
Parallelizing dynamic sequential programs using polyhedral process
networks
Nadezhkin, D.

Citation
Nadezhkin, D. (2012, December 20). Parallelizing dynamic sequential programs using
polyhedral process networks. Retrieved from https://hdl.handle.net/1887/20357

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20357

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20357

Cover Page

The handle http://hdl.handle.net/1887/20357 holds various files of this Leiden University
dissertation.

Author: Nadezhkin, Dmitry
Title: Parallelizing dynamic sequential programs using polyhedral process networks
Issue Date: 2012-12-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20357
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 3
Automated Generation of
Polyhedral Process Networks
from
Affine Nested-Loop Programs
with Dynamic Loop Bounds

In this chapter, we introduce a first approach for automated translation of affine
nested loop programswhich contain relaxation I, i.e., dynamic loop bounds (Dynloop),
into input-output equivalent Polyhedral Process Networks (PPNs). We developed
this approach in order to address an important question: whether static restrictions
on loop bounds in Static Affine Nested Loop Programs (SANLPs) can be relaxed
while keeping the ability to perform compile-time analysis and to derive PPNs in an
automated way. Achieving this would significantly extend the range of applications
that can be parallelized in an automated way.

Recall, that in Section 1.1 we briefly introduced the main steps needed to translate a
static sequential application into a PPN. Additionally, in Section 1.3 we showed that
this approach cannot be used on dynamic applications. In this chapter we develop a
new approach elaborating in more detail on the new models and techniques that are
used in parallelization of a Dynloop program.

36 CHAPTER 3. DYNLOOP

1 parameter N 1 10;

2 for j = 1 to N,

3 for i = 1 to f(...),

S1: y[i] = F1()

5 endfor

6 endfor

S2: [...] = F2(y[5])

(a) Dynloop program

step4

step1

step3

step2

Dependence Analysis

WDP

dSAC

program
Dynloop

Polyhedral Process Network

program

(b) Parallelization approach

Figure 3.1: An example of a Dynloop program and an approach that translates
Dynloop into PPNs.

3.1 Solution Overview

The high-level overview of the approach is illustrated in Figure 3.1(b). It starts with
an application written as a sequential program that has dynamic loop bounds simi-
lar to one depicted in Figure 3.1(a). We have found out that a Dynloop program can
be formally represented as aWeakly Dynamic Program (WDP). Therefore, in the first
step of the approach, the initial Dynloop program is represented as a WDP. For WDP
programs we can employ the Fuzzy Array Dependence Analysis (FADA) [37, 38]
technique, described in Section 2.5. The analysis, which constitutes the second step
of the approach, helps to extract the dependent memory accesses and present an ini-
tial program in a form where data dependencies are made explicit. In Section 1.3
we showed that in a Dynloop program exact data dependency patterns are unknown
at compile time. The FADA analysis allows to parameterize (or approximate) such
data dependency patternswith parameterswhich values are determined at run-time.
In the third step, based on the results of the FADA dependence analysis, the initial
sequential program is translated into a dynamic Single Assignment Code (dSAC) rep-
resentation of the WDP program. The dSAC was proposed in [21] as an extension
of the Single Assignment Code [4]. A dSAC program is input-output equivalent to
the corresponding WDP and it has the property that every data variable or an array
element is written at most once. This implies that some variables may not be written
at all. We derive a dSAC program using the FADA algorithm, therefore, parameters
introduced by FADA are present in the dSAC as well. The values of these parame-
ters in dSAC are assigned using control arrays. The generation of the control arrays
has been studied in [21], whereas, in this chapter, we present an extension to this
procedure. Similar to the SAC, the dSAC can be represented in Polyhedral Reduced
Dependence Graph (PRDG) [15] form. In the fourth step, the topology of the corre-

3.2 Step 1 (Dynloop-to-WDP) 37

sponding PPN is derived, as well as the code executed in each process. Recall, that
the PRDG model still exploits (multi-)dimensional arrays for data communication.
However, the target model, Polyhedral Process Networks, requires FIFO channels
as communication medium. Therefore in this step, the multi-dimensional memory
accesses are converted into managed dataflow over FIFO queues.

In the remaining part of this chapter we describe the four steps in greater detail. We
illustrate the proposed solution approach using the example shown in Figure 3.1(a).
Additionally, in Section 3.6 we discuss how the buffer sizes are computed in the
resulted PPN. In Section 3.7, we present an analysis which estimates the execu-
tion overhead introduced in the PPNs derived from programs with dynamic loop
bounds. Finally, in Section 3.8 we present the conclusions.

3.2 Step 1 (Dynloop-to-WDP)

Consider the Dynloop program in Figure 3.1(a). In this program, the upper bound of
the for-loop at line 3 is determined by an arbitrary function f (. . .). The upper bound
of the inner loop i may change at every iteration of the outer loop j but cannot be
changed on iterations of i. More importantly, the values of the upper bound are
unknown at compile-time as they are determined at run-time by f ().

In order to be able to apply our solution approach, we assume that the range of the
values that function f () may have is finite. This is particularly true for all programs
that execute in finite memory, i.e., the programs we are interested in.

Then, without altering the functionality, we modify the initial Dynloop program to
the program shown in Figure 3.2(a). Such modification is general and applicable to
any Dynloop program. First, we substitute the upper bound of the loop at line 3 in
Figure 3.1(a) with a constant equal to the maximum value of f (), denoted by max_f,
see line 4 in Figure 3.2(a). For example, for the program in Figure 3.2(a), in order
for the 5th element of array y[] to be read at line 10, the value of max_f should be
greater than 5. We will use max_f ≥ 5 in the rest of the chapter.

