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Chapter 6
Experimental Studies

In this chapter, we examine the approach presented in Chapter 3 by deriving a PPN
parallel specification from a real-life application called Low Speed Obstacle Detec-
tion (LSOD). This application contains relaxation II described in Section 1.2. We
present some of the results we have obtained by implementing and executing the
derived parallel PPN specification of the LSOD application on a shared memory
multi-processor system. The main objective of this experiment is to show the practi-
cal applicability of our approach on a real-life application and to show the benefits of
our parallelization approach. For the implementation, we derive the PPN specifica-
tion of the LSOD application following the approach presented in Chapter 3. Then,
we use the ESPAM [55] tool and the HDPC [56] back-end library to generate C++
code for the processes and the FIFO channels.

In this chapter, in Section 6.1 we evaluate our parallelization approach presented in
Chapter 3, and in Section 6.2 we present the conclusions.

6.1 Low Speed Obstacle Detection

The LSOD application shown in Figure 6.1(a) is intended to detect and to track ob-
jects in front of a car in traffic. The output of the system presents spatial positions
for targets – cars, pedestrians, etc. Applying several general image processing al-
gorithms helps to find new targets, and to track existing targets. The algorithms
implement shadow detection, symmetry detection, lights detection, motion segmen-
tation, and vertical edge detection. The output of each algorithm is collected by a
particle filter component [24] for analysis.

The first step in the LSOD application is to obtain two images from a given camera
picture. They are named high and low resolution images and are depicted by the
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two dark rectangles in Figure 6.1(b). Applying different image processing algorithms
on these images, hypotheses whether cars exist are computed. Possible targets are
defined as coordinates and dimensions of rectangles belonging either to the high or
low resolution image. In Figure 6.1(b), two possible targets are presented by the
white rectangles, surrounding the cars. Then, for every identified target, the image
gradient in vertical direction of the area of the target is computed. The result is finally
analyzed in order to support or decline a target.

0 vsum[] = 0

1 for k = 1 to Targets,

2 [Height,Width,X,Y] = getLSODTarget(k)

3 for j = 0 to Height+1,

4 for i = 0 to Width+1,

5 img[j,i] = readTarget(X,Y)

6 endfor

7 endfor

8 for j = 1 to Height,

9 for i = 1 to Width,

10 img_out[j,i] = edgeDetection(

img[j-1,i-1],img[j-1,i+1],

img[j ,i-1],img[j ,i+1],

img[j+1,i-1],img[j+1,i+1])

11 img_out[j,i] = absVal( img_out[j,i] )

12 endfor

13 endfor

14 for j = 1 to Height,

15 for i = 1 to Width,

16 vsum[i] = vertSum( vsum[i], img_out[j,i] )

17 endfor

18 endfor

19 endfor

(a) Pseudo code of the edge detection part of the mo-
tivating example. Target size is specified by variables
Height and Width.

TaTarget 1 1TaTarget 1 1etetetetTarget 1Target 1

Target 2Target 2Target 2Target 2

(b) LSOD applied on real data. The vehicles in
front of the camera are detected and tracked. The
dark rectangles depict the area of the image that
is processed.

Figure 6.1: Pseudo code of the edge detection part of the LSOD application and its
application on real data.

The edge detection part of the LSOD application, shown in Figure 6.1(a), is an exam-
ple of a program which is not a static affine nested loop program. This program is
affine nested loop program but it has dynamic control as function getLSODTarget()
at line 2 initializes variables Height and Width used as loop bounds. These vari-
ables define the size of a target, i.e., the amount of data to be processed, and change
values for every target at run-time. Since targets are moving in front of a camera
(which is also moving), the identified positions stored in variables (X,Y) and dimen-
sions (Height,Width) will differ for different targets in the frame and for one and
the same target in different frames. That is why, the values of variables Height and
Width (as well as the number of targets) are unknown at compile-time, and therefore,
the pn compiler [3] cannot handle the program shown in Figure 6.1(a).
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Parallelization

The result of Steps 1 to 3 of the solution approach presented in Chapter 3 and applied
on the LSOD program in Figure 6.1(a) is illustrated in Figure 6.2. It is the final dSAC
specification. We use the final dSAC to derive the PPN topology, shown in Figure 6.3,
as well as to derive the internal code structure of all processes. Examples of the
internal code structures of processes readTarget and edgeDetection are depicted
in Figure 6.4. Below, we emphasize on some of the important moments of the PPN
derivation, we describe the PPN topology, show how code for processes is generated,
and comment on the overhead introduced in the generated PPN.

