
Parallelizing dynamic sequential programs using polyhedral process
networks
Nadezhkin, D.

Citation
Nadezhkin, D. (2012, December 20). Parallelizing dynamic sequential programs using
polyhedral process networks. Retrieved from https://hdl.handle.net/1887/20357
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20357
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20357


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20357 holds various files of this Leiden University 
dissertation. 
 
Author: Nadezhkin, Dmitry 
Title: Parallelizing dynamic sequential programs using polyhedral process networks 
Issue Date: 2012-12-20 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20357
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 7
Summary and Conclusions

In this dissertation, we addressed the problem of automated derivation of Polyhe-
dral Process Network (PPN) specifications from dynamc sequential programs. Our
work is essential for the development of parallelization compilers exploiting task-
level parallelism inherent to many dynamic applications. As an example, the work
presented in this dissertation inspired the development of further extensions in the
pn [3, 48] compiler, where at the moment, most of the research done in this disserta-
tion has been implemented. The derivation of a parallel specification described by
our approach is an essential for the systematic and automated design of the emerg-
ing embedded systems-on-chip platforms. In designing the platforms the parallel
specification allows for systematic and efficient exploration and mapping of the ap-
plication onto the platform. As an example, the work presented in this dissertation
is used in a methodology, implemented in a system-level design tool-flow called
DAEDALUS [57, 58], for automated design, programming, and implementation of
MPSoCs starting at a high level of abstraction. The methodology is built on the con-
cept of Platform-Based Design (PBD) [59] being a promising new approach to master
the ever growing complexity of today’s embedded systems.

Many system-level design flows and application modeling and exploration approa-
ches reported in the literature use the Kahn Process Network (KPN) [7] model of
computation for a parallel application specification. In this dissertation, we target
Polyhedral Process Networks (PPNs) [6] which is a special case of the KPN model.
The PPN allows to specify an application, manipulate and optimize its representa-
tion in terms of polyhedra. This model is well suited for data-flow dominated ap-
plications in the realm of multimedia, imaging, and signal processing that naturally
contain tasks communicating via streams of data. In this dissertation, we target such
applications as being natural for extracting task-level parallelism.

The work presented in this dissertation is directly related to previous works on sys-
tematic and automated derivation of process networks from affine nested loops pro-



88 CHAPTER 7. SUMMARY AND CONCLUSIONS

grams initiated by Rijpkema et al. [15, 30]. Further, Turjan et al. [14] proposed an
automated derivation of process networks from a class of application called static
affine nested loop programs (SANLPs). In SANLPs the memory array subscripts,
loop bounds and conditional control structures are affine constructs of surrounding
loop iterators, program parameters and constants. Also, they put a restriction on the
input program to be static in order to enable the automatic analysis and conversion
of the input program to a PPN. Although, many scientific, matrix computation, and
signal processing applications can be specified as SANLPs, the static restriction lim-
its the applicability of their approach, i.e., their approach cannot handle applications
that have adaptive and dynamic behavior, such as multimedia applications (MPEG
coders/decoders, Smart Cameras, Software Radio), adaptive filters, iterative algo-
rithms, etc. Therefore, in this dissertation, we addressed the important question:
whether some of the static restrictions of the SANLPs can be relaxed while keeping
the ability to perform compile-time analysis and to derive PPNs in an automated
way. Achieving this would significantly extend the range of applications that can be
parallelized in an automated way.

By studying different dynamic applications we distinguished three relaxations to
SANLP programs that would allow one to specify dynamic applications as sequen-
tial programs. These relaxations are:

I. dynamic if-conditions are allowed in a program;

II. for-loops with dynamic bounds are allowed in a program;

III. while-loops are allowed in a program.

In [21], the first relaxation has been considered: a novel automated procedure has
been developed that derives a PPN from a class of affine nested loop programs
calledWeakly Dynamic Programs (WDPs). In this class of programs, the if-conditions
might be dependent on some information that is unknown at compile-time and may
change at run-time. In this dissertation, we have considered the other two more
difficult relaxations. In Chapter 3, we considered relaxation II and presented a first
approach for automated translation of affine nested loops programs with dynamic
loop bounds (Dynloop) into input-output equivalent PPNs. Relaxation III, we con-
sidered in Chapter 4 by presenting a novel approach for automated translation of
affine nested loop programs with while-loops (WLAPs) into input-output equiva-
lent PPNs.