In general, the value of max_f can be determined in 4 different ways:

1. provided by the application/program developers (e.g., by using pragmas in
the code);

2. calculated by analyzing the arrays’ capacity and indexing functions;

3. deduced by studying the ranges of function f ();

4. by taking the maximum of the data type used to declare the loop iterator.

For example, consider method (2) above. Assume that the capacity of the array y[]
is 100 elements. Then, by taking into account the array indexing function at line 4

38 CHAPTER 3. DYNLOOP

in Figure 3.1(a) and that the program is correct, we can calculate that the maximum
value of iterator i and, consequently the max_f equals to 100.

Second, we introduce an array X[] used to capture the values of the dynamic upper
bound at run-time. That is, the elements of X[] are written by function f () at line 3 in
Figure 3.2(a), just before the for-loop. The same array elements are used in evaluat-
ing the if-condition at line 5 in Figure 3.2(a), which preserves the original program
behavior. This newly created program belongs to the class of the weakly dynamic
programs (WDPs). Since the loop bounds of the program in Figure 3.2(a) are fixed
and known at compile-time, we can apply the FADA algorithm on this program to
perform dependence analysis.

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f(...)

4 for i = 1 to max_f,

5 if i <= X[j],

S1: y[i] = F1()

7 endif

8 endfor

9 endfor

S2:[] = F2(y[5])

(a) Newly created WDP program

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f(...)

4 for i = 1 to max_f,

5 if i <= X[j],

S1: y_1[j,i] = F1();

7 endif

8 endfor

9 endfor

10 if c1 <= N && c2 == 5,

11 in_0 = y_1[c1,c2]

12 else

13 in_0 = 0

14 endif

S2:[] = F2(in_0)

(b) Initial dSAC

Figure 3.2: A WDP program equivalent to the Dynloop program in Figure 3.1(a) and
its corresponding dSAC.

The formal description of the FADA algorithm has been given in Section 2.5. In the
following section, we demonstrate only the application of FADA on our running
example.

3.3 Step 2 (FADA analysis)

The WDP program in Figure 3.2(a) has two statements S1 and S2 which commu-
nicate through array y[]. Statement S2 is not enclosed in any loops, therefore its
iteration vector is empty, i.e., an operation of statement S2 is written as 〈S2, ()〉. Ac-
cording to FADA, for pair S1S2, we build the system of linear inequalities shown in
Table 3.1 which corresponds to Equation 2.9. Constraint (c1) in Table 3.1 describes
all possible source iterations of statement S1, i.e., its iteration domain. The vector of
parameters (αj, αi) stores the iteration point (j1, i1) of statement S1 where writing to
array y[]may occur.

The system shown in Table 3.1 is used to formulate a PILP problem specified by

3.3 Step 2 (FADA analysis) 39

QS1S2((αj, αi))

1 ≤ j1 ≤ N ∧ 1 ≤ i1 ≤ max_f (c1)

j1 = αj ∧ i1 = αi

i1 = 5 (c2)

true (c3)

Table 3.1: An example of system (2.9) for S1S2 pair.

Equation (2.10). After solving the PILP problem, the approximated source operation
defined in Equation 2.11 for statement S2 is:

σ(〈S2, ()〉, (αj, αi)) =

∣

∣

∣

∣

∣

∣

∣

∣

if αj ≤ N ∧ αi = 5

then 〈S1, (αj, αi)〉

else ⊥ .

(3.1)

From Solution 3.1 above, we see that for read operation 〈S2, ()〉 there is one data
source. If, for at least one iteration (j1, 5) of statement S1, the condition at line 5 in
Figure 3.2(a) is evaluated to true, then the source is statement S1. Otherwise, the
source for y[5] is undefined and statement S2 will use the initial value of y[5]. For
the sake of brevity, the initialization of array y[] is omitted in the example.

The graphical representation of Solution 3.1 is illustrated in Figure 3.3. This figure
shows the iteration domain (j, i) of statement S1 in one possible instance of the dy-
namic program shown in Figure 3.2(a). It is assumed that N = 10 and max_f = 10.
Black dots represent the iterations when statement S1 is executed at run-time, i.e.,
the if-condition at line 5 evaluated to true. The vector of parameters (αj, αi) points
at the last operation of the source statement 〈S1, (j1, i1)〉 which will be needed by
the read operation 〈S2, ()〉. For the example in Figure 3.3, the last writing to y[5]
occurred when j = 8 and i = 5. Therefore, (αj, αi) = (8, 5).

3.3.1 Initial dSAC

The solution provided by FADA is used to modify the WDP program in order to
capture the identified dependencies in an explicit way. The result of the modifi-
cation for our running example is shown in Figure 3.2(b) which is in a dynamic
single-assignment-code (dSAC) form. The dSAC is an extension of the SAC [4]. In
contrast to SACwhere every variable is written exactly once, in dSAC every variable
is written at most once. This implies that some of the variables may not be written at
all.

Based on Solution 3.1, we modify the WDP in Figure 3.2(a) and generate the dSAC

40 CHAPTER 3. DYNLOOP

4

9

1097 85 6321
0

1

2

3

4

5

6

7

8

10

last write

j

i

max_f

y[5]

N=10

(αj, αi)

Figure 3.3: Representation of Solution 3.1 for the instance of the program in Fig-
ure 3.2(a).

in Figure 3.2(b) by inserting the code lines 10-14 shown in Figure 3.2(b). This code is
needed to implement array element accesses such that the dependencies identified
by FADA are respected. For example, the if-condition at line 10 implements Solu-
tion 3.1. Recall that when the if-condition evaluates to true, then the source of the
data is statement S1. This is captured at line 11. Otherwise, statement S2 will use
the initial value of y[5]. Assume that in our example, y[5] has been initialized to
zero. Therefore, at line 13, the input argument for statement S2 has been set to zero
as well.

