
Parallelizing dynamic sequential programs using polyhedral process
networks
Nadezhkin, D.

Citation
Nadezhkin, D. (2012, December 20). Parallelizing dynamic sequential programs using
polyhedral process networks. Retrieved from https://hdl.handle.net/1887/20357

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20357

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20357

Cover Page

The handle http://hdl.handle.net/1887/20357 holds various files of this Leiden University
dissertation.

Author: Nadezhkin, Dmitry
Title: Parallelizing dynamic sequential programs using polyhedral process networks
Issue Date: 2012-12-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20357
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 4
Automated Generation of
Polyhedral Process Networks
from
Affine Nested-Loop Programs
with While-loops

In this chapter, we present a first approach for automated translation of affine nested
loop programswhich contain relaxation II, i.e.,while-loops (WLAP), into input-output
equivalent Polyhedral Process Networks (PPNs). We developed this approach in
order to further extend the range of applications that can be parallelized in an au-
tomated way. This approach can be automated and implemented efficiently in a
compiler that will help to reduce significantly the time for parallelizing sequential
programs.

Recall, that in Section 1.1 we briefly introduced the main steps needed to translate a
static sequential application into a PPN. Additionally, in Section 1.3 we showed that
this approach cannot be used on dynamic applications. In this chapter we develop a
new approach elaborating in more detail on the new models and techniques that are
used in parallelization of programs containing while-loops.

The rest of this chapter is organized as follows. In Section 4.1, we present a real-
life application that requires while-loop for specification. Further, starting with Sec-
tion 4.2 until Section 4.6, we present the approach for translation WLAP programs
into equivalent PPNs in more detail elaborating on the new models and techniques
that are used in parallelization. Finally, in Section 4.7, the conclusions are presented.

56 CHAPTER 4. WHILE-LOOPS

4.1 Motivating example

As a motivating example, we use a real-life application from the signal processing
domain called Adaptive Beamforming (AB) [25]. With the description of the AB
application below, we present a program that has the specific dynamic behavior we
consider in this chapter, and we outline the problems introduced by this behavior.

Adaptive Beamforming is a signal processing technique which performs adaptive
spatial signal processing with an array of antennas in order to transmit or receive
signals in different directions without having to mechanically steer the array. The
main property of the AB is the ability to adjust its performance tomatch the changing
signal parameters. Figure 4.1(a) illustrates the AB application. Signals from three
antennas are constantly fed into an adaptive filter where they are processed together
with adaptive coefficients (ACs) w1�w3. ACs are needed to adjust the signals and are
recalculated for new signals received from the antennas. This propertymakes the AB
application to bewidely used in communications to point an antenna at the changing
signal source to reduce interference and improve communication quality. That is
why the AB is an important part of modern wireless communication standards, such
as IEEE 802.11n (Wifi), 4G, WiMAX, etc.

[w1, w2, w3]

A
n

te
n

n
a

s Adaptive Filter

SVD

(a) Adaptive beamforming application

1 M = HouseHolder(M)

2 while (F(M)),

3 M = QR(M)

4 endwhile

(b) An example of a WLAP program: the SVD
algorithm

Figure 4.1: Adaptive Beamforming and the SVD [53] algorithm.

The most computationally intensive part of the AB application is the Singular Value
Decomposition (SVD) algorithm. The SVD algorithm performs a factorization of a
matrix and is used to produce ACs for the adaptive filter shown in Figure 4.1(a).
Pseudo-code of the SVD algorithm is illustrated in Figure 4.1(b). First, a matrix
is reduced to a bidiagonal form by the Householder transformation at line 1, and
then, the result is diagonalized using an iterative QR algorithm at line 3. Iterative
QR is an eigenvalue algorithm, and it is an example of a program which has dy-
namic control. The program requires a while-loop at line 2 in Figure 4.1(b), as calcu-
lated values iteratively converge to eigenvalues until desired precision determined

4.2 Solution Overview 57

by function F() is achieved. The number of iterations to converge is unknown at
compile-time. Since the SVD algorithm cannot be specified as a static program or a
program with dynamic if-conditions considered in [21] or for-loops with dynamic
bounds considered in [26,27] and Chapter 3, the pn compiler [3] as well as techniques
from [21, 26, 27] and Chapter 3 are unable to handle the program in Figure 4.1(b).
Therefore, in this chapter, we propose a solution approach to this problem by intro-
ducing a novel procedure for automated translation of affine nested loops programs
with while-loops (WLAP) (see Definition 2.2.4) into input-output equivalent PPNs.

