
Scaling Unidimensional Models with Multiple
Correspondence Analysis
Warrens, M.J.; Heiser, W.J.; Greenacre M., Blasius J.

Citation
Warrens, M. J., & Heiser, W. J. (2006). Scaling
Unidimensional Models with Multiple Correspondence
Analysis. In B. J. Greenacre M. (Ed.), Multiple
Correspondence Analysis and Related Methods (pp.
219-235). London: Chapman & Hall/CRC. Retrieved from
https://hdl.handle.net/1887/14576
 
Version: Not Applicable (or Unknown)

License: Leiden University Non-exclusive
license

Downloaded from: https://hdl.handle.net/1887/14576
 
Note: To cite this publication please use the final published
version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/14576


 

CHAPTER 9

 

Scaling Unidimensional Models with 

 

Multiple Correspondence Analysis

 

Matthijs J. Warrens and Willem J. Heiser

 

CONTENTS

 

9.1 Introduction ................................................................................ 219
9.2 The dichotomous Guttman scale .............................................. 221
9.3 The Rasch model ........................................................................ 224
9.4 The polytomous Guttman scale ................................................ 228
9.5 The graded response model....................................................... 231
9.6 Unimodal models ....................................................................... 232
9.7 Conclusion................................................................................... 234

 

9.1  Introduction

 

This chapter discusses the application of multiple correspondence
analysis (MCA) as a method of scaling. For this type of application of
MCA, several well-known unidimensional models from the psychometric
literature will be considered. All of these models are characterized by
item and person parameters. The objective of this chapter is to deter-
mine what information on these parameters can be obtained from
applying MCA when the unidimensional models are used as gauges.
“Gauge” is a term introduced by Gifi (1990) to denote benchmark data
sets, or mechanisms to generate such data sets, for studying the behav-
ior of general-purpose data analysis methods, such as MCA and simple
correspondence analysis (CA). Some of the basics on this topic are
reviewed, but many new insights and results are also presented.
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The models discussed in this chapter can be classified by three
different aspects, i.e., each model is either

Deterministic or probabilistic
Dichotomous or polytomous
Monotonic or unimodal

It follows that there are 2 

 

×

 

 2 

 

×

 

 2 

 

=

 

 8 possible categories to classify
a model, but only six of them will actually be discussed. For the
categories corresponding to the probabilistic and unimodal options, no
successful applications of MCA are currently available. Only for the
two deterministic unimodal models are there some ideas for scaling
with MCA (see Section 9.6). For each of the four deterministic catego-
ries, only one candidate model seems available, while for the probabi-
listic categories there are numerous possible models that can be
selected. However, for three of the deterministic models, an additional
distinction is presented between different possible forms of the models.
This distinction provides several new insights into the question of
when and especially how to apply MCA.

With MCA, CA, or related methods, the structure of the multivariate
data is often visualized in a two-dimensional representation. A common
conviction is that when one applies a technique such as MCA to data
satisfying a unidimensional model, the resulting two-dimensional

will be called an arch if the graph reflects a quadratic function. If, in
addition, the ends of this arch bend inward, the phenomenon will be
called a horseshoe. It will be shown that unidimensionality is not a
sufficient condition for a horseshoe, that is, the data may be unidi-
mensional in terms of a model, but a method such as MCA will not
produce a horseshoe in two or any other dimensions. Furthermore, it
will be shown that, with an appropriate analysis, most relevant infor-
mation in terms of item and person parameters can be found in the
first MCA dimension.

We end this section with some words on notation. The quantification
of category 

 

j

 

 (1,…,

 

J

 

q

 

) of item 

 

q

 

 (1,…,

 

Q

 

) on dimension 

 

s

 

 (1,…,

 

S

 

) is
denoted by . In our context, 

 

J

 

q

 

 is the same for all items, and we use
the notation 

 

J

 

 for this constant number of categories per item. (This is
different from standard MCA notation, where 

 

J

 

 is the total number of

 

y

 

 categories for all items.) The vector 

 

y

 

s
j

 

 then denotes the quantifica-
tions of the 

 

j

 

th category for all items on dimension 

 

s

 

, and 

 

y

 

s

 

 denotes
all quantifications on dimension 

 

s

 

. Furthermore, let 

 

x

 

s

 

 denote the

yqs
j
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representation will reflect some sort of horseshoe (see van Rijckevorsel
1987; Gifi 1990; Hill and Gauch 1980). More precisely, the phenomenon
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person scores on dimension 

 

s

 

. Let 

 

u

 

 denote a latent variable, and 

 

δ

 

q

 

 a
location parameter of item 

 

q

 

. Explicit formulas for the item functions
that relate 

 

u

 

 to 

 

δ

 

q

 

 will not be given; only their shapes will be shown in
the figures.

