
Parallelizing dynamic sequential programs using polyhedral process
networks
Nadezhkin, D.

Citation
Nadezhkin, D. (2012, December 20). Parallelizing dynamic sequential programs using
polyhedral process networks. Retrieved from https://hdl.handle.net/1887/20357

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20357

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20357

Cover Page

The handle http://hdl.handle.net/1887/20357 holds various files of this Leiden University
dissertation.

Author: Nadezhkin, Dmitry
Title: Parallelizing dynamic sequential programs using polyhedral process networks
Issue Date: 2012-12-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20357
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 5
Identifying Communication
Models in Polyhedral Process
Networks derived from Dynamic
Programs

In Section 1.1, we have demonstrated that the Linearization is an important step
of the parallelization approach depicted in Figure 1.2(b). As a result of the Depen-
dence Analysis step, the initial program is translated into its functionally equivalent
Polyhedral Reduced Dependence Graph (PRDG). The storage structure of the ini-
tial application is transformed such that each pair of statements communicates data
over a dedicated multidimensional memory array as shown in Figure 1.2(c). How-
ever, the target model, Polyhedral Process Network (PPN), requires FIFO channel as
communication medium. Therefore, the Linearization step converts such memory
accesses into managed dataflow over FIFO queues.

Mapping array communication onto FIFO channels requires complex address gener-
ators, especially if the arrays have multiple dimensions. Therefore, the Linearization
also solves the Communication Model Identification (CMI) problem, which investi-
gates communication characteristics of each Producer/Consumer (P/C) pair.

In Section 1.1.2, we have demonstrated that there are four possible communication
models that can describe the dataflow in a P/C pair. They are: in-order (IO), out-of-
order (OO), in-order with multiplicity (IOM) and out-of-order with multiplicity (OOM).
Also, we have shown that the realization of different communication models re-
quires different utilization resources (such as memory) and produces different run-
time overhead. The difference in realization puts the communication models into a

72 CHAPTER 5. COMMUNICATION MODELS

hierarchy: from the most general OOM which can realize all communication mod-
els but requires most of the resources, to the specific, for example, IO, which can be
realized as a FIFO in as straightforward way. Therefore, the identification procedure
solves the optimization problem by finding the most optimal realization for each
P/C pair.

In Section 2.6, in Definitions 2.6.1 and 2.6.3 we gave the overview of the Reorder-
ing and Multiplicity problems [14] which are used to identify communication mod-
els while translating static affine nested loop programs into functionally equivalent
PPNs. In this chapter we present our novel compile-time procedure for communi-
cation model identification while translating the dynamic programs defined in Sec-
tion 2.2 into functionally equivalent PPN. This procedure is used in the two paral-
lelization approaches we have presented in Chapter 3 and Chapter 4.

In the following Section 5.1 we give the rationale of the communication model iden-
tification approach which will be presented in Section 5.2. Section 5.3 presents the
conclusions.

5.1 Rationale

The overall challenge of Communication Model Identification while deriving a PPN
from a dynamic program is how to deal with uncertainties introduced by the re-
laxations presented in Section 1.2. In Section 1.3 we have demonstrated that the
approach used for CMI in static programs is inapplicable for dynamic programs.

In this dissertation, we use the PPN model of computation to specify both static
and dynamic programs in parallel form. Therefore, the communication models in
PPNs derived from dynamic programs are the same as in PPNs derived from static
programs. These models are presented in Section 1.1.2.

Because the communication models in PPNs derived from static and dynamic pro-
grams are the same, we could have assumed that in order to identify the commu-
nication model in a P/C pair derived from a dynamic program we can use the RP
and MP presented in Section 2.6. This problems are formulated according to Defini-
tions 2.6.1 and 2.6.3 which give the formal definitions of ordering and multiplicity in
a P/C pair. The key elements of these definitions are the mapping functions which
are used to describe the dependency relations in a P/C pair. The definition of a
mapping function is given in Definition 2.3.5.

However, there is a big difference in dependency relations between dynamic and
static programs. In static programs, different instances of a program correspond to
one and the same single dependency patternwhich is known at compile-time. There-
fore, only one unique set of mapping functions exist for all P/C pairs derived from
a static program. We can observe this in Figure 1.3(b). In contrast to static programs,
in dynamic programs, data dependency patterns correspond to different instances of
a dynamic program, and are unknown at compile time. This has been demonstrated
in Figure 1.6 explained in Section 1.3. Figure 1.6 depicts data dependency relations

5.2 Solution Approach 73

between statements S1, S2 and S3 in three instances of the dynamic program in Fig-
ure 1.5(a) for M = N = 4. An instance of a dynamic program is an evaluation of
the program with a particular input dataset. Figure 1.6 illustrates iteration domains
of statements S1, S2 and S3, where the points on the coordinate systems designate
the evaluations of statements and the arrows reflect the data dependencies between
evaluations. The numbers at the points show the lexicographical order of statement
evaluations.

