To analyse TCM(E), we define three positive constants that are upper bounds for
the time spent in specific parts of MakeMinimal:

c1 is the maximum time required by MakeMinimal for an l-expression E, except the
time spent in recursive calls of the function and the time spent in procedure
MakelExprMinimal.

Hence, c1 is the maximum time required for setting the actual parameter E in
line 1′ and executing lines 3′–11′ and 36′ of the function, except the recursive call
in line 5′ and procedure MakelExprMinimal in line 9′.

c2 is the maximum time required by MakeMinimal for an ↑-expression E, except the
time spent for each of its n arguments ε1, . . . , εn.

Hence, c2 is the maximum time required for setting the actual parameter E in
line 1′ and executing lines 3′, 12′, 27′–36′ and the initialization of the for-loop in
line 13′ of the function.

c3 is the maximum time spent in MakeMinimal on an argument εi of an ↑-expression
E, except the time spent in recursive calls of the function and the time spent in
procedure Denickify.

Hence, c3 is the maximum time required for executing lines 14′–26′ and the itera-
tion in line 13′ of the function, except the recursive call in line 15′ and procedure
Denickify in line 17′.

It follows from the observations made after the introduction of the first two features
and the fourth feature of our datastructure (on pages 117 and 127, respectively) and
from the observation about passing the parameter for a (recursive) call of MakeMinimal
(on page 128), that c1, c2 and c3 are indeed constants. They do not depend on, e.g.,
the nesting level, the question whether or not a DNA expression is alternating, or the
number of arguments of a particular DNA expression E.

Note that for most DNA expressions E, we spend less time in MakeMinimal than
specified by the three constants. For example, the constant c1 for l-expressions E is
based on the case that E = 〈l E1〉 for a DNA expression E1. If, however, E = 〈l α〉
for an N -word α, then we do not have to carry out lines 5′–10′, and thus need much
less time.

Now, let the constant c∗ be defined by

c∗ = max

{
c1
3
,
c2 + c3

3
, c3

}
.

130 Ch. 7 An Algorithm for Minimality

We prove by induction on the number p of operators occurring in E, that TCM(E) ≤
c∗ · |E| − c3. Here, we subtract c3, to be prepared for the additional constant time
required for every argument of an ↑-expression E. 7 We will come back to this later.
Although we may assume that N -word-arguments of an ↑-expression or ↓-expression
are maximal N -word occurrences, we do not make that assumption in the proof.

• Assume that p = 1. Then E can only have N -word-arguments, and we do not
have recursive calls of MakeMinimal.

If E is an l-expression, then E = 〈l α1〉 for an N -word α1 and TCM(E) ≤ c1.
Clearly, |E| ≥ 4. We now distinguish two (overlapping) subcases. If c1 ≥ 3c3,
then

TCM(E) ≤ c1 = c1 + c3 − c3 ≤
4

3
c1 − c3 ≤ 4c∗ − c3 ≤ c∗ · |E| − c3,

where the third inequality follows from c∗ ≥ c1
3
. If, on the other hand, c1 ≤ 3c3,

then

TCM(E) ≤ c1 ≤ 3c3 = 4c3 − c3 ≤ 4c∗ − c3 ≤ c∗ · |E| − c3,

where the third inequality follows from c∗ ≥ c3.

If E is an ↑-expression, then E = 〈↑ α1 . . . αn〉 for some n ≥ 1 and N -words
α1, . . . , αn. In this case, |E| ≥ n+ 3 and

TCM(E) ≤ c2 + n · c3 ≤ 3c∗ − c3 + n · c∗ ≤ c∗ · |E| − c3,

where the second inequality follows from c∗ ≥ c2+c3
3

(which is equivalent to c2 ≤
3c∗ − c3) and c∗ ≥ c3.

If E is a ↓-expression, then the proof is completely analogous.

• Let p ≥ 1, and suppose that TCM(E) ≤ c∗ · |E| − c3 for all DNA expressions E
containing at most p operators (induction hypothesis). Now let E be a DNA
expression that contains p+ 1 operators.

If E is an l-expression, then E = 〈l E1〉 for a DNA expression E1. We get a
recursive call of MakeMinimal for E1, in line 5′ of the function. Hence, TCM(E) ≤
c1 + TCM(E1). Because E1 contains p operators, we can apply the induction
hypothesis to it:

TCM(E) ≤ c1 + TCM(E1) ≤ c1 + c∗ · |E1| − c3

≤ c∗ · (|E1|+ 3)− c3 = c∗ · |E| − c3,

where the third inequality follows from c∗ ≥ c1
3
.

If E is an ↑-expression, then E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and
DNA expressions ε1, . . . , εn. We examine the time spent in MakeMinimal on an

7The reader who is familiar with amortized complexity may view this as a kind of amortization:
a certain part of the time spent on the arguments of an ↑-expression (c3 per argument) is accounted
for by the individual arguments.

7.3 Detailed implementation and complexity of the algorithm 131

argument εi with 1 ≤ i ≤ n. If εi is an N -word αi, then the time spent on this
argument is bounded by

c3 ≤ c∗ ≤ c∗ · |αi|,

because obviously |αi| ≥ 1. If, on the other hand, εi is a DNA expression Ei,
then we have a recursive call of MakeMinimal for Ei, in line 15′ of the function.
Hence, the time spent on this argument is bounded by c3+TCM(Ei). Because Ei

contains at most p operators, the induction hypothesis is applicable to it. This
implies that the time spent on Ei is bounded by

c3 + TCM(Ei) ≤ c3 + c∗ · |Ei| − c3 = c∗ · |Ei|.

Note that here we benefit from the term −c3 in the upper bound for TCM(E).

We conclude that both if εi is an N -word αi and if it is a DNA expression Ei,
we spend at most c∗ · |εi| time on it, apart from procedures MakelExprMinimal
and Denickify. Then

TCM(E) ≤ c2 + c∗ · (|ε1|+ · · · |εn|)

≤ 3c∗ − c3 + c∗ · (|ε1|+ · · · |εn|) = c∗ · |E| − c3,

where the second inequality follows from c∗ ≥ c2+c3
3

.

If E is a ↓-expression, then the proof is completely analogous.

At the beginning of this section, we observed that the function MakeMinimal re-
quires at least linear time. Combining this with Theorem 7.37, we obtain the following
result:

Corollary 7.38 Let E∗
1 be an arbitrary DNA expression. The time required by the

function MakeMinimal for E∗
1 is linear in |E∗

1 |.

It is not hard to see that the datastructure we propose to achieve this time complexity,
has linear size. For each letter (symbol) in the DNA expression, we need to store (at
most) a constant number of references to other letters.

For example, for the first feature of the datastructure, the doubly-linked list contain-
ing the entire DNA expression, we need two references per letter: one to the preceding
and one to the succeeding letter. For the other three features, the space required de-
pends on the DNA expression at hand. It may be much less than linear, but a single,
simple example suffices to demonstrate that each of these features may really require
linear space.

Example 7.39 Let α be an arbitrary N -word, and let Ep be defined by

Ep =

〈
↑ 〈↑ α〉 〈↑ α〉 . . . 〈↑ α〉︸ ︷︷ ︸

p times

〉
(p ≥ 1).

It is easy to see that for any p ≥ 1, Ep is a DNA expression, with |Ep| = 3+p·(3+|α|) =

3 + 3p+ p · |α| and S(Ep) =
(
α
−

)(
α
−

)
. . .

(
α
−

)
︸ ︷︷ ︸

p times

. In addition, for any p ≥ 1,

132 Ch. 7 An Algorithm for Minimality

• Ep contains p + 1 pairs of matching brackets. Hence, the second feature of the
datastructure requires p+1 connections (in both directions) between an opening
bracket and the corresponding closing bracket.

• Ep contains p occurrences of the N -word α (in fact, maximal N -word occur-
rences), each of which serves as the argument of an operator ↑. Hence, the
second feature of the datastructure requires p connections (in both directions)
between the first letter and the last letter of such an N -word-argument.

• the outermost operator ↑ of Ep has p arguments 〈↑ α〉, which are, in particu-
lar, non-l-arguments. Hence, the third feature of the datastructure requires a
circular, doubly-linked list for this operator containing these p arguments.

• Ep contains p inner occurrences of the operator ↑. Each of these inner occurrences
has an N -word-argument α, which is, in particular, a non-l-argument. Hence,
the third feature of the datastructure requires p circular, doubly-linked lists for
these operators, each containing the corresponding N -word-argument.

• the outermost operator ↑ of Ep has p arguments 〈↑ α〉, which are, in particular,
consecutive expression-arguments. Hence, the fourth feature of the datastructure
requires a circular, doubly-linked list for this operator containing the last p − 1
arguments (each of which is the second of two consecutive expression-arguments).

Each of the specified sets of connections or doubly-linked lists requires space that is
linear in p, and thus in |Ep|.

As we mentioned before the statement of Theorem 7.37 (on page 128), a single call of the
function MakeMinimal requires constant space to pass the (only) parameter, the DNA
expression E. The function is called recursively once for every DNA subexpression of
E∗

1 , i.e., once for every operator occurring in E∗
1 . Hence, the total space required for

passing the parameter for all recursive calls is at most linear in |E∗
1 |.

We can therefore conclude:

Theorem 7.40 Let E∗
1 be an arbitrary DNA expression. The space required by the

function MakeMinimal for E∗
1 is linear in |E∗

1 |.

Hence, both the time complexity and the space complexity of the function are linear.

7.4 Decrease of length by the algorithm

In the previous section, we proved that the total time required by the function Make-

Minimal is linear in the length of its argument E. We first observed that we need at
least linear time, because we must in principle consider every letter of E. That is,
we must simply read E. We subsequently introduced a proper datastructure, which
can be initialized in linear time. We proved that with this datastructure, we can
perform all rewriting steps in the function (together) in O(|E|) time. Our analysis
did not differentiate between DNA expressions which are close to minimal and DNA
expressions which are far from minimal.

Now, we choose a different approach. We ignore the time needed to read E and
to initialize the datastructure. We focus on the actual rewriting steps, and prove that
the time they require is proportional to the improvements they produce, i.e., to the

7.4 Decrease of length by the algorithm 133

decrease of |E| resulting from them. For this, however, we need to make an assumption
about E, and to slightly adjust one of the rewriting steps.

So far, in the analysis of our algorithm, we allowed occurrences of operators ↑ and
↓ in E to have consecutive N -word-arguments. That is, we did not assume N -word-
arguments to be maximal N -word occurrences in E. We sometimes mentioned the
possibility to make such an assumption, but we did not need it to prove that the
algorithm is correct and that it runs in linear time. By Theorem 2.13, however, we can
make the assumption without loss of generality.

The adjustment of the algorithm deals with complementing N -words. In the proof
of Lemma 7.34, we observed that in procedure MakelExprMinimal, we may have to
determine the elementwise complement of an N -word α. This requires time that is
linear in |α|. Instead of doing this, we can also mark the N -word as a whole, to
indicate that it has to be complemented. For example, we can label its first letter and
last letter, as if we write “c(α)”. 8 That requires constant time.

Note that the issue whether or not the N -word-arguments of an operator are max-
imal N -word occurrences may have consequences for the (number of) steps to be per-
formed in procedure MakelExprMinimal. However, the result of the procedure does
not depend on it. It is not hard to verify this from the pseudo-code of the procedure
directly. It also follows from the observation in the proof of Theorem 7.20(2), that
there exists exactly one minimal DNA expression E ′ with the desired semantics.

For the other operations performed in the course of the algorithm, it does not
matter at all whether or not N -word-arguments are maximal N -word occurrences.
Marking N -words instead of determining their elementwise complement certainly does
not change the resulting DNA expression.

We now have

Theorem 7.41 Let E∗
1 be an arbitrary DNA expression, and let E∗

2 be the result of
applying the function MakeMinimal to E∗

1 . Assume that for each occurrence of ↑ or ↓ in
E∗

1 , each N -word-argument is a maximal N -word occurrence, and that we simply mark
the N -words that have to be complemented. Then the time required by the rewriting
steps in MakeMinimal is linear in |E∗

1 | − |E∗
2 |.

Proof: Let E be the ‘working DNA expression’ of the function MakeMinimal. In
principle, we prove that each substitution in the function corresponds to a decrease of
|E| that is proportional to the time required by the substitution. As we will see below,
there is one exception to this rule: for the substitution in line 20′, we need to combine
the effect with the effect of another substitution.

• In line 7′ of MakeMinimal, we have an l-expression E = 〈l E1〉, where E1 is a
minimal l-expression. We substitute E by E1. This requires constant time and
yields a decrease of |E| by 3.

• In line 9′ of MakeMinimal, we have an l-expression E = 〈l E1〉, where E1 is either
a minimal ↑-expression, or a minimal ↓-expression. Without loss of generality,
assume it is a minimal ↑-expression. We substitute E by the result of procedure
MakelExprMinimal.

8In this report, we often do write c(α) in a DNA expression. This is, however, only meant as a
simple notation for the elementwise complement of α. In particular, |c(α)| = |α|. Indeed, the letters
c, (and) are not in the alphabet ΣD that our language of DNA expressions is based on (see page 13).

134 Ch. 7 An Algorithm for Minimality

This substitution is a bit more involved. For its analysis, we distinguish specific
parts of procedure MakelExprMinimal, and examine how much time we spend
and how much shorter E becomes in each part. To simplify the notation, we do
not consider the length of E directly. Instead, we count (changes in) the number
of operators occurring in E. By Lemma 4.1, this number determines |E|, given
that (the number of A-letters in) the semantics of E is fixed.

– A certain part of procedure MakelExprMinimal is executed once for every
DNA expression E to which the procedure is applied. This part consists of
lines MlM.1–MlM.3, MlM.19–MlM.23, and the initializations of the two
for-loops in lines MlM.4 and MlM.7.

Let c1 and d1 be the minimum and maximum time spent in this part of the
procedure, respectively. In lines MlM.19–MlM.22, the final rewriting step
on the (total) ‘working DNA expression’

〈
l Ê1

〉
= 〈l 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉〉

is performed. As a result, we lose one (if m ≥ 2) or two (if m = 1) operators.

– Another part of the procedure is executed once for each ↓-argument E1,i

of E1. This part consists of lines MlM.5, MlM.6 and the iteration of the
for-loop in line MlM.4.

In line MlM.5, we substitute E1,i by
〈
l αE1,i

〉
. In the proof of Lemma 7.34,

we have observed that we can determine αE1,i
by traversing E1,i from left

to right, skipping operators and brackets, complementing maximal N -word
occurrences that used to have ↓ as parent operator, and linking consecutive
maximal N -word occurrences. We established that the time required for
traversing, skipping and linking is linear in nα(E1,i).

By assumption, we only mark maximal N -word occurrences that have to
be complemented. This implies that the time required for determining αE1,i

completely (including the marking of maximalN -word occurrences) is linear
in nα(E1,i). Consequently, the time spent in procedure MakelExprMinimal
on E1,i is also linear in nα(E1,i). Let c2 and d2 be positive constants such
that c2 · nα(E1,i) and d2 · nα(E1,i) are a lower bound and an upper bound
for this time, respectively.

We now examine how many operators we lose by substituting E1,i by
〈
l αE1,i

〉
.

Let us use p to denote the number of operators occurring in E1,i. We derive
an upper bound and a lower bound for p. As we observed in the proof of
Lemma 7.34, p ≤ nα(E1,i). On the other hand, let X1,i = S(E1,i). By
Corollary 6.13(2),

p = 1 + B↑(X1,i) + nl(X1,i) ≥ 1 + nl(X1,i). (7.27)

We also observed in the proof of Lemma 7.34 that

nα↑↓(E1,i) = n↑↓(X1,i), (7.28)

nαl(E1,i) = nl(X1,i) (7.29)

Now by Corollary 2.9, double components and single-stranded components
alternate in the nick free formal DNA molecule X1,i. By Lemma 6.17(6),

7.4 Decrease of length by the algorithm 135

either the first component or the last component of X1,i is a double compo-
nent. Hence, nl(X1,i) ≥ n↑↓(X1,i). Combining this with (7.27)–(7.29), we
find

p ≥ 1 + nl(X1,i) ≥ 1 +
1

2
(n↑↓(X1,i) + nl(X1,i))

= 1 +
1

2
(nα↑↓(E1,i) + nαl(E1,i)) = 1 +

1

2
nα(E1,i).

We can conclude that by substituting E1,i by
〈
l αE1,i

〉
, we lose at most

nα(E1,i)− 1 and at least 1
2
nα(E1,i) operators.

– Finally, a part of the procedure is executed once for each N -word-argument
α1,i of E1. This part consists of lines MlM.8–MlM.18 and the iteration of
the for-loops in lines MlM.4 (given that we do not have a list of ↓-arguments
of E1, but only a list of non-l-arguments) and MlM.7.

Let c3 and d3 be the minimum and maximum time spent in this part of
the procedure for a single N -word-argument, and let k ≥ 0 be the number
of N -word-arguments. By assumption, each N -word-argument of E1 is a
maximal N -word occurrence.

We examine the result of the substitution of the N -word-arguments in lines
MlM.8–MlM.17. At that point in the procedure, the only other arguments

of the ‘working ↑-subexpression’ Ê1 are l-arguments 〈l α1,i〉 for N -words

α1,i. Let us denote the number of operators occurring in Ê1 by Op(Ê1). We
distinguish three cases.

If an N -word-argument α1,i is neither preceded, nor succeeded by an l-

argument (i.e., if it is the only argument of Ê1), then α1,i is substituted

by 〈l α1,i〉. In this case, Op(Ê1) increases by 1. Otherwise, if an N -word-
argument α1,i is not preceded or not succeeded by an l-argument (i.e., if α1,i

is the first or the last argument of Ê1), then the corresponding substitution

does not affect Op(Ê1). Finally, if anN -word-argument α1,i is both preceded
and succeeded by an l-argument, then the corresponding substitution yields

a decrease of Op(Ê1) by 1.

Clearly, there are at most two N -word-arguments that are the first or the
last argument of Ê1. Hence, if k ≥ 3, then the substitution of the N -word-
arguments results in a decrease of Op(Ê1) by at least k− 2. In other words,
in that case, we lose at least k − 2 operators.

We now combine the effects of the different parts of procedure MakelExprMinimal
to compute the overall effect for an l-expression E. Let TMlM(E) be the total
time spent in the procedure for E and let δ(E) be the decrease of the number of
operators due to the substitutions in the procedure. Then

c1 + c2 ·
∑

↓-arg E1,i

nα(E1,i) + c3 · k

≤ TMlM(E) ≤ d1 + d2 ·
∑

↓-arg E1,i

nα(E1,i) + d3 · k, (7.30)

where k is (again) the number of N -word-arguments of the ↑-expression E1.

136 Ch. 7 An Algorithm for Minimality

For δ(E), we distinguish three cases, which are related to the three cases for
N -word-arguments we considered above.

If E1 does not have any expression-argument, then because itsN -word-arguments
are maximal N -word occurrences, it has only one argument, which is an N -word
α1,1. In this case,

δ(E) = 2 + 0− 1 = 1,

where the three terms correspond to the three parts of the procedure. If the ↑-
expression E1 has at least one expression-argument and k ≤ 2N -word-arguments,
then

1 +
1

2

∑

↓-arg E1,i

nα(E1,i) + 0 ≤ δ(E) ≤ 2 +
∑

↓-arg E1,i

(nα(E1,i)− 1) + k. (7.31)

Finally, if the ↑-expression E1 has at least one expression-argument and k ≥ 3 N -
word-arguments,9 then at least k− 2 ≥ 1 N -word-arguments are both preceded
and succeeded by an expression-argument, and

1 +
1

2

∑

↓-arg E1,i

nα(E1,i) + k − 2 ≤ δ(E) ≤ 2 +
∑

↓-arg E1,i

(nα(E1,i)− 1) + k.

In the first case, where E1 only has an N -word-argument α1,1, we have k = 1
and no ↓-arguments E1,i at all. Hence, the value δ(E) = 1 also satisfies (7.31).

Now, let us define the constants c∗ and d∗ by

c∗ = max

{
2

c1
,
1

c2
,
1

c3

}
and d∗ = min

{
1

d1 + 2d3
,
1

2d2

}
.

If k ≤ 2, then

δ(E) ≥ 1 +
1

2

∑

↓-arg E1,i

nα(E1,i)

≥ d∗ ·


d1 + 2d3 + d2 ·

∑

↓-arg E1,i

nα(E1,i)




≥ d∗ ·


d1 + d2 ·

∑

↓-arg E1,i

nα(E1,i) + d3 · k


 ≥ d∗ · TMlM(E),

where the second inequality follows from d∗ ≤ 1
d1+2d3

and d∗ ≤ 1
2d2

, and the last
inequality follows from (7.30). If, on the other hand, k ≥ 3, then

δ(E) ≥ 1 +
1

2

∑

↓-arg E1,i

nα(E1,i) + k − 2

≥ d∗ ·


d1 + 2d3 + d2 ·

∑

↓-arg E1,i

nα(E1,i) + d3 · (k − 2)


 ≥ d∗ · TMlM(E),

9Because the N -word-arguments are maximal N -word occurrences, E1 actually has at least k−1 ≥
2 expression-arguments.

7.4 Decrease of length by the algorithm 137

where the second inequality follows from d∗ ≤ 1
d1+2d3

, d∗ ≤ 1
2d2

and d∗ ≤ 1
d1+2d3

≤
1
d3
, and the last inequality follows from (7.30).

Further, for all cases,

δ(E) ≤ 2 +
∑

↓-arg E1,i

(nα(E1,i)− 1) + k

≤ c∗ ·


c1 + c2 ·

∑

↓-arg E1,i

(nα(E1,i)− 1) + c3 · k




≤ c∗ ·


c1 + c2 ·

∑

↓-arg E1,i

nα(E1,i) + c3 · k


 ≤ c∗ · TMlM(E),

where the second inequality follows from c∗ ≥ 2
c1
, c∗ ≥ 1

c2
and c∗ ≥ 1

c3
, and the

last inequality follows from (7.30).

We can conclude that TMlM(E) (the time spent in procedure MakelExprMinimal
for E) is linear in δ(E) (the decrease of the number of operators due to the appli-
cation of the procedure to E). Thus TMlM(E) is also linear in the corresponding
decrease of |E|. In other, less formal words: the time we spend in procedure
MakelExprMinimal is payed for with a proportional decrease of |E|.

Note that the above conclusion is valid for the application of the procedure as a
whole. As we have seen when we analysed the substitution of N -word-arguments
of E1, the substitution of an individual N -word-argument does not necessarily
yield a decrease of |E|; it may even lead to an increase of |E|.

• In line 17′ of MakeMinimal, we have an ↑-expression E, with a minimal ↓-
argument Ei that is not alternating. We substitute Ei by the result of procedure
Denickify.

In that procedure, the ‘working ↓-expression’ is denoted by Êi. As in the previous
case, we count (changes in) the number of operators occurring in Êi, rather than

examining |Êi| directly. We also use Op(Êi) to denote the number of operators

occurring in Êi.

Let TDni(Ei) be the time we spend in procedure Denickify for Ei, and let δ(Ei)
be the number of operators we lose due to the application of the procedure to Ei.

As we observed in the proof of Lemma 7.36, TDni(Ei) is linear in niter(Ei), the
number of iterations of the while-loop in lines Dni.4–Dni.19 for Ei.

We now examine δ(Ei). In every iteration of the loop, we substitute two con-

secutive expression-arguments ε̂j−1 and ε̂j of Êi by a single expression-argument.
It is easily verified from the pseudo-code of the procedure, that this results in
a decrease of Op(Êi) by 1 (if either ε̂j−1 or ε̂j is an l-expression) or 2 (if both

ε̂j−1 and ε̂j are ↑-expressions). Hence, the decrease of Op(Êi) as a result of (all
iterations of) the while-loop is linear in niter(Ei).

At the end of procedure Denickify, in lines Dni.20–Dni.26, we distinguish three
cases. If Êi has only one argument left, then we substitute Êi by this argument.
Thus, we lose one more operator. If Êi has two or more arguments, and both its
first argument and its last argument are ↑-arguments, then we substitute Êi by

138 Ch. 7 An Algorithm for Minimality

an ↑-expression Ê ′
i, which is the result of procedure RotateToMinimal. It is easy

to see from the pseudo-code of that procedure, that in this case, we also lose an
operator. Finally, if Êi has two or more arguments, and either its first argument
or its last argument is not an ↑-argument, then we do not rewrite Êi any further.

We conclude that we lose either zero or one operator in lines Dni.20–Dni.26 of
procedure Denickify. Because the original ↓-expression Ei is not alternating,
niter(Ei) ≥ 1. This implies that δ(Ei), the total number of operators we lose due
to the application of procedure Denickify (both inside and outside the while-
loop), is linear in niter(Ei).

Because TDni(Ei) is also linear in niter(Ei), TDni(Ei) is linear in δ(Ei). By Lemma 4.1,
TDni(Ei) is also linear in the corresponding decrease of |E|.

• In line 20′ of MakeMinimal, we have an ↑-expression E with a ↓-argument Ei,
such that either the first argument or the last argument of Ei is an ↑-argument.
By the recursive call in line 15′ of the function, and the possible application of
procedure Denickify in line 17′, Ei is minimal and alternating.

We substitute Ei by the result of procedure RotateToMinimal, which is an equiv-
alent, minimal ↑-expression E ′

i. Because Ei and E ′
i are equivalent and both of

them are minimal, they are equally long. Hence, the substitution itself does not
yield a decrease of |E|. However, in the next step of the function, in line 23′, the
↑-expression E ′

i is substituted by its arguments. Both substitutions for Ei require
constant time, and the total effect of the substitutions is a decrease of |E| by 3.

• In line 23′ of MakeMinimal, we have an ↑-expression E with an ↑-argument Ei.
Because Ei is not necessarily the product of the substitution in line 20′ (which
we considered in the previous case), we also consider this case separately.

We substitute Ei by its arguments. This requires constant time and yields a
decrease of |E| by 3.

• In line 29′ of MakeMinimal, we have an ↑-expression E with exactly one argument,
which is a DNA expression E1. We substitute E by E1. This requires constant
time and yields a decrease of |E| by 3.

• Finally, in line 33′ of MakeMinimal, we have an alternating ↑-expression E with
at least two arguments, such that both the first argument and the last argument
are ↓-arguments.

