
Parallelizing dynamic sequential programs using polyhedral process
networks
Nadezhkin, D.

Citation
Nadezhkin, D. (2012, December 20). Parallelizing dynamic sequential programs using
polyhedral process networks. Retrieved from https://hdl.handle.net/1887/20357

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20357

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20357

Cover Page

The handle http://hdl.handle.net/1887/20357 holds various files of this Leiden University
dissertation.

Author: Nadezhkin, Dmitry
Title: Parallelizing dynamic sequential programs using polyhedral process networks
Issue Date: 2012-12-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20357
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2
Background

In order to comprehend the next chapters, this chapter contains some basic mate-
rial from the theory of integer linear algebra. Besides introduction of notations and
definitions, this chapter deals with models of computation and compiler techniques
used for parallelizing sequential programs.

Further, this chapter is organized as follows. Section 2.1 gives some notations and
definitions used throughout the dissertation. We present the Polyhedral Model and
show how this model can be extracted from SANLPs. Section 2.2 presents the formal
definitions of the program models of dynamic applications introduced in Chapter 1.
The parallelization approach presented in this dissertation deals with this type of
dynamic programs only. Section 2.3 presents the definition of Polyhedral Process
Networks model of computation which is used as a target parallel model of compu-
tation.

For better understanding of the solution approaches presented in the following Chap-
ters, we give a brief overview of the two state-of-the-art techniques used to an-
alyze sequential programs. The first one, called Exact Array Dataflow Analysis
(EADA) [4], is used to analyze static programs, namely SANLPs. Recall, that EADA
is implemented in the pn [48] compiler for the translation of SANLPs to PPN. We
present EADA in Section 2.4.

The second technique, which we present in Section 2.5, allows for the analysis of pro-
grams with more relaxed constraints than SANLPs. That is, we consider the Fuzzy
Array Dataflow Analysis (FADA) introduced in [37, 38]. FADA is an enhanced ver-
sion of EADA and it is used to analyze programs with dynamic behavior.

Finally, Section 2.6 briefly presents important definitions and theory used to identify
communication models while deriving a Polyhedral Process Network specification.

20 CHAPTER 2. BACKGROUND

2.1 Preliminaries

The formal objects handled in this dissertation are mainly vectors with integer coor-
dinates. A sub-vector of a vector ~x built from components k to l is written as: ~x[k..l].
Similarly, ~x[i] is a shorthand for ~x[i..i]. By ≪ we denote lexicographical ordering of
vectors. This is expressed as a set of equalities and inequalities as:

~a ≪~b ≡
n
∨

i=1

(~a[i] <~b[i] ∧
i−1
∧

j=1

~a[j] =~b[j]) (2.1)

The smallest and the largest vectors according to≪ are the lexicographical minimum
(lexmin) and lexicographical maximum (lexmax), respectively.

2.1.1 Polyhedral Model

Sets of rational values described by affine inequalities have been the subject of ex-
tensive research and are called polyhedra.

Definition 2.1.1 (polyhedron)
The implicit definition of polyhedron is defined as the intersection of a finite set of
closed linear half-spaces. Polyhedron is specified by a system of linear inequalities
and equalities:

P : {~x ∈ Qn|A~x ≥~b} (2.2)

where A is a j× n matrix,~b is a j-vector, and where n is the dimension of the space
containing the polyhedron. The dimension of a polyhedron is defined to be the di-
mension of the smallest affine subspace which spans the polyhedron. A polyhedron
of dimension d is called a d-polyhedron. Z-polyhedron [6] denotes a polyhedron
whose points are integers.

Definition 2.1.2 (parameterized polyhedron)
The parameterized polyhedra is a family of polyhedra P(~p) described as a linear
function of ~p, which is an m-vector of parameters:

P(~p) = {~x ∈ Qn|A~x + B~p ≥ ~c},~p ∈ Qm (2.3)

where A and B are constant matrices and~c is a constant vector.