 

9.2  The dichotomous Guttman scale

 

The simplest and oldest model considered in this chapter is the
dichotomous Guttman scale (DGS), named after the person who popu-
larized the model with the method of scalogram analysis. With the DGS,
each item is characterized by a step function, as is shown in Figure 9.1.

Guttman (1950b, 1954) advocated the practical properties of the
DGS, but earlier, other authors (for example, Walker 1931) also noted
the special structure of the data matrix and the possibilities of ordering
both persons and items. Parameters of the DGS are only unique in
terms of their order, that is, they form an ordinal scale. Often-used
estimates are the sum score as an index for persons and the proportion
correct for items.

Both the DGS and the application of MCA to the DGS were thor-
oughly studied by Guttman (1950b, 1954). Guttman (1950b) derived
that all relevant information for the ordinal properties of the DGS is
contained in 

 

y

 

1

 

 for item categories and

 

 x

 

1

 

 for persons. Guttman

 

Figure 9.1

 

Item function of the DGS.
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(1950b, 1954) also studied the quantifications and scores for dimen-
sions 

 

s

 

 

 

>

 

 1. With 

 

Q

 

 items there are 

 

Q

 

 

 

+

 

 1 possible score patterns in a
DGS. The DGS can be referred to as 

 

complete

 

 if all possible score
pattern are present and 

 

uniform

 

 if all present score patterns occur
equally often. The matrix 

 

M

 

 below contains an example of a complete
and uniform DGS of three items.

The matrix 

 

Z

 

 is the indicator matrix resulting from 

 

M

 

, and the right
matrix shows 

 

Z

 

 with the columns permuted such that the elements
of and come together and are ordered. The data matrix 

 

M

 

 reflects
a scalogram structure, whereas the (permuted) indicator matrix 

 

Z

 

reflects a parallelogram structure.
For the DGS, Guttman (1950b) showed that

The ordering of the proportion correct is reflected in both
and

The ordering of the sum score is reflected in the person scores 

 

x

 

1

 

x

 

2

 

 has a quadratic relation to 

 

x

 

1

 

Guttman (1950b, 1954) considered even higher polynomial rela-
tions between 

 

x

 

1

 

 and 

 

x

 

s

 

 for 

 

s

 

 

 

>

 

 2, but these are outside the scope of
this chapter. Note that 

 

y

 

1

 

 and 

 

y

 

2

 

 do not have a precise quadratic
relation, although the relation will have resemblance to a horseshoe
or an arch (see Figure 9.2). In fact there are two superimposed arches,
one for each category, a result proven by Schriever (1985).

The above result shows that applying MCA to the DGS provides
category quantifications that reflect the ordering of items and scores
that reflect the ordering of persons. The same result would be obtained
by using the proportion item correct and the sum score for indices,
respectively. However, all these indices give an ordering for items and
persons separately, that is, the indices for items and persons do not
imply a simultaneous ordering. However, for a special case of the DGS,
a stronger result can be obtained.

For the complete and uniform DGS, Guttman showed that the
person scores are proportional to the sum scores. If there are 

 

Q

 

 

 

δ

 

q

 

’s

M Z=





















⇒ =
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2 1 1
2 2 1
2 2 2
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representing location parameters, there are 

 

Q

 

 

 

+

 

 1 

 

u

 

’s indicating the
possible person scores. For each pair 

 

u

 

q

 

 and 

 

u

 

q

 

+

 

1

 

, a 

 

δ

 

q

 

 is required that
satisfies 

 

u

 

q

 

 

 

≤

 

 

 

δ

 

q

 

 

 

≤

 

 

 

u

 

q

 

+

 

1

 

. A desirable value for this location parameter 

 

δ

 

q

 

would be

(9.1)

The following proposition shows how this estimate for 

 

δ

 

q

 

 can be
obtained from 

 

y

 

q

 

1

 

 and y

 

q

 

2

 

, the MCA quantifications of the categories of
item 

 

q

 

 on the first dimension.