We substitute E by the result of (the version for ↑-expressions of) procedure
RotateToMinimal. This requires constant time. As was the case for the appli-
cation of RotateToMinimal in procedure Denickify, it is easy to see that the
substitution yields a decrease of |E| by 3.

This completes the proof of Theorem 7.41.

If a DNA expression E∗
1 is minimal, then its length is equal to that of the equivalent,

minimal DNA expression E∗
2 produced by MakeMinimal. Now Theorem 7.41 implies

that MakeMinimal spends no time on actual rewriting steps for E∗
1 . In other words, E∗

2

must be equal to E∗
1 . Thus, Theorem 7.41 yields an alternative proof for Theorem 7.12.

This conclusion does not depend on the assumptions in Theorem 7.41, that each
N -word-argument of an operator ↑ or ↓ is a maximal N -word occurrence and that we

7.4 Decrease of length by the algorithm 139

simply mark N -words that need to be complemented. As we have seen in the proof of
Theorem 7.41, each substitution we perform in MakeMinimal corresponds to a decrease
of |E|. This is also true if the assumptions are not satisfied, because, as we observed
before the theorem, the result of a substitution is independent of the assumptions. If
E is minimal already, then |E| cannot decrease, and we cannot have any substitution,
either.

Chapter 8

A Minimal Normal Form for DNA
Expressions

When we want to find out if two DNA expressions E1 and E2 are equivalent, we can do
this in a straightforward way, by computing their semantics and checking if these are
the same. It can be shown that this approach takes time that is linear in the length of
E1 and E2. This is certainly efficient.

There is also another approach, which is based on a normal form. A normal form is
a set of properties, such that for each DNA expression there is exactly one equivalent
DNA expression with these properties. If we can find the normal form versions of E1

and E2, then it is easy to decide if E1 and E2 are equivalent: this is the case, if and
only if their normal form versions are the same. This alternative approach is more
elegant, because it operates at the level of DNA expressions only. It does not refer to
the semantics, at all.

To implement this approach, we first have to decide what our normal form should
look like, i.e., what properties the DNA expressions in normal form should have. For
this, we observe that minimal DNA expressions can be considered as the ‘best’ DNA
expressions. They require the smallest number of letters to denote a formal DNA
molecule. Moreover, we know exactly what are the minimal DNA expressions for a
given formal DNA molecule (see Summary 6.12). We also have a useful characterization
of minimal DNA expressions in general (see Lemma 6.15 and Theorem 6.16). Therefore,
it would be desirable that normal form DNA expressions be minimal. In this chapter,
we will describe a normal form which achieves this goal. Because of this, we will refer
to it as the minimal normal form.

We first describe the minimal normal form in a constructive way: for each ex-
pressible formal DNA molecule, we specify how to construct the corresponding DNA
expression in minimal normal form. Next, we give a characterization of the normal
form DNA expressions, by five simple, syntactic properties. We subsequently consider
the structure trees of DNA expressions in minimal normal form. Finally, we consider
the language-theoretic complexity of the set of all DNA expressions in minimal normal
form. We give a context-free grammar generating this set and prove that that grammar
is not self-embedding. This implies that the DNA expressions in minimal normal form
constitute a regular language.

140

8.1 Definition of the minimal normal form 141

8.1 Definition of the minimal normal form

As we have seen in Chapter 5 and Chapter 6 (and especially in § 6.4), for many
formal DNA molecules, there exists more than one minimal DNA expression. Hence,
minimality alone is not sufficient to define a normal form. From among all different
minimal DNA expressions denoting the same formal DNA molecule, we have to choose
one to be the normal form DNA expression. We do this by explicitly fixing the choices
that are made in the construction of a minimal DNA expression.

First, this construction is based on lower block partitionings and upper block par-
titionings of nick free (sub)molecules, see, e.g., the overview in Summary 6.12. If these
partitionings are not unique, then the resulting DNA expression depends on the par-
titionings that we choose. Here, we make a very natural choice: we always use the
primitive lower block partitioning or upper block partitioning.

In addition, if a formal DNA molecule X is nick free, contains at least one single-
stranded component and B↑(X) = B↓(X), then there exist both minimal ↑-expressions
and minimal ↓-expressions. Here, our choice for an ↑-expression or a ↓-expression is
determined by the first single-stranded component of X. An upper component results
in an ↑-expression; a lower component results in a ↓-expression.

We thus have the following definition of the minimal normal form, where EMinNF(X)
denotes the normal form DNA expression for a formal DNA molecule X (cf. Sum-
mary 6.12):

Definition 8.1 Let X be an expressible formal DNA molecule.

1. If X =
(

α1

c(α1)

)
for an N -word α1, then EMinNF(X) = 〈l α1〉.

2. If X is nick free, contains at least one single-stranded component and B↑(X) =
B↓(X), then

(a) if the first single-stranded component of X is an upper component, then
EMinNF(X) is the minimal ↑-expression denoting X based on the primitive
lower block partitioning of X, as described in Theorem 5.12(1);

(b) if the first single-stranded component of X is a lower component, then
EMinNF(X) is the minimal ↓-expression denoting X based on the primitive
upper block partitioning of X, as described in Theorem 5.12(2).

3. If X is nick free and B↑(X) > B↓(X), then EMinNF(X) is the minimal ↑-
expression denoting X based on the primitive lower block partitioning of X, as
described in Theorem 5.12(1).

4. If X is nick free and B↓(X) > B↑(X), then EMinNF(X) is the minimal ↓-
expression denoting X based on the primitive upper block partitioning of X, as
described in Theorem 5.12(2).

5. If X contains at least one lower nick letter, then let Z1△
Z2△

. . .
△
Zm for some

m ≥ 2 be the nick free decomposition of X. For h = 1, . . . ,m, let Eh be the
operator-minimal ↑-expression denoting Zh based on the primitive lower block
partitioning of Zh, as described in Theorem 5.26. EMinNF(X) is the minimal
↑-expression denoting X based on E1, . . . , Em, as described in Theorem 5.28.

142 Ch. 8 A Minimal Normal Form for DNA Expressions

6. If X contains at least one upper nick letter, then let Z1
▽Z2

▽ . . . ▽Zm for some
m ≥ 2 be the nick free decomposition of X. For h = 1, . . . ,m, let Eh be the
operator-minimal ↓-expression denoting Zh based on the primitive upper block
partitioning of Zh, analogous to the description in Theorem 5.26. EMinNF(X)
is the minimal ↓-expression denoting X based on E1, . . . , Em, analogous to the
description in Theorem 5.28.

Example 8.2 Consider the nick free formal DNA molecule X from Figure 5.3, for
which B↑(X) = 4 and B↓(X) = 3. In Example 5.13, we have used Theorem 5.12 to
construct two minimal DNA expressions denoting X. They were based on the lower
block partitionings of X shown in Figure 5.2(a3) and (a4). By Case 3 of Definition 8.1,
EMinNF(X) is based on the primitive lower block partitioning Y0X1Y1X2Y2X3Y3 of X,
which is depicted in Figure 5.2(a1).

A minimal DNA expression E1 denoting the (primitive) lower block X1, for which
B↓(X1) = 1 > B↑(X1) = 0, is constructed according to the description in Theo-
rem 5.12(2). By Lemma 5.10, the only upper block partitioning of X1 is P1 = X1.
Hence,

E1 = 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉 .

In the same way, we can construct the minimal DNA expressions E2 and E3 denoting
the (primitive) lower blocks X2 and X3, respectively:

E2 = 〈↓ 〈l α8〉α9 〈l α10〉〉 and

E3 = 〈↓ 〈l α14〉α15 〈l α16〉〉 .

Consequently,

EMinNF(X) = 〈↑ α1 E1 α7 E2 α11 〈l α12〉α13 E3 α17 〈l α18〉 〉
= 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉 α7 〈↓ 〈l α8〉α9 〈l α10〉〉

α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉 α17 〈l α18〉 〉 .
(8.1)

Example 8.3 Consider the nick free formal DNA molecule X from Figure 5.4, for
which B↑(X) = B↓(X) = 2 and whose first single-stranded component is an upper
component. In Example 5.14 we have used Theorem 5.12 to construct four minimal
DNA expressions denoting X, one for each upper block partitioning and each lower
block partitioning of X. By Case 2a of Definition 8.1, EMinNF(X) is the ↑-expression
based on the primitive lower block partitioning of X. This partitioning is depicted in
Figure 5.4(a). Hence,

EMinNF(X) = Ea

= 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 α5 〈l α6〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉〉 . (8.2)

(see (5.8)).

Example 8.4 Consider the formal DNA molecule X from Figure 5.5, which contains
four lower nick letters. The nick free decomposition of X is Z1△

Z2△
Z3△

Z4△
Z5 for the

submolecules Z1, . . . , Z5 from (5.12).
In Example 5.29, we have constructed a minimal DNA expression E denoting X.

We observed that each of the submolecules Z1, Z3, Z4, Z5 has exactly one lower block

8.2 Characterization of the minimal normal form 143

partitioning, which must be the primitive lower block partitioning then. For Z2, there
exist two lower block partitionings, each of which corresponds to an operator-minimal
↑-expression denoting Z2. In the construction, we used the ↑-expression E ′′

2 which was
based on the primitive lower block partitioning of Z2.

Thus, each of the operator-minimal ↑-expressions used in the construction of E
was based on the primitive lower block partitioning of the corresponding nick free
submolecule. Consequently, EMinNF(X) is equal to the minimal DNA expression E
from (5.19):

EMinNF(X) = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉
〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉
〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉
〈↓ 〈l α18〉α19 〈l α20〉〉α21 〈l α22〉 〉 .

(8.3)

At several places, Definition 8.1 refers to the construction of (operator-)minimal
DNA expressions, as described in Theorem 5.12 and Theorem 5.26. These construc-
tions involve minimal DNA expressions Ej denoting lower blocks or upper blocks Xj.
In Definition 8.1, we do not consider the choice of these Ej’s. Therefore, one may
wonder if, for certain formal DNA molecules X, there might exist different minimal
DNA expressions Ej denoting a particular lower block or upper block occurring in the
construction of EMinNF(X). If so, then EMinNF(X) would not be uniquely determined,
and the minimal normal form would not be well defined.

This situation does, however, not occur, just like it did not occur in the examples
above. Because in the constructions from Theorem 5.12 and Theorem 5.26, we use
primitive lower block partitionings (or primitive upper block partitionings), the lower
blocks (upper blocks) Xj are primitive lower blocks (primitive upper blocks). Hence,
by Lemma 6.14(1), the minimal DNA expressions Ej denoting the Xj’s are unique.

We want the normal form DNA expressions to be minimal. By Theorem 5.3, if

X =
(

α1

c(α1)

)
for an N -word α1, then EMinNF(X) = 〈l α1〉 is the only minimal DNA

expression denoting X. For all other types of expressible formal DNA molecules, the
minimality of EMinNF(X) follows immediately from the definition.

We thus have

Lemma 8.5 For each expressible formal DNA molecule X,

1. EMinNF(X) is well defined, and

2. EMinNF(X) is a minimal DNA expression denoting X.

8.2 Characterization of the minimal normal form

For a given DNA expression E, we can decide if it is in minimal normal form by first
determining its semantics X = S(E), then constructing the minimal normal form DNA
expression E ′ denoting X according to Definition 8.1, and finally comparing E and E ′.
In this section we will describe a more elegant way to achieve the same goal.

In § 6.2, we have given a characterization of minimal DNA expressions by six simple
properties. This characterization makes it easy to decide whether or not a given DNA
expression is minimal. We now do something similar for DNA expressions is minimal

144 Ch. 8 A Minimal Normal Form for DNA Expressions

normal form. We derive a characterization of these DNA expressions, consisting of five
properties of (the arguments of) the operators occurring in them. Then in order to
decide whether or not a DNA expression is in minimal normal form, we only have to
check these properties.

We first prove that each DNA expression in minimal normal form has these prop-
erties. After that, we prove that each DNA expression with these five properties is
indeed in minimal normal form.

Lemma 8.6 Let E be a DNA expression in minimal normal form.

(DMinNF.1) Each occurrence of the operator l in E has as its argument an N -word α
(i.e., not a DNA expression).

(DMinNF.2) No occurrence of the operator ↑ in E has an ↑-argument, and no occur-
rence of the operator ↓ in E has a ↓-argument.

(DMinNF.3) Unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each occurrence of an
operator ↑ or ↓ in E has at least two arguments.

(DMinNF.4) For each inner occurrence of an operator ↑ or ↓ in E, the arguments are
maximal N -word occurrences α and l-expressions 〈l α〉 for N -words α, alter-
nately.

(DMinNF.5) If the outermost operator of E is ↑ or ↓, then

• either its first argument is an N -word α or an l-expression 〈l α〉 for an
N -word α,

• or it has two consecutive expression-arguments.

Note that Properties (DMinNF.1), (DMinNF.2) and (DMinNF.3) are equal to Properties
(DMin.1), (DMin.2) and (DMin.3) of minimal DNA expressions in general.

Property (DMinNF.4) includes Properties (DMin.4) and (DMin.5). It is stronger, how-
ever, than these two properties together. As we will see in the proof, this is due to the
choice for primitive lower block partitionings and primitive upper block partitionings
in the definition of the minimal normal form.

Finally, Property (DMinNF.5) is a stronger version of Property (DMin.6). We will
see in the proof that the difference between the two properties is caused by the second
choice we make in the definition of the minimal normal form: if B↑(X) = B↓(X) ≥ 1
for a nick free formal DNA molecule X, then the first single-stranded component of X
determines whether EMinNF(X) is an ↑-expression or a ↓-expression.

It is easily verified that the DNA expressions in minimal normal form from (8.1),
(8.2) and (8.3) have all five properties. In Table 8.1, we give some examples of minimal
DNA expressions which are not in minimal normal form. Such DNA expressions do have
Properties (DMinNF.1)–(DMinNF.3), simply because all minimal DNA expressions have
these properties. However, they lack Properties (DMinNF.4) and/or (DMinNF.5). We also
give the semantics of the DNA expressions, and the corresponding DNA expressions in
minimal normal form.

Proof of Lemma 8.6: Let X = S(E), i.e., X is the formal DNA molecule for which
E = EMinNF(X).

By Lemma 8.5(2), E is minimal. Hence, Properties (DMinNF.1), (DMinNF.2) and

8.2 Characterization of the minimal normal form 145

Properties E X = S(E) EMinNF(X)

(DMinNF.4) 〈↓ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉〉 〈l α7〉〉(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
α5

−

)(
α6

c(α6)

)
▽
(

α7

c(α7)

)

〈↓ 〈↑ α1 〈l α2〉〉α3 〈↑ 〈l α4〉α5 〈l α6〉〉 〈l α7〉〉

(DMinNF.4) 〈↑ α1 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉〉α7〉〉(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
α5

−

)(
α6

c(α6)

)(
−
α7

)

〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈↓ 〈l α6〉α7〉〉

(DMinNF.5) 〈↓ 〈↑ α1 〈l α2〉〉α3〉(
α1

−

)(
α2

c(α2)

)(
−
α3

)

〈↑ α1 〈↓ 〈l α2〉α3〉〉

(DMinNF.5) 〈↓ 〈↑ α1 〈l α2〉〉α3 〈↑ 〈l α4〉α5 〈l α6〉〉α7〉(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
α5

−

)(
α6

c(α6)

)(
−
α7

)

〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈↓ 〈l α6〉α7〉〉

(DMinNF.4), (DMinNF.5) 〈↓ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉〉α7〉(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
α5

−

)(
α6

c(α6)

)(
−
α7

)

〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈↓ 〈l α6〉α7〉〉

(DMinNF.4), (DMinNF.5) 〈↓ 〈↑ α1 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉〉α7 〈l α8〉〉α9 〈l α10〉〉α11〉(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
α5

−

)(
α6

c(α6)

)(
−
α7

)(
α8

c(α8)

)(
α9

−

)(
α10

c(α10)

)(
−
α11

)

〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈↓ 〈l α6〉α7 〈l α8〉〉α9 〈↓ 〈l α10〉α11〉〉

Table 8.1: Examples of minimal DNA expressions which do not have all properties
from Lemma 8.6. The first column mentions the properties that are not valid. Each
entry in the second column contains a corresponding DNA expression E, the formal
DNA molecule X denoted by E, and the DNA expression in minimal normal form
EMinNF(X). As usual, the αi’s occurring represent (arbitrary) N -words.
The DNA expressions in the third case are the ones from Example 5.2. The second, the
fourth and the fifth case deal with the same formal DNA molecule, which is similar to
the molecule from Example 5.14 (but slightly smaller). In fact, the DNA expressions
E in these three cases resemble the minimal DNA expressions Eb, Ec and Ed from this
example, respectively.

(DMinNF.3) are valid for E, simply because, by Lemma 6.15, they are valid for any min-
imal DNA expression. The other two properties require some specific considerations.

(DMinNF.4) If E is an l-expression, then by Property (DMinNF.1), E = 〈l α〉 for an
N -word α. In this case, E does not contain any occurrence of ↑ or ↓, which
implies that E trivially has Property (DMinNF.4).

Assume that E is an ↑-expression. Inner occurrences of ↑ and ↓ in E occur in
the arguments of E.

If X is nick free, then either Case 2a or Case 3 of Definition 8.1 is applicable
to E = EMinNF(X). In both cases, E is based on the primitive lower block
partitioning P of X, as described in Theorem 5.12(1).

146 Ch. 8 A Minimal Normal Form for DNA Expressions

By the construction from Theorem 5.12(1), the arguments of E are N -words
αi, l-expressions 〈l αi〉 and minimal DNA expressions Ej denoting the lower
blocks Xj occurring in P . Obviously, N -words αi and l-expressions 〈l αi〉 for
N -words αi do not contain occurrences of ↑ and ↓. Hence, the inner occurrences
of ↑ and ↓ in E are the occurrences of these operators in the arguments Ej. As
we argued before Lemma 8.5, the lower blocks Xj occurring in P are primitive
lower blocks of X. Hence, by Lemma 6.14(1), each Ej is a ↓-expression, whose
arguments are maximal N -word occurrences α and l-expressions 〈l α〉 for N -
words α, alternately. Clearly, the only occurrence of an operator ↑ or ↓ in Ej is
its outermost operator ↓. Indeed, its arguments are maximal N -word occurrences
α and l-expressions 〈l α〉 for N -words α, alternately.

If X contains lower nick letters, then Case 5 of Definition 8.1 is applicable to
E = EMinNF(X). Let Z1△

Z2△
. . .

△
Zm for some m ≥ 2 be the nick free decompo-

sition of X. E is based on operator-minimal ↑-expressions E1, . . . , Em denoting
Z1, . . . , Zm, respectively, as described in Theorem 5.28. The arguments of E are
precisely the arguments of E1, . . . , Em.

For h = 1, . . . ,m, the operator-minimal ↑-expression Eh is based on the primitive
lower block partitioning of Zh, as described in Theorem 5.26. Because the con-
structions from Theorem 5.12(1) and Theorem 5.26 are in fact identical, we can
proceed in exactly the same way as in the case that X is nick free. We conclude
that also now, the only occurrences of operators ↑ or ↓ in an argument of E are
the outermost operators ↓ of the ↓-arguments of E, and that the arguments of
such an occurrence of ↓ are N -words α and l-expressions 〈l α〉 for N -words α,
alternately.

Both if X is nick free and if it contains lower nick letters, we find that E =
EMinNF(X) has Property (DMinNF.4).

The proof for the case that E is a ↓-expression is analogous.

(DMinNF.5) Assume that the outermost operator of E is ↑. Then in particular, by
Theorem 5.3, X is not double-complete.

Assume further that E does not have two consecutive expression-arguments. By
Property (DMinNF.4) and Lemma 3.5, X is nick free. Hence, either Case 2a or
Case 3 of Definition 8.1 is applicable to E = EMinNF(X). In both cases, E is based
on the primitive lower block partitioning of X, as described in Theorem 5.12(1).

If Case 2a is applicable, then by definition the first single-stranded component
of X is an upper component. If, on the other hand, Case 3 is applicable, then
B↑(X) > B↓(X) and by Lemma 4.6(3), both the first single-stranded component
and the last single-stranded component of X are upper components. In both
cases, the first single-stranded component of X is an upper component.

By Lemma 5.6(3), the maximal upper prefix Y0 of X is not empty, Hence, in the
construction from Theorem 5.12(1), the first argument of E corresponds to the
first component of Y0, and thus is either an N -word α or an l-expression 〈l α〉
for an N -word α (cf. the proof of Property (DMin.6) in Lemma 6.15).

We conclude that E has Property (DMinNF.5).

The proof for the case that the outermost operator of E is ↓ is analogous.

8.2 Characterization of the minimal normal form 147

Let us use DMinNF to denote the set of DNA expressions with Properties (DMinNF.1)–
(DMinNF.5).

Lemma 8.7 Each DNA expression E ∈ DMinNF is in minimal normal form.

Proof: Let E be an arbitrary DNA expression in DMinNF, i.e., E has Properties
(DMinNF.1)–(DMinNF.5).

Properties (DMin.1), (DMin.2) and (DMin.3) from Lemma 6.15 are identical to Prop-
erties (DMinNF.1), (DMinNF.2) and (DMinNF.3), respectively. Both Property (DMin.4)
and Property (DMin.5) follow immediately from Property (DMinNF.4), because they are
weaker versions of this property. Finally, Property (DMin.6) follows immediately from
Property (DMinNF.5). Thus, E is in DMin and by Theorem 6.16, E is minimal.

Let X = S(E). We distinguish several cases.

1. If X is
(

α1

c(α1)

)
for an N -word α1, then by Theorem 5.3, E = 〈l α1〉. Indeed,

E = EMinNF(X) (see Case 1 of Definition 8.1).

2. If X is nick free, contains at least one single-stranded component and B↑(X) =
B↓(X), then by Summary 6.12(2), E is either an ↑-expression based on a lower
block partitioning of X as described in Theorem 5.12(1), or a ↓-expression based
on an upper block partitioning of X as described in Theorem 5.12(2).

We have to prove that the first single-stranded component of X determines if
E is a an ↑-expression or a ↓-expression, and that the lower (or upper) block
partitioning that E is based on, is indeed the primitive lower (upper, respectively)
block partitioning of X.

By Lemma 4.6(3), either the first single-stranded component of X is an upper
component and the last single-stranded component of X is a lower component,
or the other way round: the first single-stranded component of X is a lower
component and the last single-stranded component of X is an upper component.

(a) Assume that the first single-stranded component of X is an upper compo-
nent (and hence, that the last single-stranded component of X is a lower
component). First, we determine if E is an ↑-expression or a ↓-expression.
Subsequently, we consider the partitioning of X that is used in the construc-
tion from Theorem 5.12.

• By Lemma 5.15, the arguments of E are N -words and DNA expressions,
alternately. Hence, by Property (DMinNF.5), the first argument of E is an
N -word α or an l-expression 〈l α〉 for an N -word α. In the latter case,
by Property (DMinNF.3), E has at least two arguments, and the second
argument of E is an N -word α. In both cases, if E were a ↓-expression,
then the first single-stranded component of X would be a lower component.
Because the first single-stranded component of X is an upper component,
E must be an ↑-expression.

• E satisfies the construction from Theorem 5.12(1). Let P = Y0X1Y1 . . . XrYr

for some r ≥ 0 be the lower block partitioning that E is based on. By con-
struction and by Corollary 5.17(1), the ↓-arguments of E are precisely the
minimal DNA expressions Ej denoting the lower blocks Xj occurring in P .

Let Ej with 1 ≤ j ≤ r be an arbitrary ↓-argument of E. By Prop-
erty (DMinNF.4), the arguments of Ej are N -words α and l-expressions 〈l α〉

148 Ch. 8 A Minimal Normal Form for DNA Expressions

for N -words α. Hence, Xj = S(Ej) consists only of lower components and
double components.

By definition, the lower block Xj is an alternating sequence of primitive
lower blocks and maximal upper sequences of X, which both starts and
ends with a primitive lower block. By Lemma 5.7(4b), there cannot be
any maximal upper sequence in this sequence, because Xj does not contain
upper components. Hence, Xj starts and ends with the same primitive lower
block. In other words, Xj is equal to a primitive lower block of X.

As the ↓-argument Ej was arbitrary, each lower block Xj occurring in P is
equal to a primitive lower block of X. By the definition of a lower block
partitioning, each primitive lower block of X is contained in one of the Xj’s.
Hence, the lower blocks Xj occurring in P are precisely all primitive lower
blocks of X. This implies that P is the primitive lower block partitioning
of X.

We conclude that E = EMinNF(X) (see Case 2a of Definition 8.1).

(b) Analogously, if we assume that the first single-stranded component of X is
a lower component, then we find that E is a ↓-expression, which is based on
the primitive upper block partitioning of X as described in Theorem 5.12(2).
Hence, also in this case, E = EMinNF(X) (see Case 2b of Definition 8.1).

3. If X is nick free and B↑(X) > B↓(X), then by Summary 6.12(3), E is an ↑-
expression which is based on a lower block partitioning of X, as described in
Theorem 5.12(1). Now, we can prove that this lower block partitioning actually
is the primitive lower block partitioning of X, in the same way that we did in
(the second part of) the proof for Case 2a.

This implies that E = EMinNF(X) (see Case 3 of Definition 8.1).

4. The case that X is nick free and B↓(X) > B↑(X) is analogous to the previous
case. Hence, also in this case, E = EMinNF(X) (see Case 4 of Definition 8.1).

5. If X contains at least one lower nick letter, then let Z1△
Z2△

. . .
△
Zm for some

m ≥ 2 be the nick free decomposition of X. By Summary 6.12(5), E is an ↑-
expression which is based on operator-minimal ↑-expressions E1, . . . , Em denoting
Z1, . . . , Zm, respectively, as described in Theorem 5.28. For h = 1, . . . ,m, Eh is in
turn based on a lower block partitioning Ph of Zh, as described in Theorem 5.26.

Because the arguments of E are precisely the arguments of E1, . . . , Em, and the
constructions from Theorem 5.12(1) and Theorem 5.26 are in fact identical, we
can proceed in the same way as in (the second part of) the proof for Case 2a:
for h = 1, . . . ,m, the ↓-arguments of Eh correspond to the lower blocks occur-
ring in Ph. Because the arguments of these ↓-arguments are N -words α and
l-expressions 〈l α〉 for N -words α, the lower blocks occurring in Ph are precisely
the primitive lower blocks of Zh. Hence, for h = 1, . . . ,m, Eh is based on the
primitive lower block partitioning of Zh.