In the compilers domain, the input program is usually represented in some internal
representation form. This form allows for manipulation and optimization, for exam-
ple in the context of loop transformations. One of this special intermediate program
formats called Polyhedral Model was originally introduced for systolic array syn-
thesis but also was found useful for parallelizing compilers [4]. This model applies
to the class of affine nested loop programs and is used in compiler optimizations to
efficiently analyze and transform the input program.

2.1 Preliminaries 21

In the following, we demonstrate how the Polyhedral Model can be extracted from
sequential programs considered in this dissertation.

1 2 3 N

1

2

3

M

10

10...

...

0

2

i

S2

1

5

j

j ≤ 2

j ≤ M
1 ≤ i

i ≤ j

i ≤ N

1 ≤ j

Figure 2.1: Geometrical representation of iteration domain of statement S2 in the
program depicted in Figure 1.2(a).

The whole execution of a statement in a program can be described by the following
constructs:

Iteration domain

The Iteration Domain (ID) is the set of values of an iteration vector for which a state-
ment is executed. ID of a statement S is denoted by D(S). An iteration vector ~x of
a statement in a dynamic program is built from iterators of surrounding for- and
while-loops. Although, an iterator for a while-loop may not be explicitly mentioned
in the source code of a program, we can associate some “virtual” iterator w : 0 ≤ w
with the while-loop.

Because the execution of a statement is guarded by an affine control, its iteration
domain can be specified as a set of linear inequalities defining a Z-polyhedron. For
example, consider statement S2 in Figure 1.2(a). Its iteration domain represented in
algebraic form is the following parameterized polyhedron:

D(S2) = P(M,N) =

=































(i, j) ∈ Q2 |

















1 0

−1 0

−1 1

0 −1

0 −1

















(

i

j

)

≥

















1

−N

0

−M

−2

















,











1 0

−1 0

0 1

0 −1











(

M

N

)

≥











1

−10

1

−10









































=

= {(i, j) ∈ Q2 |1 ≤ i ≤ N ∧ i ≤ j ≤ M ∧ j ≤ 2∧ 1 ≤ M ≤ 10∧ 1 ≤ N ≤ 10}.

22 CHAPTER 2. BACKGROUND

For illustrative purposes, the ID of statement S2 in a graphical form is shown in
Figure 2.1. Similarly, the iteration domain in algebraic form of statement S2 shown
in Figure 1.5(c) is:

D(S2) = {(i,w) ∈ Q2 | 1 ≤ i ≤ N ∧ 0 ≤ w ∧ 1 ≤ N ≤ 10}.

Order of execution

In an affine nested loop programs statements evaluate some data. An evaluation
of a single statement W on iteration point ~x is called an operation and is denoted as
〈W,~x〉, where ~x ∈ D(W).

The schedule determines the execution order of all operations of all statements in a
program. The execution order of operations can be established using the sequencing
predicate ≺. An operation 〈W,~x〉 is evaluated before an operation 〈R,~y〉 (〈W,~x〉 ≺
〈R,~y〉) according to the program sequence if: 1) iteration point ~x lexicographically
precedes iteration point~y; or 2) if~x = ~y and statementW precedes statement R in the
program code. The sequencing predicate depends only on the code of a sequential
program. Let NWR be the number of loops enclosing both statement W and R. Let
⊳ be the textual order of statements W and R in the code of the program. Then the
execution order is given by:

〈W,~x〉 ≺ 〈R,~y〉 ≡ ~x[1..NWR] ≪ ~y[1..NWR]∨ (~x[1..NWR] = ~y[1..NWR]∧W⊳R) (2.4)

[4] shows how sequencing predicate ≺ can be expanded to a system of linear in-
equalities.

2.2 The ProgramModel

In the following, we will give definitions of the type of sequential programs we con-
sider in this dissertation.