 

Figure 9.2

 

First two axes of MCA of DGS for 

 

Q

 

 

 

=

 

 40, 

 

J

 

 

 

=

 

 2; category quan-
tifications (above) and person scores (below).
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Proposition.

 

 Under the condition of a complete uniform DGS, the
estimate in Equation 9.1 can be obtained by taking 

 

δ

 

q

 

 

 

=

 

 

 

y

 

q

 

1

 

 

 

+

 

 

 

y

 

q

 

2

 

.

 

Proof.

 

 With a uniform DGS, each score pattern occurs T times.
Without loss of generality we can take T = 1. Because with a complete
uniform scale the u’s are proportional to the sum scores (Guttman
1950b), they are, for convenience, not put in standard scores, but are
expressed as real integers, that is, uq = q, for q = 1,…,Q + 1, minus
the grand mean. For a set of Q + 1 score patterns, the grand mean
value is then given by 1/2(Q + 2). The category quantifications of the
item that discriminates between uq and uq+1 can be expressed as

before the grand mean is subtracted. Centering around the grand mean
gives

Hence,

9.3  The Rasch model

A probabilistic generalization of the DGS is the model proposed by
Rasch (1960). In the Rasch model, an item is characterized by a logistic
function instead of a step function. Similar to the DGS, the Rasch
model is a location family, or a holomorphic model, meaning that the
item functions have the same shape but are translations of each other
(see Figure 9.3).
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With a probabilistic dichotomous model, there are 2Q possible score
patterns for Q items. However, depending on how the Rasch model is
specified, some score patterns are more likely to occur than others.
For example, if one specifies the Rasch model such that it has relatively
steep slopes, then the score patterns will have close resemblance to
the score patterns of the DGS. On the other hand, if the Rasch model
is specified such that the slopes are not steep, the score patterns will
look close to random. The existence of multiple forms of the Rasch
model has important consequences for the application of MCA and
related methods. A Rasch model with steep slopes will provide a two-
dimensional solution that is similar to the arch for the DGS. For a
Rasch model with shallow slopes, the two-dimensional solution will
look like random data without structure (see Figure 9.4).

So, MCA has a limited usefulness in detecting probabilistic unidi-
mensional models. However, instead of looking at both y1 and y2 or x1

and x2, several results indicate that most relevant information for the
Rasch models is obtained in y1 and x1.

Schriever (1985) showed that, if the item functions of a dichotomous
model are monotonic and have monotone likelihood ratio (Lehmann
1966), then the ordering is reflected in both and . The item func-
tions of the Rasch model satisfy this more general property. Further-
more, because the category quantifications reflect the ordering of the
items, the reciprocal averages, that is, the person scores, will reflect
a reasonable ordering of the persons. These ordering properties are

Figure 9.3 Two item functions of the Rasch model.
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Figure 9.4 MCA person scores of three Rasch data sets, with Q = 40 and the
same location parameters but decreasing slopes.
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visualized in Figure 9.5, where the MCA parameters are plotted
against Rasch parameter estimates. (The latter were obtained using
the Multilog software by Thissen et al. 2003.)

The ordering of the items is reflected in both sets of category
quantifications. Furthermore, the person scores give a similar ordering
compared with the sum score or item-response-theory estimates.
Because MCA assigns different scores to different score patterns with
the same sum score, the person scores and sum scores are close but
not the same.

Figure 9.5 The first plot shows the MCA quantifications (vertical) of the two
sets of categories plotted vs. item-response-theory estimates for the location
parameters (horizontal) of a Rasch data set with Q = 10. Both sets of quantifi-
cations reflect the ordering of the location parameters. The second plot shows
the MCA person scores (vertical) vs. the item-response-theory person esti-
mates (horizontal).
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9.4  The polytomous Guttman scale

The extension of the DGS to more than two categories is the polyto-
mous Guttman scale (PGS). An item is now characterized by two or
more item-step functions, as shown in Figure 9.6.

The number of possible score patterns for a PGS is Q(J − 1) + 1.
With J > 2, various combinations of score patterns can form a PGS,
so the PGS is not unique. Three interesting PGSs can be identified in
the case Q = 2 and J = 3:

The score patterns of M1 are such that the easier item steps of both
items are taken first. Hence, there is an ordering of items within item
steps (IWIS). A property of an IWIS PGS is that it has a maximum
number of entries of the middle categories and a minimum number of
entries of the two outer categories.