1 for k = 1 to Targets,

2 [Height,Width] = getLSODTarget()

3 X_j[k] = Height

4 X_i[k] = Width

5 for j = 0 to maxHeight + 1,

6 for i = 0 to maxWidth + 1,

7 if (j <= X_j[k] + 1 && i <= X_i[k] + 1)

8 img_1[k,j,i] = readTarget(X,Y)

9 lcl_1[j,i] = (j,i)

10 endif

11 ctrl_1[k,j,i] = lcl_1[j,i]

12 endfor

13 endfor

14 for j = 1 to maxHeight,

15 for i = 1 to maxWidth,

16 (c11,c12) = ctrl_1[k,j-1,i-1]

17 if (c11 == j-1 && c12 == i-1)

18 in_0 = img_1[k,j,i]

19 endif

20 (c21,c22) = ctrl_1[k,j-1,i+1]

21 if (c21 == j-1 && c22 == i+1)

22 in_1 = img_1[k,j,i]

23 endif

24 (c31,c32) = ctrl_1[k,j,i-1]

25 if (c31 == j && c32 == i-1)

26 in_1 = img_1[k,j,i]

27 endif

28 (c41,c42) = ctrl_1[k,j,i+1]

29 if (c41 == j && c42 == i+1)

30 in_1 = img_1[k,j,i]

31 endif

32 (c51,c52) = ctrl_1[k,j+1,i-1]

33 if (c51 == j+1 && c52 == i-1)

34 in_1 = img_1[k,j,i]

35 endif

36 (c61,c62) = ctrl_1[k,j+1,i+1]

37 if (c61 == j+1 && c62 == i+1)

38 in_5 = img_1[k,j,i]

39 endif

40 if (j <= X_j[k] && i <= X_i[k])

41 img_out_1[k,j,i] = edgeDetection(

in_0, in_1,

in_2, in_3,

in_4, in_5)

42 img_out_2[k,j,i] = absVal( img_out_1[k,j,i] )

43 lcl_2[j,i] = (j,i)

44 endif

45 ctrl_2[k,j,i] = lcl_2[j,i]

46 endfor

47 endfor

48 for j = 1 to maxHeight,

49 for i = 1 to maxWidth,

50 (c71,c72) = ctrl_2[k,j,i]

51 if (j == c71 && i == c72)

52 in_0 = img_out_2[k,j,i]

53 endif

54 if (j <= X_j[k] && i <= X_i[k])

55 if( j >= 1 )

56 in_1 = vsum[i]

57 else

58 in_1 = 0

59 endif

60 vsum[i] = vertSum( in_1, in_0 )

61 endif

62 endfor

63 endfor

64 endfor

Figure 6.2: Final dSAC.

According to Step 1 (see Section 3.2) of our solution approach we substitute the dy-
namic upper bound functions with constants equal to the maximum values these
functions can have. The initial LSOD program in Figure 6.1(a) has three loop nests
with dynamic upper bound functions: Height+1, Width+1, Height and Width at lines
3–4, 8–9 and 14–15, respectively. These functions take their maximum when vari-
ables Height and Width are maximum, i.e., equal to some constants maxHeight and
maxWidth, respectively. In the LSOD program, the maximum values of Height and
Width are the maximum dimensions that a targetmay have. Therefore, we substitute
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the dynamic upper bound functions with constants equal to the maximum of these
functions as depicted in Figure 6.2 at lines 5–6, 14–15 and 48–49.