Recall that to deal with a dynamic if-condition, for every pair of statements the
FADA algorithm introduces vector of parameters that corresponds to the iteration
vector. In our example, there are two parameters (see line 10 in Figure 3.2(b)) which
are reflected in the following way. Parameter c1 corresponds to αj. It is related to
iterator j and may have values c1 ∈ [1..N]. Parameter c2 corresponds to αi. It is
related to iterator i and may have values c2 ∈ [1..max_f]. The meaning of the param-
eter values in this program is to indicate the last iteration of j when function F1()
has been executed at the fifth iteration of i. The values of parameters c1 and c2 are
unknown at compile-time. They are determined at run-time, during the execution of
the program. Therefore, we need a mechanism to generate and propagate the values
at run-time in a way that keeps the correct program behavior.

3.4 Step 3 (Control arrays)

In order to keep the functionality of the dSAC equivalent to the functionality of the
initial WDP, we introduce local and global control arrays that are used to initialize
and propagate values of parameters introduced by FADA at run-time.

3.4 Step 3 (Control arrays) 41

3.4.1 Local control arrays

A local control array is added for the set of parameters introduced by FADA and is
used to store values of the set of parameters for every iteration. We illustrate the idea
of local control arrays on the example in Figure 3.3.

Figure 3.3 depicts the iteration domain (j, i) of statement S1 shown at line 6 in Fig-
ure 3.2(a). Black dots are iterations when statement S1 is executed at run-time, i.e.,
the if-condition at line 5 evaluated to true. Parameters introduced by FADA in the
previous step happen to take up the values of iteration vectors when the last writing
needed by a read operation occurred. It is not possible to determine such iterations
at compile-time. Therefore, we use a local control array to store the values of all
iterations when a source statement is executed (black dots).

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f()

4 for i = 1 to max_f,

5 if i <= X[j],

6 y_1[j,i] = F1()

7 lcl_c1c2[i] = (j,i)

8 endif

9 endfor

10 endfor

11 (c1,c2) = lcl_c1c2[5]

12 if c1 <= N && c2 == 5,

13 in_0 = y_1[c1,c2]

14 else

15 in_0 = 0

16 endif

17 [] = F2(in_0)

(a) Initial dSAC shown in Fig-
ure 3.2(b) with local control ar-
ray

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f()

4 for i = 1 to max_f,

5 if i <= X[j],

6 y_1[j,i] = F1()

7 lcl_c1c2[i] = (j,i)

8 endif

S1: ctrl_c1c2[i] = lcl_c1c2[i]

10 endfor

11 endfor

S2:(c1,c2) = ctrl_c1c2[5]

13 if c1 <= N && c2 == 5,

14 in_0 = y_1[c1,c2]

15 else

16 in_0 = 0

17 endif

18 [] = F2(in_0)

(b) Modified dSAC code with
new global control array

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f()

4 for i = 1 to max_f,

5 if i <= X[j],

6 y_1[j,i] = F1()

7 lcl_c1c2[i] = (j,i)

8 endif

9 ctrl_c1c2_1[j,i] = lcl_c1c2[i]

10 endfor

11 endfor

12 (c1,c2) = ctrl_c1c2_1[N, 5]

13 if c1 <= N && c2 == 5,

14 in_0 = y_1[c1,c2]

15 else

16 in_0 = 0

17 endif

18 [] = F2(in_0)

(c) Final dSAC

Figure 3.4: Examples of the initial dSAC with a local control array, the modified
dSAC with a global control array, and the final dSAC.

For our example in Figure 3.2(b), a new local control array of vectors lcl_c1c2[] is
introduced to the program as shown in Figure 3.4(a). The components of each vector
correspond to parameters c1 and c2 derived by the FADA analysis for pair S1S2.
We use the original index function used with the data variable y, i.e., y[i], to per-
form the access to the local control arrays, i.e., lcl_c1c2[i]. In order to distinguish
iterations where parameters values have been stored, the elements of the control ar-
rays must be initialized with values that are greater than the maximum value of the
corresponding parameters. Recall that for our example, parameter c1 ∈ [1..N] and
c2 ∈ [1..max_f]. Therefore, the corresponding local control array is initialized as
follows:

∀i : 1 ≤ i ≤ max_f : lcl_c1c2[i] = (N+ 1, max_f+ 1). (3.2)

42 CHAPTER 3. DYNLOOP

For the sake of brevity, this initialization is not shown in Figure 3.4(a). Writing to the
local control array is performed just after function F1(), see line 7 in Figure 3.4(a).
This guarantees that when the function is executed, the current iteration vector is
stored in the control array.

The values of the local control array are propagated and assigned to the parameters
c1 and c2 at line 11. These parameters are used to evaluate the conditions at line 12
which determine the source of the data for function F2(). With the introduction of
the local control array to the program shown in Figure 3.4(a), this program is input-
output equivalent to the program in Figure 3.2(a).

3.4.2 Global control arrays

Unfortunately, introducing local control arrays to the dSAC code violates the prop-
erty that "every variable is written at most once”. For example, local control array
lcl_c1c2[i] that initializes parameters c1 and c2 at line 11 in Figure 3.4(a) is not in
a single assignment form, i.e., elements of lcl_c1c2[i]may be written more than
once (see line 7). Therefore, the program in Figure 3.4(a) is not in a dSAC form. In
order to be able to create a process network, as discussed later in Step 4, and most
importantly, to create the FIFO channels used for transferring data, the correspond-
ing data variables/arrays must be in a single assignment form. Below, we explain
how such control array is transformed into a single assignment form.