Figure 9.6 Two item-step functions of a PGS.
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The score patterns of M2 are such that both item steps of the first
item are taken first, and then the item steps of the second item are taken.
Thus, there is a complete ordering by items: all item steps of the first
item are easier to take than the item steps of the second item. Hence,
there is an ordering of item steps within items (ISWI). A property of an
ISWI PGS is that it has a maximum number of entries of the two outer
categories and a minimum number of entries of the middle categories.

The score patterns of M3 are such that all item steps of one item lie
between the item steps of the other item, that is, item within item (IWI).

Similar to the different forms of the Rasch model, the various forms
of the PGS also have consequences for the application of MCA. Only
for the IWIS PGS can the rows and columns of the indicator coding
be reshuffled such that there are consecutive ones for both rows and
columns. The consecutive-ones property for rows indicates that, in a
binary pattern, there is only one row of ones and either one or two
rows of zeros. A similar property can be formulated for the columns.

Hence, MCA can order both categories and persons of an IWIS PGS

which in turn gives an arch in the two-dimensional solution. In Figure 9.7,
the two-dimensional MCA person scores of an IWIS, ISWI, and IWI
PGS, all complete and uniform, are plotted. Each PGS consists of scores
of 13 persons on three items with five categories.

The ordering of the persons of an IWIS PGS is clearly illustrated
with the arch in Figure 9.7. However, for the ISWI PGS, MCA cannot
distinguish between several score patterns: in Figure 9.7 some person
scores in the two-dimensional solution for the ISWI PGS are the same,
although the original score patterns are different. Although it is not
shown here, it is interesting to note that several item categories of the
ISWI PGS also could not be distinguished. Combinations of these item
categories and the corresponding persons obtain the same scores on
different dimensions. In Figure 9.7, the original 13 ISWI score patterns
are clustered in five groups.

It is easily shown that there exist no permutations for rows and
columns such that the indicator matrix of the IWI PGS will have a

M Z1 1
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2 2
3 2
3 3

1 0 0 1 0 0
0 1
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parallelogram pattern, although it is possible to obtain a pattern that is
very close to a parallelogram. This may account for the two-dimensional
visualization presented in Figure 9.7 of the IWI PGS. The IWI arch
in Figure 9.7 is pointed, but it does reflect the correct ordering of the
persons.

To obtain the same strong results for the PGS that hold for the

Figure 9.7 Plots of 13 MCA person scores in two dimensions for IWIS, ISWI,
and IWI PGSs; Q = 3, J = 5.
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DGS discussed in Section 9.2, one should analyze the item steps and
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not the original data matrix. It is easily shown that any PGS can be
made into a DGS by recoding the data matrix of a PGS into item steps.
(The authors are not aware of any work in the literature where this
property is explicitly stated.)

When one analyzes the item-step data matrix, the individual item
steps are analyzed as if they were dichotomous items, and all results
of the dichotomous case apply.

9.5  The graded response model

A possible generalization of both the Rasch model to more than two
categories, as well as the PGS to the probabilistic case, is the graded
response model (GRM) proposed by Samejima (1969). An item with
three response categories is characterized by two item-step functions
(see Figure 9.8).

Figure 9.8 Two item-step functions of the GRM.
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the GRM. Depending on the steepness of the slopes, results very
similar to those depicted in Figure 9.4 can be obtained for the GRM.
Also, the category quantifications corresponding to the two outermost
categories can be shown to be ordered under the same conditions as
derived by Schriever (1985) for the Rasch model. An interesting graph
shows the item-response-theory person estimates plotted against the
MCA person scores of the first dimension (see Figure 9.9). This figure
illustrates that the MCA person score is a reasonable approximation

9.6  Unimodal models

It was Coombs (1964) who popularized the unidimensional unfolding
technique and his method of parallelogram analysis. For the dichoto-
mous Coombs scale (DCS), it holds that each item function is of uni-

With Q items, the complete DCS has 2Q + 1 score patterns. Its
extension to more than two categories, the polytomous Coombs scale
(PCS), will have 2Q(J − 1) + 1 possible score patterns in the complete
case, i.e., the highest category has one category function, whereas
the lower categories, except for the lowest, have category functions
on both sides of the highest.