Handling the dynamic behavior of while-loops is more difficult compared to dy-
namic if-conditions [21] and for-loops with dynamic bounds (Chapter 3). A for-loop
with dynamic loop bounds can be replaced by dynamic if-condition with some
modifications as it has been shown in [26, 27] and Chapter 3. However, a while-
loop cannot be replaced by a for-loop with dynamic bounds. Information about the
number of iterations of a while-loop is unknown until the loop has been finished.
Whereas the number of iterations of a for-loop with dynamic bounds is known just
before the loop starts to execute. This absence of information in awhile-loop requires
much more advanced analysis compared to analysis of for-loops. In this chapter,
we demonstrate the analysis of while-loops in order to translate WLAPs into input-
output equivalent PPNs.

step3

step2

step1

Dependence Analysis

dSAC

Polyhedral Process Network

program
WLAP

(a) Parallelization approach

1 parameter EPS 0.005

2 for i = 1 to N,

S1: y[i] = F1()

S2: x = F2(y[i])

W: while (x >= EPS)

S3: x = F3()

7 for j = i+1 to N+1,

S4: y[j] = F4(y[j-1])

S5: x = F5(x, y[j])

10 endfor

S6: y[i] = F6(x)

12 endwhile

S7: out = F7(x)

14 endfor

(b) A complex example of a WLAP pro-
gram.

Figure 4.2: An approach that translates WLAP program into PPNs and a complex
example of a WLAP program.

4.2 Solution Overview

The high-level overview of the approach is illustrated in Figure 4.2(a). It starts with
an application written as a sequential program that has while-loops similar to one
depicted in Figure 1.5(c). First, we find all data-dependency relations in the initial
WLAP program by applying the Fuzzy Array Dependence Analysis (FADA) [37,38]

58 CHAPTER 4. WHILE-LOOPS

on it. This analysis, described in Section 2.5, helps to extract the dependent mem-
ory accesses and represent an initial program in a form where data dependencies
are made explicit. In Section 1.3 we have shown that in a WLAP program exact data
dependency patterns are unknown at compile time. The FADA analysis allows to pa-
rameterize (or approximate) such data dependency patterns with parameters which
values are determined at run-time. Second, based on the results of the analysis, we
transform the initial WLAP program into a dynamic Single Assignment Code (dSAC)
representation. dSAC was proposed in [21] as an extension of the SAC [4]. A dSAC
program is input-output equivalent to the initial program and it has the property
that every variable is written at most once. This implies that some variables may not
be written at all. We derive the dSAC program using the FADA algorithm, therefore,
parameters introduced by FADA are present in the dSAC aswell. The values of these
parameters in dSAC are assigned using control variables. The generation of control
variables constitutes the third step of our solution approach. Control variables have
been studied in [21] for programs containing dynamic if-conditions, whereas, in this
chapter, we present an extension to these procedureswhich can be applied onWLAP
programs. In the last fourth step, the topology of the corresponding PPN is derived,
as well as the code executed in each process. In the remaining part of this chapter, we
describe the four steps in more detail and we also illustrate our solution approach
with the example shown in Figure 4.2(b).

QS2S7(i7) QS3S7(i7, α, β) QS5S7(i7, α, β)

1 ≤ i2 ≤ N 1 ≤ i3 ≤ N∧ 1 ≤ i5 ≤ N∧

i3 = α, 1 ≤ w3 ≤ β i5 = α, 1 ≤ w5 ≤ β (c1)

i5 + 1 ≤ j5 ≤ N + 1

— — — (c2)

〈S2, (i2)〉 ≺ 〈S7, (i7)〉 〈S3, (i3,w3)〉 ≺ 〈S7, (i7)〉 〈S5, (i5,w5, j5)〉 ≺ 〈S7, (i7)〉 (c3)

〈S2, (i7)〉

if β ≥ 1 ∧ 1 ≤ α ≤ i7

then 〈S3, (α, β)〉

else ⊥ .

if β ≥ 1 ∧ 1 ≤ α ≤ i7

then 〈S5, (α, β,N + 1)〉

else ⊥ .

S
O
L
U
T
IO

N
S

Table 4.1: Systems of linear inequalities (2.13) for pairs S2S7, S3S7 and S5S7 in the
program in Figure 4.2(b).

4.3 Step 1 (FADA analysis) 59

4.3 Step 1 (FADA analysis)

The formal description of the FADA algorithm has been given in Section 2.5. In this
step of our solution approach, we demonstrate the application of the FADA analysis
on our running example in Figure 4.2(b).

Consider the WLAP program in Figure 4.2(b). An application of the FADA analysis
on this program finds all data dependencies between all functional statements com-
municating data via array y[] and scalar x. We demonstrate in detail the application
of the FADA analysis in order to find source operations for scalar x read in statement
S7. For the other statements, we present the final solutions only and discuss some
important observations.

In order to be able to apply the FADA analysis to the program in Figure 4.2(b), we
have to capture all iterations of the while-loop at line 5 in an explicit way. We asso-
ciate an integer iterator wwith this while-loop. Later, we demonstrate the realization
of this iterator in the code.