We conclude that E = EMinNF(X) (see Case 5 of Definition 8.1).

6. The case that X contains at least one upper nick letter is analogous to the
previous case. Hence, also in this case, we find that E = EMinNF(X) (see Case 6
of Definition 8.1).

8.2 Characterization of the minimal normal form 149

When we combine Lemma 8.6 and Lemma 8.7, we obtain

Theorem 8.8 A DNA expression E is in minimal normal form if and only if E ∈
DMinNF.

We can use the properties from Lemma 8.6 to prove other properties of normal form
DNA expressions.

Lemma 8.9 Let E be a DNA expression in minimal normal form.

1. If E is an ↑-expression, then E does not have any inner occurrence of ↑, and the
only occurrences of ↓ in E are the operators governing ↓-arguments of E.

2. If E is a ↓-expression, then E does not have any inner occurrence of ↓, and the
only occurrences of ↑ in E are the operators governing ↑-arguments of E.

Proof:

1. Assume that E is an ↑-expression. Then by definition, each occurrence of ↓ in E
is an inner occurrence.

Suppose that ↑1 is an inner occurrence of ↑ in E, and let E1 be the DNA subex-
pression of E governed by ↑1. By Properties (DMinNF.1) and (DMinNF.2), the
parent operator of E1 is not l or ↑. Hence, it must be ↓. This, however, contra-
dicts Property (DMinNF.4), as each occurrence of ↓ in E is an inner occurrence.

Let ↓1 be an arbitrary (inner) occurrence of ↓ in E, and let E1 be the DNA
subexpression of E governed by ↓1. By Properties (DMinNF.1) and (DMinNF.2),
the parent operator of E1 is not l or ↓. Hence, it must be ↑. By the above, the
only occurrence of ↑ in E is the outermost operator. Thus, E1 is a ↓-argument
of (the outermost operator of) E.

2. The proof of this claim is analogous to that of the previous claim.

In general, the nesting level of a DNA expression can get arbitrarily high. For example,
if E is a DNA expression, then so are 〈l E〉, 〈l 〈l E〉〉, 〈l 〈l 〈l E〉〉〉, etc. (cf. the proof
of Lemma 2.16). As we have seen in the proof of Lemma 5.20, even the nesting level of
a minimal DNA expression can get arbitrarily high. For DNA expressions in minimal
normal form, however, the nesting level is limited:

Lemma 8.10 Let E be a DNA expression in minimal normal form. The maximal
nesting level of E is at most 3.

Proof: If E only has N -word-arguments, then by definition, the maximal nesting level
of E is 1.

Now assume that E has at least one expression-argument. By Property (DMinNF.1),
each l-argument of E is equal to 〈l α〉 for an N -word α. The maximal nesting level
of such an argument is 1. Let E1 be an arbitrary ↑-argument or ↓-argument of E. By
Property (DMinNF.4), the only arguments of E1 are maximal N -word occurrences α
and l-expressions 〈l α〉 for N -words α. In fact, by Property (DMinNF.3), at least one
of these arguments is an l-expression 〈l α〉. Then by Lemma 2.14(2), the maximal
nesting level of E1 is 2.

When we subsequently apply the same lemma to E itself, we conclude that its
maximal nesting level is at most 3.

150 Ch. 8 A Minimal Normal Form for DNA Expressions

8.3 The structure tree of a DNA expression in min-

imal normal form

Many properties of DNA expressions can be directly translated into properties of the
corresponding structure trees, as defined in § 2.8 (see § 6.3). This is in particular true
for DNA expressions in minimal normal form. Let t be the structure tree of a DNA
expression E. We say that t is in minimal normal form, if and only if E is in minimal
normal form. We then have

Theorem 8.8 (and Lemma 8.6) t is in minimal normal form if and only if

(DMinNF.1) each node labelled by l in t has a (single) child labelled by an N -
word α, and

(DMinNF.2) no node labelled by ↑ in t has a child labelled by ↑, and no node
labelled by ↓ in t has a child labelled by ↓, and

(DMinNF.3) unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each node labelled
by ↑ or ↓ in t has at least two children, and

(DMinNF.4) for each non-root labelled by either ↑ or ↓ in t, the children are
labelled by an N -word α or by the operator l, alternately, and

(DMinNF.5) if the root of t is labelled by either ↑ or ↓, then either its first child
is labelled by an N -word α or the operator l, or it has two consecutive
children labelled by an operator.

Lemma 8.9 If t is in minimal normal form, then

1. if the root of t is labelled by ↑, then t does not have any non-roots labelled
by ↑, and the only nodes labelled by ↓ are children of the root;

2. if the root of t is labelled by ↓, then t does not have any non-roots labelled
by ↓, and the only nodes labelled by ↑ are children of the root.

Lemma 8.10 and Lemma 2.22 If t is in minimal normal form, then the height of t
is at most 4.

As we observed in Example 8.4, the minimal DNA expression from (5.19) is in min-
imal normal form. Hence, the corresponding structure tree, which we have shown in
Figure 6.1(c), is also in minimal normal form. Indeed, it has all properties listed above.

On the other hand, although the DNA expression E from (5.6) is minimal, it
is not in minimal normal form. Consequently, the corresponding structure tree in
Figure 6.1(a) is not in minimal normal form, either. It does not satisfy (the tree-
version of) Property (DMinNF.4). In the tree, the second child of the root, which is
labelled by ↓, has a child which is labelled by ↑. Consequently, the height of the tree
is greater than 4.

Likewise, the minimal DNA expression Ed from (5.11) and the corresponding struc-
ture tree in Figure 6.1(b) are not in minimal normal form. They violate both Prop-
erty (DMinNF.4) and Property (DMinNF.5). Again, the height of the tree is greater than
4.

In Example 8.2 and Example 8.3, we have given the DNA expressions in minimal
normal form for the last two cases. The corresponding structure trees are depicted in
Figure 8.1.

8.4 Regularity of DMinNF 151

n

n n n n n

n n n n n n n

(((((((((((((((((((((((

����������������

!!!!!!!!!!

�
�

�
�

��

�
�
��

A
A
AA

Q
Q
Q
Q
QQ

aaaaaaaaaa

PPPPPPPPPPPP

�
�

��

�
�
��

A
A
AA

@
@
@@

�
�
�

A
A
A

�
�
�

A
A
A

↑

α1 ↓ α7 ↓ α11 l α13 ↓ α17 l

l α3 l α5 l l α9 l α12 l α15 l α18

α2 α4 α6 α8 α10 α14 α16

(a)

n

n n n

n n n n

��������

�
�

��

A
A
A

@
@
@@

HHHHHHHH

�
�
�

A
A
A

�
�
�

A
A
A

↑

α1 ↓ α5 l α7 ↓

l α3 l α6 l α9 l

α2 α4 α8 α10

(b)

Figure 8.1: Two structure trees that are in minimal normal form. (a) The struc-
ture tree of the DNA expression EMinNF(X) from (8.1), denoting the nick free formal
DNA molecule from (a.o.) Figure 5.3. (b) The structure tree of the DNA expres-
sion EMinNF(X) = Ea from (8.2), denoting the nick free formal DNA molecule from
Figure 5.4.

8.4 Regularity of DMinNF

Neither the language D of all DNA expressions, nor the language DMin containing
only the minimal DNA expressions is regular (see Lemma 2.16 and Lemma 5.20). The
proofs of these results were based on the fact that in a DNA expression, every opening
bracket must be matched by a closing bracket, whereas there exist DNA expressions
(even minimal DNA expressions) with arbitrarily high nesting levels of the brackets.

Of course, in a DNA expression in minimal normal form, the opening brackets and
the closing brackets must still match. However, by Lemma 8.10, the nesting level of the
brackets in such a DNA expression is limited. We cannot get arbitrarily high nesting
levels. This suggests that the language DMinNF of DNA expressions in minimal normal
form is regular, and that indeed appears to be the case.

There are different ways to demonstrate this. One would be to give a right-linear
grammar and to prove that it generates DMinNF. In this report, we follow another
strategy. We describe a context-free grammar G2 and prove that it generates DMinNF.
This context-free grammar is not right-linear. However, as we will see, because the
grammar is not self-embedding, the language generated by it (i.e., DMinNF) is regular,
after all.

The new grammar G2 is derived from the grammar G1 that generates D, the lan-

152 Ch. 8 A Minimal Normal Form for DNA Expressions

guage of all DNA expressions (see § 2.7). For example, like G1, it has non-terminal
symbols E, U and L (with some subscripts), which represent certain DNA expressions,
sequences of arguments for the operator ↑ and sequences of arguments for the operator
↓, respectively.

However, due to the characteristic properties of the minimal normal form, Prop-
erties (DMinNF.1)–(DMinNF.5), there exist important differences between the two gram-
mars. Before we describe G2 formally, we explain some of the differences. Most of these
differences give rise to the use of different non-terminal symbols. Because of the sym-
metry between ↑-expressions and ↓-expressions, we sometimes restrict the explanation
to ↑-expressions.

In our explanations, we often refer to the five properties of the minimal normal
form. However, in order for a string to be a DNA expression in minimal normal form,
it first has to be a DNA expression. Therefore, we also sometimes refer to properties
of DNA expressions in general. In particular, we refer to the fact that the arguments
of the operator ↑ must fit together by upper strands.

• By Property (DMinNF.4), the arguments of an inner occurrence of ↑ or ↓ are
N -words α and l-expressions 〈l α〉 for N -words α, alternately. This is not nec-
essarily true for the arguments of an outermost operator ↑ or ↓. Those arguments
satisfy different (in particular, weaker) conditions.

This difference is reflected by the notation we use for sequences of arguments of
↑ and ↓. For the outermost operator, we use U and L (with some subscript),
respectively, as in G1. For an inner occurrence, we introduce a new non-terminal
symbol A (with some subscripts). We use this symbol both for inner occur-
rences of ↑ and for inner occurrences of ↓, because the arguments of these inner
occurrences satisfy the same conditions.

• An outermost operator ↑0 may have ↓-arguments. However, if the first argument
is a ↓-argument, then by Property (DMinNF.5), ↑0 must have two consecutive
expression-arguments. Hence, in this case, the second and later arguments of ↑0
have to satisfy an additional condition.

We use the new non-terminal symbol Û (with some subscript) to denote a se-
quence of arguments of ↑0 that must contain two consecutive expression-arguments.

Note that a sequence of arguments represented by U (with some subscript) may
also contain consecutive expression-arguments, but it does not have to.

• By the above, there is an essential difference between the sequence of all ar-
guments of an outermost operator ↑, and a profer suffix of this sequence. A
↓-argument which is the first of all arguments has other consequences for the rest
of the sequence than a ↓-argument which is the first of a proper suffix.

Moreover, by Property (DMinNF.3), the sequence of all arguments cannot be just
one DNA expression, whereas a proper suffix of this sequence may be a DNA
expression.

This difference is reflected by the subscript of the non-terminal symbol U . We
use U⋆ to represent the sequence of all arguments of an outermost operator ↑,
and we use U with other subscripts for proper suffices of this sequence.

• In the grammar G1, a non-terminal symbol U (with some subscripts) represents
an arbitrary suffix of the sequence of arguments of an operator ↑. This may be

8.4 Regularity of DMinNF 153

a proper suffix, but it may also be the entire sequence of arguments. The first
subscript of U denotes whether or not one strand of this suffix of arguments must
cover the other strand to the left.

Now, consider a non-terminal symbol U or Û (with some subscript) in G2, which
is not equal to U⋆. By the above, this non-terminal symbol represents a proper
suffix of the sequence of arguments of an outermost operator ↑, i.e., a subsequence
of arguments which is preceded by at least one other argument.

Because, by definition, the arguments of ↑ must fit together by upper strands,
the upper strand of this subsequence of arguments must (always) cover the lower
strand to the left. It is no use indicating this explicitly by means of a particular
subscript.

• Consider again a non-terminal symbol U (with some subscripts) in the grammar
G1. The second subscript denotes whether or not one strand of the suffix of
arguments represented by the symbol must cover the other strand to the right.
This is useful for inner occurrences of ↑. If, for example, the ↑-expression is an
argument of an operator ↓ and it is not the last argument, then the lower strand
must cover the upper strand to the right.

Now, consider any non-terminal symbol U or Û in G2. As mentioned before,
this symbol is used only to represent a suffix of the sequence of arguments of an
outermost operator ↑. It does not matter if one strand of this suffix of arguments
strictly covers the other strand to the right. There are no restrictions of the right-
hand side of the strands, at all. Hence, we do not need a particular subscript to
indicate such restrictions, either.

• In the grammar G2, a non-terminal symbol E with a subscript + represents a
DNA expression that is the argument of an outermost operator ↑. By Prop-
erty (DMinNF.2), this DNA expression cannot be an ↑-expression. Hence, it can
only be rewritten into either an l-expression or a ↓-expression.

• In the grammar G1, as soon as we introduce an operator ↑ or ↓, we give it a
non-empty sequence of arguments, represented by a non-terminal symbol U or L
(with some subscripts), respectively.

Now, let E be a DNA expression in minimal normal form. If E contains inner
occurrences of ↑ or ↓, then by Property (DMinNF.3), each inner occurrence of ↑ or
↓ in E has at least two arguments. We do not introduce a special non-terminal
symbol to represent “at least two arguments”. Instead, as soon as we introduce
an inner occurrence of ↑ or ↓, we give it one argument plus a non-empty sequence
of arguments. As we explained before, this non-empty sequence of arguments is
represented by the non-terminal symbol A (with some subscripts).

• By Property (DMinNF.4), for each inner occurrence of ↑ or ↓, the arguments are
maximalN -word occurrences α or l-expressions 〈l α〉 forN -words α, alternately.
As we just explained, the non-terminal symbols A (with some subscripts) repre-
sent proper suffices of such sequences of arguments.

To enforce the alternation of the arguments, we provide A with a subscript (in
fact, its first subscript) α or l. If it is α, then the suffix of the sequence of
arguments must start with an N -word α. If it is l, then it must start with an

154 Ch. 8 A Minimal Normal Form for DNA Expressions

l-expression. The actual value of the subscript depends on the argument (an
l-expression or an N -word) preceding the suffix.

Of course, we might allow consecutive N -word-arguments in the sequence of
arguments, because they can be considered as a single N -word. However, since
we have to avoid consecutive l-arguments, anyway, it is more elegant to also
avoid consecutive N -word-arguments.

Moreover, allowing consecutive N -word-arguments would introduce ambiguity in
the grammar. If it were possible to have N -words at consecutive positions in the
sequence of arguments, then an N -word-argument of length 2 or more could be
derived in different ways: both from a single non-terminal symbol α and from
two (or more) consecutive non-terminal symbols α.

• By Lemma 6.17(1b) and Property (DMinNF.4), a proper ↓-subexpression is an
argument of an outermost operator ↑. If it is not the last argument, then by
Lemma 6.17(5b), the last argument of the ↓-subexpression is an l-expression
〈l α〉 for an N -word α. It cannot be an N -word α.

To represent such restrictions, we provide the non-terminal A with a second
subscript, which is either ⋆ or l. It it is ⋆, then the last argument in the sequence
of arguments may be either an N -word or an l-expression. If it is l, then the
last argument must be an l-expression.

• We do not only avoid consecutive N -word-arguments for inner occurrences of ↑
or ↓. For consistency, we do the same for an outermost operator ↑ or ↓.

For this, consider a non-terminal symbol U or Û which is not equal to U⋆. We
provide this non-terminal, which represents a proper suffix of the sequence of
arguments of an outermost operator ↑, with a subscript α or E. If the subscript
is α, then the suffix must start with an N -word α. If it is E, then the suffix must
start with a DNA expression.1

Now, formally, G2 is a 4-tuple (Σ2,∆2, P2, S2), where Σ2 = {E⋆, U⋆, Uα, UE, ÛE,

E+,+, E+,⋆, L⋆, Lα, LE, L̂E, E−,−, E−,⋆, Aα,l, Al,l, Aα,⋆, Al,⋆, α,A,C,G,T, ↑, ↓, l, 〈 , 〉} is
the total alphabet, ∆2 = {A,C,G,T, ↑, ↓, l, 〈 , 〉} is the alphabet of terminal sym-
bols, P2 is the set of productions (which is given below), and S2 = E⋆ is the axiom of
G2.

1. E⋆ −→ 〈l α〉 | 〈↑ U⋆〉 | 〈↓ L⋆〉

2. U⋆ −→ α | αUE | 〈l α〉Uα | 〈l α〉UE

3. U⋆ −→
〈
↓ αAl,l

〉
αÛE |

〈
↓ αAl,l

〉
UE |

〈
↓ 〈l α〉Aα,l

〉
αÛE |

〈
↓ 〈l α〉Aα,l

〉
UE

4. Uα −→ α | αUE

5. UE −→ E+,⋆ | E+,+Uα | E+,+UE

6. ÛE −→ E+,+αÛE | E+,+UE

7. E+,+ −→ 〈l α〉 |
〈
↓ 〈l α〉Aα,l

〉

8. E+,⋆ −→ 〈l α〉 | 〈↓ 〈l α〉Aα,⋆〉

1Actually, we have skipped the non-terminal symbol Ûα, because there would be only one produc-
tion for this symbol: Ûα −→ αÛE . We have substituted this production in the right-hand side of two
of the productions for U⋆ and one production for ÛE .

8.4 Regularity of DMinNF 155

9. L⋆ −→ α | αLE | 〈l α〉Lα | 〈l α〉LE

10. L⋆ −→
〈
↑ αAl,l

〉
αL̂E |

〈
↑ αAl,l

〉
LE |

〈
↑ 〈l α〉Aα,l

〉
αL̂E |

〈
↑ 〈l α〉Aα,l

〉
LE

11. Lα −→ α | αLE

12. LE −→ E−,⋆ | E−,−Lα | E−,−LE

13. L̂E −→ E−,−αL̂E | E−,−LE

14. E−,− −→ 〈l α〉 |
〈
↑ 〈l α〉Aα,l

〉

15. E−,⋆ −→ 〈l α〉 | 〈↑ 〈l α〉Aα,⋆〉

16. Aα,l −→ α 〈l α〉 | α 〈l α〉Aα,l

17. Al,l −→ 〈l α〉 | 〈l α〉Aα,l

18. Aα,⋆ −→ α | αAl,⋆

19. Al,⋆ −→ 〈l α〉 | 〈l α〉Aα,⋆

20. α −→ A | C | G | T | Aα | Cα | Gα | Tα

As is the case with most of the DNA expressions in this report, the DNA expressions
we consider in this section are expressed in terms of general N -words αi, and not in
terms of the actual N -letters A, C, G and T. Therefore, in the examples below, we
do not use the productions from line 20 of the list, for (rewriting) α. When we speak
of a leftmost derivation in G2, we mean that in every derivation step, we rewrite the
leftmost non-terminal symbol unequal to α (with some subscript i). In other words,
we treat α as a terminal symbol, ignoring the right-linear productions in line 20.

Example 8.11 Consider the nick free formal DNA molecule X =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)
,

for which B↑(X) = B↓(X) = 1 and the first single-stranded component is an upper
component. By Case 2a of Definition 8.1,

EMinNF(X) = 〈↑ α1 〈↓ 〈l α2〉α3〉〉 , (8.4)

which is DNA expression E from Example 5.2 (see also Table 8.1). The following,
leftmost derivation in G2 yields EMinNF(X):

E⋆
1,2
=⇒ 〈↑ U⋆〉
2,2
=⇒ 〈↑ α1UE〉
5,1
=⇒ 〈↑ α1E+,⋆〉
8,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉Aα,⋆〉〉
18,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3〉〉

= EMinNF(X).

As in earlier derivations, numbers i, j above an arrow indicate that we have used
production (i, j).

Example 8.12 Consider the minimal normal form DNA expression EMinNF(X) from
(8.1), which denotes the nick free formal DNA molecule X from (a.o.) Figure 5.2 and

156 Ch. 8 A Minimal Normal Form for DNA Expressions

Figure 5.3. The following, leftmost derivation in G2 yields EMinNF(X):

E⋆
1,2
=⇒ 〈↑ U⋆ 〉
2,2
=⇒ 〈↑ α1UE 〉
5,2
=⇒ 〈↑ α1E+,+Uα 〉
7,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉Aα,l 〉Uα 〉
16,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉Aα,l 〉Uα 〉
16,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉Uα 〉
4,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7UE 〉
5,2
=⇒ · · ·

7,2
=⇒ · · ·

16,1
=⇒ · · ·

4,2
=⇒ · · ·

5,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉α11E+,+Uα 〉
7,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉

α11 〈l α12〉Uα 〉
4,2
=⇒ · · ·

5,2
=⇒ · · ·

7,2
=⇒ · · ·

16,1
=⇒ · · ·

4,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉

α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉α17UE 〉
5,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉

α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉α17E+,⋆ 〉
8,1
=⇒ EMinNF(X).

Example 8.13 Consider the minimal normal form DNA expression EMinNF(X) from
(8.3). This DNA expression denotes the formal DNA molecule X from Figure 5.5,
which contains four lower nick letters. The following, leftmost derivation in G2 yields
EMinNF(X):

E⋆
1,2
=⇒ 〈↑ U⋆ 〉
2,2
=⇒ 〈↑ α1UE 〉
5,3
=⇒ 〈↑ α1E+,+UE 〉
7,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉Aα,l 〉UE 〉
16,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉UE 〉
5,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉E+,+Uα 〉
7,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉Aα,l 〉Uα 〉
16,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉Uα 〉
4,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8UE 〉
5,3
=⇒ · · ·

7,2
=⇒ · · ·

16,1
=⇒ · · ·

5,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

E+,+Uα 〉

8.4 Regularity of DMinNF 157

7,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉Uα 〉
4,2
=⇒ · · ·

5,2
=⇒ · · ·

7,1
=⇒ · · ·

4,2
=⇒ · · ·

5,3
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉α13 〈l α14〉α15E+,+UE 〉
7,1
=⇒ · · ·

5,3
=⇒ · · ·

7,1
=⇒ · · ·

5,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉E+,+Uα 〉
7,2
=⇒ · · ·

16,1
=⇒ · · ·

4,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉 〈↓ 〈l α18〉α19 〈l α20〉〉α21UE 〉
5,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉 〈↓ 〈l α18〉α19 〈l α20〉〉α21E+,⋆ 〉
8,1
=⇒ EMinNF(X).

Example 8.14 Consider the formal DNA molecule

X =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)
▽
(

α5

c(α5)

)
,

which contains one upper nick letter. The nick free decomposition of X is Z1
▽Z2,

where

Z1 =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)

and Z2 =
(

α5

c(α5)

)
. The primitive upper block partitioning of Z1 is Y0X1Y1, where

Y0 = λ, X1 =
(
α1

−

)(
α2

c(α2)

)
and Y1 =

(
−
α3

)(
α4

c(α4)

)
. By (the analogue for ↓-expressions

of) Theorem 5.26, we can use this primitive upper block partitioning to construct an
operator-minimal ↓-expression E1 denoting Z1:

E1 = 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉〉 .

It is not hard to see that the only operator-minimal ↓-expression denoting Z2 is E2 =
〈↓ 〈l α5〉〉. By Case 6 of Definition 8.1, EMinNF(X) is the ↓-expression based on E1 and
E2 analogous to the description in Theorem 5.28:

EMinNF(X) = 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉 〈l α5〉〉 .

The following, leftmost derivation in G2 yields EMinNF(X):

E⋆
1,3
=⇒ 〈↓ L⋆〉
10,1
=⇒

〈
↓
〈
↑ α1Al,l

〉
α3L̂E

〉

17,1
=⇒

〈
↓ 〈↑ α1 〈l α2〉〉α3L̂E

〉

13,2
=⇒ 〈↓ 〈↑ α1 〈l α2〉〉α3E−,−LE〉

158 Ch. 8 A Minimal Normal Form for DNA Expressions

14,1
=⇒ 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉LE〉
12,1
=⇒ 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉E−,⋆〉
15,1
=⇒ 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉 〈l α5〉〉

= EMinNF(X).

The DNA expressions in minimal normal form from the four examples above can
indeed be derived in the context-free grammar G2. We now consider the situation in
general. We prove that the language generated by G2 is exactly the language DMinNF of
DNA expressions in minimal normal form. Step by step, we analyse which languages
can be derived from certain non-terminal symbols or after applying a certain produc-
tion. Starting from ‘low-level’ non-terminal symbols, which generate a relatively simple
language, we work up to (the productions for rewriting) the axiom E⋆ of the grammar.

Some of the languages consist of sequences ε1 . . . εn with n ≥ 1, which have certain
properties. In fact, these sequences consist of arguments of the operator ↑. To simplify
the description of the languages, we introduce a notation for three (possible) properties
of such sequences:

(LU.1) for i = 1, . . . , n, εi is either a maximal N -word occurrence α (in ε1 . . . εn),
or an l-expression 〈l α〉 for an N -word α, or a ↓-expression with two or more
arguments which form an alternating sequence of N -words α and l-expressions
〈l α〉.

(LU.2) ε1, . . . , εn fit together by upper strands.

(LU.3) L(S+(ε1)) ∈ A± ∪ A+.

Lemma 8.15 In the context-free grammar G2,

1. L(α) is the set of all N -words.

2. L(〈l α〉) is the set of all l-expressions in minimal normal form.

3. L(Aα,l) is the set of all (non-empty and finite) alternating sequences of N -words
α and l-expressions 〈l α〉 for N -words α, which start with an N -word α and end
with an l-expression 〈l α〉.

4. L(Al,l) is the set of all (non-empty and finite) alternating sequences of N -words
α and l-expressions 〈l α〉 for N -words α, which start with an l-expression 〈l α〉
and end with an l-expression 〈l α〉.

5. L(Aα,⋆) is the set of all (non-empty and finite) alternating sequences of N -words
α and l-expressions 〈l α〉 for N -words α, which start with an N -word α.

6. L(Al,⋆) is the set of all (non-empty and finite) alternating sequences of N -words
α and l-expressions 〈l α〉 for N -words α, which start with an l-expression 〈l α〉.

7. L(
〈
↓ αAl,l

〉
) is the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such

that ε1,1, . . . , ε1,m form an alternating sequence of N -words α and l-expressions
〈l α〉 for N -words α, which starts with an N -word ε1,1 = α and ends with an
l-expression ε1,m = 〈l α〉.