In order to represent the program in Figure 3.4(a) as dSAC, we need to identify the
relation betweenwriting to and reading from the control array. Thus, we need to per-
form dataflow analysis for the local control array, where the writings to the control
array occur inside a block surrounded by a dynamic if-condition. We achieve this
in the following way. While keeping the same functionality, we modify the program
by introducing and additional global control array (ctrl_c1c2[]) outside the block
surrounded by the dynamic if-condition, see lines 9 and 12 in Figure 3.4(b). This
program is input-output equivalent to the program in Figure 3.4(a). The new control
array is written (line 9) at every iteration of the for-loops and takes the same values
as the local control array lcl_c1c2[]. Consequently, we can perform the static ex-
act array dataflow analysis (presented in Section 2.4) on control array ctrl_c1c2[].
We can always do this, because the introduced new array is not surrounded by the
dynamic if-condition.

QS1S2()

1 ≤ j1 ≤ N ∧ 1 ≤ i1 ≤ max_f (c1)

i1 = 5 (c2)

true (c3)

Table 3.2: An example of system (2.5) for the control arrays at lines 9 and 12.

3.5 Step 4 (PPN generation) 43

For the EADA analysis we need to build a system of linear inequalities as it has been
shown in Section 2.4. The system for pair S1S2 at lines 9 and 12 from Figure 3.4(b) is
built in Table 3.2. Recall, that max_f is a scalar and in this example we assume that
max_f ≥ 5. After finding the maximum of the system according to Equation (2.7),
the final solution and the source operation is:

σ(〈S2, ()〉) = 〈S1, (N, 5)〉.

Based on this solution, we replace the original one-dimensional array ctrl_c1c2[],
see lines 9 and 12 in Figure 3.4(b), with two-dimensional array ctrl_c1c2_1[,]
shown at lines 9 and 12 in Figure 3.4(c). The program in Figure 3.4(c) is in a dSAC
form because the new global control array ctrl_c1c2_1[] used to initialize param-
eters c1 and c2 is in a single assignment form. This dSAC is the final input-output
equivalent representation of our running example which is the Dynloop program in
Figure 3.1(a). We use this final dSAC to generate a process network which is ex-
plained in the next section.

3.5 Step 4 (PPN generation)

In this step of our solution approach, we describe how the processes and FIFO chan-
nels are created from the corresponding final dSAC program. The dSAC specifica-
tion has an equivalent polyhedral representation called Polyhedral Reduced Depen-
dence Graph (PRDG) [15] form. This representation can be used for code generation
for each process [14]. For the illustrative purposes, instead of polyhedral model we
will use the dSAC form to demonstrate how processes of a PPN are generated.

Recall that according to Definition 2.3.1, a PPN consists of autonomous processes
that communicate data in a point-to-point fashion over bounded FIFO channels. A
process of a PPN consists of a target function, input ports and output ports. The tar-
get function specifies how data tokens from input streams are transformed to data
tokens to output streams. The input and output ports are used to connect a process
to FIFO channels. Data read from the input ports is used to initialize the function
arguments. Data produced as a result of the function execution is written to the out-
put ports. Section 2.1.1 demonstrated how a process can be compactly represented
mathematically using the Polyhedral ReducedDependence Graph (PRDG) [15]. This
polyhedral representation is used to generate node domains (see Definition 2.3.2)
and input/output port domains (see Definition 2.3.3 and Definition 2.3.4).

The procedure for PPN generation from the final dSAC consists of 3 substeps. First,
based on the final dSAC representation of a Dynloop program derived in the previ-
ous step, the topology of the PPN is created. The topology is created by instantiat-
ing processes and communication channels. Second, the internal code structure of
each process is derived from the final dSAC specification. It is important to note,
that in this substep, the created communication channels are not FIFOs but multi-
dimensional arrays. Third, the multi-dimensional arrays that are used for data com-
munication between function statements in the final dSAC are replaced by FIFO

44 CHAPTER 3. DYNLOOP

channels. In other words, we replace the multi-dimensional array accesses in the
code of each process with a read/write primitives to implement synchronization
through blocking read/write on FIFO channels. This substep is called Linearization.
Below, we explain the three substeps in more detail using the final dSAC in Fig-
ure 3.4(c).

3.5.1 Topology creation of a PPN (substep 1)

P1 P2 P3
X[j]

ctrl_c1c2_1[j,i]

y_1[j,i]

Figure 3.5: The topology of the PPN derived from the dSAC in Figure 3.4(c).

The PPN corresponding to the dSAC in Figure 3.4(c) is shown in Figure 3.5. This
PPN consists of 3 processes and 3 communication channels. We explain how these
processes and communication channels are created. In our approach, a process is
created for every function statement in the dSAC program. Therefore, the PPN in
Figure 3.5 has three processes: process P1 corresponds to function f () at line 3 in
Figure 3.4(c), process P2 corresponds to function F1() at line 6, and process P3 corre-
sponds to F2() at line 18 in the same figure. The three communication channels cor-
respond to arrayswhich are in a single assignment form in the dSAC in Figure 3.4(c).
These arrays are: one-dimensional array X[j] at line 3 and 5 in Figure 3.4(c), two-
dimensional data array y_1[j,i] at lines 6 and 14, and one two-dimensional control
array ctrl_c1c2_1[j,i]at lines 9 and 12 in the same figure. Recall that array X[j] is
in a single assignment form because of the way we introduced this array in Step 1 of
our solution approach. Array y_1[j,i] is the single assignment form of array y[i]
derived by applying the FADA analysis on the WDP program in Figure 3.2(a) as de-
scribed in Step 2 of our solution approach. The control array ctrl_c1c2_1[j,i] is
introduced and transformed into a single assignment form in Step 3 of our solution
approach. In the following substep, we describe how the internal code structure of
each process is created.