Definition 2.2.1 (static affine nested loop program,SANLP)
A static affine nested loop program (SANLP) is a program where each program
statement is enclosed by one or more for-loops and if-statements, and where:

1. loops have a constant step size;

2. loops have bounds that are affine expressions of the enclosing loop iterators,
static program parameters, and constants;

3. if-statements have affine conditions in terms of the loop iterators, static pro-
gram parameters, and constants;

4. index expressions of array references are affine functions of the enclosing loop
iterators, static program parameters, and constants;

2.2 The Program Model 23

5. data flow between statements is explicit via a variable or an array.

An example of a SANLP is given in Figure 1.2(a).

Definition 2.2.2 (Weakly Dynamic Program,WDP)
AWeakly Dynamic Program (WDP) is a program where each program statement is
enclosed by one or more for-loops and if-statements, and where:

1. loops have a constant step size;

2. loops have bounds that are affine expressions of the enclosing loop iterators,
static program parameters, and constants;

3. if-statements have no restrictions on conditions - the condition of if can be
an arbitrary function of program variables, enclosing loop iterators, static pro-
gram parameters, and constants;

4. index expressions of array references are affine functions of the enclosing loop
iterators, static program parameters, and constants;

5. data flow between statements is explicit via a variable or an array.

An example of a WDP program is given in Figure 1.5(a).

Definition 2.2.3 (affine nested loop program with dynamic loop bounds, Dynloop)
An affine nested loop program with dynamic loop bounds (Dynloop) is a pro-
gram where each program statement is enclosed by one or more for-loops and if-
statements, and where:

1. loops have a constant step size;

2. loops have no restrictions on the bounds - the bounds of for-loops can be an
arbitrary expression of program variables, the enclosing loop iterators, static
program parameters, and constants;

3. if-statements have no restrictions on conditions - the condition of if can
be an arbitrary function of program variables, enclosing loop iterators, static
program parameters, and constants;

4. index expressions of array references are affine functions of the enclosing loop
iterators, static program parameters, and constants;

5. data flow between statements is explicit via a variable or an array.

An example of a Dynloop program is given in Figure 1.5(b).

Definition 2.2.4 (affine nested loop program with while-loops,WLAP)
An affine nested loop program with while-loops (WLAP) is a program where each
program statement is enclosed by one ormore for-loops,while-loops and if-statements,
and where:

24 CHAPTER 2. BACKGROUND

1. for-loops have a constant step size;

2. loops have no restrictions on the bounds - the bounds of for-loops can be an
arbitrary expression of program variables, the enclosing loop iterators, static
program parameters, and constants;

3. if-statements have no restrictions on conditions - the condition of if can be
an arbitrary function of program variables, enclosing loop iterators, static pro-
gram parameters, and constants;

4. index expressions of array references are affine functions of the enclosing loop
iterators, static program parameters, and constants;

5. data flow between statements is explicit via a variable or an array.

An example of a WLAP program is given in Figure 1.5(c).

2.3 Polyhedral Process Networks

Below, we give a definition of the Polyhedral Process Network Model of Computa-
tion.

Definition 2.3.1 (Polyhedral Process Network,PPN)
The PPNmodel of computation is a special case of the Kahn ProcessNetworks (KPN) [7]
model of computation with the following properties:

• it consists of concurrent autonomous processes;

• processes communicate data in a point-to-point fashion over bounded FIFO
channels via ports;

• processes synchronize via blocking read/write on an empty/full FIFO;

• processes have a well defined structure consisting of read, execute and write
code sections;

• it is deterministic;

• it has a distributed control.

An example of a PPN is illustrated in Figure 2.2(a). The PPN consists of three pro-
cesses, P1, P2 and P3, and three FIFO channels. The examples of code of processes P1
and P3 of this PPN are illustrated in Figure 2.2(b) and Figure 2.2(c), respectively. In
order to see the well defined structure of every process on a PPN, consider the source
code of process P3 in Figure 2.2(c). In the read section at lines 3–7, the process reads
data from two ports p5 or p6. In the execute section at line 8, the process executes
function F3() on data that has been read. In the write section at line 9, the process

2.3 Polyhedral Process Networks 25

P3

P2

p1

p2

p3

p4

p5

p6

p0 p7
P1

(a) An example of a PPN.