The result of applying the FADA analysis which constitutes Step 2 (see Section 3.3)
of our solution approach is illustrated at lines 17–19, 21–23, 25–27, 29–31, 33-35,
37–39 and 51-53 in Figure 6.2. In total, 6 two-dimensional vectors of parameters
(c11, c12), . . . , (c61, c62)were introduced by the FADA algorithm analyzing the data-
dependencies between functions readTarget()and edgeDetection() shown in Fig-
ure 6.1(a). Also, one two-dimensional vector of parameters (c71, c72)was introduced
after analyzing the data-dependencies between functions absVal() and vertSum().

At Step 3 (see Section 3.4) of our solution approach, we introduce local and global
control arrays in order to initialize and propagate the values of the parameters at
run-time. For the pair of functions readTarget() and edgeDetection(), 6 vectors
of parameters were introduced by FADA. All these parameter vectors correspond to
the single iteration vector (j2, i2) of the source function readTarget(). Therefore, at
lines 9 and 11 only one local and one global control arrays are generated for this pair
of functions. Similarly, at lines 43 and 45 one local and one global control arrays are
added for the pair of functions absVal() and vertSum().

P_1

getLSODTarget

P_2

readTarget

P_3

edgeDetection

P_4

absVal

P_5

vertSum

H:1

W:1

X:1

Y:1

H:1

W:1

H:1

W:1

H:1

W:1

img:703

img:701

img:353

img:351

img:3

img:1

ctrl_1:703

ctrl_1:701

ctrl_1:353

ctrl_1:351

ctrl_1:3

ctrl_1:1 img_out:1

img_out:1

ctrl_2:1

vsum: 350

Figure 6.3: The PPN derived from the LSOD program.

By applying Step 4 (see Section 3.5) of our approach to the final dSAC of the LSOD
application depicted in Figure 6.2, we derive the topology of the PPN depicted in
Figure 6.3. The topology consists of 5 processes, 19 data channels shown as solid lines
that are used to exchange data between processes and 7 control channels shown as
dashed lines used to propagate values of global control arrays. The edges of the PPN
in Figure 6.3 are annotated with the buffer sizes calculated for the LSOD program
considering maximum dimensions of the targets to be 350x300 pixels. This means
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that we set maxWidth = 350 and maxHeight = 300.

Finally, as an example of the internal structure of the PPN processes, in Figure 6.4,
we present the pseudo code for readTarget and edgeDetection processes derived
after the linearization step. These processes exhibit the most intensive data commu-
nication in the PPN. The internal code structures of these processes are generated
as it has been explained in Step 4 (see Section 3.5) of our solution approach. Note,
that the input/output ports used to access FIFO channels (see the read/write primi-
tives in Figure 6.4) are automatically mapped to physical addresses generated by the
Espam tool (in a separate header file).

1 for k = 1 to Targets,

2 for j = 0 to maxHeight + 1,

3 for i = 0 to maxWidth + 1,

4 if (j == 0 && i == 0)

5 read(0, H)

6 read(1, W)

7 read(2, X)

8 read(3, Y)

9 endif

19 if (j <= H + 1 && i <= W + 1)

11 img_1 = readTarget(X,Y)

12 lcl_1 = (j,i)

13 if( j <= H-1 && i <= W-1 )

14 write( 1, img_1 )

15 if( j <= H-1 && i >= 2 )

16 write( 3, img_1 )

...

17 endif

18 ctrl_1 = lcl_1

if( j <= H-1 && i <= W-1 )

write( 0, ctrl_1 )

if( j <= H-1 && i >= 2 )

write( 1, ctrl_1 )

...

23 endfor

24 endfor

25 endfor

(a) Process readTarget

1 for k = 1 to Targets,

2 for j = 1 to maxHeight,

3 for i = 1 to maxWidth,

4 if (j == 0 && i == 0)

5 read(0, H)

6 read(1, W)

7 endif

8 if (j <= H && i <= W)

9 read(0, ctrl_1)

10 if (ctrl_1.j == j-1 &&

ctrl_1.i == i-1)

11 read(1, in_0)

12 read(2, ctrl_1)

13 if (ctrl_1.j == j-1 &&

ctrl_1.i == i+1)

14 read(3, in_1)

...