The candidate source operations for statement S7 are in statements S2, S3 and S5.
Therefore, in order to find the source operation for statement S7we need to apply the
FADA algorithm presented in Section 2.5 on pairs S2S7, S3S7 and S5S7. According
to FADA, for all these pairs we build the systems of linear inequalities shown in
Table 4.1 which correspond to Equation 2.13. Constraint c1 in Table 4.1 describes all
possible source iterations of statements S2, S3 and S5. Constraint c2 is not stated as
data is communicated via scalar x. Parameters (α, β), store the iteration point (i5,w5)
of statement S5 and iteration point (i3,w3) of statement S3 when writing to scalar x
may occur.

Solutions to the three parametric integer linear problems stated in Table 4.1 are
shown in the last row of Table 4.1. For example, in pair S5S7 the source operation
for x is statement S5 if condition β ≥ 1 ∧ 1 ≤ α ≤ i7 evaluates to true. Otherwise,
the source for x is not statement S5 which is designated by ⊥. In this case, statement
S7 will use either the value of x assigned somewhere else in the code, or the initial
value of x.

Finally, after combining the three solutions in Table 4.1, the approximated source
operation defined in Equation 2.15 for scalar x read in statement S7 is:

σx(〈S7, (i7, α, β)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

if (β ≥ 1 ∧ 1 ≤ α ≤ i7)

then 〈S5, (α, β,N+ 1)〉

else 〈S2, i7〉

(4.1)

From Solution 4.1 above, we see that for read operation 〈S7, (i7, α, β)〉 there are two
possible source operations. Depending on the values of the parameter vector (α, β),
the source operation is either in statement S2 or in statement S5. The values of the
parameter vector will be determined at run-time.

60 CHAPTER 4. WHILE-LOOPS

Similarly, we find the source operations for the other statements. Figure 4.3 shows
the source σ functions only for statements S4, S5, S6 and W that include non-trivial
dependencies that exist in the program in Figure 4.2(b).

σy(〈S4, (i4,w4, j4)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if (j4 = i4 + 1)

then

∣

∣

∣

∣

∣

∣

∣

∣

if (w4 = 1)

then 〈S1, i4〉

else 〈S6, (i4,w4 − 1)〉

else 〈S4, (i4,w4, j4 − 1)〉

(4.2)

σx(〈S5, (i5,w5, j5)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if (j5 = i5 + 1)

then

∣

∣

∣

∣

∣

∣

∣

∣

if (w5 = 1)

then 〈S3, (i5,w5)〉

else 〈S5, (i5,w5 − 1,N+ 1)〉

else 〈S5, (i5,w5, j5 − 1)〉

(4.3)

σx(〈S6, (i6,w6)〉) = 〈S5, (i6,w6,N + 1)〉 (4.4)

σx(〈W, (iW ,wW)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

if (wW == 1)

then 〈S2, iW〉

else 〈S5, (iW ,wW − 1,N + 1)〉

(4.5)

Figure 4.3: Source operations for statements S4,S5,S6 and W of the WLAP program
in Figure 4.2(b).

4.4 Step 2 (Initial dSAC)

The solutions provided by FADA are used to transform the initial WLAP program
in order to expose the identified dependencies in an explicit way. The transformed
program shown in Figure 4.4(a) is in dynamic Single Assignment Code (dSAC) form.
The dSAC is an extension of the SAC introduced in [4]. In contrast to SAC where
every variable is written exactly once, in dSAC every variable is written at most once.
This implies that some of the variables may not be written at all.

Based on the solutions in the previous step, we transform the initial WLAP program
in Figure 4.2(b) and generate the dSAC in Figure 4.4(a) by inserting the highlighted
(bolded) code lines into the initial WLAP program. The inserted code is needed
to implement array element accesses such that the data dependences in the initial
program are respected. The Right-Hand Side (RHS) of code lines 7,11,13,17 and 20

4.4 Step 2 (Initial dSAC) 61

1 #parameter EPS 0.005

2 w = 0

3 for i = 1 to N,

S1: y_1[i] = F1()

5 in_2 = y_1[i]

S2: x_2[i] = F2(in_2)

W: while (in_w = σx(〈W , (i,w)〉) >= EPS),
8 w = w + 1

S3: x_3[i,w] = F3()

10 for j = i+1 to N+1,

11 in_4 = σy(〈S4, (i,w, j)〉)
S4: y_4[i,w,j] = F4(in_4)

13 in_5_x = σx(〈S5, (i,w, j)〉)
14 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

16 endfor

17 in_6 = σx(〈S6, (i,w)〉)
S6: y_6[i,w] = F6(in_6)

19 endwhile

20 in_7 = σx(〈S7, (i,α, β)〉)
S7: out = F7(in_7)

22 endfor

(a) Initial dSAC

1 #parameter EPS 0.005

2 w = 0

3 ctrl_x_5 = (N+1,0)

4 for i = 1 to N,

S1: y_1[i] = F1()

6 in_2 = y_1[i]

S2: x_2[i] = F2(in_2)

W: while (in_w = σx(〈W, (i,w)〉) >= EPS),
9 w = w + 1

S3: x_3[i,w] = F3()

11 for j = i+1 to N+1,

12 in_4 = σy(〈S4, (i,w, j)〉)
S4: y_4[i,w,j] = F4(in_4)