1 int M = 10, P = 3

2 for i = 1 to M,

3 out = F1()

4 if i <= P,

5 write(p1, out)

6 else

7 write(p2, out)

8 endif

9 endfor

(b) An example of process P1.

1 int N = 10, P = 3

2 for j = 1 to N,

3 if j <= P,

4 in = read(p5)

5 else

6 in = read(p6)

7 endif

8 out = F2(in)

9 write(p7, out)

10 endfor

(c) An example of process P3.

Figure 2.2: An example of a PPN and source codes of its processes P1 and P3.

writes the produced data to port p7. This clearly separated structure of a process in
a PPN allows for explicit separation between computation and communication.

In a PPN, every process can be described by the following terms.

Definition 2.3.2 (node domain)
A Node Domain (ND) of process P executing function F in a PPN is the set of itera-
tion points NDPF for which function F is executed.

In this dissertation we consider PPNs where every process executes only one func-
tion, and, therefore, for the sake of brevity, we can use NDPF = NDP. A node domain
of a process can be represented by a polyhedron. In Section 2.1.1, it has been demon-
strated that a set of iteration points can be represented as a Z-polyhedron. Similarly,
a node domain of a process can be represented as a Z-polyhedron. For example, con-
sider process P1 of PPN shown in Figure 2.2(a). The code of process P1 is illustrated
in Figure 2.2(b). The process executes function F1(), and, thus, its node domain is
D(NDP1) = {i ∈ Z|1 ≤ i ≤ M ∧ M = 10}.

Definition 2.3.3 (input port domain)
An input port domain (IPD) of port p is the set of iteration points Ip ∈ IPDp for
which port p is read.

Definition 2.3.4 (output port domain)
An output port domain (OPD) of port q is the set of iteration points Oq ∈ OPDq for
which port q is written.

Similarly to a node domain, IPDs and OPDs of every process can be represented as
Z-polyhedra. For example, consider source codes of processes P1 and P3 depicted
in Figure 2.2(b) and Figure 2.2(c), respectively. Processes are connected via output
port p2 (see line 7 in Figure 2.2(b)) of process P1 and input port p5 (see line 4 in
Figure 2.2(c)) of process P3. Therefore, input and output port domains of ports p5
and p2 are D(IPDp5) = {j ∈ Z|1 ≤ j ≤ N ∧ j ≤ P ∧ N = 10 ∧ P = 3}, and
D(OPDp2) = {i ∈ Z|1 ≤ i ≤ M ∧ i > P∧ M = 10∧ P = 3}.

26 CHAPTER 2. BACKGROUND

A FIFO in a PPN is connected to processes which writes and reads via ports. For
every FIFO, there exists a mapping function that maps the iteration points of IPD of
the process that reads from the FIFO to the iteration points of OPD of the process
that writes to the FIFO. Consider a FIFO connected to processes via ports p and q.

Definition 2.3.5 (mapping function)
A mapping function is an affine mapping fpq : Ip → Oq : Oq = f (Ip), where Ip ∈
IPDp andOq ∈ OPDq.

An example of the mapping function between ports p1 and p5 of processes P1 and P3
in the PPN shown in Figure 2.2(a) is fp5p1 : Z → Z : j = i ∗ 1, i ∈ IPDp5, j ∈ OPDp1.

2.4 Exact Array Dataflow Analysis

Because our approach of parallelizing dynamic programs presented in the follow-
ing chapters is an extension of the parallelization approach of static programs, for
better understanding, in this section we formally describe the EADA [4] algorithm,
which is used to perform dependence analysis on static programs only. We will
demonstrate an application of the EADA algorithm on the static program depicted
in Figure 1.2(a).