3.5.2 Internal code structure generation (substep 2)

Consider Figure 3.6 where the internal code structures of processes P1, P2 and P3 of
the PPN in Figure 3.5 are shown. Below we explain how these code structures are
derived from the corresponding dSAC specification depicted in Figure 3.4(c).

The Node domain of a process introduced by Definition 2.3.2 is the iteration domain
of a corresponding statement in the dSAC program. For example, the node domain
of process P2 is formed by the iteration domain of function F1 defined by lines 2,
4, and 5 in Figure 3.4(c). Additionally, the code accessing data and control arrays is

3.5 Step 4 (PPN generation) 45

8 endfor
9 endfor

Process P1

3 in_0 = y_1[c1,c2]

4 else

5 in_0 = 0

6 endif

7 [] = F2(in_0)

1 (c1,c2) = ctrl_c1c2_1[N,5]

2 if c1 <= N && c2 == 5,

Process P3

y_1[j,i]

2 X[j] = f();

3 endfor

1 for j = 1 to N,
X[j]

2 for i = 1 to max_f,

4 y_1[j,i] = F1()

5 lcl_c1c2[i] = (j,i)

3 if i <= X[j]

1 for j = 1 to N,

6 endif

7 ctrl_c1c2_1[j,i] = lcl_c1c2[i]

Process P2

ctrl_c1c2_1[j,i]

Figure 3.6: The internal code structure of each process in the PPN derived from the
dSAC in Figure 3.4(c).

added to the code of a process. For example, lines 6–11 are added to the internal code
structure of process P2 shown in Figure 3.6. Similarly, the internal code structure of
processes P1 and P3 are formed by lines 2–3 and 12–18, respectively, from the dSAC
shown in Figure 3.4(c).

3.5.3 Linearization (substep 3)

At this point, the processes of the PPN communicate data via multi-dimensional
arrays. In this substep, we explain how the multi-dimensional arrays are replaced
with FIFO channels. This process is called Linearization.

2 read(i2, in_2)

1 read(i1, in_1)

5 else

6 in_3 = 0

7 endif

8 [] = F2(in_3)

4 in_3 = in_2

3 if in_1−>j <= N && in_1−>i == 5,

Process P2Process P1

o1

1 for j = 1 to N,

2 out_1 = f();

3 write(o1, out_1);

4 endfor

i1
1 for j = 1 to N,

3 for i = 1 to max_f,

4 if i <= in_1,

5 y_1[j,i] = F1()

6 lcl_c1c2[i] = (j,i)

7 endif

8 if j == N && i == 5

9 out_1 = lcl_c1c2[i]

10 out_2 = y_1[lcl_c1c2[i]−>j, lcl_c1c2[i]−>i]

19 endfor

12 write(o2, out_2)

11 write(o1, out_1)

13 endif

14 endfor

2 read(i1, in_1)

i2

i1

o2

o1

Process P3

Figure 3.7: The final PPN derived from the program in Figure 3.1(a).

In the PPN depicted in Figure 3.6, processes are connected with communication
channels which are the multi-dimensional arrays used in the dSAC shown in Fig-
ure 3.4(c). However, as explained in Section 1, the processes in a PPN communi-
cate via FIFOs and synchronize using a blocking read/write on an empty/full FIFO
channel, i.e., an execution of a process is suspended if it tries to read from an empty
FIFO channel, or tries to write to a full channel, respectively. Therefore, in order
to generate a PPN, the multi-dimensional array accesses have to be replaced with
corresponding write and read operations on FIFO channels.

The Linearization is implemented using the approach presented in Chapter 5 of this

46 CHAPTER 3. DYNLOOP

dissertation. While there, the approach is discussed in full details, here, we present
only the summary of the Linearization approach applied to our running example.

The approach presented in Chapter 5 identifies the communication characteristics
of a data exchange in a pair of processes. Based on this information, the multi-
dimensional array accesses are replaced with one-dimensional FIFO accesses. The
result of the linearization applied on the multi-dimensional arrays in Figure 3.6 is
shown in Figure 3.7. In each process, the multi-dimensional arrays accesses are sub-
stituted by read/write primitives from/to FIFO channels. Internally, these read-
/write primitives realize the blocking synchronization between processes. For ex-
ample, writing to the global control array at line 7 of process P2 in Figure 3.6 is
substituted by writing to the FIFO at line 11 in process P2 in Figure 3.7.

The communication read/write primitives access the FIFO channels through ports.
That is, every process has a set of input ports and a set of output ports connected
to FIFO channels. For example, process P2 reads from a single channel via port i1
at line 2 and writes data to two channels via ports o1 and o2 at lines 11 and 12,
respectively. Additionally, we apply the iteration domain reconstruction of ports
described in [14] to avoid transferring more data tokens than needed. For details,
we refer to [14].

3.6 Calculation of deadlock-free buffer sizes

1 for i = 0 to N,

2 a[i] = A()

3 endfor

4 for j = 1 to N,

5 b[j] = B(a[j-1])

6 endfor

7 for k = 1 to N,

8 C(a[k-1],b[k])

9 endfor

(a) Sequential Program

A

B
a

c

b

C

(b) PPN

Figure 3.8: An example of a SANLP program and its PPN graph.