14 in_5_x = σx(〈S5, (i,w, j)〉)
15 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

17 ctrl_x_5 = (i,w)

18 endfor

19 in_6 = σx(〈S6, (i,w)〉)
S6: y_6[i,w] = F6(in_6)

21 endwhile

22 (α, β) = ctrl_x_5
23 in_7 = σx(〈S7, (i, α, β)〉)
S7: out = F7(in_7)

25 endfor

(b) Modified dSACwith control variable

Figure 4.4: Examples of the initial dSAC and the modified dSAC with control vari-
ables.

implement the source σ functions depicted in Solution 4.1 and in Figure 4.3 found
by FADA in the previous step of our solution approach. These source σ functions
should be interpreted as code lines determined by Solution 4.1 and the solutions in
Figure 4.3. For example, variable in_5_x at line 13 in Figure 4.4(a) is assigned by
the source σx function defined by Solution 4.3 in Figure 4.3. This solution finds a
source for scalar x read in statement S5 at line 9 in Figure 4.2(b). The whole line 13 in
Figure 4.4(a) should be interpreted as the code in Figure 4.5. The code represents the
σx function defined by Solution 4.3. Similarly, the other σ functions are represented
in the code of dSAC.

if (j == i+1),

if (w == 1),

in_5_x = x_3[i,w]

else

in_5_x = x_5[i,w-1,N+1]

endif

else

in_5_x = x_5[i,w,j-1]

endif

Figure 4.5: An interpretation of σx function for statement S5.

Additionally, we transform the while-loop at line 5 in the initial program in Fig-

62 CHAPTER 4. WHILE-LOOPS

ure 4.2(b) in order to implement data dependency relations for the while-loop’s con-
dition. First, we introduce the iterator w in order to capture all iterations of the while-
loop. This iterator is initialized at line 2 and explicitly incremented at line 8 in Fig-
ure 4.4(a). Second, we replace line 5 in the initial program in Figure 4.2(b) with line
7 in Figure 4.4(a) implementing the same condition function. The source σx func-
tion defined by Solution 4.5 in Figure 4.3 should be interpreted in the same way as
explained above.

Recall that to deal with a while-loop, the FADA algorithm introduces a vector of pa-
rameters to the solutions. In our example, a vector of parameters (α, β) is introduced
at line 20 in Figure 4.4(a) by Solution 4.1. At this line, a source operation for scalar
x read in RHS of statement S7 is determined. Solution 4.1 is approximate, as the po-
tential source statement S5 is inside the while-loop. Parameter α is related to iterator
i and takes values α ∈ [1..N]. Parameter β is related to iterator w and takes values
β ≥ 1. The meaning of the parameter vector values in this program is to indicate the
last iteration (i,w) when statement S5 has been executed. The values of parameters
α and β are determined at run-time, during program execution. Therefore, we need
a mechanism to generate and propagate the values of parameters at run-time in a
way that keeps the correct program behavior.

4.5 Step 3 (Control variables)

In order to keep the functionality of the dSAC equivalent to the functionality of the
initial dynamic program with while-loops, we introduce control variables used to
propagate parameter values at run-time. That is, an array of control variables is
added for every parameter vector introduced by FADA. A control variable is used to
store a parameter vector value for every iteration. For our running example, a new
control variable ctrl_x_5 is introduced at lines 3, 17 and 22 in the program shown
in Figure 4.4(b). It stores parameter vector (α, β), derived by FADA in Step 1 of our
solution approach. To access a control variable, we use the same indexing function as
in the corresponding data array. In our example, the new control variable ctrl_x_5
is a scalar, as it corresponds to the data scalar x.

The control variables must be initialized with values that are never taken by the
corresponding parameters. Recall that for our example, parameter α ∈ [1..N] and
β ≥ 1. Therefore, the corresponding control variable ctrl_x_5 is initialized at line
3 in Figure 4.4(b) as follows: ctrl_x_5 = (N+1,0). Parameter β that corresponds
to the iterator w is always initialized to 0 which indicates that the corresponding
while-loop has not been executed.

Writing to the control variables is performed just after the writing to the correspond-
ing data array. For example, control variable ctrl_x_5 is written right after function
F5(), see line 17 in Figure 4.4(b). This guarantees that when a function is executed,
the current iteration is stored in a control variable. The value of control variable
ctrl_x_5 is propagated and assigned to the parameters α and β at line 22. These
parameters are used to evaluate the source σx function at line 23 corresponding to

4.5 Step 3 (Control variables) 63

Solution 4.1 which determines the source for the data read by function F7 at line 24.
With the introduction of the control variables to the program shown in Figure 4.4(b),
this program is input-output equivalent to the initial program in Figure 4.2(b).