Similar to static programs, from this figure it can be seen that for every instance
of a dynamic program there is a unique set of mapping functions that determine the
dependency relations between all statements for evaluation of the programwith par-
ticular input data set. However, for different instances of a dynamic programs, there
exist different sets of mapping functions that compensate for unknown, at compile-
time, information inherent to dynamic programs.

To capture all unknown information at compile-time our novel approach is to define
and use parameterizedmapping functions that can be used to describe all possible de-
pendency relations that exist in all instances of a dynamic program. By using these
parameterizedmapping functions, it is possible to analytically identify the most gen-
eral communication model of a P/C pair in all possible instances of a dynamic pro-
gram. Based on this information, the communication of a P/C pair can be realized
with the most general communication model which implements all possible data
dependency patterns occurring in all instances of a dynamic program.

In the following section we will demonstrate how these parameterized mapping
functions are derived and how the parameters are determined at run-time. The
derivation of parameterized mapping functions is our novel contribution.

5.2 Solution Approach

Because, the communication model identification procedure is a part of the Lin-
earization step of the parallelization approaches presented in Chapters 3 and 4, we,
first, briefly recall the main steps of these approaches. To illustrate these steps, we
will use the running example shown in Figure 1.5(a).

The first steps of the parallelization approaches presented in Chapters 3 and 4 use the
dependence analysis in order to extract dependency relations of the initial program.
The Fuzzy Array Dependence Analysis (FADA) [37, 38] is used. The FADA is an
enhanced version of Exact Array Dependence Analysis (EADA) [4] and it is used to
analyze programs with dynamic behavior.

For example, consider the dynamic program depicted in Figure 1.5(a). There are two
statements S1 and S2 writing to array y[] and one statement S3 which reads from
it. Statement S2 is guarded by an if-condition whose values are determined at run-
time. The FADA analysis of this program is described in Section 2.5. The result of
the analysis is given below.

74 CHAPTER 5. COMMUNICATION MODELS

σ(〈S3, (i3, j3)〉, (αi, αj)) =

∣

∣

∣

∣

∣

∣

∣

∣

if i3 ≥ αi ∧ j3 = αj

then 〈S2, (αi, αj)〉

else 〈S1, (j3)〉

(5.1)

From Equation (5.1) it can bee seen that for any reading operation 〈S3, (i3, j3)〉 the
source of the data can be from two different locations. The source is in S1 when for
given j3 none of the previous evaluations of the condition at line C in Figure 1.5(a)
was true. Otherwise, the source is in S2. Parameters αi and αj are introduced by
the FADA algorithm. Parameters are used to hide unknown, at compile-time, infor-
mation and will be determined at run-time. Because the values of parameters are
unknown at compile-time, the result of the dependence analysis (i.e., the source op-
eration) shown in Equation (5.1) is unknown at compile-time either, and the result is
approximated.

Based on the results of the FADA dependence analysis, the initial sequential pro-
gram is translated into a dynamic Single Assignment Code (dSAC) representation of
the initial dynamic program. The dSAC was proposed in [21] as an extension of the
Single Assignment Code [4]. A dSAC program is input-output equivalent to the cor-
responding initial dynamic program and it has the property that every data variable
or an array element is written at most once. This implies that some variables may not
be written at all.

1 for j = 1 to 4,

2 ctrl[j] = (5,5)

3 end

4 for k = 1 to 4,

S1: y_1[k] = F1()

6 end

7 for i = 1 to 4,

8 for j = i to 4,

C: if y_1[j]<=2,

S2: y_2[i,j] = F2()

11 ctrl[j] = (i,j)

12 end

13 c1 = ctrl[j].i

14 c2 = ctrl[j].j

15 if i >= c1 && j == c2,

16 in_0 = y_2[c1, c2]

17 else

18 in_0 = y_1[j]

19 end

S3: [] = F3(in_0)

21 end

22 end

(a) The dSAC form

ctrl[]

P2

P3

P1
p1

p3 p4

p2

p6

p5

y_2[,]

y_1[]

(b) PPN specification

Figure 5.1: An example of a dSAC program and corresponding PPN specification
derived from the program shown in Figure 1.5(a).