Finally, we discuss how we compute the sizes of FIFO channels that guarantee a
deadlock-free execution of a PPN derived from a Dynloopprogram. First, we explain
the procedure for computing buffer sizes in a PPN derived from a static affine nested
loop program (SANLP). Then, we explain how to use this procedure to compute
buffer sizes for a PPN derived from a Dynloop program.

Computing minimal deadlock-free buffer sizes is a non-trivial global optimization
problem. This problem becomes easier if we first compute a deadlock-free schedule
of the PPN and then compute the buffer sizes for each channel individually. Note
that this schedule is only computed for the purpose of computing the buffer sizes
and is discarded afterwards because the processes in our PPNs are self-scheduled
due to the blocking read/write synchronization mechanism. Although the schedule

3.6 Calculation of deadlock-free buffer sizes 47

we compute may not be optimal, our computations do ensure that a valid schedule
exists for the computed buffer sizes. The schedule is computed using a greedy ap-
proach. This approach may not work for process networks in general, but it does
work for PPNs derived from static affine nested loop programs.

The basic idea is to place all iteration domains in a common iteration space at an
offset such that the dependences in the initial program are respected. The offset is
computed by the scheduling algorithm described in [49]. By fixing the offsets of the
iteration domain in the common space, we have therefore fixed the relative order be-
tween any pair of iterations from any pair of iteration domains. The algorithm starts
by computing for any pair of connected processes, the minimal dependence distance
vector, being the difference between a read operation and the corresponding write
operation. Then, the processes are greedily combined, ensuring that all minimal
distance vectors are (lexicographically) positive. The end result is a schedule that
ensures that every data element is written before it is read. For more information
on this algorithm, we refer to [49], where it is applied to perform loop fusion on
SANLPs.

N−1

N

N

i

k

j

dependence distance

. . .

. . .

. . .

2

1

2

1

0

1

iterations

01 01 01 01

1 1 1 11

01

B

A

C

(a) Representation of data dependencies

b b

C

c c c c cb b b

0 1

a a a aa

. . .2 3
i

N

B

A

common iteration space

(b) Schedule for minimum buffer sizes

Figure 3.9: Representation of the data dependencies between statements on the pro-
gram in Figure 3.8(a), and the global schedule computed for the same program for
minimum buffer sizes.

As an example, consider the sequential program shown in Figure 3.8(a). It results
in the process network in Figure 3.8(b). The data dependencies are depicted in Fig-
ure 3.9(a). The horizontal axes illustrate the single dimension of the iteration do-
mains of the processes (function calls) A, B and C, and the arrows show the data
dependencies. The value of the dependence distances are shown next to each arrow.
As a next step, a valid global schedule is computed by placing (offsetting) processes
together in a way that keeps the distance between write operations and the corre-
sponding read operations minimal.

The result is shown in Figure 3.9(b). In this figure, next to each arrow, we also depict
the names of the FIFO channels used to propagate the corresponding data at each
iteration, e.g., FIFO a is used to propagate data between processes A and B. In the
common iteration space, the horizontal axis represents the single dimension of the
problem and the vertical axis represents the additional dimension that orders the
statements lexicographically.

48 CHAPTER 3. DYNLOOP

To compute the buffer sizes for each FIFO, we compute the number of read iterations
R(i) that are executed before a given read operation i and subtract the resulting ex-
pression from the number of write iterationsW(i) that are executed before the given
read operation:

#elements in FIFO at operation i : W(i)− R(i)

This computation can be performed entirely symbolically using the barvinok li-
brary [50] that efficiently computes the number of integer points in a parametric
polytope. The result is a piecewise (quasi-)polynomial in the read iterators and the
parameters. Then, the required buffer size is the maximum of this expression over
all read iterations:

FIFO size = max
i

(W(i)− R(i))

To compute the maximum symbolically, we apply the Bernstein expansion [51] to
obtain a parametric upper bound on the expression.

Below, we show how the buffer sizes are computed based on the schedule in Fig-
ure 3.9(b). Consider FIFO a. Let the number of elements written to the FIFO by
process A before iteration i is denoted as Wa

A(i) and the number of elements read
from the same FIFO by process B before iteration i is denoted as R a

B (i). Then, for
every iteration i, i ∈ [1,N], we compute the differenceWa

A(i)− R a
B (i) and assign the

maximum difference as the buffer size of FIFO channel a. For example, consider the
fourth iteration of the common iteration spaces (i = 3). Then:

Wa
A(3) = 3,

R a
B (3) = 2,

Wa
A(3)− R a

B (3) = 3− 2 = 1.

Due to the uniform data dependences in the example,Wa
A(i)− R a

B (i) = 1, ∀i ∈ [1,N]
and consequently the size of FIFO channel a = max(Wa

A(i) − R a
B (i)) = 1. In the

same way, we compute the buffer sizes of the remaining FIFOs, i.e.,

size of FIFO channel b = max(Wb
B(i)− R b

C (i)) = 0,
size of FIFO channel d = max(Wc

A(i)− R c
C(i)) = 1.

If some of the computed FIFO buffer sizes equal to zero, then size 1 is assigned to all
such FIFO channels.

In contrast to PPNs derived from SANLPs, the PPNs derived from Dynloops con-
tain two types of channels: control and data FIFO channels. Control channels realize
dependencies between global control arrays presented in Step 3 (see Section 3.4.2).
These dependencies are defined by the static part of a Dynloop program. There-
fore, for control channels we can apply the procedure for computing buffer sizes
described above. For example, the control arrays at lines 9 and 12 in Figure 3.4(c) are
global and we can use the method described above to compute buffer sizes.