The goal of the dependence analysis is to determine if evaluation of a statement de-
pends on evaluation of other statements and to find these evaluations. For example,
in the SANLP program depicted in Figure 1.2(a), the purpose of the dependence
analysis is to find whether statement S3 depends on statements S1 or S2 via array
y and at which iterations. Or in other words, for every element of array y read at
a given iteration of statement S3, the dependence analysis finds which statement,
S1 or S2, and at which iteration it writes data to the given array element. The re-
sult of the analysis forms the dependency relations between iterations of statements
writing/reading to/from the array.

Consider two statements W and R, and operations 〈W,~x〉 and 〈R,~y〉, where the first
operation writes to an array and the second operation reads from it. The operation
〈W,~x〉 is a source for operation 〈R,~y〉 if it satifsies the system of linear (in)equalities (2.5).
Note, that all iteration vectors of operations that satisfy this system form a convex
domain.

QWR(~y) = {~x | ~x ∈ D(W), (c1)

IW(~x) = IR(~y), (c2)

〈W,~x〉 ≺ 〈R,~y〉}. (c3)

(2.5)

The first constraint (c1) states that the source iteration ~x has to exist, i.e., it has to
belong to the iteration domain of statement W. The constraint (c2) specifies that if

2.4 Exact Array Dataflow Analysis 27

there is a dependency between two operations, both have to access the same array el-
ement. To access an array element, operation 〈W,~x〉 uses an affine indexing function
IW() and operation 〈R,~y〉 uses an affine indexing function IR(). The (c3) constraint
determines an order of operations, i.e., source operation 〈W,~x〉 has to be evaluated
before operation 〈R,~y〉.

There might be many operations of a single statement satisfying system (2.5), i.e.,
writing to the same array element. However, only the “last” writing operation is
the source for operation 〈R,~y〉. Therefore, the source operation is the lexicographical
maximum between all operations satisfying system QWR(~y):

KWR(~y) = lexmax{QWR(~y)}. (2.6)

So far, operations of only single statement have been considered, while there might
be several statements W1,. . . ,Wm writing to the same array element. In this case, all
pairsW1/R,. . .Wm/R have to be considered. The actual source is the “last” operation
between all operations of all statements:

σ(〈R,~y〉) = lexmax{〈Wk,KWkR(~y)〉 | k ∈ [1,m]}. (2.7)

For example, consider the program in Figure 1.2(a). There are two statements, S1
and S2 writing to array y and one statement S3 reading from that array. Therefore,
we consider two pairs S1S3 and S2S3. For each pair we build the system of linear
inequalities (2.5) as depicted in Table 2.1 (seeQS1S3((i3, j3)) andQS2S3((i3, j3))). With
(i3, j3), we denote the iteration vector (i, j) of statement S3.

QS1S3((i3, j3)) QS2S3((i3, j3))

1 ≤ k ≤ M 1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

j2 ≤ 2

k = j3 j2 = j3 (c2)

true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

Table 2.1: Examples of system (2.5) for S1S3 and S2S3 statements.

Finding lexicographical maximums, KS1S3() and KS2S3(), of the systems in Table 2.1
means to solve the Parametric Integer Linear Problems (PILPs) depicted in Table 2.2.
The solution to find the maximum point for a given convex domain is based on
the dual simplex method [16] that is implemented in open-source libraries such as
isl [17], Parma Polyhedral Library [18], and PIPLib [19].

The source operation σ(〈S3, ()〉) is found by determining the lexmax betweenKS1S3()
andKS2S3()which is another PILP problem. Finally, the source operation σ(〈S3, (i3, j3)〉)
for the data read by statement S3 can be written in the following form:

28 CHAPTER 2. BACKGROUND

Objective: lexmax{(i3, j3)} lexmax{(i3, j3)}

subject to: QS1S3((i3, j3)) QS2S3((i3, j3))

Table 2.2: PILP problems for pairs S1S3 and S2S3.

σ(〈S3, (i3, j3)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

if j3 ≤ 2

then 〈S2, (i3, j3)〉

else 〈S1, (j3)〉.