8.4 Regularity of DMinNF 159

8. L(
〈
↓ 〈l α〉Aα,l

〉
) is the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such

that ε1,1, . . . , ε1,m form an alternating sequence of N -words α and l-expressions
〈l α〉 for N -words α, which starts with an l-expression ε1,1 = 〈l α〉 and ends
with an l-expression ε1,m = 〈l α〉.

9. L(〈↓ 〈l α〉Aα,⋆〉) is the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such
that ε1,1, . . . , ε1,m form an alternating sequence of N -words α and l-expressions
〈l α〉 for N -words α, which starts with an l-expression ε1,1 = 〈l α〉.

10. L(E+,+) is the union of

• the set of all l-expressions 〈l α〉 for N -words α, and

• the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such that ε1,1, . . . , ε1,m
form an alternating sequence of N -words α and l-expressions 〈l α〉 for N -
words α, which starts with an l-expression ε1,1 = 〈l α〉 and ends with an
l-expression ε1,m = 〈l α〉.

11. L(E+,⋆) is the union of

• the set of all l-expressions 〈l α〉 for N -words α, and

• the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such that ε1,1, . . . , ε1,m
form an alternating sequence of N -words α and l-expressions 〈l α〉 for N -
words α, which starts with an l-expression ε1,1 = 〈l α〉.

12. L(Uα) is the set of all sequences of arguments ε1 . . . εn with n ≥ 1 and Properties
(LU.1)–(LU.3), such that (in addition)

• ε1 is a maximal N -word occurrence α (in ε1 . . . εn).

13. L(UE) is the set of all sequences of arguments ε1 . . . εn with n ≥ 1 and Properties
(LU.1)–(LU.3), such that (in addition)

• ε1 is a DNA expression.

14. L(ÛE) is the set of all sequences of arguments ε1 . . . εn with n ≥ 1 and Properties
(LU.1)–(LU.3), such that (in addition)

• ε1 is a DNA expression, and

• there exists i with 1 ≤ i ≤ n − 1, such that both εi and εi+1 are DNA
expressions.

15. L(U⋆) is the set of all sequences of arguments ε1 . . . εn with n ≥ 1 and Properties
(LU.1) and (LU.2), such that (in addition)

• if n = 1, then ε1 is an N -word α, and

• if ε1 is a ↓-expression, then there exists i with 1 ≤ i ≤ n− 1, such that both
εi and εi+1 are DNA expressions.

16. L(〈↑ U⋆〉) is the set of all ↑-expressions in minimal normal form.

17. L(〈↓ L⋆〉) is the set of all ↓-expressions in minimal normal form.

160 Ch. 8 A Minimal Normal Form for DNA Expressions

Note that the number m in Claims 8 and 10 is always odd, and thus at least 3, because
the alternating sequence in the claims both starts and ends with an l-expression 〈l α〉.
Note also that the number n in Claim 14 is in fact at least 2, because there are two
consecutive εi’s which are DNA expressions.

Finally, it is worth noting that some of the languages described are (proper) subsets
of other languages. We mention a few of the relations between the languages:

L(Aα,l) ⊂ L(Aα,⋆)

L(Al,l) ⊂ L(Al,⋆)

L(E+,+) ⊂ L(E+,⋆)

L(ÛE) ⊂ L(UE)

L(Uα) ⊂ L(U⋆)

These relations fit in with the intuitive meanings of the non-terminal symbols involved.
For example, the subscript ⋆ denotes the absence of a particular restriction.

Proof:

1 This claim follows immediately from the productions for (rewriting) α.

2 This claim follows immediately from the observation that the l-expressions in min-
imal normal form are (exactly) all DNA expressions of the form 〈l α〉 for an
N -word α (see Definition 8.1).

3 This claim follows immediately from the productions for (rewriting) Aα,l.

4 This claim follows immediately from the productions for (rewriting) Al,l and the
previous claim.

5, 6 These claims (simultaneously) follow immediately from the productions for (rewrit-
ing) Aα,⋆ and Al,⋆.

7 This claim follows immediately from Claim 4 and the fact that the elements of an
alternating sequence of N -words α and l-expressions 〈l α〉 fit together by lower
strands (so that each element of L(

〈
↓ 〈l α〉Aα,l

〉
) is indeed a DNA expression).

8 This claim follows immediately from Claim 3 and the fact that the elements of an
alternating sequence of N -words α and l-expressions 〈l α〉 fit together by lower
strands.

9 This claim follows immediately from Claim 5 and the fact that the elements of an
alternating sequence of N -words α and l-expressions 〈l α〉 fit together by lower
strands.

10 This claim follows immediately from the productions for (rewriting) E+,+ and
Claim 8.

11 This claim follows immediately from the productions for (rewriting) E+,⋆ and
Claim 9.

8.4 Regularity of DMinNF 161

12, 13 We first prove that each element of L(Uα) or L(UE) is a sequence as described
in the respective claims. Let X be an arbitrary element of L(Uα) ∪ L(UE).

It follows immediately from the productions for (rewriting) Uα and UE that X
is a sequence ε1 . . . εn for some n ≥ 1, such that for i = 1, . . . , n, εi is either an
N -word α, or an element of L(E+,+), or an element of L(E+,⋆).

By Claims 10 and 11, each element of L(E+,+) or L(E+,⋆) is either an l-expression
〈l α〉 for an N -word α, or a ↓-expression with two or more arguments which form
an alternating sequence of N -words α and l-expressions 〈l α〉. This implies in
particular that ifX ∈ L(UE), then ε1 is a DNA expression (which is the additional
property in Claim 13).

To complete Property (LU.1), we must establish that eachN -word εi is a maximal
N -word occurrence in X. For this, it is sufficient to show that no N -word εi is
succeeded by another N -word. Therefore, assume that εi with 1 ≤ i ≤ n − 1 is
an N -word α. This N -word has been introduced into X by the application of
the production Uα −→ αUE. Hence, εi = α is succeeded by an element of L(UE),
which starts with a DNA expression.

In particular, if X ∈ L(Uα), then X starts with a maximal N -word occurrence
ε1 (which is the additional property in Claim 12).

We proceed with Properties (LU.2) and (LU.3). By definition, for each N -word
α,

L(S+(α)) = L(
(
α
−

)
) ∈ A+, R(S+(α)) = R(

(
α
−

)
) ∈ A+,

L(S(〈l α〉)) = L(
(

α
c(α)

)
) ∈ A± and R(S(〈l α〉)) = R(

(
α

c(α)

)
) ∈ A±.

Hence, if εi with 1 ≤ i ≤ n is a maximal N -word occurrence α or an l-expression
〈l α〉 for an N -word α, then L(S+(εi)), R(S+(εi)) ∈ A± ∪ A+.

We now consider a ↓-expression εi. If εi ∈ L(E+,+), then by Claim 10, the first ar-
gument of εi is an l-expression 〈l αi,1〉 for an N -word αi,1, and the last argument
of εi is an l-expression 〈l αi,m〉 for an N -word αi,m. Now by Lemma 2.15(4),
L(S(εi)) = L(S(〈l αi,1〉)) ∈ A± and R(S(εi)) = R(S(〈l αi,m〉)) ∈ A±.

If, on the other hand, εi ∈ L(E+,⋆), then we must have i = n. By Claim 11, the
first argument of the ↓-expression εi is an l-expression 〈l αi,1〉 for an N -word
αi,1. Hence, L(S(εi)) = L(S(〈l αi,1〉)) ∈ A±.

We conclude that for i = 1, . . . , n− 1, L(S+(εi)), R(S+(εi)) ∈ A± ∪A+ and that
L(S+(εn)) ∈ A± ∪ A+. This implies that X has Properties (LU.2) and (LU.3).

We also have to prove that each sequence ε1 . . . εn as described in the claims is
an element of L(Uα) or L(UE), respectively. Let X be such a sequence.

We first analyse the ↓-expressions occurring in the sequence. Therefore, let εi
with 1 ≤ i ≤ n be a ↓-expression. By Property (LU.1), εi has m ≥ 2 arguments
which form an alternating sequence of N -words α and l-expressions 〈l α〉 for
N -words α.

If the first argument of εi were anN -word αi,1, then by Lemma 2.15(4), L(S(εi)) =
L(S−(αi,1)) ∈ A−. This would contradict Property (LU.2) (if i ≥ 2) or Property

162 Ch. 8 A Minimal Normal Form for DNA Expressions

(LU.3) (if i = 1). Hence, the first argument of εi is an l-expression 〈l αi,1〉 for
an N -word αi,1.

If the last argument of εi is an N -word αi,m, then R(S(εi)) = R(S−(αi,m)) ∈ A−.
If i ≤ n − 1, then this would contradict Property (LU.2). Hence, in that case,
the last argument of εi is an l-expression 〈l αi,m〉 for an N -word αi,m.

Now, by Claim 10, if 1 ≤ i ≤ n − 1, then the ↓-expression εi is an element of
L(E+,+). By Claim 11, if i = n, then εi is an element of L(E+,⋆).

By Claim 10 and Claim 11, L(E+,+) and L(E+,⋆) also contain all l-expressions
of the form 〈l α〉 for an N -word α. We can thus conclude that if an element εi
of the sequence X is a DNA expression (a ↓-expression or an l-expression), then
εi ∈ L(E+,+) if 1 ≤ i ≤ n− 1, and εi ∈ L(E+,⋆) if i = n.

We finally observe that if an element εi of the sequence X is a maximal N -word
occurrence α, then either it is the last element of the sequence, or it is succeeded
by a DNA expression. If, on the other hand, εi is a DNA expression, then either
it is the last element of the sequence, or it is succeeded by a maximal N -word
occurrence or it is succeeded by another DNA expression. These possibilities can
exactly be realized by the productions for Uα and UE, respectively.

We can thus conclude that X ∈ L(Uα) if ε1 is an N -word α and that X ∈ L(UE)
if ε1 is a DNA expression.

14 Let X be an arbitrary element of L(ÛE). We can prove that X is a sequence
ε1 . . . εn for some n ≥ 1, which has Properties (LU.1)–(LU.3) and for which
ε1 is a DNA expression, like we did in the proof of Claims 12 and 13. Next, we
observe that in the derivation of X from ÛE, we must have applied the production
ÛE −→ E+,+UE (exactly) once. By Claim 10, E+,+ is rewritten into a DNA
expression εi with i ≥ 1, and by Claim 13, UE is rewritten into a sequence
εi+1 . . . εn with n ≥ i + 1, for which εi+1 is a DNA expression. Indeed, the
sequence ε1 . . . εn contains two consecutive elements εi and εi+1 that are DNA
expressions.

On the other hand, let X = ε1 . . . εn be a sequence as described in the claim. We
have to prove that X ∈ L(ÛE). Also for this, we can start in the same way as in
the proof of Claims 12 and 13. Thus, we find that if εi with 1 ≤ i ≤ n is a DNA
expression, then εi ∈ L(E+,+) if 1 ≤ i ≤ n− 1, and εi ∈ L(E+,⋆) if i = n.

In addition, let i0 be the smallest value of i for which both εi and εi+1 are DNA
expressions. Then ε1, . . . , εi0 are maximal N -word occurrences and DNA expres-
sions, alternately. Because, by assumption, both ε1 and εi0 are DNA expressions.
i0 must be odd.

Now, when we start a derivation from ÛE, first apply the production ÛE −→
E+,+αÛE

i0−1
2

times, and subsequently apply the production ÛE −→ E+,+UE

once, we obtain

E+,+α︸ ︷︷ ︸ . . . E+,+α︸ ︷︷ ︸︸ ︷︷ ︸
i0−1

2
times

E+,+UE.

8.4 Regularity of DMinNF 163

It follows from the foregoing that the i0−1
2

pairs E+,+α can be rewritten into
ε1 . . . εi0−1 and that the subsequent occurrence of E+,+ can be rewritten into the
DNA expression εi0 . Finally, by Claim 13, UE can be rewritten into the sequence
εi0+1 . . . εn which starts with the DNA expression εi0+1.

15 We first prove that each element of L(U⋆) is a sequence ε1 . . . εn with the properties
from the claim. Therefore, let X be an arbitrary element of L(U⋆).

It follows immediately from the productions for (rewriting) U⋆ and Claims 7, 8,
12, 13 and 14, that X is a sequence ε1 . . . εn with n ≥ 1, which has Property
(LU.1).

If ε1 is an element of L(
〈
↓ αAl,l

〉
) ∪ L(

〈
↓ 〈l α〉Aα,l

〉
), then by Claims 7 and 8,

ε1 is a ↓-expression, whose last argument is an l-expression 〈l α〉 for an N -word
α. Hence, by Lemma 2.15(4), R(S(ε1)) = R(S(〈l α〉)) ∈ A±. Now, Property
(LU.2) follows from the productions for (rewriting) U⋆ and Claims 12, 13 and 14,

We finally consider the additional properties in the claim. If n = 1, then we
must have applied the production U⋆ −→ α in the first step of the derivation of
X from U⋆. This implies that ε1 is an N -word α. If, on the other hand, ε1 is
a ↓-expression, then we must have applied one of the productions from line 3.
It follows from these productions and Claims 13 and 14 that in that case, there
exists i with 1 ≤ i ≤ n− 1, such that both εi and εi+1 are DNA expressions.

We now prove that each sequence ε1 . . . εn as described in the claim is an element
of L(U⋆). Let X be such a sequence. We distinguish a number of cases, based on
ε1 and (possibly) subsequent εi’s.

• If ε1 is an N -word α, then we may have n = 1. In that case, X = α, which is
derived from U⋆ by the application of production U⋆ −→ α.

If, on the other hand, n ≥ 2, then the sequence ε2 . . . εn has Properties (LU.1)–
(LU.3) (with subscripts increased by 1), and ε2 is a DNA expression. By Claim 13,
the sequence ε2 . . . εn is an element of L(UE). Hence, X = αε2 . . . εn ∈ L(αUE).

• If ε1 is an l-expression 〈l α〉 for an N -word α, then we must have n ≥ 2. The
sequence ε2 . . . εn has Properties (LU.1)–(LU.3) (with subscripts increased by 1).

Now, if ε2 is an N -word α, then by Claim 12, the sequence ε2 . . . εn is an element
of L(Uα) and X = 〈l α〉 ε2 . . . εn ∈ L(〈l α〉Uα). If, on the other hand, ε2 is a
DNA expression, then by Claim 13, the sequence ε2 . . . εn is an element of L(UE)
and X = 〈l α〉 ε2 . . . εn ∈ L(〈l α〉UE).

• If ε1 is a ↓-expression, then we must again have n ≥ 2. The ↓-expression ε1 has
m ≥ 2 arguments ε1,1, . . . , ε1,m, which form an alternating sequence of N -words
α and l-expressions 〈l α〉. Moreover, because ε1 prefits ε2 by upper strands, the
last argument ε1,m of ε1 must be an l-expression.

Now, if the first argument ε1,1 of ε1 is an N -word α, then by Claim 7, ε1 ∈
L(

〈
↓ αAl,l

〉
). If, on the other hand, ε1,1 is an l-expression, then by Claim 8,

ε1 ∈ L(
〈
↓ 〈l α〉Aα,l

〉
).

In both cases, there exists i with 1 ≤ i ≤ n − 1 such that both εi and εi+1 are
DNA expressions.

164 Ch. 8 A Minimal Normal Form for DNA Expressions

If ε2 is an N -word α, then we do not have two consecutive DNA expressions,
yet. Hence, n must be at least 3 (in fact, at least 4) and ε3 . . . εn is a se-
quence with Properties (LU.1)–(LU.3) (with subscripts increased by 2), such
that (in addition) ε3 is a DNA expression (because it succeeds the maximal
N -word occurrence ε2) and there exists i with 3 ≤ i ≤ n − 1 for which both
εi and εi+1 are DNA expressions. By Claim 14, the sequence ε3 . . . εn is an
element of L(ÛE). Hence, either X = ε1αε3 . . . εn ∈ L(

〈
↓ αAl,l

〉
αÛE), or

X = ε1αε3 . . . εn ∈ L(
〈
↓ 〈l α〉Aα,l

〉
αÛE).

If, on the other hand, ε2 is a DNA expression, then ε1 and ε2 are two consecutive
DNA expressions. There does not necessarily exist i with 2 ≤ i ≤ n−1 for which
both εi and εi+1 are DNA expressions. The sequence ε2 . . . εn has Properties
(LU.1)–(LU.3) and ε2 is a DNA expression. By Claim 13, ε2 . . . εn is an element
of L(UE). Hence, either X = ε1ε2 . . . εn ∈ L(

〈
↓ αAl,l

〉
UE), or X = ε1ε2 . . . εn ∈

L(
〈
↓ 〈l α〉Aα,l

〉
UE).

16 LetX be an arbitrary element of L(〈↑ U⋆〉). By the previous claim,X = 〈↑ ε1 . . . εn〉
for n ≥ 1 N -words and DNA expressions ε1, . . . , εn with some special proper-
ties. By Property (LU.2), the arguments ε1, . . . , εn fit together by upper strands.
Hence, X is indeed an ↑-expression. Each of Properties (DMinNF.1)–(DMinNF.5)
follows easily from the properties listed in the previous claim. By Theorem 8.8,
X is in minimal normal form.

On the other hand, let X be an arbitrary ↑-expression in minimal normal form.
Then X = 〈↑ ε1 . . . εn〉 for n ≥ 1 maximal N -word occurrences and DNA ex-
pressions ε1, . . . , εn that fit together by upper strands, and X has Properties
(DMinNF.1)–(DMinNF.5). It is easily verified that the sequence ε1 . . . εn have the
properties listed in the previous claim. Hence, ε1 . . . εn is an element of L(U⋆)
and X = 〈↑ ε1 . . . εn〉 ∈ L(〈↑ U⋆〉).

17 The proof of this claim is analogous to that of the previous claim (with analogous
auxiliary claims).

In the first part of the proof of Claims 12 and 13, we showed that each element X of
L(Uα) or L(UE) has Properties (LU.1)–(LU.3). It is worth noting that such an element
X has even stronger properties. Also the ‘lower analogues’ of Properties (LU.2) and
(LU.3) are valid: ε1, . . . , εn fit together by lower strands and L(S−(ε1)) ∈ A± ∪ A−.

The lower analogue of Property (LU.1), however, is not necessarily valid. (Some
of) the elements εi of the sequences in L(Uα) and L(UE) may be ↓-expressions. Con-
sequently, the languages L(Lα) and L(LE), which contain sequences ε1 . . . εn with
the lower analogues of Properties (LU.1)–(LU.3), are really different from L(Uα) and
L(UE), respectively.

A corollary of Lemma 8.15(2), (16) and (17) is

Theorem 8.16 L(G2) = LG2
(E⋆) is the language DMinNF of all DNA expressions in

minimal normal form.

Because G2 is a context-free grammar, we know that DMinNF is a context-free language.
We use Proposition 2.4 to prove that it is even a regular language. In order to apply

8.4 Regularity of DMinNF 165

Level Non-terminal symbols
1 E⋆

2 U⋆, Uα, UE, ÛE, L⋆, Lα, LE, L̂E

3 E+,+, E+,⋆, E−,−, E−,⋆

4 Aα,lAl,l, Aα,⋆, Al,⋆

5 α

Table 8.2: Intuitive levels of non-terminal symbols in the context-free grammar G2.
Note that the higher the level is, the ‘simpler’ the non-terminal symbols are.

Proposition 2.4 to G2 directly, we have to establish that G2 is not self-embedding, i.e.,
that none of its non-terminal symbols is self-embedding.

Note that it is not really surprising that this property is valid. Intuitively, we can
distinguish ‘levels’ of non-terminal symbols in G2, as indicated in Table 8.2. When we
rewrite a non-terminal symbol, the result consists of terminal symbols, non-terminal
symbols at a higher level and at most one non-terminal symbol at the same level, which
then is the rightmost letter of the result. Hence, if a non-terminal symbol expands at
its own level, then it does so ‘in a right-linear way’.

The levels of the non-terminal symbols, as listed in Table 8.2, do not correspond
perfectly to the nesting levels in the DNA expressions that can be derived in G2.
For example, the elements of {U⋆, Uα, UE, ÛE, L⋆, Lα, LE, L̂E} and the elements of
{E+,+, E+,⋆, E−,−, E−,⋆} are at different levels in the table. However, as we discussed
at the beginning of this section, each of these elements corresponds to a sequence of
arguments or a single argument of the outermost operator, i.e., at nesting level 1 of the
DNA expression. As another example, the symbol α is at level 5 in Table 8.2, whereas
an N -word α may occur at different levels in a DNA expression (in minimal normal
form).

On the other hand, there definitely is a relation between the levels in the table and
the nesting levels of a DNA expression. To see this, recall that a DNA subexpression
induces a temporary increase of the nesting level of the DNA expression. Indeed, for
each production A −→ Z in P2 that introduces a new DNA subexpression (i.e., for
which the right-hand side Z contains a pair of matching brackets), the non-terminal
symbols occurring inside the brackets of the DNA subexpression are at the higher level
than the original non-terminal symbol A. Hence, the levels of the non-terminal symbols
in G2 ‘follow the direction’ of the nesting levels of the DNA expression.

Our intuition about the levels of the non-terminal symbols is expressed formally in
the following result:

Lemma 8.17 Let A be an arbitrary non-terminal symbol in Σ2 \ ∆2 and let X be a
string over Σ2 that can be derived from A in one or more derivation steps.

1. Assume that A = α. If X contains a non-terminal symbol B, then B = α and B
is the last letter of X.

2. Assume that A ∈ {Aα,l, Al,l, Aα,⋆, Al,⋆}. If X contains a non-terminal symbol
B, then

• either B = α,

166 Ch. 8 A Minimal Normal Form for DNA Expressions

• or B ∈ {Aα,l, Al,l, Aα,⋆, Al,⋆} and B is the last letter of X.

3. Assume that A ∈ {E+,+, E+,⋆, E−,−, E−,⋆}. If X contains a non-terminal symbol
B, then B ∈ {Aα,l, Al,l, Aα,⋆, Al,⋆, α}.

4. Assume that A ∈ {U⋆, Uα, UE, ÛE}. If X contains a non-terminal symbol B, then

• either B ∈ {E+,+, E+,⋆, Aα,l, Al,l, Aα,⋆, Al,⋆, α},

• or B ∈ {U⋆, Uα, UE, ÛE} and B is the last letter of X.

5. Assume that A ∈ {L⋆, Lα, LE, L̂E}. If X contains a non-terminal symbol B, then

• either B ∈ {E−,−, E−,⋆, Aα,l, Al,l, Aα,⋆, Al,⋆, α},

• or B ∈ {L⋆, Lα, LE, L̂E} and B is the last letter of X.

6. Assume that A = E⋆. If X contains a non-terminal symbol B, then B 6= E⋆.

Proof:

1. This claim follows immediately from the productions for (rewriting) α.

2. This claim follows immediately from the productions for (rewriting) the non-
terminals in {Aα,l, Al,l, Aα,⋆, Al,⋆} and the previous claim.

3. This claim follows immediately from the productions for (rewriting) the non-
terminals in {E+,+, E+,⋆, E−,−, E−,⋆} and from the previous two claims.

4. This claim follows immediately from the productions for (rewriting) the non-

terminals in {U⋆, Uα, UE, ÛE} and from the previous three claims.

5. The proof of this claim is analogous to that of the previous claim.

6. This claim is obvious, because the non-terminal symbol E⋆ does not occur in the
right-hand side of any production in G2.

It follows immediately from Lemma 8.17 that none of the non-terminal symbols in
G2 is self-embedding, and thus that G2 is not self-embedding. By Theorem 8.16,
L(G2) equals the language of all DNA expressions in minimal normal form. Hence, by
Proposition 2.4,

Theorem 8.18 The language DMinNF of DNA expressions in minimal normal form is
regular.

Chapter 9

Algorithms for the Minimal Normal
Form

At the beginning of Chapter 8, we introduced the (minimal) normal form as a means
to check equivalence. Two DNA expressions E1 and E2 are equivalent, if and only if
their normal form versions are equal.

To utilize this property, we need an algorithm that, for a given DNA expression,
computes the equivalent DNA expression in minimal normal form. With such an
algorithm, we can compute the normal form versions of E1 and E2. If these are equal,
then the original DNA expressions E1 and E2 are equivalent. If not, then E1 and E2

are not equivalent.
In order to obtain the normal form version of a given DNA expression E∗

1 , we
may first compute its semantics X1 = S(E∗

1), and then use Definition 8.1 to construct
EMinNF(X1). However, if we do this for E1 and E2, to decide if they are equivalent, then
we make a useless detour. We can as well omit the second step, the construction of the
DNA expression in minimal normal form from the semantics, and base our decision on
S(E1) and S(E2) directly. Apart from that, of course, it would be more elegant if we
did not need the semantics, at all, to get from one DNA expression (E∗

1) to another
(EMinNF(X1)).

In this chapter, we discuss two ways to rewrite an arbitrary DNA expression E∗
1

into its normal form equivalent, without referring to S(E∗
1). First, we propose a direct,

recursive function. This function turns out to use at least quadratic time in the worst
case. We subsequently describe an alternative, two-step algorithm, and prove that it
is correct and uses linear time and space.

Note that the recursive function MakeMinimal, which we have described in Chap-
ter 7, is not sufficient to produce some kind of a normal form. By Corollary 7.13,
MakeMinimal does not necessarily yield the same output for different equivalent in-
puts, which is required for a normal form.

9.1 Recursive algorithm for the minimal normal

form

In Chapter 7, we have described a recursive function MakeMinimal, which rewrites a
given DNA expression E∗

1 into an equivalent, minimal DNA expression. We proved
that, with a proper datastructure, this function requires time and space that are linear
in |E∗

1 | (see Corollary 7.38 and Theorem 7.40).

167

168 Ch. 9 Algorithms for the Minimal Normal Form

1. MakeMinimalNF (E)
// recursively rewrites an arbitrary DNA expression E
// into an equivalent DNA expression in minimal normal form

2. {
3. if (E is an l-expression)
4. then if (the argument of E is a DNA expression E1)
5. then MakeMinimalNF (E1);
6. substitute E by a DNA expression E ′ in minimal normal form

satisfying E ′ ≡ E;
7. fi

8. else // E is an ↑-expression or a ↓-expression
9. for all expression-arguments Ei of E (in some order)
10. do MakeMinimalNF (Ei);
11. od
12. substitute E by a DNA expression E ′ in minimal normal form

satisfying E ′ ≡ E;
13. fi
14. }

Figure 9.1: Pseudo-code of the recursive function MakeMinimalNF.