5.2 Solution Approach 75

For example, the dSAC form of the program in Figure 1.5(a) derived from Equa-
tion 5.1 is depicted in Figure 5.1(a) where the parameters N and M are set to 4. It
is in dSAC form because if we consider line 10, we do not know at compile-time at
which iteration the elements of array y_2[]will be written. The only thing known is
that they will be written at most once. The other array y_1[] has the same property
as an array in SAC form: every element is written exactly once.

Another property of the dSAC form is the presence of parameters that originate from
the FADA analysis. For example, in Figure 5.1(a) the program variables are c1 and
c2 which correspond to parameters αi and αj in Equation 5.1. In order to make
dSAC to be functionally equivalent to the initial dynamic program, the values of
these parameters have to be changed at run-time.

Parameters are changedwith the help of control variables that store the correct value
of the parameters for every iteration. For example, dynamic change of the values of
c1 and c2 is accomplished by lines 13 and 14. The control array ctrl[] at line 11
stores the iterations for which the data-dependent condition at line C is true. The
control variables must be initialized with values that are greater than the maximum
value of the corresponding parameters. Therefore, the values of control array ctrl[]
are initialized with value (5,5) at lines 1–3 in Figure 5.1(a). Writing to the control
variables is performed just after the functional statement F2(), see line 11 in Fig-
ure 5.1(a). This guarantees that when the function is executed, the current iteration
is stored in the control variables. The values of the control variables are propagated
and assigned to the program variables c1 and c2 at lines 13 and 14. These variables
are used to evaluate the conditions at lines 15 and 16 which determine the source of
the data for function F3().

From the dSAC we can build the topology of the PPN depicted in Figure 5.1(b).
Every functional statement becomes a process, and every variable or array becomes
a channel. For example, lines 4-6 form process P1; lines 1-3 and 7-12 form process
P2; and, finally, lines 7-8, 13-21 form process P3. Processes P1 and P3 are connected
with a FIFO channel via ports p1 and p3. Processes P2 and P3 are connected with
two FIFO channels: the first one (ports p2 and p4) originated from array y_2[,]
for transferring data, and the second channel which originates from control variable
ctrl[], to communicate the outcome of the condition at line C.

5.2.1 Parameterized mapping functions

From the dSAC form and Equation 5.1 we derive parameterized mapping func-
tions which are functions of the Consumer iteration point and vectors of parameters:
f (~y,~α). Vector of parameters ~α is used to uniformly specify a set of unique map-
ping functions which exist for every instance of a dynamic program, thus capturing
the unknown information at compile-time. Values of vector~α will be determined at
run-time during the execution of a PPN.

We define a parameterized mapping function as follows:

76 CHAPTER 5. COMMUNICATION MODELS

Definition 5.2.1 (parameterizedmapping function)
A parameterized mapping function is an affine mapping fpq : Ip → Oq : Oq =
f (Ip,~α), where Ip ∈ IPDp(~α) andOq ∈ OPDq.

For example, for the P1/P3 pair (ports p1-p3) in the PPN shown in Figure 5.1(b), the
parameterized mapping function and its domain are:

fp3p1 : Z4 → Z : k =
(

0 1 0 0
)

(i3, j3, αi, αj)
t,

D(fp3p1) = {(i3, j3, αi, αj) ∈ Z4 | 1 ≤ i3 < αi ≤ 4∨ i3 ≤ j3 6= αj ≤ 4}.

(5.2)

For the P2/P3 pair (ports p2-p4), the parameterized mapping function and its do-
mains are:

fp4p2 : Z4 → Z2 : (i2, j2)
t =

(

0 0 1 0

0 0 0 1

)

(i3, j3, αi, αj)
t,

D(fp4p2) = {(i3, j3, αi, αj) ∈ Z4 | 1 ≤ i3 ≥ αi ≤ 4∧ i3 ≤ j3 = αj ≤ 4}.

(5.3)

Finally, we use the parameterized mapping functions to formulate the Reordering
Problem (RP) and the Multiplicity Problem (MP) used to identify the communication
models in a PPN derived from a dynamic program. This problems are shown in
Figure 5.2 and correspond to Definitions 2.6.1 and 2.6.3, respectively.

The meanings of all constraints in Figure 5.2 are the same as in Figure 2.3. A ma-
jor difference is that parameterized mapping functions are used. The novelty of our
communication model identification procedure is to model unknown information at
compile-time by the parameterized mapping functions.











y1, y2 ∈ LmP(D(f)),

y1≪y2,

f (y1, α1) ≫ f (y2, α2).