(2.8)

Both branches of the if-statement in Solution (2.8) shown above represent solutions
of the PILP problems formulated in Table 2.2. The if-condition is derived by finding
the lexicographical maximum by Equation 2.7. Solution (2.8) can be interpreted as
follows: the source of the data for statement S3 of the program in Figure 1.2(a) can
be two statements – the source is statement S1 when the iterator j of S3 is greater
than 2, otherwise, the source is statement S2.

2.5 Fuzzy Array Dataflow Analysis

As explained in Section 1.3, it is impossible to apply the EADA dependence analy-
sis algorithm to dynamic programs. However, there exists an enhanced version of
the EADA algorithm called Fuzzy Array Dataflow Analysis (FADA) [37, 38]. FADA
allows for the compile-time dependence analysis of programs where arbitrary if-
conditions and while-loops are allowed. We formally describe FADA because it is an
important part of our parallelization approaches presented in the following chapters.

In order to simplify the explanation of the FADAalgorithm, we split our presentation
in 2 parts. In the first part, we formally present the application of the FADA analysis
on programs containing dynamic if-conditions only. In the second part, we present
an application of the FADA algorithm on programs containing while-loops only. In
general, the FADA algorithm combines both methods.

I. dynamic if-conditions

Consider two statement W and R of a dynamic program. Operation 〈W,~x〉 writes
to and operation 〈R,~y〉 reads from the same array. Moreover, let statement W be
surrounded by a data-dependent if-condition. As a running example, consider Fig-
ure 1.5(a): statements S2 and S3 are W and R, respectively, and the if-condition at
line C surrounding statement S2 is a data-dependent condition.

In Section 2.4, it has been shown that in order to have two operations 〈W,~x〉 and
〈R,~y〉 of a static program dependent, they have to comply to the system of linear

2.5 FADA 29

inequalities (2.5). In the same way, to find whether operation 〈W,~x〉 is a source for
operation 〈R,~y〉 in a dynamic program, the following system of linear inequalities is
built:

QWR(~y,~α) = {~x | ~x ∈ D(W),~x =~α, (c1)

IW(~x) = IR(~y), (c2)

〈W,~x〉 ≺ 〈R,~y〉}. (c3)

(2.9)

The meaning of constraints (c2) and (c3) is the same as in system (2.5): operations
should access the same array element and the writing operation should occur before
the reading operation. We will explain the meaning of constraint (c1). As statement
W is surrounded by data-dependent if-condition, exact operations of W cannot be
determined at compile-time. Thus, for any reading operation 〈R,~y〉 it is impossible
to determine the exact source operation. The idea of the FADA algorithm is to in-
troduce a parameter which would hide unknown information, i.e., a parameter is
used to indicate at which iteration a writing operation 〈W,~x〉 may occur. It is un-
known exactly at which iteration points ~x ∈ D(W) writing to the array occurs, but
it is assumed that this happens for iterations ~x = ~α, where ~α is a free parameter
vector whose values have to be determined at run-time. Because source operations
satisfying system (2.9) are not exact, we call them approximated sources.

Similarly to the EADA algorithm, only the “last” writing operation is the source for
〈R,~y〉. Therefore, the source operation is the lexicographical maximum between all
operations satisfying system QWR(~y,~α):

KWR(~y,~α) = lexmax{QWR(~y,~α)}. (2.10)

Finally, the FADA algorithm considers all statements W1, . . . ,Wm which write to the
same array element. For each Wk, k ∈ [1..m], the approximated sources (2.10) are
found. Finally, the source operation is found by combining all approximated sources
as shown in (2.11). The procedure covering in depth the combination of all approxi-
mated sources is described in-depth in [37, 38].