We now want to rewrite a given DNA expression into the equivalent DNA expres-
sion in minimal normal form. Our first attempt is again a recursive function, which we
call MakeMinimalNF. When we apply this function to a DNA expression E, we first (re-
cursively) rewrite the expression-arguments of E into the minimal normal form. After
that, we deal with the DNA expression as a whole. Just like we did in MakeMinimal,
we consider l-expressions on the one hand, and ↑-expressions and ↓-expressions on the
other hand, separately. Figure 9.1 displays the global set-up of MakeMinimalNF.

In lines 6 and 12, we substitute a DNA expression E whose arguments are in
minimal normal form by an equivalent DNA expression E ′ which is in minimal normal
form itself. We have not specified how to find this DNA expression E ′. It is, however,
clear, that we should not implement those lines by a recursive call MakeMinimalNF(E),
as that would start an infinite series of recursive calls of MakeMinimalNF, with the same
argument E.

A possible implementation of the two lines would be to first determine X = S(E),
and then to use Definition 8.1 to construct E ′. Of course, since we prefer not to use
the semantics of the DNA expression, this is not a type of implementation that we look
for. Moreover, with such an implementation, we would not benefit at all from the fact
that the expression-arguments of E are in minimal normal form already. Hence, the
recursive calls we have made for these expression-arguments would be useless, after all.
However, it does make clear that in principle, the two lines can be effectively executed
in finite time.

Note that indeed, the structure of MakeMinimalNFis equal to that of MakeMinimal(see
Figure 7.1). The main difference between the description of MakeMinimal and that of
MakeMinimalNF is that the former has more detail. Both lines 6–10 and lines 16–37
of MakeMinimal are an implementation of the general statement ‘substitute E by a
minimal DNA expression E ′ satisfying E ′ ≡ E’ (cf. lines 6 and 12 of MakeMinimalNF).

Although we have not specified the details of lines 6 and 12, it is possible to prove
that the set-up of MakeMinimalNF is correct.

9.1 Recursive algorithm for the minimal normal form 169

Theorem 9.1 Let E∗
1 be an arbitrary DNA expression, and let E∗

2 be the result of
applying the function MakeMinimalNF to E∗

1 .

1. MakeMinimalNF is well defined.

2. The string E∗
2 is a DNA expression in minimal normal form satisfying E∗

2 ≡ E∗
1 .

Proof:

1. Clearly, for every DNA expression E, there exists an equivalent DNA expres-
sion E ′ which is minimal normal form. This implies that lines 6 and 12 of
MakeMinimalNF are well defined. Hence, the entire recursive function is well
defined.

2. The proof of this claim is straightforward by induction on the number p of oper-
ators occurring in E∗

1 .

If E∗
1 = 〈l α1〉 for an N -word α1, then MakeMinimalNF leaves E∗

1 unchanged.

By Case 1 of Definition 8.1, E∗
2 = E∗

1 = 〈l α1〉 = EMinNF(X) for X =
(

α1

c(α1)

)
.

Indeed, E∗
2 is in minimal normal form, and obviously, E∗

2 ≡ E∗
1 .

In all other cases (E∗
1 = 〈l E1〉 for a DNA expression E1, or E

∗
1 is an ↑-expression

or a ↓-expression), suppose that the recursive calls in lines 5 and 10 of Make-
MinimalNF yield DNA expressions that are equivalent to the expression-arguments
Ei of E = E∗

1 . Then Lemma 3.7 and lines 6 and 12 of MakeMinimalNF ensure
that E∗

2 is in minimal normal form and equivalent to E∗
1 . We leave the details to

the reader.

Note that we did not use the fact that the expression-arguments resulting from
the recursive calls are in minimal normal form. This fact may, however, be
exploited in an actual implementation of lines 6 and 12.

Regardless of the actual implementations of lines 6 and 12 of MakeMinimalNF, we can
also draw another important conclusion: the recursive approach of the function is not
as efficient as that of MakeMinimal. We demonstrate this by examining its complexity
for DNA expressions of a specific type.

Example 9.2 Let α be an arbitrary N -word, and let

E1 = 〈↓ 〈l α〉α 〈l α〉〉 ,
E2p = 〈↑ 〈l α〉α E2p−1 α 〈l α〉〉 (p ≥ 1),
E2p+1 = 〈↓ 〈l α〉α E2p α 〈l α〉〉 (p ≥ 1).

Hence,

E1 = 〈↓ 〈l α〉α 〈l α〉〉 ,

E2 = 〈↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α 〈l α〉〉 ,

E3 = 〈↓ 〈l α〉α 〈↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α 〈l α〉〉α 〈l α〉〉 ,

E4 = 〈↑ 〈l α〉α 〈↓ 〈l α〉α 〈↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α 〈l α〉〉α 〈l α〉〉α 〈l α〉〉 ,

etc.

It is easy to prove by induction on p, that for any p ≥ 1,

170 Ch. 9 Algorithms for the Minimal Normal Form

• both E2p and E2p+1 are DNA expressions,

•

S(E2p) =
(

α
c(α)

)(
α
−

) (
α

c(α)

)(
−
α

)(
α

c(α)

)(
α
−

)
. . .

(
α

c(α)

)(
−
α

)(
α

c(α)

)(
α
−

)
︸ ︷︷ ︸

p− 1 times

·

(
α

c(α)

)(
−
α

)(
α

c(α)

)
·

(
α
−

)(
α

c(α)

)(
−
α

)(
α

c(α)

)
. . .

(
α
−

)(
α

c(α)

)(
−
α

)(
α

c(α)

)
︸ ︷︷ ︸

p− 1 times

(
α
−

)(
α

c(α)

)

=
(

α
c(α)

)(
α
−

) (
α

c(α)

)(
−
α

)(
α

c(α)

)(
α
−

)
. . .

(
α

c(α)

)(
−
α

)(
α

c(α)

)(
α
−

)
︸ ︷︷ ︸

2p− 1 times

(
α

c(α)

)
,

S(E2p+1) =
(

α
c(α)

)(
−
α

)(
α

c(α)

)(
α
−

)
. . .

(
α

c(α)

)(
−
α

)(
α

c(α)

)(
α
−

)
︸ ︷︷ ︸

p times

·

(
α

c(α)

)(
−
α

)(
α

c(α)

)
·

(
α
−

)(
α

c(α)

)(
−
α

)(
α

c(α)

)
. . .

(
α
−

)(
α

c(α)

)(
−
α

)(
α

c(α)

)
︸ ︷︷ ︸

p times

=
(

α
c(α)

)(
−
α

) (
α

c(α)

)(
α
−

)(
α

c(α)

)(
−
α

)
. . .

(
α

c(α)

)(
α
−

)(
α

c(α)

)(
−
α

)
︸ ︷︷ ︸

2p times

(
α

c(α)

)
,

•

B↑(S(E2p)) = B↓(S(E2p)) + 1 = 2p,

B↓(S(E2p+1)) = B↑(S(E2p+1)) + 1 = 2p+ 1,

• nl(S(Eq)) = 2q, both if q = 2p and if q = 2p+ 1,

• |Eq| = 3 · 3q + (4q − 1) · |α|, both if q = 2p and if q = 2p+ 1.

In particular, E2p and E2p+1 are nick free, and their lengths are linear in p. Moreover,
both E2p and E2p+1 are minimal, because they achieve the minimal lengths mentioned
in Summary 6.12(3) and (4), respectively. However, for q ≥ 3, Eq is not in minimal
normal form, because it violates Property (DMinNF.4).

By Definition 8.1(3) and (4) and the construction from Theorem 5.12, the corre-
sponding DNA expressions in minimal normal form are

E ′
2p = EMinNF(S(E2p))

=

〈
↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α . . . 〈↓ 〈l α〉α 〈l α〉〉α︸ ︷︷ ︸

2p− 1 times

〈l α〉

〉
, (9.1)

E ′
2p+1 = EMinNF(S(E2p+1))

=

〈
↓ 〈l α〉α 〈↑ 〈l α〉α 〈l α〉〉α . . . 〈↑ 〈l α〉α 〈l α〉〉α︸ ︷︷ ︸

2p times

〈l α〉

〉
.

9.2 Two-step algorithm for the minimal normal form 171

Now, let p ≥ 1 and let us apply the function MakeMinimalNF to the ↓-expression
E2p+1, with the ↑-expression E2p as one of its arguments. When we call the function
recursively for E2p, this argument is rewritten into the ↑-expression E ′

2p. The other
two expression-arguments 〈l α〉 of E2p+1 are already in minimal normal form. In order
to rewrite the result

〈
↓ 〈l α〉α E ′

2p α 〈l α〉
〉

into the corresponding DNA expression in minimal normal form E ′
2p+1, we must remove

the 2p − 1 occurrences of ↓ in E ′
2p, add 2p − 1 occurrences of ↑ at other positions

in the DNA expression, and also rearrange the brackets. Regardless of the actual
implementation of such a rearrangement, it requires time that is at least linear in p.

Likewise, at a higher level of the recursion, we have had to rearrange 2p − 2, 2p −
3, 2p − 4, . . . , 1 occurrences of operators in E ′

2p−1, E
′
2p−2, E

′
2p−3, . . . , E

′
2, respectively.

Altogether, this takes time that is at least quadratic in p, and thus in the length of
E2p+1.

The analysis for the ↑-expression E2p is completely analogous.

It is instructive to examine the operation of the recursive function MakeMinimalNF on
the structure trees of the DNA expressions from the above example. We have depicted
this in Figure 9.2 and Figure 9.3 for the ↓-expression E5.

Since there exist DNA expressions E for which MakeMinimalNF requires time that
is at least quadratic in |E|, we can conclude:

Theorem 9.3 The worst case time complexity of the recursive function MakeMinimalNF

is at least quadratic.

9.2 Two-step algorithm for the minimal normal form

As we have seen in § 9.1, the direct, recursive function MakeMinimalNF does produce
an equivalent DNA expression in minimal normal form for its argument E, but it is
not really efficient. We now propose another, two-step algorithm. Given an arbitrary
DNA expression E∗

1 , we first use the function MakeMinimal to construct an equivalent,
minimal DNA expression E∗

2 . This DNA expression is not necessarily in minimal
normal form. We subsequently rewrite E∗

2 into the minimal normal form.

In Figure 9.4, we give pseudo-code for the algorithm NormalizeMinimal, which
performs this second step. Both substitutions occurring in this pseudo-code can be
achieved by local rearrangements of brackets and operators in the DNA expression.

As usual, in NormalizeMinimal, we consider l-expressions on the one hand, and ↑-
and ↓-expressions on the other hand, separately. If the minimal DNA expression E∗

2 is
an l-expression, then by Theorem 5.3, there is no other minimal DNA expression with
the same semantics. Hence, E∗

2 must be in minimal normal form already. It does not
have to be rewritten. This explains line 5.

Now, let us assume that E = E∗
2 is an ↑-expression. In lines 7–9, we consider the

case that E is alternating and its first argument is a ↓-expression. In this case, as
indicated in the code, E violates Property (DMinNF.5). We correct this by applying
procedure RotateToMinimal.

In the subsequent while-loop, we deal with inner occurrences of ↑ in the ↑-expression
E. As we have seen in the proof of Lemma 8.9(1), such inner occurrences correspond

172 Ch. 9 Algorithms for the Minimal Normal Form

n

n n n

n n n

n ��
�� n

n ��
�� n

n n

n

n

�
�

��

�
�
��

A
A
AA

@
@
@@

�
�
��

�
�

��

�
�
��

A
A
AA

@
@
@@

A
A
AA

�
�
��

�
�

��

�
�
��

A
A
AA

@
@
@@

A
A
AA

�
�
��

�
�

��

�
�
�

A
A
A

@
@
@@

A
A
AA

�
�
�

A
A
A

↓

l α2 ↑ α18 l

α1 l α4 ↓ α16 l α19

α3 l α6 ↑ α14 l α17

α5 l α8 ↓ α12 l α15

α7 l α10 l α13

α9 α11 (a)

n

n n n

n ��
�� n

n n n n

n n n n

n

�
�

�
�

��

�
�
��

S
S
SS

Q
Q
Q
Q
QQ

�
�
��

�
�

�
�

��

�
�
��

S
S
SS

Q
Q
Q
Q
QQ

A
A
AA

�
�
��

�
�

�
�
�

�
�

��

�
�
�

A
A
A

@
@
@@

Q
Q
Q
Q
Q

A
A
AA

�
�
��

�
�
��

�
�
��

C
C
C

�
�
�

C
C
CC

S
S
SS

C
C
CC

↓

l α2 ↑ α18 l

α1 l α4 ↓ α16 l α19

α3 l α6 ↑ α10 ↑ α14 l α17

α5 l α8 l l α12 l α15

α7 α9 α11 α13

(b)

Figure 9.2: Structure trees of the DNA expressions that we successively obtain, when
we apply the recursive function MakeMinimalNF to the ↓-expression E5 from Exam-
ple 9.2. To make the structure trees easier to compare, we have added subscripts to
the occurring N -words. (a) Structure tree of the original DNA expression. The nodes
in the backbone of the tree correspond in top-down order to E5, E4, E3, E2 and E1,
respectively. Note that E1 and E2 are already in the minimal normal form. The corre-
sponding two nodes are marked with an extra circle. (b) Structure tree after rewriting
the DNA subexpression E3 into the minimal normal form equivalent E ′

3. The node
corresponding to E ′

3 is marked with an extra circle. (Continued in Figure 9.3)

to violations of Property (DMinNF.4). When we perform the substitution in line 12, we
get rid of one inner occurrence of ↑.

In Lemma 8.10, we have established an upper bound on the nesting level of the
brackets in a DNA expression in minimal normal form. In fact, due to the substitution
in line 12, the nesting level decreases by 2 at the location of the substitution. We
can also use the terms from Definition 8.1: the substitution in line 12 corresponds to
breaking a large lower block into two smaller lower blocks.

Note that Properties (DMinNF.1)–(DMinNF.3) are not mentioned in the pseudo-code.
This is natural, as they equal Properties (DMin.1)–(DMin.3) of minimal DNA expres-
sions, and the input of NormalizeMinimal is supposed to be minimal.

We illustrate the algorithm by an example. In this example, we also show (or refer
back to) the structure trees of the DNA expressions we obtain in the course of the
algorithm.

Example 9.4 In Example 5.14, we have constructed four minimal DNA expressions
for the formal DNA molecule X depicted in Figure 5.4. Let

E = Ec = 〈↓ 〈↑ α1 〈l α2〉〉α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉 (9.2)

9.2 Two-step algorithm for the minimal normal form 173

n

n ��
�� n

n n n n n

n n n n n n

n
��������

�
�

��

@
@
@@

HHHHHHHH

�
�
��

��������

�
�

�
�

��

�
�

��

�
�
�

A
A
A

@
@
@@

Q
Q
Q
Q
Q

HHHHHHHH

A
A
AA

�
�
��

�
�

��

�
�
��

�
�
�

A
A
A

A
A
AA

@
@
@@

A
A
AA

↓

l α2 ↑ α18 l

α1 l α4 ↓ α8 ↓ α12 ↓ α16 l α19

α3 l α6 l l α10 l l α14 l α17

α5 α7 α9 α11 α13 α15 (c)

��
��

n n n n n n

n n n n n n n n

n����������������

������������

��������

�
�

��

�
�
�

A
A
A

@
@
@@

HHHHHHHH

PPPPPPPPPPPP

XXXXXXXXXXXXXXXX

�
�
��

�
�
��

C
C
C

�
�
��

�
�
��

C
C
C

�
�
�

C
C
CC

S
S
SS

�
�
�

C
C
CC

S
S
SS

↓

l α2 ↑ α6 ↑ α10 ↑ α14 ↑ α18 l

α1 l α4 l l α8 l l α12 l l α16 l α19

α3 α5 α7 α9 α11 α13 α15 α17 (d)

Figure 9.3: Structure trees of the DNA expressions that we successively obtain, when
we apply the recursive function MakeMinimalNF to the ↓-expression E5 from Exam-
ple 9.2 (continuation of Figure 9.2). (c) Structure tree after rewriting the DNA subex-
pression E4 into the minimal normal form equivalent E ′

4. The node corresponding to
E ′

4 is marked with an extra circle. (d) Structure tree of the final result of the function,
the minimal normal form equivalent E ′

5 of E5 itself. For consistency, the root node
(corresponding to E ′

5) is marked with an extra circle.

(see (5.10)), which has been depicted in Figure 9.5(a). The fact that E is mini-
mal implies (1) that, by Theorem 7.12, it is not affected by the recursive function
MakeMinimal, and (2) that we can apply the algorithm NormalizeMinimal to it.

E is an alternating ↓-expression. Because its first argument is the ↑-expression
E1 = 〈↑ α1 〈l α2〉〉, E violates Property (DMinNF.5). According to (the analogue for
↓-expressions of) line 8 of algorithm NormalizeMinimal and line RtM.6 of procedure
RotateToMinimal, E is substituted by

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉〉 . (9.3)

This is the minimal DNA expression Eb from (5.9). It has been depicted in Fig-
ure 9.5(b). Because the ↑-expression E has an inner occurrence of ↑, we enter the
while-loop. We select the ↓-subexpression

Ê = 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉 ,

174 Ch. 9 Algorithms for the Minimal Normal Form

1. NormalizeMinimal (E∗
2)

// rewrites an arbitrary minimal DNA expression E∗
2

// into a DNA expression E∗
3 in minimal normal form

// satisfying E∗
3 ≡ E∗

2;
// uses local rearrangements of the DNA expression for this

2. {
3. E = E∗

2;
4. if (E is an l-expression)
5. then E∗

3 = E;
6. else // E is an ↑-expression or a ↓-expression;

// without loss of generality, assume it is an ↑-expression
7. if (E is alternating and its first argument is a ↓-argument)
8. then substitute E by the result of procedure RotateToMinimal;

(DMinNF.5)
9. fi

// E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is an ↑-expression

10. while (E has inner occurrences of ↑)
11. do select a ↓-subexpression Ê of E

which has at least one ↑-argument Ei;

// Ê = 〈↓ ε1 . . . εi−1Eiεi+1 . . . εn〉
// and Ei = 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉

12. substitute Ê in E
by 〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉; (DMinNF.4)

13. od
14. E∗

3 = E;
15. fi
16. }

Figure 9.4: Pseudo-code of the algorithm NormalizeMinimal.

n

n n n

n n n n

��������

�
�
�

�
��

Q
Q
Q
Q
QQ

HHHHHHHH

�
�
��

�
�

��

�
�
��

A
A
AA

@
@
@@

↓

↑ α3 ↑ α9 l

α1 l l α5 l α7 l α10

α2 α4 α6 α8

(a)

n

n

n n n

n n n

�
�

�
�

��

@
@
@@
��������

�
�

�
�

��

Q
Q
Q
Q
QQ

HHHHHHHH

�
�

��

�
�
��

A
A
AA

@
@
@@

↑

α1 ↓

l α3 ↑ α9 l

α2 l α5 l α7 l α10

α4 α6 α8

(b)

Figure 9.5: Structure trees of the first two minimal DNA expressions occurring in
Example 9.4, denoting the formal DNA molecule from Figure 5.4. (a) The structure
tree of Ec from (9.2). (b) The structure tree of Eb from (9.3).

9.2 Two-step algorithm for the minimal normal form 175

(the second argument of E), whose third argument is the ↑-expression E3 = 〈↑ 〈l α4〉α5

〈l α6〉α7 〈l α8〉〉. Because the outermost operator ↓ of Ê is an inner occurrence in E,
it violates Property (DMinNF.4). According to line 12 of algorithm NormalizeMinimal,

Ê is substituted in E by the sequence of arguments

〈↓ 〈l α2〉α3 〈l α4〉〉 α5 〈l α6〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉 ,

yielding

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉〉 . (9.4)

After the substitution, E has no inner occurrences of ↑, anymore, and we exit the
while-loop. We do not rewrite the DNA expression any further. Indeed, E has all five
properties from Lemma 8.6, and thus is in minimal normal form. It equals EMinNF(X) =
Ea from (5.8) and (8.2), which has been depicted in Figure 8.1(b).

In the above example, the while-loop in lines 10–13 of NormalizeMinimal has only one
iteration. In general, there may be more iterations. We will see an example of this in
§ 9.3.

When we introduced algorithm NormalizeMinimal, we already mentioned the re-
lation between inner occurrences of ↑ in an ↑-expression E (and inner occurrences of ↓
in a ↓-expression E) and violations of Property (DMinNF.4). This property deals (a.o.)
with the arguments of arbitrary inner occurrences of ↓ in E, i.e., the arguments of
arbitrary proper ↓-subexpressions of E. We now focus on the arguments of (direct)
↓-arguments of an ↑-expression E.

Lemma 9.5 Let E be a minimal ↑-expression. Then E has an inner occurrence of ↑,
if and only if E has a ↓-argument with at least one ↑-argument.

Proof: Obviously, if E has a ↓-argument with at least one ↑-argument, then E has an
inner occurrence of ↑.

Now assume that E has an inner occurrence ↑1 of ↑. Then ↑1 occurs in an argument
ε̂ of E. By Corollary 6.2, ε̂ is either an N -word α, or an l-expression 〈l α〉 for an N -
word α, or a ↓-expression. Because the first two types of arguments do not contain
occurrences of ↑, ε̂ must be a ↓-expression Ê.

Inside Ê, ↑1 occurs in an argument εi of Ê. Because E is minimal, so is Ê. Hence,
by Corollary 6.2, εi is either an N -word α, or an l-expression 〈l α〉 for an N -word α,
or an ↑-expression. Because εi contains ↑1, it must be an ↑-expression Ei. We conclude
that E has a ↓-argument Ê with at least one ↑-argument Ei.

Note that ↑1 may be the outermost operator of Ei, but it may also be an inner
occurrence in Ei. This is not important for the proof.

We prove that algorithm NormalizeMinimal is correct.

Theorem 9.6 Let E∗
2 be an arbitrary minimal DNA expression, and let E∗

3 be the
result of applying algorithm NormalizeMinimal to E∗

2 .

1. Algorithm NormalizeMinimal is well defined.

2. Algorithm NormalizeMinimal terminates.

3. The string E∗
3 is a DNA expression in minimal normal form satisfying E∗

3 ≡ E∗
2 .

176 Ch. 9 Algorithms for the Minimal Normal Form

4. E∗
3 is independent of the order in which ↓-subexpressions Ê with at least one

↑-argument Ei are selected in line 11.

Proof: We combine the proofs of Claims 1 and 3, because both of them (partly) rely
on an invariant of the while-loop in algorithm NormalizeMinimal.

1, 3. The only instructions that are not obviously well defined, are the ones in lines
8, 11 and 12. Before we can apply procedure RotateToMinimal to E in line 8,
we must verify that E satisfies the preconditions of the procedure. In line 11, we
select a ↓-subexpression Ê that has at least one ↑-argument. Of course, this is
only possible, if E has at least one such ↓-subexpression. Finally, the substitution
in line 12 is only well defined if m ≥ 2.

We first consider the case that E∗
2 is an l-expression. Because E∗

2 is minimal, by
Theorem 5.3, E∗

2 = 〈l α1〉 for an N -word α1. By Case 1 of Definition 8.1, E∗
2 is

in minimal normal form, already. In this case, by line 5 of NormalizeMinimal,
E∗

3 = E = E∗
2 . Obviously, E∗

3 satisfies E∗
3 ≡ E∗

2 .

Now assume that E∗
2 is an ↑-expression or a ↓-expression. We enter the else-

branch in line 6 with E = E∗
2 . Because E is minimal, it has Properties (DMin.1)–

(DMin.6) from Lemma 6.15. E also has Properties (DMinNF.1)–(DMinNF.3) from
Lemma 8.6, because these properties are equal to Properties (DMin.1)–(DMin.3).
E does, however, not necessarily have Properties (DMinNF.4) and (DMinNF.5).

Without loss of generality, we assume that E is an ↑-expression. By Corollary 6.2,
the first argument of E is either an N -word α, or an l-expression 〈l α〉 for an
N -word α, or a ↓-argument.

If the first argument of E is an N -word α or an l-expression 〈l α〉 for an N -
word α, or E has two consecutive expression-arguments, then E has Property
(DMinNF.5) and we skip line 8 of NormalizeMinimal.

If on the other hand, the first argument of E is a ↓-argument and E is alter-
nating, then E does not have Property (DMinNF.5) and we do execute line 8.
Indeed, E satisfies all conditions of (the analogue for ↑-expressions of) proce-
dure RotateToMinimal. By Property (DMin.6), the last argument of E cannot
be another ↓-argument. Hence, in RotateToMinimal, we execute line RtM.6.
The result is a minimal ↓-expression E ′, which satisfies E ′ ≡ E and whose last
argument is an ↑-argument. As we have seen in the proof of Theorem 7.27, the
first argument ε1,1 of E ′ is either an N -word α or an l-expression 〈l α〉 for an
N -word α. Hence, E ′ has Property (DMinNF.5).

In both cases, after the if-then construction of lines 7–9, E is a minimal ↑-
expression or ↓-expression with Property (DMinNF.5), which satisfies E ≡ E∗

2 .
Without loss of generality, we again assume that E is an ↑-expression. We thus
have

E is a minimal ↑-expression with Property (DMinNF.5), satisfying
E ≡ E∗

2 .
(9.5)

Before we prove that this property is an invariant for the while-loop in Normalize-
Minimal, we examine some implications. As we observed before, because E is
minimal, it also has Properties (DMinNF.1)–(DMinNF.3). Hence, Property (9.5)
and Theorem 8.8 imply that E is in minimal normal form, if and only if E has
Property (DMinNF.4).

9.2 Two-step algorithm for the minimal normal form 177

Now suppose that E has at least one inner occurrence of ↑. Because E is minimal,
we can apply Lemma 9.5 and conclude that E has a ↓-argument with at least one
↑-argument. Then there certainly exists a ↓-subexpression Ê of E with at least
one ↑-argument. Hence, line 11 of NormalizeMinimal is well defined.1 Moreover,
the outermost operator ↓ of Ê (which is an inner occurrence in E) makes E
violate Property (DMinNF.4).