1 #parameter EPS 0.005

2 w = 0

3 ctrl_x_5 = (N+1,0)

4 for i = 1 to N,

S1: y_1[i] = F1()

6 in_2 = y_1[i]

S2: x_2[i] = F2(in_2)

W while (in_w = σx(〈W, (i,w)〉) >= EPS),
9 w = w + 1

S3: x_3[i,w] = F3()

11 for j = i+1 to N+1,

12 in_4 = σy(〈S4, (i,w, j)〉)
S4: y_4[i,w,j] = F4(in_4)

14 in_5_x = σx(〈S5, (i,w, j)〉)
15 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

17 ctrl_x_5 = (i,w)

18 endfor

19 in_6 = σx(〈S6, (i,w)〉)
S6: y_6[i,w] = F6(in_6)

21 endwhile

22 ctrl_x_5_[i] = ctrl_x_5

23 (α, β) = ctrl_x_5_[i]
24 in_7 = σx(〈S7, (i,α, β)〉)
S7: out = F7(in_7)

26 endfor

Figure 4.6: Final dSAC.

4.5.1 Additional control variables

Unfortunately, introducing control variables to the dSAC code violates the property
that "every variable is written at most once”. For example, control variable ctrl_x_5
that initializes parameter vector (α, β) at line 22 in Figure 4.4(b) is not in a single
assignment form, i.e., ctrl_x_5 may be written more than once at line 17. There-
fore, the program in Figure 4.4(b) is not a dSAC anymore, and we cannot create a
FIFO channel from control variable ctrl_x_5. In order to be able to create a process
network, as discussed later in Section 4.6, and most importantly, to create the FIFO
channels used for transferring control and data, the corresponding variables must be
in a single assignment form.

In order to represent the program in Figure 4.4(b) as dSAC, we need to identify the
relation between writing to and reading from the control variables. Thus, we need
to perform dataflow analysis for the control variables, where the writings to them
occur inside a while-loop. We achieve this in the following way. While keeping the
same functionality, we introduce additional control variable ctrl_x_5_ right after
the while-loop, see line 22 in Figure 4.6. This program is input-output equivalent to
the program in Figure 4.4(b). The new control variable is written at every iteration of
for-loop i and takes the value either of control variable ctrl_x_5 assigned on the last

64 CHAPTER 4. WHILE-LOOPS

iteration of the while-loop, or its initial value, if the while-loop is not executed. On
this new control variable ctrl_x_5_we can perform the static exact array dataflow
analysis (EADA) [4]. We can always do this, because the new control variable is not
surrounded by the dynamic while-loop. The solution of EADA is used to modify the
program in Figure 4.4(b) into the program in Figure 4.6 by inserting one-dimensional
arrays ctrl_x_5_[i] at lines 22 and 23. The program in Figure 4.6 is in a dSAC form
because the new control variable ctrl_x_5_[] used to initialize parameter vector
(α, β) is in a single assignment form, thus allowing us to create a FIFO channel to
communicate values of control variable ctrl_x_5_[].

Finally, the program shown in Figure 4.6 is functionally equivalent to our running
example shown in Figure 4.2(b). In the next step, we explain how to generate a
process network from the program in Figure 4.6.

4.6 Step 4 (PPN generation)

Recall that a PPN consists of autonomous processes that communicate data in a
point-to-point fashion over bounded FIFO channels. In this last step of our solu-
tion approach, we describe how the processes and FIFO channels are created from
the corresponding final dSAC program derived in the previous step.

The procedure of PPN generation consists of 4 substeps. First, based on the final
dSAC representation of a WLAP program derived in the previous step, the topol-
ogy of the PPN is created. The topology is formed by instantiating processes and
communication channels. Second, internal code structure of each process is derived
from the dSAC specification. It is important to note, that in this substep, the created
communication channels are not FIFOs but multi-dimensional arrays. Third, the
multi-dimensional arrays that are used for data communication between function
statements in the dSAC are replaced by FIFO channels. In other words, we replace
the multi-dimensional array accesses in the code of each process with a read/write

P1

P2y _ 1 [i]

P4

y _ 4 [i , w , j]

W
x _ 2 [i] P7

x _ 2 [i]

P3
P5

P6

c t r l _ x _ 5 _ [i]

y _ 6 [i , w]

Figure 4.7: PPN representation of the program in Figure 4.6.

4.6 Step 4 (PPN generation) 65

1 #parameter EPS 0.005

2 w = 0

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 if (w == 1),

7 in_w = x_2[i]

8 else

9 in_w = x_5[i,w-1,N+1]

10 end

11 C[i,w] = (in_w >= EPS)

12 if (!C[i,w]) <break>

13 endwhile

14 endfor

(a) Code of process W

1 w = 0

2 ctrl_x_5 = (N+1,0)

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 in_w = C[i,w]

7 if (!in_w) <break>

8 for j = i+1 to N+1,

9 if (j == i+1),

10 if (w == 1),

11 in_5_x = x_3[i,w]

12 else

13 in_5_x = x_5[i,w-1,N+1]

14 endif

15 else

16 in_5_x = x_5[i,w,j-1]

17 endif

18 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

20 ctrl_x_5 = (i,w)