3.7 Overhead Analysis 49

Data channels realize data dependencies between function statements of a Dynloop

program. In contrast to SANLP programs, in Dynloop programs some statements
are guarded by dynamic if-conditions. Consequently, the iteration domains of these
statements as well as the rate and the exact amount of data tokens that will be trans-
ferred over the corresponding data channels are unknown at compile-time. There-
fore, we cannot use directly the method described above to compute buffer sizes. To
be able to handle the dynamism of Dynloop programs we have to follow a conser-
vative strategy, i.e., we have to calculate buffer sizes such that to provide enough
space to run any possible instances of the dynamic program. There is always one
instance of a dynamic program that requires the largest buffer sizes. It is the in-
stance when the iteration domains of input/output ports of all FIFO channels are
the largest. These iteration domains are the largest when the dynamic if-condition
that determine these domains evaluate to true. In our procedure for calculating
FIFO buffer sizes in channels derived from a Dynloop program, we modify the it-
eration domains of input/output ports of all FIFO channels, such that all dynamic
if-conditions defining any of these iteration domains evaluate always to true. This
means in practice, that we ignore/remove the dynamic if-conditions from the FIFO
calculation. Therefore, again we can apply the procedure described above to the
resulted channels.

3.7 Overhead Analysis

In this section, we discuss the overhead in the generated process networks, which
results from the proposed approach for systematic parallelization of sequential pro-
grams with dynamic loop bounds. There are two types of overhead in the generated
process networks, i.e., memory and execution time overhead. The memory over-
head is due to the introduced control arrays, as well as, the created dataflow and
control FIFO channels. It highly depends on the characteristics of the application
being parallelized (see Section 6.1, Memory overhead and Table 6.2). Therefore, it is
very difficult to be analyzed systematically. However, we can systematically analyze
the execution time overheadwhich is introduced by the approachwe propose in this
chapter. This overhead is caused by the execution of some ’dummy’ iterations not
present in the initial sequential program. Below, we discuss this overhead in details.
Recall that in our approach, we substitute a dynamic upper loop bound with the
maximum value (max_ f) that the bound may have during the execution of the pro-
gram. Then at run-time, the actual number of iterations at which a function executes
is determined by the behavior of the application and the current value of the dy-
namic loop bound. This means that if the actual number of executions (x) is smaller
than the maximum number, then the corresponding process performs (max_ f − x)
’dummy’ iterations. The overhead,we consider, is the time spent in performing these
“dummy” iterations.

It is important to note that it is difficult to determine the exact amount of the over-
head because it depends on values which are determined and change at run-time.
Below, we define the overhead and determine how it varies for particular range of

50 CHAPTER 3. DYNLOOP

its terms. Assume thatmax_ f is the maximum value of a dynamic loop bound and x
represents the actual number of iterations in which a process executes its associated
function. When a function executes, it takes Wx time units. Performing a ’dummy’
iteration takes W time units, respectively. This is the time spent in one iteration but
not executing the corresponding function. Then, for any given values of max_ f , x,
Wx , andW, the total execution time (Tex) is:

Tex = x(Wx +W) + (max_ f − x)W, (3.3)

where x(Wx +W) is the time spent on real computation (Treal) and (max_ f − x)W is
the extra time spent performing ’dummy’ iterations. Consequently, we can compute
the introduced execution overhead as follows:

Tex
Treal

=
x(Wx +W) + (max_ f − x)W

x(Wx +W)
= 1+

(max_ f − x)W

x(Wx +W)
,

where the percentage of the execution overhead (Ovhd) is:

Ovhd =
(max_ f − x)W

x(Wx +W)
· 100 =

(max_ f − x)

x
·

W

(Wx +W)
· 100 [%] (3.4)

Equation 3.4 shows that the overhead depends on two ratios. The first one,
(max_ f−x)

x ,
depends on i) the application characteristics, which determine max_ f , and ii) the ex-
ecution behavior, which determines the values of x at run-time. The second ratio is
related to the computation performed by a process (executed on a particular proces-
sor) as it represents the ratio between the time to perform a ’dummy’ iteration and
the time spent on actual computing. Figure 3.10 illustrates the amount of overhead
for the following ranges of the two ratios in Equation 3.4:

1. 0 ≤
max_ f − x

x
≤ 2 ⇒ for any value of max_ f ,

max_ f

3
≤ x ≤ max_ f ;

2. 0.01 ≤
W

Wx +W
≤ 0.5⇒ for any value ofW,W ≤ Wx ≤ 99·W.

These ranges capture the characteristics for awide spectrum of applications and their
behavior. Moreover, our experience shows that if a particular application has suffi-
cient inherited parallelism, then the approach we propose to parallelize sequential
programs with dynamic loop bounds can lead to performance speed-up if the two
ratios stay within the specified ranges above.

In case x = max_ f , there is no overhead (see the right part of Figure 3.10) because
there are no ’dummy’ iterations to be executed (max_ f − x = 0). Then, by decreasing
the value of x, the overhead increases. The rate of the increase is determined also by

the value of
W

Wx +W
. The values of this ratio used in the figure capture functions

3.7 Overhead Analysis 51

with low and high workload. The lowest workload we consider is Wx = W, i.e., the
time to execute the corresponding function is equal to the time of a ’dummy’ iteration
(see the back plane of the figure). We use such a low workload to illustrate some
extreme values of the overhead. For example, when Wx = W and x = max_ f/2
the maximum overhead is 50%. The combined effect of both ratios leads to 100%
overhead when Wx = W and x = max_ f/3, see the left part of Figure 3.10. In
contrast, functions with high workload, i.e., 50·W ≤ Wx ≤ 99·W, lead to very low
overhead. For example, even if x = max_ f/3, the introduced overhead is around
5-10% as it can be observed at the bottom-left part in the figure. This indicates that
the approach we propose is not sensitive to functions with high workloads.