Suppose, on the other hand, that E has no inner occurrence of ↑. Let ↓1 be an
inner occurrence of ↓ in E. Because E is minimal, so is the DNA subexpression
of E governed by ↓1. By Corollary 6.2, the arguments of ↓1 are N -words α,
l-expressions 〈l α〉 for N -words α, or ↑-expressions. The last type of arguments,
however, is not possible, because ↑-arguments would correspond to inner occur-
rences of ↑. Now by Property (DMin.4) of E, the arguments of ↓1 are maximal
N -word occurrences α and l-expressions 〈l α〉 for N -words α, alternately. This
implies that E has Property (DMinNF.4).

We conclude that (under the assumption that Property (9.5) is valid) E has no
inner occurrences of ↑, if and only if E has Property (DMinNF.4), which is the
case if and only if E is in minimal normal form.

We now prove that Property (9.5) is indeed an invariant for the while-loop.

• Clearly, before the first iteration of the while-loop, Property (9.5) is valid.

• Suppose that Property (9.5) is valid before a certain iteration of the while-
loop.

When we enter the iteration, E has at least one inner occurrence of ↑. As
we just observed, there indeed exists at least one ↓-subexpression of E with
an ↑-argument. Let Ê be the ↓-subexpression of E that we select in line 11,
say

Ê = 〈↓ ε1 . . . εi−1 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉 εi+1 . . . εn〉

for somem,n ≥ 1 andN -words and DNA expressions ε1, . . . , εi−1, εi+1, . . . , εn,
and εi,1, εi,2, . . . , εi,m−1, εi,m.

We zoom in on the ↑-argument Ei = 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉. Ei is the

argument of the ↓-expression Ê, which is in turn a proper DNA subex-
pression of the minimal ↑-expression E. By Lemma 6.17(7), m ≥ 3 and
both εi,1 and εi,m are l-expressions. Then certainly m ≥ 2, which im-
plies that the substitution in line 12 is well defined. By Property (DMin.4),
εi,1, εi,2, . . . , εi,m−1, εi,m form an alternating sequence of maximalN -word oc-
currences and DNA expressions. In particular, εi,2 and εi,m−1 are N -words.

We now consider Ê itself. As we just mentioned, Ê is a proper DNA subex-
pression of E. By Property (DMin.5), Ei cannot be the first or the last

argument of Ê, so 2 ≤ i ≤ n− 1. By Property (DMin.4), each occurrence of

↑ or ↓ in Ê is alternating. Now when we apply Theorem 3.11(1) and (2) to

Ê (with r = 1), we find that

Ê ′ = 〈↑ 〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉〉

is a DNA expression satisfying Ê ′ ≡ Ê.

1There may also be ↓-subexpressions Ê of E with an ↑-argument, which are not arguments of E.
They occur in arguments of E. In line 11, we may also select such a ↓-subexpression.

178 Ch. 9 Algorithms for the Minimal Normal Form

By Lemma 6.17(1b), the parent operator of Ê in E is an occurrence ↑0 of

↑. Let Ê be the jth argument of ↑0, and let E0 be the DNA subexpression
of E governed by ↑0:

E0 =
〈
↑0 ε̂1 . . . ε̂j−1Êε̂j+1 . . . ε̂l

〉
(9.6)

for some l ≥ 1 and N -words and DNA expressions ε̂1, . . . , ε̂j−1, ε̂j+1, . . . , ε̂l.
Note that E0 may be equal to E, but that is not important for the moment.
By Lemma 3.7 and Lemma 3.6,

E0 ≡
〈
↑0 ε̂1 . . . ε̂j−1Ê

′ε̂j+1 . . . ε̂l

〉

=
〈
↑0 ε̂1 . . . ε̂j−1

〈↑ 〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉〉

ε̂j+1 . . . ε̂l

〉

≡
〈
↑0 ε̂1 . . . ε̂j−1

〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉

ε̂j+1 . . . ε̂l

〉
.

(9.7)

Hence, when we substitute Ê in E0 (and thus in E) by

〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉 , (9.8)

like we do in line 12 of NormalizeMinimal, we obtain an equivalent ↑-
expression. After the substitution, E still satisfies E ≡ E∗

2 . Moreover, it is
easily verified that after the substitution, E has the same length as before
the substitution. This implies that E is still minimal.

We finally verify that E also has Property (DMinNF.5) after the substitution.
If E0 was a proper DNA subexpression of E, then the substitution has
no effect on the number of arguments and the types of arguments of E.
Hence, E has Property (DMinNF.5) after the substitution, because it had
this property before the substitution.

Now assume that E0 happened to be E itself. The ↓-argument Ê of E has
been substituted by the sequence of arguments in (9.8). This is an alternat-
ing sequence of N -words and DNA expressions, which both starts and ends
with a ↓-expression. It is easily verified that E was alternating before the
substitution of Ê, if and only if E is alternating after the substitution.

By Property (DMinNF.5), before the substitution, either the first argument
of E = E0 was an N -word α or an l-expression 〈l α〉 for an N -word α, or
E was not alternating. In the former case, it follows from (9.6) and (9.7)
that j ≥ 2 and the first argument ε̂1 of E is not affected by the substitution.
It is still α or 〈l α〉 after the substitution. In the latter case, as we just
observed, E is not alternating after the substitution, either. In both cases,
E also has Property (DMinNF.5) after the substitution.

Indeed, Property (9.5) is an invariant of the while-loop. After the last iteration
of the loop, E has no inner occurrences of ↑, anymore, which implies that E is
in minimal normal form. By the invariant, E satisfies E ≡ E∗

2 . This carries over
to E∗

3 .

9.3 Implementation and complexity of the algorithm 179

2. In every iteration of the while-loop, we substitute a ↓-subexpression

Ê = 〈↓ ε1 . . . εi−1 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉 εi+1 . . . εn〉

of E by the sequence of arguments

〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉 .

This way, we decrease the number of inner occurrences of ↑ in E by 1. Because
this number cannot become negative, the number of iterations of the while-loop
is limited, and algorithm NormalizeMinimal terminates.

4. By Claim 3, E∗
3 is a DNA expression in minimal normal form satisfying E∗

3 ≡ E∗
2 ,

i.e., with S(E∗
3) = S(E∗

2). By definition, there is only one DNA expression in
minimal normal form with this semantics. Then E∗

3 is certainly independent

of the order in which ↓-subexpressions Ê with at least one ↑-argument Ei are
selected in line 11.

This completes the proof of Theorem 9.6.

9.3 Implementation and complexity of the algorithm

In the description of algorithm NormalizeMinimal in Figure 9.4, we have not specified
all details of the while-loop. In particular, in line 11, we have not specified how to
select a ↓-subexpression Ê of E with at least one ↑-argument Ei. We now make the
description more precise. In fact, we completely rewrite the while-loop. However, the
purpose of the loop (to achieve Property (DMinNF.4)) and the types of substitutions
performed in the loop remain the same.

We also describe three features of a datastructure to store the DNA expression in.
We prove that with this datastructure, the algorithm can be carried out in linear time.

In the proof of Theorem 9.6(1) and (3), we have established that during the while-
loop of NormalizeMinimal, the ↑-expression E is minimal. Hence, by Lemma 9.5, the
condition

while (E has inner occurrences of ↑)

in line 10 of Figure 9.4 is equivalent to

while (E has a ↓-argument with at least one ↑-argument).

If E has such a ↓-argument Ê, then that is, in particular, a ↓-subexpression of E with
at least one ↑-argument. Hence, in line 11, we can simply select this ↓-argument.

A natural implementation of the while-loop would then consist of iterating over all
↓-arguments of E, and selecting the ones that have at least one ↑-argument. Note, how-
ever, that the substitution in line 12 introduces new arguments 〈↓ ε1 . . . εi−1εi,1〉 , εi,2,
. . . , εi,m−1, 〈↓ εi,mεi+1 . . . εn〉 for E. These may include new ↓-arguments with at least
one ↑-argument, which also have to substituted. This is accounted for in algorithm
NormalizeMinimal2, which is given in Figure 9.6. The while-loop in NormalizeMinimal2
considers all arguments ε̂ of E from left to right. A boolean stop indicates whether or
not the last argument of E has been considered.

As an illustration, we revisit the DNA expressions from Example 9.2, for which the
recursive function MakeMinimalNF appeared to use quadractic time.

180 Ch. 9 Algorithms for the Minimal Normal Form

1. NormalizeMinimal2 (E∗
2)

// rewrites an arbitrary minimal DNA expression E∗
2

// into a DNA expression E∗
3 in minimal normal form

// satisfying E∗
3 ≡ E∗

2;
// uses local rearrangements of the DNA expression for this

2. {
3. E = E∗

2;
4. if (E is an l-expression)
5. then E∗

3 = E;
6. else // E is an ↑-expression or a ↓-expression;

// without loss of generality, assume it is an ↑-expression
7. if (E is alternating and its first argument is a ↓-argument)
8. then substitute E by the result of procedure RotateToMinimal;

(DMinNF.5)
9. fi

// E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is an ↑-expression

10. ε̂ = first argument of E;
11. stop = false;
12. while (not stop)
13. do if (ε̂ is a ↓-expression with at least one ↑-argument)

// let ε̂ = 〈↓ ε1 . . . εi−1Eiεi+1 . . . εn〉,
// where Ei = 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉
// is the first ↑-argument of ε̂

14. then substitute ε̂ in E
by 〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉;

(DMinNF.4)
15. ε̂ = εi,2;
16. else if (ε̂ is not the last argument of E)
17. then ε̂ = next argument of E;
18. else stop = true;
19. fi
20. fi
21. od
22. E∗

3 = E;
23. fi
24. }

Figure 9.6: Pseudo-code of the algorithm NormalizeMinimal2, which is a more de-
tailed version of the algorithm NormalizeMinimal from Figure 9.4.

Example 9.7 Let α be an arbitrary N -word, and let

E1 = 〈↓ 〈l α〉α 〈l α〉〉 ,
E2p = 〈↑ 〈l α〉α E2p−1 α 〈l α〉〉 (p ≥ 1),
E2p+1 = 〈↓ 〈l α〉α E2p α 〈l α〉〉 (p ≥ 1).

As we observed in Example 9.2, for p ≥ 1, both E2p and E2p+1 are minimal. The
starting DNA expression E1 is also minimal. The fact that for each q ≥ 1, Eq is
minimal, implies (1) that, by Theorem 7.12, Eq is not affected by the recursive function
MakeMinimal, and (2) that we can apply the algorithm NormalizeMinimal2 to it.

For q ≥ 1, Eq is alternating but its first argument is 〈l α〉. Hence, lines 7–9 of
the algorithm are not applicable. We examine the effect of the while-loop on an ↑-
expression E2p for p ≥ 2:

E = E2p = 〈↑ 〈l α〉α E2p−1 α 〈l α〉〉

9.3 Implementation and complexity of the algorithm 181

=
〈
↑ 〈l α〉α

〈
↓ 〈l α〉α

〈
↑ 〈l α〉α E2(p−1)−1 α 〈l α〉

〉
α 〈l α〉

〉
α 〈l α〉

〉
.

The third argument of E2p is the ↓-expression E2p−1, which has in turn as an argu-
ment the ↑-expression E2(p−1). The outermost operator ↓ of E2p−1 violates Property
(DMinNF.4). According to line 14 of NormalizeMinimal2, E2p−1 is substituted in E by
the sequence of arguments

〈↓ 〈l α〉α 〈l α〉〉α E2(p−1)−1 α 〈↓ 〈l α〉α 〈l α〉〉 ,

yielding

E =
〈
↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α E2(p−1)−1 α 〈↓ 〈l α〉α 〈l α〉〉α 〈l α〉

〉
.

After the substitution, the algorithm proceeds with the (new) fourth argument of E,
which is an N -word α. The fifth argument of E is the ↓-expression E2(p−1)−1. If p ≥ 3,
then this ↓-expression has as an argument the ↑-expression E2(p−2). The outermost
operator ↓ of E2(p−1)−1 violates Property (DMinNF.4). According to line 14, E2(p−1)−1

is substituted in E by the sequence of arguments

〈↓ 〈l α〉α 〈l α〉〉α E2(p−2)−1 α 〈↓ 〈l α〉α 〈l α〉〉 .

In p−1 substitutions, we obtain the DNA expression E ′
2p from (9.1), which is in minimal

normal form. For each substitution, we perform a constant amount of work: remove
one occurrence of ↑, add one occurrence of ↓ and rearrange two brackets. Hence, the
total amount of work (and time) to rewrite E2p into E ′

2p is linear in p, and thus linear
in |E2p|.

The effect of the while-loop on the ↓-expressions E2p+1 is analogous.

Indeed, for the ↑-expressions E2p with p ≥ 3 in the example, the substitution of a
↓-argument in line 14 of NormalizeMinimal2 introduces a new ↓-argument with an
↑-argument, which is in turn substituted. It is not hard to prove by induction, that
the maximal nesting level of the brackets in E2p is 2p + 1. Due to the substitution
in line 14, the nesting level decreases by 2. Successive substitutions bring down the
nesting level of the brackets to at most 3.

In Figure 9.7, we have depicted the effect of algorithhm NormalizeMinimal2 for
DNA expression E6 from Example 9.7. In two steps (iterations of the while-loop),
we transform the original, high tree in Figure 9.7(a) into the relatively flat tree in
Figure 9.7(c). In each step, the height of the tree decreases by 2: from 8 via 6 to 4.
With the recursive function MakeMinimalNF, we would need four steps to achieve the
same result. Each step would yield a decrease of only 1 (cf. Figures 9.2 and 9.3).

The difference in complexity between MakeMinimalNF and NormalizeMinimal2 is
not just this factor of 2. There is, however, a relation with this factor. In the first
rewriting step of MakeMinimalNF for E6, we rewrite the ↓-subexpression E3 into E

′
3. For

this, we substitute an inner occurrence of ↓ by an inner occurrence of ↑. In the second
step, we substitute two inner occurrences of ↑ (including the one we just introduced)
by two inner occurrence of ↓, and so on. In NormalizeMinimal2, we somehow make
two steps at a time. Thus, we no longer introduce operators in one step that we have
to remove in the next step. This is what really reduces the complexity for the DNA
expressions from Example 9.2 and Example 9.7. In Theorem 9.10, we will consider the
complexity of NormalizeMinimal2 for arbitrary minimal DNA expressions.

Note that there is another difference between the operation of MakeMinimalNF and
that of NormalizeMinimal2, besides the fact that NormalizeMinimal2 takes two steps

182 Ch. 9 Algorithms for the Minimal Normal Form

n

n n n

n n n

n n n

n n n

n n n

n n

�
�

��

�
�
��

A
A
AA

@
@
@@

�
�
��

�
�

��

�
�
��

A
A
AA

@
@
@@

A
A
AA

�
�
��

�
�

��

�
�
��

A
A
AA

@
@
@@

A
A
AA

�
�
��

�
�

��

�
�
��

A
A
AA

@
@
@@

A
A
AA

�
�
��

�
�

��

�
�
��

A
A
AA

@
@
@@

A
A
AA

�
�
�

A
A
A

↑

l α2 ↓ α22 l

α1 l α4 ↑ α20 l α23

α3 l α6 ↓ α18 l α21

α5 l α8 ↑ α16 l α19

α7 l α10 ↓ α14 l α17

α9 l α12 l α15

α11 α13

(a)

n

n n n n n

n n n n n n n

n n n

n n

!!!!!!!!!!

��������

#
#

#
##

�
�
��

A
A
AA

c
c
c
cc

HHHHHHHH

aaaaaaaaaa

�
�
��

#
#

#
##

�
�
��

�
�
�

�
�

��

�
�
��

A
A
AA

@
@
@@

C
C
C

S
S
SS

c
c
c
cc

A
A
AA

�
�
��

�
�
��

�
�
��

�
�

��

�
�
��

A
A
AA

@
@
@@

A
A
AA

A
A
AA

A
A
AA

�
�
�

A
A
A

↑

l α2 ↓ α6 ↓ α18 ↓ α22 l

α1 l α4 l l α8 ↑ α16 l l α20 l α23

α3 α5 α7 l α10 ↓ α14 l α17 α19 α21

α9 l α12 l α15

α11 α13

(b)