21 endfor

22 endwhile

23 ctrl_x_5_[i] = ctrl_x_5

24 endfor

(b) Code of process P5

0 w = 0

2 for i = 1 to N,

3 (α,β) = ctrl_x_5_[i]
4 if (β>=1 && 1<= α <= i),
5 in_7 = x_5[α,β,N+1]
6 else

7 in_7 = x_2[i]

8 endif

S7: out = F7(in_7)

10 endfor

(c) Code of process P7

Figure 4.8: Internal source codes of processesW, S5 and S7.

primitives to implement synchronization through blocking read/write on FIFO com-
munication channels. Fourth, the internal code structures of processes are modified
to avoid the overflow of while-loop iterators which may lead to erroneous behav-
ior of a PPN. Below, we explain the four substeps in more detail using the dSAC in
Figure 4.6.

4.6.1 Substep 1: Topology creation of a PPN

The PPN that corresponds to the program in Figure 4.6 is depicted in Figure 4.7. This
PPN consists of 8 processes and 18 channels. We explain how these processes and
communication channels are created.

In our approach, one process is created for every function statement in the dSAC
program, and one process is created for every while-loop’s condition function. The
latter process is needed to detect a while-loop’s termination and notify the processes
that execute functions enclosed in this while-loop. Therefore, the PPN in Figure 4.7
has 7 processes, P1–P7, that correspond to functions F1–F7 in Figure 4.6; and one
process W which corresponds to the while-loop’s condition function W at line 8 in
Figure 4.6. The 18 communication channels correspond to data and control arrays
in a single assignment form in the dSAC in Figure 4.6. Recall that data arrays in
a single assignment are introduced after application of the FADA analysis on the
WLAP program in Figure 4.2(b) as described in Step 1 of our solution approach. The
control variables, i.e., array ctrl_x_5_[i] is introduced and transformed in a single

66 CHAPTER 4. WHILE-LOOPS

1 #parameter EPS 0.005

2 w = 0

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 if (w > 2) then w = 2

7 if (w == 1),

8 read(P2, 1, in_w)

9 else

10 read(P5, 2, in_w)

11 end

12 out_w = (in_w >= EPS)

13 write(P3, 3, out_w)

14 write(P4, 4, out_w)

15 write(P5, 5, out_w)

16 write(P6, 6, out_w)

17 if (!out_w) <break>

18 endwhile

19 endfor

(a) Code of process W

1 w = 0

2 ctrl_x_5 = (N+1,0)

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 if (w > 2) then w = 2

7 read(W, 1, in_w)

8 if (!in_w) <break>

9 for j = i+1 to N+1,

10 if (j == i+1),

11 if (w == 1),

12 read(P3, 2, in_5_x)

13 else

14 read(P5, 3, in_5_x)

15 endif

16 else

17 read(P5, 4, in_5_x)

18 endif

19 read(P4,5, in_5_y)

S5 out_5 = F5(in_5_x, in_5_y)

21 ctrl_x_5 = (i,w)

22 if (j == N+1),

23 write(P5, 6, out_5)

24 else

25 write(P5, 7, out_5)

26 endif

27 endfor

28 endwhile

29 out_5_c = ctrl_x_5

30 out_5_x = out_5

31 write(P7, 8, out_5_c)

32 write(P7, 9, out_5_x)

33 endfor

(b) Code of process P5

1 w = 0

2 for i = 1 to N,

3 read(P5, 1, in_c)

4 if (in_c.β>=1 && 1<= in_c.α <= i),
5 read(P5, 2, in_7)

6 else

7 read(P2, 3, in_7)

8 endif

S7: out = F7(in_7)

10 endfor

(c) Code of process P7

Figure 4.9: ProcessesW, P5, and P7 after linearization of multi-dimensional arrays.

assignment form in Step 3 of our solution approach. In the following substep, we
describe how the internal code structure of each process is generated.

4.6.2 Substep 2: Code generation

Let us consider Figure 4.8, which illustrates the internal code structures of processes
W, P5 and P7 of the PPN in Figure 4.7. Process W is an example of a process de-
tecting the termination of the while-loop at line 5 in Figure 4.2(b). Process P5 is
an example of a process executing a function enclosed in the while-loop. Process
P7 is an example of a process that runs a function outside the while-loop and has a
data dependency with a function inside the while-loop. Below, we will use them as
examples to explain how the internal code structure of each process in the PPN is
generated.

The internal code structure of each process is generated from the dSAC program
derived in Step 3 of our solution approach. The code structure of each process is
extracted from the code lines of the dSAC program. For example, all non highlighted

4.6 Step 4 (PPN generation) 67

(non-bolded) code lines in Figure 4.8 are taken from dSAC in Figure 4.6 expanding
all σ source functions as explained in Section 4.4 and illustrated in Figure 4.5. At
this point, the PPN is not functionally equivalent to the dSAC program because for
processes enclosed in a while-loop the termination problem is not solved yet.