Figure 9.9 Plot of MCA person scores (vertical) vs. item-response-theory esti-
mates (horizontal) for GRM.
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modal shape instead of a monotonic one (see Figure 9.10).

Some results from Section 9.3 on the Rasch model also apply to

of the latent variable (see McDonald 1983; Cheung and Mooi 1994).
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The list of literature on scaling the DCS or PCS with MCA is very
short, or perhaps nonexistent. Heiser (1981: 120) demonstrated for a
PCS that MCA does not find the intended regularity: neither the order
of persons, nor the order of the items, nor the order of the categories
within items are recovered in any simple way.

Where the DGS has one item step, which is also the item function,
the item function of the DCS consists of two item steps, one left and
one right. Some results have been obtained for the restricted DCS, i.e.,
the DCS where the left and right item steps have the same ordering
across items. The restricted DCS can be analyzed by not assigning
weights to both categories, but just to the category of interest, that is,
simple CA of the (0,1)-table. Then it holds that the CA solution of the
restricted DCS provides an ordering for both items and persons (see

Figure 9.10 Item function of the DCS.
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Hill 1974; Heiser 1981).
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A possible generalization of the above coding to the PCS, called
“conjoint coding” (as opposed to “disjoint” or “indicator coding” used in
ordinary MCA), has been proposed by Heiser (1981). Alternatively, to
successfully apply MCA to the DCS or PCS, one should make the
distinction between the lower categories that lie on the left and on the
right of the highest category. This is possible for both the DCS and
PCS, because both models have deterministic data structures. The
following is an example for a PCS.

This idea is discussed for applications in the field of item-response
theory by several authors (Verhelst and Verstralen 1993; van Schuur
1993c; Andrich 1996; Roberts and Laughlin 1996).

9.7  Conclusion

As shown in the previous sections of this chapter, the application of
MCA to monotonic unidimensional models has a vast potential for
producing interesting results. The application of MCA to unimodal
models is somewhat less fruitful although some results could be
obtained for the deterministic Coombs scales. The idea that one needs
to consider what coding is appropriate for the multivariate categorical
data at hand, before applying MCA, is probably the most important
point of this chapter. A choice must be made between coding items or
item steps, or between disjoint or conjoint coding of the data. But given
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this choice, MCA optimizes a general-purpose criterion, not a model-
specific one.

tion between the lower categories that lie on the left and on the right
of the highest category of a PCS. What the reader may not have noted
is that, by making this distinction, the PCS with J categories becomes
a PGS with 2(J − 1) + 1 categories. Furthermore, all results from

be considered a PGS after recoding the data. Note that the item steps
coding from Section 9.4 can be applied as well, in which case all

the appropriate codings, the PGS, DCS, and PCS can be analyzed as
if they were DGSs. A similar result holds for the probabilistic GRM.
If one applies the item-steps coding to the GRM data, applying MCA
becomes the same as analyzing dichotomous item steps with the Rasch
model.

From the figures in this chapter, it is clear that the common con-
viction—that applying MCA to data corresponding to a unidimensional
model always results in a horseshoe or an arch—is not true. This
finding even holds for relatively less complex unidimensional models
such as the PGS or the Rasch model. Even though an arch is not neces-
sarily obtained with probabilistic models, Figure 9.5 and Figure 9.9 dem-
onstrate that MCA contains relevant information on the person and
sometimes the location parameters of a monotonic model in its first
solution. For each of the deterministic models, a vast number of pos-
sible probabilistic generalizations exist. This chapter has been limited
to only a few of them. What has not been shown here, but what is
interesting to note, is that models that are more complex than the
basic Rasch model, for example, the two-dimensional plot (or higher-
dimensional plots), are very unclear and hard to interpret. However,
even if the two-dimensional plot looks like random data, the first MCA
dimension contains relevant information on at least the person param-
eters of monotonic unidimensional models (see Figure 9.5 and Figure
9.9). The person score seems a reasonable approximation of the latent
variable for a wide variety of models. This latter property should be
interpreted by the MCA community as a critical note against the
sometimes blind use of two-dimensional plots.
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In Section 9.6, a coding scheme was discussed that made a distinc-

Section 9.4 on the PGS now also apply to the PCS. Even the DCS can

properties from Section 9.2 also apply to the DCS and PCS. Thus, after
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