n

n n n n n n n

n n n n n n n n n n

����������������

������������

��������

�
�

�
�

��

�
�
��

S
S
SS

Q
Q
Q
Q
QQ

HHHHHHHH

PPPPPPPPPPPP

XXXXXXXXXXXXXXXX

````````````````````

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

↑

l α2 ↓ α6 ↓ α10 ↓ α14 ↓ α18 ↓ α22 l

α1 l α4 l l α8 l l α12 l l α16 l l α20 l α23

α3 α5 α7 α9 α11 α13 α15 α17 α19 α21

(c)

Figure 9.7: Structure trees of the three DNA expressions we successively obtain, when
we apply algorithm NormalizeMinimal2 to the ↑-expression E6 from Example 9.7. To
make the structure trees easier to compare, we have added subscripts to the occurring
N -words. (a) Structure tree of the original DNA expression E6. The nodes in the
backbone of the tree correspond in top-down order to E6, E5, E4, E3, E2 and E1,
respectively. The third argument of E6 is the ↓-expression E5, which has in turn
the ↑-expression E4 as an argument. (b) Structure tree of the DNA expression after
substituting E5, according to line 14 of the algorithm. The fifth argument of the DNA
expression is the ↓-expression E3, which has in turn the ↑-expression E2 as an argument.
(c) Structure tree of the DNA expression after substituting E3, according to line 14 of
the algorithm. This is the final result of the algorithm.



9.3 Implementation and complexity of the algorithm 183

at a time. Due to its recursive set-up, MakeMinimalNF rewrites a DNA expression from
the inside outwards (bottom-up in the tree). NormalizeMinimal2, on the other hand,
rewrites a DNA expression from the outside inwards (top-down in the tree).

We prove that NormalizeMinimal2 is correct. It does not suffice to just refer to
Theorem 9.6, where we established the correctness of NormalizeMinimal, because the
while-loop in the algorithm has significantly changed, We can, however, reuse some
elements of the argumentation.

Theorem 9.8 Let E∗
2 be an arbitrary minimal DNA expression.

1. Algorithm NormalizeMinimal2 is well defined.

2. Algorithm NormalizeMinimal2 terminates.

3. The string E∗
3 resulting from algorithm NormalizeMinimal2 is a DNA expression

in minimal normal form satisfying E∗
3 ≡ E∗

2 .

Proof: We combine the proofs of Claims 1 and 3, because both of them (partly) rely
on an invariant of the while-loop.

1, 3. The only differences between algorithm NormalizeMinimal and algorithm Nor-

malizeMinimal2 are in the while-loop. Hence, to prove Claims 1 and 3, it suffices
to analyse this loop in NormalizeMinimal2.

The only instructions in the loop that are not obviously well defined, are the
ones in lines 14 and 17. The substitution in line 14 requires m, the number of
arguments of Ei, to be at least 2. The assignment in line 17 is only well defined
if ε̂ is (still) an argument of E. We use an invariant of the while-loop to verify
both requirements.

Before the first iteration of the loop, E has the same properties as in Normalize-

Minimal. By Property (9.5) from the proof of Theorem 9.6, E is a minimal
↑-expression with Property (DMinNF.5), satisfying E ≡ E∗

2 . We prove that the fol-
lowing, extended property is an invariant of the while-loop in NormalizeMinimal2:

E is a minimal ↑-expression with Property (DMinNF.5), satisfying
E ≡ E∗

2 , ε̂ is an argument of E and the arguments of E to the left
of ε̂ do not contain any occurrence of ↑.

(9.9)

The fact that, according to this property, ε̂ is an argument of E, implies that
line 17 of the algorithm is well defined.

• Initially, before the first iteration of the while-loop, ε̂ is the first argument of
E. Hence, there are no arguments to the left of ε̂. This makes Property (9.9)
valid.

• Suppose that Property (9.9) is valid before a certain iteration of the while-
loop. In the iteration, we consider the argument ε̂ of E.

We first examine the case that ε̂ is a ↓-expression with at least one ↑-
argument. Let

ε̂ = 〈↓ ε1 . . . εi−1 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉 εi+1 . . . εn〉



184 Ch. 9 Algorithms for the Minimal Normal Form

for somem,n ≥ 1 andN -words and DNA expressions ε1, . . . , εi−1, εi+1, . . . , εn,
and εi,1, εi,2, . . . , εi,m−1, εi,m, where Ei = 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉 is the first
↑-argument of ε̂. Because E is minimal, so are its DNA subexpressions ε̂
and Ei.

We zoom in on the ↑-argument Ei of ε̂. By Lemma 6.17(7), m ≥ 3 and the
first argument εi,1 is an l-expression 〈l α〉 for an N -word α. Then certainly
m ≥ 2, and the substitution in line 14 is well defined.

We now consider ε̂ itself. By Corollary 6.2, each argument of ε̂ is either an
N -word α, or an l-expression 〈l α〉 for an N -word α, or an ↑-expression.
Because Ei is the first ↑-argument of ε̂, the arguments ε1, . . . , εi−1 are N -
words α or l-expressions 〈l α〉.

In line 14 of NormalizeMinimal2, we substitute ε̂ in E by the sequence of
arguments

〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉 .

This substitution is of exactly the same type as the substitution in line 12 of
NormalizeMinimal. Hence, we can reuse part of the proof of Theorem 9.6(1)
and (3), and conclude that after the substitution, E is still a minimal ↑-
expression with Property (DMinNF.5), satisfying E ≡ E∗

2 .

In line 15 of NormalizeMinimal2, we set ε̂ to εi,2, which is indeed an argu-
ment of E after the substitution. It follows from the above that the new
argument 〈↓ ε1 . . . εi−1εi,1〉 of E, which precedes ε̂ = εi,2, does not contain
any occurrence of ↑. Hence, Property (9.9) is also valid at the end of the
iteration. This concludes the analysis for the case that ε̂ is a ↓-expression
with at least one ↑-argument.

We subsequently examine the (simpler) case that ε̂ is not such a ↓-expression.
Because in this case, E is not modified, it is still a minimal ↑-expression with
Property (DMinNF.5), satisfying E ≡ E∗

2 , at the end of the iteration.

We first consider the subcase that ε̂ is a ↓-expression without ↑-arguments.
Because E is minimal, so is ε̂. By Corollary 6.2, each argument of ε̂ is either
an N -word α or an l-expression 〈l α〉 for an N -word α. We also consider
the subcase that ε̂ is not a ↓-expression, at all. By Corollary 6.2 (applied to
E), ε̂ is either an N -word α, or an l-expression 〈l α〉 for an N -word α.

In both subcases, ε̂ does not contain any occurrence of ↑. Hence, if ε̂ is
not the last argument of E and it is set to the next argument of E (in
line 17), then Property (9.9) is again valid. If, on the other hand, ε̂ is the
last argument of E and ε̂ remains the same, then certainly Property (9.9)
remains valid. The variable stop is set to true. Apparently, in this case,
none of the arguments of E contains an occurrence of ↑.

In all cases, Property (9.9) is also valid at the end of the iteration.

Indeed, Property (9.9) is an invariant of the while-loop. After the last iteration of
the loop, the variable stop is true. This implies that in the last iteration, ε̂ was
not a ↓-expression with at least one ↑-argument, and ε̂ was the last argument of
E. As we have just observed, at that point, none of the arguments of E contains
an occurrence of ↑, anymore. In other words, the ↑-expression E does not contain
any inner occurrence of ↑, anymore.



9.3 Implementation and complexity of the algorithm 185

We can again reuse part of the proof of Theorem 9.6(1) and (3), and conclude
that E is in minimal normal form. By the invariant, E satisfies E ≡ E∗

2 . This
carries over to E∗

3 .

2. We prove that the number of iterations of the while-loop is limited. By Prop-
erty (9.9), during the while-loop, E is a minimal DNA expression, which satisfies
E∗

2 ≡ E. This implies in particular that the length |E| of E is constant. Further,
during the loop, ε̂ is an argument of E.

Initially, before the first iteration of the loop, ε̂ is the first argument of E. Hence,
there is no argument of E to the left of ε̂.

As we have seen in the proof of Claims 1 and 3, in every iteration of the loop,
either the number of arguments of E to the left of ε̂ increases by 1, or the variable
stop is set to true. The latter occurs only once, in the final iteration. Clearly,
the number of arguments to the left of ε̂ is limited by the length of E. Because
this length is constant, the number of arguments to the left of ε̂ can only increase
a limited number of times.

Consequently, the number of iterations of the while-loop is limited.

This completes the proof of Theorem 9.8.

Recall that in § 9.2, we have introduced algorithm NormalizeMinimal as the second
step of a two-step algorithm. The purpose of this two-step algorithm is to rewrite
arbitrary DNA expressions into the minimal normal form, and the first step consists
of applying the recursive function MakeMinimal. In § 7.1 and § 7.3, we have proved
the correctness of MakeMinimal and worked out the implementation details of this
function. By now, we have also proved the correctness of NormalizeMinimal2, which
is an implementation of NormalizeMinimal. This implies that the total, two-step
algorithm is correct:

Corollary 9.9 Let E∗
1 be an arbitrary DNA expression, let E∗

2 be the result of applying
the recursive function MakeMinimal to E∗

1 , and let E∗
3 be the result of applying algorithm

NormalizeMinimal2 to E∗
2 . Then E∗

3 is a DNA expression in minimal normal form
satisfying E∗

3 ≡ E∗
1 .

We proceed by examining the complexity of algorithm NormalizeMinimal2. During
the while-loop of the algorithm, we traverse the DNA expression from left to right.
Therefore, we may expect the time complexity to be linear. We prove that this is
indeed the case.

In § 7.3, we used a datastructure with four specific features to prove that the
recursive function MakeMinimal requires linear time. For NormalizeMinimal2, we use
three of these features: the first, the second and the fourth feature.

First, we store the letters that a DNA expression E consists of in a doubly-linked
list. Then we can insert letters at a given position, or remove letters from a given
position in constant time.

Second, for each DNA subexpression of E, we connect the first letter (the opening
bracket) to the last letter (the closing bracket). In addition, for each N -word-argument
of an operator, we connect the first letter to the last letter. Both types of connections
are two-way: we can step directly from the first letter to the last letter and vice



186 Ch. 9 Algorithms for the Minimal Normal Form

versa. These connections enable us to move from one end to the other end of a DNA
subexpression or an N -word-argument in constant time.2

Finally, for each operator ↑ or ↓ in E, we maintain a circular, doubly-linked list of
its consecutive expression-arguments. This feature is not really crucial in the proof of
the linear time complexity. We use it only in line 7 of NormalizeMinimal2, to check if
E is alternating. As this test is performed only once, it would not harm if we had to
traverse the entire DNA expression for this. That would cost only linear time. However,
since we have already defined the lists of consecutive expression-arguments, we can as
well use them again here. They allow us to do the test in line 7 in constant time,
because E is alternating, if and only if the list of consecutive expression-arguments of
its outermost operator is empty.

Note that for each inner occurrence of ↑ or ↓ in E, the list of consecutive expression-
arguments is empty. Because E is minimal, it has all properties from Lemma 6.15. By
Property (DMin.4), each inner occurrence of ↑ or ↓ in E is alternating.

Examples of the three features of the datastructure and their usage are given in
§ 7.3. In particular, Figure 7.16 and Figure 7.18 show all connections and lists for some
example DNA expressions.

For a given DNA expression E, the connections can be initialized in linear time.
For every basic operation (substitution) that is applied to E in the course of algorithm
NormalizeMinimal2, the connections can be updated in constant time.

We finally observe that, unlike, e.g., the function MakeMinimal, algorithm Normal-

izeMinimal2 is not recursive. When we apply it to a minimal DNA expression E∗
2 , we

do not have multiple calls of the algorithm, for different arguments. This implies that
the time (and space) required for passing the parameter of NormalizeMinimal2 is not
an issue in the analysis of its complexity.

Of course, if NormalizeMinimal2 had been recursive, we could have established that
the time (and space) required for passing its parameter for a single call is constant, just
like we have done for MakeMinimal in § 7.3. As it is, however, we can simply ignore
this aspect in the proofs below.

We now have

Theorem 9.10 Let E∗
2 be an arbitrary minimal DNA expression. The time required

by algorithm NormalizeMinimal2 for E∗
2 is linear in |E∗

2 |.

Proof: First, we observe that algorithm NormalizeMinimal2 requires at least linear
time in the worst case. Initializing the desired datastruture already costs linear time,
but even after that, it may take linear time to just read and check the DNA expression.
For example, let α be an arbitraryN -word, let p ≥ 1, and let E∗

2 be an ↑-expression with
2p arguments: the N -word α, an l-expression 〈l α〉, the N -word α, an l-expression
〈l α〉, etc. Hence,

E∗
2 =

〈
↑ α 〈l α〉 . . . α 〈l α〉︸ ︷︷ ︸

p times

〉
.

It is easily verified that E∗
2 is in minimal normal form already, and that |E∗

2 | = 3 +
p · (3 + 2 · |α|), which is linear in p. The while-loop in NormalizeMinimal2 has 2p

2In § 7.3, we described an additional type of connection. If the N -word-arguments of an operator
were not necessarily maximal N -word occurrences, then we also connected the first letter and the last
letter of every maximal N -word occurrence in E. We do not need such connections now.



9.3 Implementation and complexity of the algorithm 187

iterations. In every iteration, we check one argument ε̂ of E = E∗
2 , and move on to the

next argument, without changing anything. This takes time which is linear in p and
thus in the length |E∗

2 | of E
∗
2 .

We now prove that algorithm NormalizeMinimal2 also requires at most linear time
in the worst case. For an arbitrary minimal DNA expression E∗

2 , let us use TNM2(E
∗
2)

to denote the time required by algorithm NormalizeMinimal2 for E∗
2 .

We first zoom in on line 13 of NormalizeMinimal2, where we check if ε̂ is a ↓-
expression with at least one ↑-argument. If so, then we need the first ↑-argument Ei

as the centre for the substitution in line 14.
It is easy to decide if ε̂ is a ↓-expression. If this is the case, then we can check if it

has an ↑-argument and (if necessary) determine Ei, by simply examining the arguments
of ε̂ from left to right. Of course, we can stop this iteration, as soon as we encounter
an ↑-argument, which then is Ei.

With this implementation of line 13 in mind, we define four constants, which are
upper bounds on the time spent in specific parts of the algorithm:

c1 is the maximum time required by NormalizeMinimal2 for an l-expression E∗
2 .

Hence, c1 is the maximum time required for excecuting lines 3–5 and 23 of the
algorithm.

c2 is the maximum time required by NormalizeMinimal2 for an ↑-expression E∗
2 , ex-

cept the time spent in (the iterations of) the while-loop.

Hence, c2 is the maximum time required for executing lines 3, 4, 6–11, 22, 23 and
the first test of the condition of the while-loop in line 12 of the algorithm.

c3 is the maximum time required by NormalizeMinimal2 for one iteration of the while-
loop, except the time spent for examining the arguments of a ↓-expression ε̂, as
described above.

Hence, c3 is the maximum time required for executing part of line 13, lines 14–21
and one test of the condition of the while-loop in line 12 of the algorithm.

c4 is the maximum time required by NormalizeMinimal2 for examining one argument
of a ↓-expression ε̂, in line 13 of the algorithm, as described above.

It follows from the observations made at the description of the three features of the
datastructure, that c1, c2, c3 and c4 are indeed constants.

Note that for a particular DNA expression, the time required by a part of the
algorithm may be much less than specified by the corresponding constant. For example,
if an argument ε̂ in line 13 is not a ↓-expression, then we certainly do not have to
perform the substitution in line 14. We execute lines 16–19 instead, which probably
costs less time. Then the total time required for this iteration of the while-loop is less
than c3.

Let the constant c∗ be defined by

c∗ = max
{c1
4
,
c2
3
, c3, c4

}
.

If E∗
2 is an l-expression, then by Theorem 5.3, E∗

2 = 〈l α1〉 for an N -word α1. Because
an N -word has at least length 1, |E∗

2 | = 3 + |α1| ≥ 4. In this case,

TNM2(E
∗
2) ≤ c1 ≤

c1
4
· |E∗

2 | ≤ c∗ · |E∗
2 |,



188 Ch. 9 Algorithms for the Minimal Normal Form

where the last inequality follows from c∗ ≥ c1
4
.

From now on, we assume that E∗
2 is an ↑-expression or a ↓-expression. We first

analyse the effect of the while-loop on the ‘working DNA expression’ E. By Theo-
rem 9.8(2), the number of iterations of the loop is finite, say it is N . As we have
established in the proof of Theorem 9.8(1) and (3), throughout the while-loop, E is a
minimal ↑-expression and ε̂ is an argument of E.

In the first iteration (in fact, at the beginning of the first iteration), ε̂ is the first
argument of the ↑-expression E. As we have also seen in the proof of Theorem 9.8(1)
and (3), in every iteration of the loop except the last one, the number of arguments of
E to the left of ε̂ increases by 1. In fact, in the jth iteration (with 1 ≤ j ≤ N − 1),
we append an argument ε̂j to the sequence of arguments to the left of ε̂. In the last
iteration, ε̂ is the last argument of E, and E is not modified any further.

Hence, in the successive iterations, E has the following shapes: 〈↑ ε̂ . . .〉, 〈↑ ε̂1ε̂ . . .〉,
〈↑ ε̂1ε̂2ε̂ . . .〉, . . . , 〈↑ ε̂1ε̂2 . . . ε̂N−1ε̂〉. When we define ε̂N as the argument ε̂ in the last
iteration, the DNA expression E∗

3 resulting from algorithm NormalizeMinimal2 equals
〈↑ ε̂1ε̂2 . . . ε̂N−1ε̂N〉.

We examine the time spent in the jth iteration of the while-loop. Let us use Tj to
denote this time.

• If, in this iteration, ε̂ is not a ↓-expression, then the iteration costs at most c3
time and ε̂j = ε̂. As |ε̂j| ≥ 1 (note that ε̂j = ε̂ may an N -word of length 1), we
have

Tj ≤ c3 ≤ c3 · |ε̂j| ≤ c∗ · |ε̂j|,

where the last inequality follows from c∗ ≥ c3.

• If ε̂ is a ↓-expression 〈↓ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA ex-
pressions ε1, . . . , εn, then we consider two subcases. If ε̂ does not have any ↑-
argument, then we spend at most c4 · n time on examining the n arguments of ε̂,
which implies that

Tj ≤ c3 + c4 · n. (9.10)

In this case, ε̂j = ε̂ = 〈↓ ε1 . . . εn〉. By Lemma 6.17(6), ε̂j has at least one
argument 〈l α〉 for an N -word α. Hence, ε̂j contains at least two occurrences of
operators (its outermost operator ↓ and l), each of which is accompanied by its
own opening bracket and closing bracket. This implies that |ε̂j| ≥ 6 + n, which
is equivalent to n ≤ |ε̂j| − 6. When we combine this with (9.10), we obtain

Tj ≤ c3 + c4 · n ≤ c3 + c4 · (|ε̂j| − 6) = c4 · |ε̂j|+ c3 − 6c4.

If on the other hand, ε̂ does have an ↑-argument, then let εi = Ei = 〈↑ εi,1εi,2 . . .
εi,m−1εi,m〉 for somem ≥ 1 andN -words and DNA expressions εi,1, εi,2, . . . , εi,m−1,
εi,m be the first ↑-argument of ε̂. In order to find Ei, we have to examine i argu-
ments of ε̂, This costs at most c4 · i time, which implies that

Tj ≤ c3 + c4 · i. (9.11)



9.3 Implementation and complexity of the algorithm 189

In this case, ε̂j = 〈↓ ε1 . . . εi−1εi,1〉, which is a ↓-expression with i arguments.
We can now proceed in the same way as in the previous subcase, and find that
i ≤ |ε̂j| − 6. When we combine this with (9.11), we obtain

Tj ≤ c3 + c4 · i ≤ c3 + c4 · (|ε̂j| − 6) = c4 · |ε̂j|+ c3 − 6c4.

In both subcases (ε̂ without or with an ↑-argument), we find that Tj ≤ c4 · |ε̂j|+
c3 − 6c4.

Now, if c3 ≤ 6c4, then

Tj ≤ c4 · |ε̂j| ≤ c∗ · |ε̂j|,

where the last inequality follows from c∗ ≥ c4. If, on the other hand c3 > 6c4,
which is equivalent to c4 <

c3
6
, then

Tj ≤ c3 + c4 · (|ε̂j| − 6) < c3 +
c3
6
· (|ε̂j| − 6) =

c3
6
· |ε̂j| < c3 · |ε̂j| ≤ c∗ · |ε̂j|,

where the last inequality follows from c∗ ≥ c3.

In each case, we have obtained that Tj ≤ c∗ · |ε̂j|. Now, it is not difficult to derive an
upper bound on TNM2(E

∗
2):

TNM2(E
∗
2) ≤ c2 + T1 + · · ·+ TN

≤ c∗ · 3 + c∗ · |ε̂1|+ · · ·+ c∗ · |ε̂N |

= c∗ · | 〈↑ ε̂1 . . . ε̂N〉 | = c∗ · |E∗
3 | = c∗ · |E∗

2 |,

where the second inequality follows from c∗ ≥ c2
3
, and the last equality follows from

the fact that E∗
2 and E∗

3 are equivalent, minimal DNA expressions.
Indeed, the time required by NormalizeMinimal2 is at most linear in the length

|E∗
2 | of E

∗
2 . This completes the proof of Theorem 9.10.

As part of Theorem 7.40, we established that the datastructure we propose to carry out
the recursive function MakeMinimal efficiently, has linear size. For NormalizeMinimal2,
we only use part of this datastructure: three of the four features. We obviously do not
need more than linear space for this.

For each DNA expression, the first feature, the doubly-linked list containing the
DNA expression, does require linear space. For the second feature and the fourth fea-
ture of the datastructure, the space requirements depend on the DNA expression. We
cannot reuse Example 7.39 to demonstrate that there exist inputs to NormalizeMinimal2
for which these two features also require linear space. The DNA expressions Ep from
that example are not minimal, which is required for NormalizeMinimal2. It is, how-
ever, not difficult to find an example that suits the current context.

Example 9.11 Let α be an arbitrary N -word, and let Ep be defined by

Ep =

〈
↑ 〈l α〉 〈l α〉 . . . 〈l α〉︸ ︷︷ ︸

p times

〉
(p ≥ 2).



190 Ch. 9 Algorithms for the Minimal Normal Form

It is easy to see that for any p ≥ 2, Ep is a minimal DNA expression, with |Ep| =

3 + p · (3 + |α|) = 3 + 3p + p · |α| and S(Ep) =
(

α
c(α)

)
△

(
α

c(α)

)
△
. . .

(
α

c(α)

)
︸ ︷︷ ︸

p− 1 times

. In fact, by

Lemma 6.14(2), Ep is the only minimal DNA expression with this semantics, which
implies in particular that Ep is in minimal normal form already. In addition, for any
p ≥ 2,

• Ep contains p + 1 pairs of matching brackets. Hence, the second feature of the
datastructure requires p+1 connections (in both directions) between an opening
bracket and the corresponding closing bracket.

• Ep contains p occurrences of the N -word α (in fact, maximal N -word occur-
rences), each of which serves as the argument of an operator l. Hence, the
second feature of the datastructure requires p connections (in both directions)
between the first letter and the last letter of such an N -word-argument.

• the outermost operator ↑ of Ep has p arguments 〈l α〉, which are, in particular,
consecutive expression-arguments. Hence, the fourth feature of the datastructure
requires a circular, doubly-linked list for this operator containing the last p − 1
arguments (each of which is the second of two consecutive expression-arguments).

Both specified sets of connections require space that is linear in p, and thus in |Ep|.
The same goes for the doubly-linked list.3

We conclude

Theorem 9.12 Let E∗
2 be an arbitrary minimal DNA expression. The space required

by algorithm NormalizeMinimal2 for E∗
2 is linear in |E∗

2 |.

Hence, both the time complexity and the space complexity of NormalizeMinimal2 are
linear. We can combine the complexities of the recursive function MakeMinimal and
algorithm NormalizeMinimal2 to find the complexity of the total two-step algorithm:

Theorem 9.13 Let E∗
1 be an arbitrary DNA expression. Both the time and the space

required by the two-step algorithm to rewrite E∗
1 into the minimal normal form are

linear in |E∗
1 |.

Hence, the two-step algorithm is better than the naive, single-pass recursive function
MakeMinimalNF. That function also yields the normal form version of its input, but,
by Theorem 9.3, requires at least quadratic time in the worst case.

3The outermost (and only) operator ↑ in the DNA expressions Ep from this example does not have
any non-l-arguments. Hence, these DNA expressions would not be suitable to demonstrate that the
third feature of the datastructure we use to perform MakeMinimal efficiently, can really require linear
space. For the sake of completeness, we like to mention that there do exist minimal DNA expressions
for which all four features of the datastructure require linear space. We leave it to the reader to verify
that the DNA expressions

Ep =

〈
↑ α 〈l α〉 〈l α〉 . . . α 〈l α〉 〈l α〉︸ ︷︷ ︸

p times

〉
(p ≥ 1)

are an example of this.



9.3 Implementation and complexity of the algorithm 191

Proof: Let us apply the two-step algorithm to an arbitrary DNA expression E∗
1 , and

let us denote the result of MakeMinimal (the first step of the algorithm) by E∗
2 .

By Corollary 7.38 and Theorem 7.40, MakeMinimal requires time and space which
both are linear in the length |E∗

1 | of E
∗
1 . By Theorem 9.10 and Theorem 9.12, algo-

rithm NormalizeMinimal2 requires time and space which both are linear in the length
|E∗

2 | of E
∗
2 . Because, by Theorem 7.17(2), E∗

2 is a minimal DNA expression which is
equivalent to E∗

1 , |E
∗
2 | ≤ |E∗

1 |. This implies that the time and the space required by
algorithm NormalizeMinimal2 is at most linear in |E∗

1 |. We conclude that the total
time and the total space required by the composition of MakeMinimal and algorithm
NormalizeMinimal2 (i.e., by the two-step algorithm) are linear in |E∗

1 |.



Chapter 10

Conclusions and directions for
future research

We have introduced a (minimal) normal form for DNA expressions. This normal form
is characterized by five syntactic properties, which are easy to check. We have de-
scribed a two-step algorithm, which computes the normal form version of a given DNA
expression. This is useful, e.g., to decide if two DNA expressions are equivalent. The
algorithm first determines a minimal DNA expression that is equivalent to its input,
and then rewrites this minimal DNA expression into the normal form. The algorithm
is elegant, because it does not refer to the semantics of the DNA expression involved. It
consists of string manipulations on the DNA expression itself. The algorithm requires
linear time and space.

An important research line for the future could be to define and analyse new types
of DNA expressions. These should be based on operators that directly model opera-
tions that are performed on real-world DNA. With new operators, one might also be
able to represent DNA molecules with other ‘imperfections’ than nicks and gaps, e.g.,
DNA molecules with hairpin loops. It would certainly be a challenge to define DNA
expressions that not only denote DNA molecules, but also implicitly describe how to
synthesize them from the basic elements A, C, G and T.

192



Bibliography

L.M. Adleman: Molecular computation of solutions to combinatorial problems, Science
266 (1994), 1021-1024.

D. Boneh, C. Dunworth, R.J. Lipton: Breaking DES using a molecular computer, DNA
Based Computers – Proceedings of a DIMACS Workshop, April 4, 1995, Princeton
University (R.J. Lipton, E.B. Baum, eds), American Mathematical Society, Provi-
dence, RI (1996), 37-66.

J. Chen, N. Jonoska, G. Rozenberg (eds): Nanotechnology: Science and Computation,
Natural Computing Series, Springer, Berlin (2006).

N. Chomsky: A note on phrase structure grammars, Information and Control , 2(4)
(1959), 393-395.

R. Deaton, A. Suyama (eds): DNA Computing and Molecular Programming – 15th In-
ternational Conference, DNA 15, Fayetteville, AR, USA, June 8–11, 2009 – Revised
Selected Papers , Lecture Notes in Computer Science 5877, Springer, Berlin (2009).

A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in
Living Cells – Gene Assembly in Ciliates , Springer, Berlin (2004).

C. Ferretti, G. Mauri, C. Zandron (eds): DNA Computing – 10th International Work-
shop on DNA Computing, DNA10, Milan, Italy, June 7-10, 2004 – Revised Selected
Papers , Lecture Notes in Computer Science 3384, Springer, Berlin (2005).

T. Head: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bulletin of Mathematical Biology 49(6) (1987),
737-759.

L. Kari, S. Konstantinidis, P. Sośık: On properties of bond-free DNA languages, The-
oretical Computer Science 334 (2005), 131-159.

Z. Li: Algebraic properties of DNA operations, Proceedings of the Fourth International
Meeting on DNA Based Computers, University of Pennsylvania, Philadelphia, USA,
June 15-19, 1998 , BioSystems 52 (L. Kari, H. Rubin, D.H. Wood, eds) (1999),
55-61.

Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing – New Computing Paradigms ,
Springer, Berlin (1998).

J.H. Reif: The design of autonomous DNA nano-mechanical devices: Walking and
rolling DNA, Natural Computing 2(4) (2003), 439-461.

193



194 Bibliography

P.W.K. Rothemund: Folding DNA to create nanoscale shapes and patterns, Nature
440, (2006) 297-302.

Y. Sakakibara, Y. Mi (eds): DNA Computing and Molecular Programming – 16th
International Conference, DNA 16, Hong Kong, China, June 14–17, 2010 – Revised
Selected Papers , Lecture Notes in Computer Science 6518, Springer, Berlin (2011).

R. van Vliet: Combinatorial Aspects of Minimal DNA Expressions (ext.), Technical
Report 2004-03, Leiden Institute of Advanced Computer Science, Leiden University
(2004), see http://www.liacs.nl/home/rvvliet/dnaexpressions/.

R. van Vliet, H.J. Hoogeboom, G. Rozenberg: Combinatorial aspects of minimal DNA
expressions, [Ferretti et al., 2005] (2005), 375-388.

R. van Vliet, H.J. Hoogeboom, G. Rozenberg: The construction of minimal DNA
expressions, Natural Computing 5 (2006), 127-149.

E. Winfree: DNA computing by self-assembly, The Bridge 33(4) (2003), 31-38.



List of Symbols

symbol introduced
on page