σ(〈R,~y〉,~α) = lexmax{〈Wk,KWkR(~y)〉| k ∈ [1,m]}. (2.11)

For example, consider the program depicted in Figure 1.5(a). There are two state-
ments S1 and S2 writing to array y[] and one statement S3 which reads from it.
For every pair S1S3 and S2S3, the systems of linear inequalities (2.9) are built which
are depicted in Table 2.3. For pair S1S3 all operations of statement S1 are known
and thus, a parameter is not introduced (see system QS1S3((i3, j3)) in Table 2.3).
However, for pair S2S3 (see system QS2S3((i3, j3), (αi, αj))), the parameter vector
~α = (αi, αj) is introduced. This parameter vector is needed as statement S2 is sur-
rounded by the dynamic if-condition at line C in Figure 1.5(a) and, thus, exact op-
erations of S2 cannot be determined at compile-time. These parameters are used to

30 CHAPTER 2. BACKGROUND

designate at which iteration of S2 a writing to the array y[]may occur. Values of the
parameters are determined at run-time.

QS1S3((i3, j3)) QS2S3((i3, j3), (αi, αj))

1 ≤ k ≤ M 1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

i2 = αi ∧ j2 = αj

k = j3 j2 = j3 (c2)

true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

Table 2.3: Examples of system (2.9) for S1S3 and S2S3 statements.

Approximated sources KS1S3() and KS2S3() are found by solving the parametric in-
teger linear problems (PILPs), similar to the ones presented in Table 2.2. Finally,
the source operation defined in Equation (2.11) is determined by the recurrent algo-
rithm of combining direct dependencies described in Section 5.2 of [37]. Therefore,
the source operation for statement S3 is:

σ(〈S3, (i3, j3)〉, (αi, αj)) =

∣

∣

∣

∣

∣

∣

∣

∣

if i3 ≥ αi ∧ j3 = αj

then 〈S2, (αi, αj)〉

else 〈S1, (j3)〉.

(2.12)

From Solution (2.12) above, it can be seen that for any read operation 〈S3, (i3, j3)〉
there are two data sources: statements S1 or S2. When for a given iteration (i3, j3)
of statement S3, at least one of the previous evaluations of the condition at line C
in Figure 1.5(a) was true, then parameter αi ≤ i3 and, parameter αj = j3, thus,
the source is statement S2. Otherwise, the source is statement S1. In contrast to
Solution (2.8), Solution (2.12) is approximated, because it depends on parameters
(αi, αj) that are determined at run-time.

II. while loops

Consider again two statements W and R of a dynamic program. Operation 〈W,~x〉
writes to and operation 〈R,~y〉 reads from the same array. Moreover, statement W is
enclosed in a while-loop at depth d. As a running example, consider Figure 1.5(c):
statements S2 and S3 are W and R, respectively; statement S2 is enclosed in the
while-loop at depth 1. The iteration vector of statement S2 is ~x = (i,w). To find
whether operation 〈W,~x〉 is a source for operation 〈R,~y〉, the following system of
linear inequalities is built:

2.5 FADA 31

QWR(~y, (~α, β)) = {~x | ~x ∈ D(W),~x[1..d] =~α,

1 ≤ ~x[d+ 1] ≤ β (c1)

IW(~x) = IR(~y), (c2)

〈W,~x〉 ≺ 〈R,~y〉}. (c3)

(2.13)

The meaning of constraints (c2) and (c3) is the same as in system (2.5): operations
should access the same array element and the writing operation should occur before
the reading operation. We will explain the meaning of constraint (c1). As statement
W is surrounded by a while-loop, exact operations of W cannot be determined at
compile-time. Thus, for any reading operation 〈R,~y〉 it is impossible to determine
the exact source operation. The idea of the FADA algorithm is to introduce param-
eters which would hide unknown information, i.e., parameters are used to indicate
at which iteration a writing operation 〈W,~x〉 may occur. We do not know exactly at
which iteration ~x ∈ D(W) writing to the array occurs, but we assume that this hap-
pens for iterations ~x[1..d] =~α and 1 ≤ ~x[d+ 1] ≤ β. Vector ~x[1..d] is built of iterators
enclosing the while-loop, and iterator ~x[d+ 1] is the while-loop iterator. Parameter
vector~α captures the values of loop iterators enclosing the while-loop, and parameter
β indicates the upper bound of the while-loop, i.e., we introduce a parameter vector
(~α, β). Both parameters are free parameters which values have to be determined at
run-time. Because source operations satisfying system (2.13) are not exact, we call
them approximated sources.