W=Wx

x=
m

ax f/
2

x=
m

ax f
x=

m
ax f/

3

 0
 0.5

 1
 1.5

 2

(maxf-x)/x
 0.01

 0.1

 0.2

 0.3

 0.4

 0.5

W/(Wx+W)

 0

 20

 40

 60

 80

 100

O
v
e
rh

e
a
d
 [
%

]

Figure 3.10: The amount of introduced overhead.

For easier evaluation of the overhead values, we plot the percentage overhead as
a color map in Figure 3.11. From this figure, it is seen that overhead above 35% is
present only in 1/4 of the cases. In addition, 1/16 of the cases, see the areawith over-
head ≥ 80%, correspond to functions with very low workload and a large number
of ’dummy’ iterations. For the other 3/4 of the cases, we would like to emphasize

on the following two areas. First, if the ratio
max_ f − x

x
is smaller than 0.25, then

the granularity of the executed functions does not affect the overhead, which is be-
low 10%, see the dark vertical strip on the left part of the figure. This indicates also
that for light-weight functions, the overhead will be small if the executed iterations
are close to the max_ f value. Similarly, in case of functions with high workload
(50·W ≤ Wx ≤ 99·W), the number of ’dummy’ iterations that are executed does
not affect the overhead, which again is below 10% – see the dark horizontal strip at

52 CHAPTER 3. DYNLOOP

Overhead [%]

 0 0.5 1 1.5 2

(maxf-x)/x

 0.01

 0.1

 0.2

 0.3

 0.4

 0.5

W
/(

W
x
+

W
)

 0

 20

 40

 60

 80

 100

Figure 3.11: Overhead’s color map.

the bottom of Figure 3.11. The second area covers almost half of the plot, see the
arc-shape stripe in the middle of Figure 3.11. This area shows that even with a large
variety of the values of both ratios, the overhead is kept below 35%, which is rela-
tively low. This area also shows that such overhead can be achieved even if one of

the ratios goes to its extreme value. For example, 35% overhead is achieved if W
Wx+W

reaches its maximum value of 0.5 and
max_ f−x

x = 0.7.

3.8 Discussion and Summary

In this chapter, we presented a first approach for automated translation of affine
nested loops programswith dynamic loop bounds (Dynloop) into input-output equiv-
alent polyhedral process networks (PPNs). The problem of deriving a Process Net-
work specification from a sequential program in a systematic and automated way
has been addressed by many researchers. The work in [14, 30, 52] reports techniques
for automated derivation of Kahn Process Networks (KPNs) [7] from applications
specified as static affine nested loop programs (SANLPs). The main property of
such programs is that everything about the program execution is known at compile-
time. However, the static restriction limits the applicability of these approaches, i.e.,
these approaches cannot be applied to the applications that have adaptive and dy-
namic behavior, such as multimedia applications (MPEG coders/decoders, Smart
Cameras, Software Radio), adaptive filters, iterative algorithms, etc. If some of the
static restrictions of the SANLPs could be relaxed while keeping the ability to derive
PPNs in an automated way, this would significantly extend the range of applica-
tions that can be parallelized in an automated way. This inspired the work in [21]
where an approach for KPN derivation fromWeakly Dynamic Programs (WDP) has
been developed. WDPs aremore relaxed than the SANLP class of applications where
if-conditions might be dependent on some information that is unknown at compile-

3.8 Discussion and Summary 53

time and may change at run-time. In this chapter, we further extended the class of
applications to Dynloop programs from which the PPN specification can be derived
in an automated way.

Although, the execution of a Dynloop program is not known completely at compile
time, we have shown in this chapter that still a Dynloop program can be analyzed
and transformed into a PPN in a formal, systematic and structured way. To do this,
we demonstrated how a Dynloop program can be formally represented as a WDP,
we employed the Fuzzy Array Dataflow Analysis (FADA) technique, the dynamic
Single Assignment Code form and demonstrated how to set the values of parameters
introduced by FADA.

In a PPN derived from a Dynloop program we distinguish two types of communi-
cation FIFO channels depending on the purpose of the communicated data: 1) data
FIFO channelswhere computational data used/generated by function calls (tasks) ex-
ecuted inside processes is communicated; 2) control global FIFO channels where data
that controls the internal sequential behavior of processes is communicated. By se-
quential behavior of a process we mean the sequential order of execution of function
calls inside the process.

The control FIFO channels appear in a PPN derived froma Dynloopprogrambecause
the behavior of Dynloop is not know completely at compile-time. The unknown
behavior has to be resolved at run-time in the PPN and the control FIFO channels
are used to communicate the necessary data to do this. Control FIFO channels do
not appear in case a PPN is derived from a static program. This means that the
presence of control FIFO channels introduces extra workload and communication
overhead that are the consequences of the dynamic nature of the initial application.

Most of the methods and techniques of our approach presented in this chapter have
been prototyped in the pn [48] compiler and tested on a small set of Dynloop pro-
grams. Besides this small set and the running example from this chapter, the ap-
proach and the prototype software have been applied and validated successfully on
a real-life application called Low Speed Obstacle Detection (LSOD). The analysis of
a PPN derivation from this application is presented in Chapter 6.

The approach presented in this chapter includes only basic techniques that we have
developed in order to derive a PPN automatically from a Dynloop program. The re-
sults we have obtained from the LSOD application indicated that as a future work
some optimization techniques have to be added to the approach that will help im-
proving the quality of the generated PPNs in terms of optimal partitioning of the
computation and communication workloads of a Dynloop program over processes
and channels in the PPN.

54 CHAPTER 3. DYNLOOP