−→ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
=⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
i,j
=⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
⊏ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
⊏ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
⊏ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
≡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
=▽ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

▽≡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
≡▽ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
↑ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 14
↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 14
l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 14
▽ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
△ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
#a(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
#a,b(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
α, αi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
αE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 86
a, ai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
|X|A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A▽△

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B↑(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B↓(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
c(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
δ(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
DMin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
(DMin.1)–(DMin.6) . . . . . . . . . . . . . . . . . 61
DMinNF . . . . . . . . . . . . . . . . . . . . . . . . . . 147
(DMinNF.1)–(DMinNF.5) . . . . . . . . . . . 144
ε, εi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
E,Ei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
E(α1, . . . , αk) . . . . . . . . . . . . . . . . . . . . . 17
E∗

i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

EMinNF(X) . . . . . . . . . . . . . . . . . . . . . . 141
F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
G2 . . . . . . . . . . . . . . . . . . . . . . . . . . 151, 154
κ(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
L(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
L(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
L(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
LG(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ν(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ν+(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ν−(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
n↑↓(X) . . . . . . . . . . . . . . . . . . . . . . . . . . 122
nl(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
nα(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
nα↑↓(E) . . . . . . . . . . . . . . . . . . . . . . . . . 122
nαl(E) . . . . . . . . . . . . . . . . . . . . . . . . . . 122
nimus(X) . . . . . . . . . . . . . . . . . . . . . . . . . .42
niter(E) . . . . . . . . . . . . . . . . . . . . . . . . . . 128
nmin(X) . . . . . . . . . . . . . . . . . . . . . . . . . . 65
nmin↑(X) . . . . . . . . . . . . . . . . . . . . . . . . . 65
nmin↓(X) . . . . . . . . . . . . . . . . . . . . . . . . . 65
nminl(X) . . . . . . . . . . . . . . . . . . . . . . . . . 65
nmus(X) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
nN↑↓(E) . . . . . . . . . . . . . . . . . . . . . . . . . 122
nopermin↑(X) . . . . . . . . . . . . . . . . . . . . . . 65
nopermin↓(X) . . . . . . . . . . . . . . . . . . . . . . 65
noperminl(X) . . . . . . . . . . . . . . . . . . . . . . 65
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
O(|E|) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Op(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
R(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
xRy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ΣD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Σ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Σ+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
S(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
S+(ε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

195



196 List of Symbols

S−(ε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
TCM(E) . . . . . . . . . . . . . . . . . . . . . . . . . .129
TDni(E) . . . . . . . . . . . . . . . . . . . . . . . . . .137
TMlM(E) . . . . . . . . . . . . . . . . . . . . . . . . 135
TNM2(E) . . . . . . . . . . . . . . . . . . . . . . . . .187
|X| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Xj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
(Xs)k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4



Index

term introduced

on page

↑-argument . . . . . . . . . . . . . . . . . . . . . . . 17

↑-block
primitive ∼ . . . . . . . . . . . . . . . . . . . . 37

↑-component . . . . . . . . . . . . . . . . . . . . . . 37

↑-expression . . . . . . . . . . . . . . . . . . . . . . 16

alternating ∼ . . . . . . . . . . . . . . . . . . 17

↑-subexpression . . . . . . . . . . . . . . . . . . . 17

↓-argument . . . . . . . . . . . . . . . . . . . . . . . 17

↓-block
primitive ∼ . . . . . . . . . . . . . . . . . . . . 38

↓-component . . . . . . . . . . . . . . . . . . . . . . 37

↓-expression . . . . . . . . . . . . . . . . . . . . . . 16

alternating ∼ . . . . . . . . . . . . . . . . . . 17

↓-subexpression . . . . . . . . . . . . . . . . . . . 17

l-argument . . . . . . . . . . . . . . . . . . . . . . . 17

non-∼ . . . . . . . . . . . . . . . . . . . . 17, 120

l-expression . . . . . . . . . . . . . . . . . . . . . . 16

l-subexpression . . . . . . . . . . . . . . . . . . . 17

A-letter . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

double ∼ . . . . . . . . . . . . . . . . . . . . . . 10

lower ∼ . . . . . . . . . . . . . . . . . . . . . . . .10

upper ∼ . . . . . . . . . . . . . . . . . . . . . . . 10

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 9
∼ for minimality . . . . . . . . . . . . . . 68

recursive ∼

for minimal normal form . . .168

two-step ∼

for minimal normal form . . .171

alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

alternating
∼ ↑- or ↓-expression . . . . . . . . . . 17
∼ occurrence of ↑ or ↓ . . . . . . . . 17

ancestor
∼ of node . . . . . . . . . . . . . . . . . . . . . . 5
∼ operator . . . . . . . . . . . . . . . . . . . .17

apply
∼ operator . . . . . . . . . . . . . . . . . . . .13
∼ production . . . . . . . . . . . . . . . . . . 7

argument

↑-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

↓-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

l-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
∼ of DNA expression . . . . . . . . . 16
∼ of operator . . . . . . . . . . . . . . . . . 13

expression-∼ . . . . . . . . . . . . . . . . . . .17

N -word-∼ . . . . . . . . . . . . . . . . . . . . . 17

A-word . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

double ∼ . . . . . . . . . . . . . . . . . . . . . . 10

lower ∼ . . . . . . . . . . . . . . . . . . . . . . . .10

upper ∼ . . . . . . . . . . . . . . . . . . . . . . . 10

axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

base pair . . . . . . . . . . . . . . . . . . . . . . . . . .10

complete ∼ . . . . . . . . . . . . . . . . . . . . 10

big O notation . . . . . . . . . . . . . . . . . . . . . 9

binary
∼ relation . . . . . . . . . . . . . . . . . . . . 25

reflexive ∼ . . . . . . . . . . . . . . . . . . .25

symmetric ∼ . . . . . . . . . . . . . . . . 25

transitive ∼ . . . . . . . . . . . . . . . . . 25

block

lower ∼ . . . . . . . . . . . . . . . . . . . . . . . .44
∼ partitioning . . . . . . . . . . . . . . 44

primitive ∼ . . . . . . . . . . . . . . . . . . 41
∼ partitioning . . . . . . . . . . . . . 41

primitive ↑-∼ . . . . . . . . . . . . . . . . . . 37

primitive ↓-∼ . . . . . . . . . . . . . . . . . . 38

primitive ∼ . . . . . . . . . . . . . . . . . . . . 38

upper ∼ . . . . . . . . . . . . . . . . . . . . . . . 44
∼ partitioning . . . . . . . . . . . . . . 45

primitive ∼ . . . . . . . . . . . . . . . . . . 41
∼ partitioning . . . . . . . . . . . . . 42

characterization of minimal
∼ DNA expressions . . . . . . . . . . . 62
∼ normal form . . . . . . . . . . 144, 149

child of node . . . . . . . . . . . . . . . . . . . . . . . 5

closing bracket of operator . . . . . . . . 13

complement function . . . . . . . . . . . . . . . 5

complete base pair . . . . . . . . . . . . . . . . 10

complexity

linear ∼ . . . . . . . . . . . . . . . . . . . . . . . . 9

quadratic ∼ . . . . . . . . . . . . . . . . . . . . 9

space ∼ . . . . . . . . . . . . . . . . . . . . . . . . .9
∼ of MakeMinimal . . . . . . . . . . 132
∼ of NormalizeMinimal2 . . . 190
∼ of two-step algorithm

197



198 Index

for minimal normal form . 190

time ∼ . . . . . . . . . . . . . . . . . . . . . . . . . 9
∼ of MakeMinimal . . . . . 114, 129
∼ of MakeMinimalNF . . . . . . . 171
∼ of NormalizeMinimal2 . . . 186
∼ of two-step algorithm

for minimal normal form . 190

component
∼ of formal DNA molecule . . . . 11

↑-∼ . . . . . . . . . . . . . . . . . . . . . . . . . .37

↓-∼ . . . . . . . . . . . . . . . . . . . . . . . . . .37

double ∼ . . . . . . . . . . . . . . . . . . . . 11

lower ∼ . . . . . . . . . . . . . . . . . . . . . .11

non-double ∼ . . . . . . . . . . . . . . . . 11

single-stranded ∼ . . . . . . . . . . . . 11

upper ∼ . . . . . . . . . . . . . . . . . . . . . 11

concatenation
∼ of strings . . . . . . . . . . . . . . . . . . . . 3
∼ of words . . . . . . . . . . . . . . . . . . . . . 3

contain

substring ∼s other substring . . . 4

context-free
∼ grammar . . . . . . . . . . . . . . . . . . . . 7

axiom of ∼ . . . . . . . . . . . . . . . . . . . 7
∼ for D . . . . . . . . . . . . . . . . . . . . .20
∼ for DMinNF . . . . . . . . . . . . . . 151

derivation in ∼ . . . . . . . . . . . . . . . 7

leftmost ∼ . . . . . . . . . . . . . . . . . . 8

language generated by ∼ . . . . . .7

language of ∼ . . . . . . . . . . . . . . . . .7

non-terminal symbol of ∼ . . . . . 7

productions of ∼ . . . . . . . . . . . . . .7

self-embedding ∼ . . . . . . . . 9, 165

sentential forms of ∼ . . . . . . . . . 7

terminal symbol of ∼ . . . . . . . . . 7
∼ language . . . . . . . . . . . . . . . . . . . . 7

D is ∼ . . . . . . . . . . . . . . . . . . . 20, 23

counting function . . . . . . . . . . . . . . . . . 39

cover to the left/right . . . . . . . . . . . . . 12

strictly ∼ . . . . . . . . . . . . . . . . . . . . . . 12

datastructure

for MakeMinimal . . . . . . . . . . . . . 116

for NormalizeMinimal2 . . . . . . 185

decomposition of formal

DNA molecule . . . . . . . . . . . . . . 11

nick free ∼ . . . . . . . . . . . . . . . . . . . . 52

Denickify . . . . . . . . . . . . . . . . . . . . . . . . .94

derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

leftmost ∼ . . . . . . . . . . . . . . . . . . . . . . 8

descendant of node . . . . . . . . . . . . . . . . .5

directed
∼ tree . . . . . . . . . . . . . . . . . . . . . . . . . 5

heigth of ∼ . . . . . . . . . . . . . . . . . . . 6

level of ∼ . . . . . . . . . . . . . . . . . . . . . 6

ordered, ∼ . . . . . . . . . . . . . . . . . . . . 6

ordered, ∼,

node-labelled tree . . . . . . . . . . . . 6

disjoint substrings . . . . . . . . . . . . . . . . . .4

distance between nodes in tree . . . . . 5

DNA computing . . . . . . . . . . . . . . . . . . . 1

DNA expression . . . . . . . . . . . . 1, 13, 15

argument of ∼ . . . . . . . . . . . . . . . . . 16

equivalent ∼s . . . . . . . . . . . . . . . . . 25

length of ∼ . . . . . . . . . . . . . . . . . . . . 37

level of ∼ . . . . . . . . . . . . . . . . . . . . . . 18

minimal ∼ . . . . . . . . . . 41, 41, 46, 55

algorithm for ∼ . . . . . . . . . . . . . .68

characterization of ∼ . . . . . . . . 62

number of ∼s . . . . . . . . . . . . . . . 65

operator-minimal ∼ . . . . . . . . 52, 54

number of ∼s . . . . . . . . . . . . . . . 65

semantics of ∼ . . . . . . . . . . . . . . . . .13

structure tree of ∼ . . . . . . . . . . . . .23

DNA molecule . . . . . . . . . . . . . . . . . . . . . 1

formal ∼ . . . . . . . . . . . . . . . . . . . . . . 10

DNA subexpression . . . . . . . . . . . . . . . 16

proper ∼ . . . . . . . . . . . . . . . . . . . . . . 16

DNA submolecule

formal ∼ . . . . . . . . . . . . . . . . . . . . . . 11

double
∼ A-letter . . . . . . . . . . . . . . . . . . . . . 10
∼ A-word . . . . . . . . . . . . . . . . . . . . . 10
∼ complete formal

DNA molecule . . . . . . . . . . . . . . 38
∼ component of formal

DNA molecule . . . . . . . . . . . . . . 11

empty string . . . . . . . . . . . . . . . . . . . . . . . 3

endomorphism . . . . . . . . . . . . . . . . . . . . . 5

equivalence relation . . . . . . . . . . . . . . . 25

equivalent DNA expressions . . . . . . . 25
∼ modulo nicks . . . . . . . . . . . . . . . 25
∼ post-modulo nicks . . . . . . . . . . 26
∼ pre-modulo nicks . . . . . . . . . . . 26

strictly ∼ . . . . . . . . . . . . . . . . . . . . . . 25

expressible formal

DNA molecule . . . . . . . . . . . . . . . . 27

expression

↑-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

↓-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

l-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
∼-argument . . . . . . . . . . . . . . . . . . .17

fit together . . . . . . . . . . . . . . . . . . . . . . . 12

formal
∼ DNA molecule . . . . . . . . . . . . . .10



Index 199

component of ∼ . . . . . . . . . . . . . 11

decomposition of ∼ . . . . . . . . . . 11

double-complete ∼ . . . . . . . . . . .38

expressible ∼ . . . . . . . . . . . . . . . . 27

lower strand of ∼ . . . . . . . . . . . . 11

upper strand of ∼ . . . . . . . . . . . 11
∼ DNA submolecule . . . . . . . . . . 11

gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

govern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

context-free ∼ . . . . . . . . . . . . . . . . . . 7

axiom of ∼ . . . . . . . . . . . . . . . . . . . 7
∼ for D . . . . . . . . . . . . . . . . . . . . .20
∼ for DMinNF . . . . . . . . . . . . . . 151

derivation in ∼ . . . . . . . . . . . . . . . 7

leftmost ∼ . . . . . . . . . . . . . . . . . . 8

language generated by ∼ . . . . . .7

language of ∼ . . . . . . . . . . . . . . . . .7

non-terminal symbol of ∼ . . . . . 7

productions of ∼ . . . . . . . . . . . . . .7

self-embedding ∼ . . . . . . . . 9, 165

sentential forms of ∼ . . . . . . . . . 7

terminal symbol of ∼ . . . . . . . . . 7

right-linear ∼ . . . . . . . . . . . . . . . . . . . 8
∼ for F . . . . . . . . . . . . . . . . . . . . .11

height
∼ of directed tree . . . . . . . . . . . . . . 6
∼ of structure tree . . . . . . . . . . . . .24
∼ in minimal normal form . 150

homomorphism . . . . . . . . . . . . . . . . . . . . 4

identity of set with operation . . . . . . .4

include

substring ∼s other substring . . . 4

inner occurrence of operator . . . . . . 16

internal
∼ maximal lower sequence . . . . 42
∼ maximal upper sequence . . . .42
∼ node . . . . . . . . . . . . . . . . . . . . . . . . 5

intersecting substrings . . . . . . . . . . . . . 4

labelled

ordered, directed,

node-∼ tree . . . . . . . . . . . . . . . . . . 6

language . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

context-free ∼ . . . . . . . . . . . . . . . . . . 7

D is ∼ . . . . . . . . . . . . . . . . . . . 20, 23
∼ generated by

context-free grammar . . . . . . . . 7
∼ of context-free grammar . . . . . 7

regular ∼ . . . . . . . . . . . . . . . . . . . . . . . 8

D is no ∼ . . . . . . . . . . . . . . . . . . . 20

DMin is no ∼ . . . . . . . . . . . . . . . . 51

DMinNF is ∼ . . . . . . . . . . . 151, 166

F is ∼ . . . . . . . . . . . . . . . . . . . . . . .11

pumping lemma for ∼s . . 20, 52

leaf in tree . . . . . . . . . . . . . . . . . . . . . . . . . 5

leftmost derivation . . . . . . . . . . . . . . . . . 8

length

of DNA expression . . . . . . . . . . . . 37

lower bound on ∼ . . . . . . . . . . . 39

of string . . . . . . . . . . . . . . . . . . . . . . . 3

letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

level
∼ of DNA expression . . . . . . . . . 18
∼ of directed tree . . . . . . . . . . . . . . 6

nesting ∼ . . . . . . . . . . . . . . . . . . . . . 18

maximal ∼ . . . . . . . . . . . . . . . . . 18

linear complexity . . . . . . . . . . . . . . . . . . .9

linked list . . . . . . . . . . . . . . . . . . . 116, 185

lower
∼ A-letter . . . . . . . . . . . . . . . . . . . . . 10
∼ A-word . . . . . . . . . . . . . . . . . . . . . 10
∼ block . . . . . . . . . . . . . . . . . . . . . . . 44
∼ partitioning . . . . . . . . . . . . . . 44

primitive ∼ . . . . . . . . . . . . . . . . . . 41
∼ partitioning . . . . . . . . . . . . . 41

∼ bound on length of

DNA expression . . . . . . . . . . . . 39
∼ component of formal

DNA molecule . . . . . . . . . . . . . . 11
∼ nick letter . . . . . . . . . . . . . . . . . . 10
∼ postfit . . . . . . . . . . . . . . . . . . . . . .12
∼ prefit . . . . . . . . . . . . . . . . . . . . . . . 12
∼ strand . . . . . . . . . . . . . . . . . . . . . . 11

maximal ∼

∼ prefix . . . . . . . . . . . . . . . . . . . . 42
∼ sequence . . . . . . . . . . . . . . . . . 42

internal ∼ . . . . . . . . . . . . . . . . . .42
∼ suffix . . . . . . . . . . . . . . . . . . . . . 42

MakelExprMinimal . . . . . . . . . . . . . . . . 86

MakeMinimal . . . . . . . . . . . . . . . . . 70, 115

datastructure for ∼ . . . . . . . . . . . 116

space complexity of ∼ . . . . . . . . 132

time complexity of ∼ . . . . 114, 129

MakeMinimalNF . . . . . . . . . . . . . . . . . . .168

time complexity of ∼ . . . . . . . . . 171

maximal
∼ lower
∼ prefix . . . . . . . . . . . . . . . . . . . . 42
∼ sequence . . . . . . . . . . . . . . . . . 42

internal ∼ . . . . . . . . . . . . . . . . . .42
∼ suffix . . . . . . . . . . . . . . . . . . . . . 42

∼ N -word occurrence . . . . . . . . . 16
∼ nesting level

of DNA expression . . . . . . . . . .18



200 Index

∼ in minimal normal form . 149
∼ upper
∼ prefix . . . . . . . . . . . . . . . . . . . . 42
∼ sequence . . . . . . . . . . . . . . . . . 42

internal ∼ . . . . . . . . . . . . . . . . . .42
∼ suffix . . . . . . . . . . . . . . . . . . . . . 42

minimal
∼ DNA expression

. . . . . . . . . . . . . . . . .41, 41, 46, 55

algorithm for ∼ . . . . . . . . . . . . . .68

characterization of ∼ . . . . . . . . 62

number of ∼s . . . . . . . . . . . . . . . 65

operator-∼ . . . . . . . . . . . . . . .52, 54

number of ∼s . . . . . . . . . . . . . 65
∼ normal form . . . . . . . . . . 140, 141

characterization of ∼ . . 144, 149

recursive algorithm for ∼ . . . 168

structure tree in ∼ . . . . . . . . . 150

two-step algorithm for ∼ . . . 171
∼ structure tree . . . . . . . . . . . . . . . 63

modulo

equivalent ∼ nicks . . . . . . . . . . . . 25

nesting level of DNA expression . . . 18

maximal ∼ . . . . . . . . . . . . . . . . . . . . 18
∼ in minimal normal form . 149

nick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

equivalent modulo ∼s . . . . . . . . . 25

equivalent post-modulo ∼s . . . . 26

equivalent pre-modulo ∼s . . . . . 26
∼ free . . . . . . . . . . . . . . . . . . . . . . . . 11
∼ decomposition . . . . . . . . . . . . 52

∼ letter . . . . . . . . . . . . . . . . . . . . . . . 10

lower ∼ . . . . . . . . . . . . . . . . . . . . . .10

upper ∼ . . . . . . . . . . . . . . . . . . . . . 10

N -letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

node

ancestor of ∼ . . . . . . . . . . . . . . . . . . . 5

child of ∼ . . . . . . . . . . . . . . . . . . . . . . .5

descendant of ∼ . . . . . . . . . . . . . . . . 5

distance between ∼s . . . . . . . . . . . 5

internal ∼ . . . . . . . . . . . . . . . . . . . . . . 5

ordered, directed,
∼-labelled tree . . . . . . . . . . . . . . . 6

parent of ∼ . . . . . . . . . . . . . . . . . . . . . 5

non-l-argument . . . . . . . . . . . . . . . 17, 120

non-double component . . . . . . . . . . . . 11

non-root . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

non-terminal symbol . . . . . . . . . . . . . . . 7

self-embedding ∼ . . . . . . . . . . 9, 165

normal form . . . . . . . . . . . . . . . . . . . . . 140

minimal ∼ . . . . . . . . . . . . . . . 140, 141

characterization of ∼ . . 144, 149

recursive algorithm for ∼ . . . 168

structure tree in ∼ . . . . . . . . . 150

two-step algorithm for ∼ . . . 171

NormalizeMinimal . . . . . . . . . . . . . . . 174

NormalizeMinimal2 . . . . . . . . . . . . . . 180

datastructure for ∼ . . . . . . . . . . . 185

space complexity of ∼ . . . . . . . . 190

time complexity of ∼ . . . . . . . . . 186

notation

big O ∼ . . . . . . . . . . . . . . . . . . . . . . . . 9

nucleotide . . . . . . . . . . . . . . . . . . . . . . . . . .1

number
∼ of occurrences of operators

in (operator-)minimal

DNA expressions . . . . . . . . . . . 61
∼ of minimal

DNA expressions . . . . . . . . . . . 65
∼ of operator-minimal

↑-/↓-expressions . . . . . . . . . . . . 65

N -word. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

concatenation of ∼s . . . . . . . . . . . . 3

maximal ∼ occurrence . . . . . . . . 16
∼-argument . . . . . . . . . . . . . . . . . . .17

occurrence

alternating ∼ of ↑ or ↓ . . . . . . . . 17

inner ∼ of operator . . . . . . . . . . . 16

maximal N -word ∼ . . . . . . . . . . . . 16

number of ∼s of operators

in (operator-)minimal

DNA expressions . . . . . . . . . . . 61
∼ of substring . . . . . . . . . . . . . . . . . 3

preceding ∼ . . . . . . . . . . . . . . . . . . 3

opening bracket of operator . . . . . . . 13

operator 13

ancestor ∼ . . . . . . . . . . . . . . . . . . . . .17

apply ∼ . . . . . . . . . . . . . . . . . . . . . . . 13

argument of ∼ . . . . . . . . . . . . . . . . . 13

closing bracket of ∼ . . . . . . . . . . . 13

inner occurrence of ∼ . . . . . . . . . . 16

number of occurrences of ∼s

in (operator-)minimal

DNA expressions . . . . . . . . . . . 61

opening bracket of ∼ . . . . . . . . . . 13
∼-minimal DNA expression

. . . . . . . . . . . . . . . . . . . . . . . . 52, 54

number of ∼s . . . . . . . . . . . . . . . 65

outermost ∼ . . . . . . . . . . . . . . . . . . . 16

parent ∼ . . . . . . . . . . . . . . . . . . . . . . 17

scope of ∼ . . . . . . . . . . . . . . . . . . . . . 13

ordered, directed
∼ tree . . . . . . . . . . . . . . . . . . . . . . . . . 6
∼, node-labelled tree . . . . . . . . . . . 6



Index 201

outermost operator . . . . . . . . . . . . . . . 16

overlapping substrings . . . . . . . . . . . . . 4

parent
∼ of node . . . . . . . . . . . . . . . . . . . . . . 5
∼ operator . . . . . . . . . . . . . . . . . . . .17

partitioning

lower block ∼ . . . . . . . . . . . . . . . . . .44

primitive ∼ . . . . . . . . . . . . . . . . . . 41

upper block ∼ . . . . . . . . . . . . . . . . . 45

primitive ∼ . . . . . . . . . . . . . . . . . . 42

phosphodiester bond . . . . . . . . . . . . . . . 1

postfit

lower ∼ . . . . . . . . . . . . . . . . . . . . . . . .12
∼ by lower strands . . . . . . . . . . . . 12
∼ by upper strands . . . . . . . . . . . 12

upper ∼ . . . . . . . . . . . . . . . . . . . . . . . 12

post-modulo

equivalent ∼ nicks . . . . . . . . . . . . 26

preceding occurrence of substring . . 3

prefit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

lower ∼ . . . . . . . . . . . . . . . . . . . . . . . .12
∼ by lower strands . . . . . . . . . . . . 12
∼ by upper strands . . . . . . . . . . . 12

upper ∼ . . . . . . . . . . . . . . . . . . . . . . . 12

prefix

maximal lower ∼ . . . . . . . . . . . . . . 42

maximal upper ∼ . . . . . . . . . . . . . . 42
∼ of string . . . . . . . . . . . . . . . . . . . . . 3

proper ∼ . . . . . . . . . . . . . . . . . . . . . 3

pre-modulo

equivalent ∼ nicks . . . . . . . . . . . . 26

primitive
∼ ↑-block . . . . . . . . . . . . . . . . . . . . . 37
∼ ↓-block . . . . . . . . . . . . . . . . . . . . . 38
∼ block . . . . . . . . . . . . . . . . . . . . . . . 38
∼ lower block . . . . . . . . . . . . . . . . . 41
∼ partitioning . . . . . . . . . . . . . . 41

∼ upper block . . . . . . . . . . . . . . . . 41
∼ partitioning . . . . . . . . . . . . . . 42

production . . . . . . . . . . . . . . . . . . . . . . . . . 7

apply ∼ . . . . . . . . . . . . . . . . . . . . . . . . 7

proper
∼ DNA subexpression . . . . . . . . 16
∼ prefix . . . . . . . . . . . . . . . . . . . . . . . .3
∼ substring . . . . . . . . . . . . . . . . . . . . 3
∼ suffix . . . . . . . . . . . . . . . . . . . . . . . . 3

pumping lemma

for regular languages . . . . . . 20, 52

quadratic complexity . . . . . . . . . . . . . . . 9

recursive function
∼ MakeMinimal . . . . . . . . . . . 70, 115
∼ MakeMinimalNF . . . . . . . . . . . . 168

reflexive binary relation . . . . . . . . . . . 25

regular language . . . . . . . . . . . . . . . . . . . 8

D is no ∼ . . . . . . . . . . . . . . . . . . . . . .20

DMin is no ∼ . . . . . . . . . . . . . . . . . . 51

DMinNF is ∼ . . . . . . . . . . . . . 151, 166

F is ∼ . . . . . . . . . . . . . . . . . . . . . . . . .11

pumping lemma for ∼s . . . . 20, 52

relation

binary ∼ . . . . . . . . . . . . . . . . . . . . . . 25

reflexive ∼ . . . . . . . . . . . . . . . . . . .25

symmetric ∼ . . . . . . . . . . . . . . . . 25

transitive ∼ . . . . . . . . . . . . . . . . . 25

equivalence ∼ . . . . . . . . . . . . . . . . . .25

rewriting rule . . . . . . . . . . . . . . . . . . . . . . 7

right-linear grammar . . . . . . . . . . . . . . . 8
∼ for F . . . . . . . . . . . . . . . . . . . . . . . 11

root of tree . . . . . . . . . . . . . . . . . . . . . . . . 5

RotateToMinimal . . . . . . . . . . . . . . . . 102

rotation in tree . . . . . . . . . . . . . . . . . . . 29

scope of operator . . . . . . . . . . . . . . . . . 13

self-embedding
∼ context-free grammar . . . 9, 165
∼ non-terminal symbol . . . . 9, 165

semantics of DNA expression . . . . . .13

sentential form . . . . . . . . . . . . . . . . . . . . . 7

single-stranded component of

formal DNA molecule . . . . . . . . . 11

space complexity . . . . . . . . . . . . . . . . . . . 9
∼ of two-step algorithm

for minimal normal form . . .190
∼ of MakeMinimal . . . . . . . . . . . . 132
∼ of NormalizeMinimal2 . . . . . 190

strand

lower ∼ . . . . . . . . . . . . . . . . . . . . . . . .11

upper ∼ . . . . . . . . . . . . . . . . . . . . . . . 11

strictly
∼ cover to the left/right . . . . . . 12
∼ equivalent

DNA expressions . . . . . . . . . . . 25

string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

empty ∼ . . . . . . . . . . . . . . . . . . . . . . . . 3

length of ∼ . . . . . . . . . . . . . . . . . . . . . 3

structure tree . . . . . . . . . . . . . . . . . . . . . . 23

height of ∼ . . . . . . . . . . . . . . . . . . . . 24
∼ in minimal normal form . 150

minimal ∼ . . . . . . . . . . . . . . . . . . . . . 63
∼ in minimal normal form . . . 150

subexpression

↑-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

↓-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

l-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

substring . . . . . . . . . . . . . . . . . . . . . . . . . . .3



202 Index

disjoint ∼s . . . . . . . . . . . . . . . . . . . . . 4

intersecting ∼s . . . . . . . . . . . . . . . . . 4

occurrence of ∼ . . . . . . . . . . . . . . . . . 3

overlapping ∼s . . . . . . . . . . . . . . . . . 4

proper ∼ . . . . . . . . . . . . . . . . . . . . . . . 3
∼ contains other ∼ . . . . . . . . . . . . . 4
∼ includes other ∼ . . . . . . . . . . . . . .4

subtree rooted in node . . . . . . . . . . . . . 5

subword

maximal ∼ . . . . . . . . . . . . . . . . . . . . 16

suffix

maximal lower ∼ . . . . . . . . . . . . . . 42

maximal upper ∼ . . . . . . . . . . . . . . 42
∼ of string . . . . . . . . . . . . . . . . . . . . . 3

proper ∼ . . . . . . . . . . . . . . . . . . . . . 3

symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

symmetric binary relation . . . . . . . . . 25

terminal symbol . . . . . . . . . . . . . . . . . . . .7

non-∼ . . . . . . . . . . . . . . . . . . . . . . . . . . 7

self-embedding ∼ . . . . . . . . 9, 165

time complexity . . . . . . . . . . . . . . . . . . . . 9
∼ of two-step algorithm

for minimal normal form . . .190
∼ of MakeMinimal . . . . . . . 114, 129
∼ of MakeMinimalNF . . . . . . . . . .171
∼ of NormalizeMinimal2 . . . . . 186

transitive binary relation . . . . . . . . . . 25

tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

directed ∼ . . . . . . . . . . . . . . . . . . . . . . 5

height of ∼ . . . . . . . . . . . . . . . . . . . 6

level of ∼ . . . . . . . . . . . . . . . . . . . . . 6

ordered, ∼ . . . . . . . . . . . . . . . . . . . . 6

leaf in ∼ . . . . . . . . . . . . . . . . . . . . . . . . 5

ordered, directed,

node-labelled ∼ . . . . . . . . . . . . . . . 6

root of ∼ . . . . . . . . . . . . . . . . . . . . . . . 5

rotation in ∼ . . . . . . . . . . . . . . . . . . 29

structure ∼ . . . . . . . . . . . . . . . . . . . 23

minimal ∼ . . . . . . . . . . . . . . . . . . .63
∼ in minimal

normal form . . . . . . . . . . . . . 150

two-step algorithm for

minimal normal form . . . . . . . . 171

space complexity of ∼ . . . . . . . . 190

time complexity of ∼ . . . . . . . . . 190

upper

maximal ∼

∼ prefix . . . . . . . . . . . . . . . . . . . . 42
∼ sequence . . . . . . . . . . . . . . . . . 42

internal ∼ . . . . . . . . . . . . . . . . . .42
∼ suffix . . . . . . . . . . . . . . . . . . . . . 42

∼ A-letter . . . . . . . . . . . . . . . . . . . . . 10

∼ A-word . . . . . . . . . . . . . . . . . . . . . 10
∼ block . . . . . . . . . . . . . . . . . . . . . . . 44
∼ partitioning . . . . . . . . . . . . . . 45
primitive ∼ . . . . . . . . . . . . . . . . . . 41
∼ partitioning . . . . . . . . . . . . . 42

∼ component of formal
DNA molecule . . . . . . . . . . . . . . 11

∼ nick letter . . . . . . . . . . . . . . . . . . 10
∼ postfit . . . . . . . . . . . . . . . . . . . . . .12
∼ prefit . . . . . . . . . . . . . . . . . . . . . . . 12
∼ strand . . . . . . . . . . . . . . . . . . . . . . 11