To address this problem, process W is introduced which detects the termination of
the while-loop. This process evaluates the while-loop’s condition function and prop-
agates the result to all processes that execute functions enclosed in this while-loop.
This behavior is implemented in the highlighted (bolded) code at lines 4, 11 and 12
in Figure 4.8(a). Note, that lines 6–10 realize the interpretation of σx function defined
in Solution 4.5 in Figure 4.3. A new array C[i,w] is added to propagate the value
of the while-loop’s condition function via FIFO to other processes. Correspondingly,
we modify the code of process P5 in Figure 4.8(b) at lines 4, 6 and 7, where the infor-
mation about while-loop termination is received and used. As process P7 executes
function F7 which is outside the while-loop, no such modification is needed.

At this point, the processes of the PPN communicate data via multi-dimensional
arrays. In the following substep, we explain how the multi-dimensional arrays are
replaced with FIFO channels. This process is called Linearization.

4.6.3 Substep 3: Linearization

Processes W, P5 and P7 depicted in Figure 4.8 are connected with communication
channels which are the multi-dimensional arrays inherited from the dSAC shown in
Figure 4.6. However, the processes in our target PPN have to synchronize using a
blocking read/write on an empty/full FIFO channel, i.e., an execution of a process
is suspended if it tries to read from an empty FIFO channel, or tries to write to a full
channel, respectively. Therefore, in order to synthesize a PPN, the multi-dimensional
array accesses have to be replaced with corresponding write and read operations on
FIFO channels. This is called “linearization”.

To implement the Linearization, we adapted the approaches proposed in [29,54] and
Chapter 5. In these works, the communication characteristics are identified when
exchanging data between pair of statements. Based on this information, the multi-
dimensional array accesses are replaced with one-dimensional array accesses. The
result of the linearization applied on the arrays used in the internal source codes
of the processes in Figure 4.8 is shown in Figure 4.9. In each process, the multi-
dimensional arrays accesses are substituted by reading/writing primitives from/to
FIFO channels. The communication read/write primitives access the FIFO channels
through ports. That is, every process has a set of input ports and a set of output
ports connected to FIFO channels. For example, process P5 in Figure 4.9(b) reads
from processW and itself via ports 1, 3 and 4 at lines 7, 14 and 17. These input ports
are connected with output port 5 of processes W, and output ports 6 and 7 of pro-
cess P5, correspondingly. Internally, the read/write primitives realize the blocking
synchronization between processes.

Additionally, we want to discuss how buffer sizes in FIFO channels of a PPN de-

68 CHAPTER 4. WHILE-LOOPS

rived from a WLAP program are determined. In our procedure we use the method
of buffer sizes estimation presented in [3] and explained in Section 3.6 of this dis-
sertation. Although this method accepts as an input a PPN derived from a static
program, we explain how we adapt our procedure to use this method.

There are two types of channels in a PPN derived from a WLAP program: control
and data channels. Control channels realize data dependencies between control vari-
ables. These dependencies are static and unique by construction. Therefore, we can
safely use the method from [3] to determine buffer sizes in control channels. Data
channels realize data dependencies between function statements of a program. In
contrast to static programs, in WLAP programs data dependency relations are not
static as some of the statements are enclosed in while loops. Therefore, the rate and
the exact amount of data tokens that will be transferred over a particular data chan-
nel is unknown at compile-time, and we cannot directly use the method from [3] to
determine buffer sizes.

However, with the following observation we are still able to determine buffer sizes.
Consider two cases. First, if data dependency relation exists across a while-loop,
i.e., a source statement is enclosed in the loop and the sink statement is outside, the
while-loop acts as a barrier meaning that only the data from the last iteration of the
while-loop has to be transferred to the sink. Therefore, in the code after a while-loop
we can reconstruct a producer domain based on the data dependency relations with
the data written on the last iteration of the while-loop. Next, we use the method
from [3] to determine the buffer sizes of these data dependency relations. Second, if
a data dependency relation exists between statements which are both enclosed in a
while-loop, then based on Property 1 presented below in Section 4.6.4, and that w is
not used in indexing we can use the method from [3] to determine the buffer sizes.

4.6.4 Substep 4: Implementation of a while-loop’s iterator w

The PPN generated in the previous three substeps has a problem: potentially, iterator
w may overflow the finite set of values determining the data type of the iterator. For
example, if iterator w is specified by a 32-bit integer data type, the overflow may
occur at line 5 in Figure 4.9(a) if the while-loop iterates more than 232 times. As a
consequence, it may lead to erroneous evaluation of the σ functions expanded in the
previous code generation substep, and, finally, to erroneous behavior of a PPN. To
address this problem, we show that it is sufficient to capture only 2 values of iterator
w. To prove this, we use the following Property.

Consider two statements W and R, and operations 〈W,~x〉 and 〈R,~y〉, where the first
operation writes to an array and the second operation reads from the same array.
Both statementsW and R are governed by a while-loop located at depth k.

Property 1 In the solution of the FADA algorithm applied on WR pair, the k+ 1-th
dimension of mapping function M(~y) can be in one of the two forms: ~y[k + 1] and
~y[k+ 1]− 1.