15 img_out = edgeDetection(

in_0, in_1,

in_2, in_3,

in_4, in_5)

write(0, img_out)

endif

19 endfor

20 endfor

21 endfor

(b) Process edgeDetection

Figure 6.4: Internal code structures of processes readTarget and edgeDetection of
the PPN derived from the LSOD application.

We evaluate our approach by executing the parallel LSOD application specification
on an Intel® Xeon® quad-core machine running a Linux operating system. We
used the ESPAM [55] tool and the HDPC [56] library to map the processes of the
generated PPN onto cores and to generate C++ code for these cores. We used the
GCC compiler to generate the final binary code. The HDPC library employs the
boost-thread framework that enables the use of multi-threaded implementations.
That is, the derived PPN has been translated to a multi-threaded program realizing
the LSOD application, in which every process of the PPN is a separate thread.

In this experiment, we implemented and executed the parallel PPN specification of
the LSOD application considering 5 different mapping configurations. The obtained
results are shown in Figure 6.5. The horizontal axis depicts the number of cores used
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Figure 6.5: Evaluation of LSOD PPN on several CPUs.

in each configuration, i.e., we mapped the 5 processes of the PPN onto 1, 2, 3, 4, and
5 cores, respectively. Note that because the Intel® Xeon®processors support hyper-
threading, the operating systems ’sees’ 8 different cores. Therefore, we could map
5 processes on 5 different cores exploiting maximum concurrency. Obviously, when
using less than 5 cores, some processes have to share the same core. In this case, we
let the operating system to schedule the execution of these processes (i.e., threads)
on a particular core. We experimented with grouping different processes together,
i.e., mapping several processes on a single core. Figure 6.5 presents the best results
that we have obtained. In addition, every configuration has been executed multi-
ple times and the bars show the obtained average speed-up. The first configuration
(see the leftmost bar in Figure 6.5) represents our reference configuration, in which,
we mapped all 5 processes of the PPN onto a single core. We consider the speed-
up of this configuration to be 1. Also, we have normalized the performance of the
other configurations with respect to the performance of this reference configuration.
Looking at the performance of the other 4 configurations, we see that by increasing
the number of cores, the speed-up increases below the theoretical maximum shown
as gray bars in Figure 6.5. We found that because of the data dependencies in the
LSOD application and the imbalanced workload of the functions executed by differ-
ent processes, the theoretical maximum cannot be achieved. In addition, in all con-
figurations except the one using 5 cores (see the rightmost bar in Figure 6.5), there is
an overhead introduced by the operating system for scheduling different threads on
one core. As a result, the rightmost configuration exhibits a slightly larger speed-up
increase compared to the other configurations. Finally, there is the execution time
overhead caused by the extra ’dummy’ iterations, which we discussed in Section 3.7.
Below, we present some numbers with regards to this execution time overhead, as
well as, the memory overhead in the LSOD process network.

Execution time overhead

From the execution statistics obtained by profiling of the LSOD application and its
PPN, we computed the two ratios in Equation 3.4 presented in Section 3.7. Ta-
ble 6.1 shows the ratios for each process and the whole PPN. Note that for computing
(max_ f − x)/x, we need to consider that the targets are 2-dimensional. Therefore,



6.1 LSOD 85

we used the term:

maxWidth·maxHeight− x· y

x· y
=

350· 300− x· y

x· y
.

The terms x and y represent the average target size, which we computed from the
targets used when executing the program. Based on the computed values in the last
column of Table 6.1 and applying Equation 3.4 in Section 3.7, the overhead due to
the execution of ’dummy’ iterations of the LSOD PPN is 33.93%.