In contrast to deriving a PPN specification of a SANLPprogram, converting dynamic
programs into PPNs in a systematic and automated way is a challenging and com-
plex problem. This stems from the fact that the exact behavior of a dynamic program
is unknown at compile-time. Therefore, for example, formal tools such as Exact Ar-
ray Dataflow Analysis cannot be used to extract dependence relations in a dynamic
program as this has been shown in Section 1.3. In Chapters 3 and 4, we demonstrated
that although the exact behavior of dynamic programs with relaxations II and III is
unknown at compile-time, still such programs can be analyzed and converted to an
executable PPN specification in a systematic and automated way.



89

At a high-level, our approaches presented in Chapters 3 and 4 are similar and consist
of three main steps. First, we extract an approximated dependency relation informa-
tion from a dynamic program using the Fuzzy Array Dataflow Analysis (FADA) [37,
38] technique. We explain what approximation means. In Section 1.3 we demon-
strated the difference of dependency patterns between dynamic and static programs.
In static programs, different instances of a program correspond to one and the same
single dependency pattern which is known at compile-time. In dynamic programs,
data dependency patterns correspond to different instances of a dynamic program,
and are unknown at compile time. This also means that the exact data dependency
patterns in a dynamic program cannot be determined at compile-time. Therefore,
we parameterize or approximate them using parameters whose values have to be set
dynamically at run-time in order to preserve the initial data-flow in a program.

Second, we translate the initial program into dynamic Single Assignment Code (dSAC)
[21] form and implement the general approach how to set the values of parameters
introduced by FADA at run-time. A dSAC program is input-output equivalent to
the corresponding dynamic program and it has the property that every data variable
or an array element is written at most once. This implies that some variables may not
be written at all. Also, at this step, the storage structure of the initial application is
transformed such that each pair of statements communicates data over a dedicated
multidimensional array.

Third, we demonstrate how the topology of the corresponding PPN and the code
executed in each process are derived. Additionally, because the target model, Poly-
hedral Process Network (PPN), requires FIFO channels as communication medium,
at this step memory array accesses are converted into managed dataflow over FIFO
queues. Mapping such array communication onto FIFO channels requires com-
plex address generators, especially if the arrays have multiple dimensions. There-
fore, in Chapter 5, we addressed the Communication Model Identification (CMI)
problem, which investigates communication characteristics of each Producer/Con-
sumer (P/C) pair.

On the basis of the results obtained from Chapters 3,4,5,6 and experimental results,
we can draw the following conclusions:

Conclusion I Thework presented in this dissertation can be implemented efficiently
in a compiler that will help to reduce significantly the time for parallelizing se-
quential dynamic programs. The pn [48] compiler which implements our ap-
proaches drew the attention of Intel Corporation and actually, Intel sponsored
and evaluated these implementations.

Conclusion II With our approach that uses FADA analysis, we reveal all available
task-level parallelism presented in the initial specification of a dynamic pro-
gram. This allows for the utilization of multiple cores in an efficient way. This
has been demonstrated in Chapter 6.

Conclusion III In some cases our parallelization approachesmay exhibit some over-
head introduced by creation of an excessive amount of control channels. This



90 CHAPTER 7. SUMMARY AND CONCLUSIONS

will result in more run-time communication of control data in comparison to
the control data communication in a PPN carefully optimized and derived
by hand. Therefore, some optimization techniques have to be added to our
approach in order to improve the quality of the generated PPNs in terms of
communication control overhead. The investigation of such optimization tech-
niques has already been started and sponsored by Intel Corporation. More-
over, some of the optimizations are under development and test in the current
version of the pn [48] compiler.

Conclusion IV The control FIFO channels appear in a PPN derived from dynamic
programs because the behavior of these programs is not completely known at
compile-time. The presence of control FIFO channels introduces extra work-
load and communication overhead that are the consequences of the dynamic
nature of the initial application. The analytical analysis conducted in Sec-
tion 3.7 showed that the effect of these extra control structures and operations
(overhead) on the performance of the PPN significanlty decreases when the
granularity of the function calls executed inside the processes increases.

In the work presented in this dissertation, we considered a parallelization strategy
that exploits task-level parallelism. Although, our approaches extract the maximum
parallelism available, some other techniques can be used to extract other types of
parallelism. For example, in future work, one can investigate on the transformations
of PPNs similar to [20, 60], where a data-level partition strategy can be considered
in order to achieve better execution performance and to automatically derive PPNs
from dynamic applications.