4.7 Discussion and Summary 69

Proof: According to Property 1 in [37, 38], the solution defined by Equation 2.13 in
Section 2.5 is exact, and iterator ~y[k+ 1] associated with the while-loop is present in

sequencing predicate (c3) only. Consider the expressions of Q
p
WR(~y):

• If k < p, then the sequencing predicate includes ~x[1..k+ 1] = ~y[1..k+ 1], and,
thus, the lexicographical maximum of Q

p
WR(~y) along k + 1-th dimension is

~y[k+ 1].

• If k = p, then the sequencing predicate includes ~x[1..k] = ~y[1..k] ∧ ~x[k+ 1] <
~y[k + 1], and, thus, the lexicographical maximum of Q

p
WR(~y) along k + 1-th

dimension is ~y[k+ 1]− 1.

Initially, iterator w which is associated with a while-loop is initialized with value
0. This indicates that the while-loop has never been executed. From Property 1
and the fact, that only non-negative values of w determine source evaluations of
statements enclosed in the while-loop, we conclude that it is needed to capture only
2 values of w: w = 1, meaning that the data dependency is at the same iteration of
the while-loop; and w ≥ 2, meaning that the dependency is at the previous iteration
of the while-loop. The abovementioned reasoning allows us to modify the internal
code structures of processes generated in the previous substep without altering their
functionality. We introduce the code that captures only two values of iterator w. For
example, see lines 6 in Figures 4.9(a) and 4.9(b).

4.7 Discussion and Summary

In this chapter, we presented an approach for automated translation of affine nested
loops programs with while-loops (WLAPs) into input-output equivalent polyhedral
process networks (PPNs). The approach presented in this chapter extended the work
on an automated PPN derivation from a class of dynamic applications with more
relaxed constrained than in Weakly Dynamic Programs (WDPs) presented in [21]
and Dynloop programs presented in Chapter 3.

The work in [21] presented an approach for PPN derivation from Weakly Dynamic
Programs (WDP). WDPs are more relaxed than the static class of applications be-
cause if-conditions might be dependent on some information that is unknown at
compile-time and may change at run-time. In Chapter 3, we presented a first ap-
proach for automated translation of affine nested loops programswith dynamic loop
bounds (Dynloop) into input-output equivalent PPNs. In this chapter, we further ex-
tended the class of applications to WLAP programs from which the PPN specifica-
tion can be derived in an automated way.

The approach of PPN derivation from WLAP programs consists of the similar steps
as the approach of PPN derivation from Dynloop programs: we apply Fuzzy Ar-
ray Dataflow Analysis (FADA) on an initial program, transform the program into a
dSAC specification and demonstrate how the parameters introduced by FADA are

70 CHAPTER 4. WHILE-LOOPS

set at run-time using control variables. Although the approaches of PPN genera-
tion from Dynloop and WLAP programs are similar, still, there are many important
differences.

The first difference is that in order to analytically analyze the evaluation of a while-
loop presented in a WLAP program, a new iterator w is introduced for every while-
loop. An important consequence to this is that more parameters β are introduced to
a dSAC specification and eventually it leads to more control FIFO channels present
in a generated PPN.

The second difference is that in PPNs derived fromWLAP programs we need to de-
tect the termination of a while-loop and notify the processes in a PPN which execute
functions enclosed in this while-loop. In order to handle this notification we intro-
duce extra control channels that distribute the termination data in a specific way.

Another difference is that a PPN generated from a WLAP program has a problem:
potentially, iterator w that corresponds to a while-loop may overflow the finite set of
values determining the data type of the w iterator. In our approach presented in this
chapter, we have shown that it is sufficient to capture only 2 values of iterator w and
have proven this in Property 1 in Section 4.6.4. This property guarantees that we can
implement iterator w in an efficient way that avoids the overflow. We have shown
such implementation in Figure 4.9(a) and Figure 4.9(b).

All the above differences prove one more time that PPN derivation fromWLAP pro-
grams is more difficult than PPN derivation from Dynloop programs. Information
about the number of iterations of a while-loop in aWLAP program is unknown until
the loop has been finished. Whereas the number of iterations of a for-loop with dy-
namic bounds in a Dynloop program is known just before the loop starts to execute.
This absence of information in a while-loop requires much more advanced analy-
sis compared to analysis of for-loops and, ultimately, produces a PPN with larger
overhead.

The approach presented in this chapter includes only basic techniques that have to
be applied in order to derive a PPN automatically from aWLAP program. Although,
leveraging the FADA analysis this approach extracts themaximumparallelism avail-
able in an application, still, some optimization techniques have to be added to the
approach that will help improving the quality of the generated PPNs in terms of
optimal partitioning of the computation and communication workloads of a WLAP
over processes and channels in the PPN. Our approach can be automated and im-
plemented efficiently in a compiler that will help to reduce significantly the time for
parallelizing sequential programs containing while-loops.