Process P_1 P_2 P_3 P_4 P_5 PPN

W/(Wx +W) 0.53 0.38 0.26 0.47 0.3 0.39

(max_ f − x)/x 0 1.09 1.09 1.09 1.09 0.87

Table 6.1: Statistics LSOD PPN.

Memory overhead

In order to evaluate the memory overhead, we measured the memory requirements
for the sequential LSOD program and compared this with the memory require-
ments for executing the corresponding PPN. The sequential program requires in
total 13650 Bytes of memory, which includes both the code and the data. In order
to make a fair comparison, it is important to note that this number (13650 Bytes)
does not include the data array used to buffer the largest possible target, i.e., vari-
able img[TH][TW]which requires 350x300 = 105000 Bytes. Although, we use such a
variable in the sequential program, the program can be written more efficiently in a
way that we do not need to buffer the whole (largest possible) target. The left part
of Table 6.2 shows the memory requirements for every process in the generated pro-
cess network. In addition, we need to consider also the memory used to implement
the FIFO channels. In total, the PPN requires 17018 Bytes for implementing the pro-
cesses and 18384 Bytes for the FIFO channels, see the right part of Figure 6.2. Then, if
we compare these numbers with the number of the sequential program, we see that
the memory overhead is 2.6x, which is reasonable provided that this is the memory
requirement for the implementation of 5 processes and 26 FIFO channels.

Process P_1 P_2 P_3 P_4 P_5

Code (bytes) 1626 2302 2510 1742 1978

Data (bytes) 1420 1360 1360 1360 1360

Total (bytes) 3046 3662 3870 3102 3338

PPN Sequential

Memory (bytes) 17018 13650

FIFOs (bytes) 18384 –

Overhead 2.6x –

Table 6.2: Memory overhead of the LSOD PPN.

Overall, the average efficiency of the 4 parallel implementations of the LSOD process
network is around 70%. The efficiency (E f f ) is defined as:
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E f f =
SP

C
,

where SP is the speed-up and C represent the number of cores used to achieve this
speed-up.

6.2 Discussion and Summary

In this chapter, we evaluated our parallelization approach presented in Chapter 3
on a real-life application called Low Speed Obstacle Detection (LSOD). This appli-
cation contains for-loops with dynamic bounds and is an example of an application
with relaxation II presented in Section 1.2. By evaluation of this application, we
demonstrated the practical applicability of our parallelization approach to a real-life
dynamic application.

By evaluating our approach we found that because of the data dependencies in the
LSOD application and the imbalanced workload of the functions executed by differ-
ent processes, the theoretical maximum cannot be achieved. In addition, there are
two types of overhead in the generated PPN, i.e., memory and execution time over-
head. The execution overhead is caused by the execution of some ’dummy’ iterations
not present in the initial sequential program. The memory overhead is due to the in-
troduced control arrays, as well as, the created dataflow and control FIFO channels.
It highly depends on the characteristics of the application being parallelized. In Sec-
tion 3.7, we presented analytical analysis of the execution overhead. For the LSOD
application, the overhead due to the execution of ’dummy’ iterations of the LSOD
PPN is 33.93%. This overhead is highly dependent on the maximum dimensions of
the targets in the image.

In order to evaluate the memory overhead, we measured the memory requirements
for the sequential LSOD program and compared this with the memory requirements
for executing the corresponding PPN. The total memory overhead is 2.6x which is
reasonable, because this is the memory requirement to implement 5 separate pro-
cesses and 26 FIFO channels which is unavoidable if wewant to parallelize the LSOD
to the maximum task-level parallelism available in the initial LSOD specification.
Overall, the average efficiency of the 4 parallel implementations of the LSOD pro-
cess network is around 70% which is very reasonable for parallel implementation.

From the LSOD evaluation, the obtained results indicate that the approach we pre-
sented in Chapter 3 facilitates efficient parallel implementations of sequential nested
loop programs with dynamic loop bounds. That is, our approach reveals the pos-
sible parallelism available in such applications, which allows for the utilization of
multiple cores in an efficient way.