(a) Reordering Problem (RP)











y1, y2 ∈ D(f) (c1)

y1 6= y2, (c2)

f (y1, α1) = f (y2, α2). (c3)

(b) Multiplicity Problem (MP)

Figure 5.2: Reordering and Multiplicity Problems for used in communication model
identification in PPNs derived from dynamic programs.

The definition of the LmP set used in Figure 5.2(a) is given in Figure 5.3(a). It is
a parametric integer linear problem (PILP) similar to the problem given in Defini-
tion 2.6.2. The differences between the two formulations of LmP problems are that
in the problem shown in Figure 5.3(a) the mapping function is parameterized and
this problem finds lexicographically minimal Consumer’s iteration points and pa-
rameter vector~α. For example, consider the P2/P3 pair (and its corresponding ports
p2 and p4) formed by statements S2 and S3 from the dSAC shown in Figure 5.1(a).

5.2 Solution Approach 77

The LmP problem for the P2/P3 pair is illustrated in Figure 5.3(b). The solution of
this problem is LmP(D(fp4p2)) = {(i3, j3, αi, αj) ∈ Z4 | i3 = i2 ∧ j3 = j2 ∧ αi =
i2 ∧ αj = j2 ∧ 1 ≤ i2 ≤ j2 ≤ 4}.

objective :

(~ym,~αm) = lexmin { f−1(~x)},

subject to :
{

~y ∈ D(f),

~x = f (~y,~α).

(a) Formulation of the LmP problem



















i3 ≥ αi, j3 = αj,

i2 = αi, j2 = αj,

1 ≤ i3 ≤ j3 ≤ 4,

1 ≤ i2 ≤ j2 ≤ 4.

(b) An example of LmP problem

Figure 5.3: Formulation of the problem with an example used to find Lexicograph-
ically minimal Preimage (LmP) of the Consumer iteration points while deriving a
PPN from a dynamic program.

Examples of applying RP and MP problems to our running example depicted in Fig-
ure 1.5(a) are shown in Figure 5.4. The RP and MP problems are formulated for
the P2/P3 pair formed by statements S2 and S3 from the Figure 5.1(a), respectively.
Clearly, the RP problem shown in Figure 5.4(a) does not have an integer solution,
because constraints (c3) and (c4) contradict each other. Therefore, the communica-
tion model of P2/P3 pair is in-order. The MP problem illustrated in Figure 5.4(b)
has an integer solution: for some i13 6= i23, there can be α1

i = α2i which satisfy (c4),
and, thus, the communication model of the channel has a multiplicity. Therefore,
the communication model of P2/P3 pair is IOM.























i13 = α1
i , j

1
3 = α1

j ,

i23 = α2
i , j

2
3 = α2

j ,

(i13, j
1
3) ≪ (i23, j

2
3),

(α1
i , α

1
j) ≫ (α2

i , α
2
j).

(a) RP for P2/P3 pair























i13 ≥ α1
i , j

1
3 = α1

j , (c1)

i23 ≥ α2
i , j

2
3 = α2

j , (c2)

(i13, j
1
3) 6= (i23, j

2
3), (c3)

(α1
i , α

1
j) = (α2

i , α
2
j). (c4)

(b) MP for P2/P3 pair

Figure 5.4: Examples of RP and MP problems for P2/P3 pair.

78 CHAPTER 5. COMMUNICATION MODELS

5.3 Discussion and Summary

In this chapter, we have presented a novel procedure for communication models
identificationwhile deriving PPNs from the dynamic programs defined in Section 2.2.
The procedure, needed to convert multidimensional arrays used for data communi-
cation after the Data Dependence analysis step, distinguishes between four patterns
of communicating data and identifies the most general one which can realize all de-
pendency patterns in different instances of a dynamic program. This identification
procedure solves the optimization problem by finding the most optimal realization
for each P/C pair.

The novel idea that we have used in our communication model identification proce-
dure is the parameterized mapping functions. We derive them from a dSAC speci-
fication of an initial dynamic application using the Fuzzy Array Dataflow Analysis.
Parameterizedmapping functions are used to describe all possible dependency rela-
tions that exist in all instances of a dynamic program for each P/C pair. Parameters
in these functions are used to uniformly specify a set of unique mapping functions
which exist for every instance of dynamic program, thus, capturing unknown infor-
mation at compile-time. Using parameterized mapping functions, we reformulated
the problems presented in Section 2.6: the Reordering Problem (RP) and the Multi-
plicity Problem (MP) which are used to identify communication models in a derived
PPN.