Similar to systems (2.10) and (2.11) the following systems define the source opera-
tion.

KWR(~y, (~α, β)) = lexmax QWR(~y, (~a, β)). (2.14)

σ(〈R,~y〉, (~α, β)) = lexmax{〈Wk,KWkR(~y, (~α, β))〉 | k ∈ [1,m]}. (2.15)

To illustrate this algorithm, consider the WLAP depicted in Figure 1.5(c). There are
two statements S1 and S2 writing to array y[] and one statement S3 which reads
from it. For every pair S1S3 and S2S3 the systems of linear inequalities (2.13) are
built. The systems are depicted in Table 2.4. To capture all evaluations of statement
S2, the new iterator w is introduced which corresponds to the while-loop at line 8.
For pair S1S3 all operations of statement S1 are known and thus, a parameter is
not introduced (see system QS1S3(i3) in Table 2.4). However, for pair S2S3 (see sys-
tem QS2S3(i3, (α, β)) in Table 2.4), new parameters α and β are introduced as shown
in system (2.13), because statement S2 is surrounded by the while-loop at line 8 in
Figure 1.5(c) and, thus, exact operations of S2 cannot be determined at compile-time.
These parameters are used to designate at which iteration of S2 a writing to the array
y[]may occur. Values of the parameters are determined at run-time.

Approximated sources in S1S3 and S2S3 pairs are found by solving the parametric
integer linear problems (PILPs) formulated similar to Table 2.2. Again, as in the

32 CHAPTER 2. BACKGROUND

QS1S3(i3) QS2S3(i3, (α, β))

1 ≤ i1 ≤ N 1 ≤ i2 ≤ N∧ (c1)

i2 = α ∧ 1 ≤ w ≤ β

i1 = i3 i2 = i3 (c2)

〈S1, i1〉 ≺ 〈S3, i3〉 〈S2, (i2,w)〉 ≺ 〈S3, i3〉 (c3)

Table 2.4: Examples of system (2.13) for S1S3 and S2S3 pairs.

previous section, the source operation defined in Equation 2.15 is determined by
the recurrent algorithm of combining direct dependencies described in Section 5.2
of [37, 38]. Therefore, the source operation for statement S3 is:

σ(〈S3, i3)〉, (α, β)) =

∣

∣

∣

∣

∣

∣

∣

∣

if i3 = α ∧ β ≥ 1

then 〈S2, (α, β)〉

else 〈S1, i3〉.

(2.16)

From Solution 2.16 above, we see that for any read operation 〈S3, i3〉 there are two
data sources: statements S1 or S2. When for a given iteration i3 of statement S3,
there is an iteration of statement S2: (i2,w) = (α, β), such that for i3 = α there
was at least one iteration of the while-loop, i.e., β ≥ 1, then the source is statement
S2. Otherwise, the source is statement S1. Solution 2.16 is approximated, because it
depends on parameters (α, β) that are determined at run-time.

2.6 Communication model identification in PPNs de-

rived from static programs

In this section, we consider important definitions and theory used in the Lineariza-
tion step of the procedure of PPN derivation illustrated in Figure 1.2(b). In this step
the multi-dimensional arrays are linearized and the communication models of all
Producer/Consumer (P/C) pairs are identified. In order to understand our contri-
bution presented in Chapter 5, we explain the communication model identification
procedure on an example where a SANLP program is translated into a PPN.

Applying the EADAdependence analysis on the static program shown in Figure 1.2(a)
allows to generate the PPN as shown in Figure 1.2(d). This PPN has three processes
and two FIFO channels that connect processes via ports p1–p4. Thus, there are two
P/C pairs: P1/P3 and P2/P3.

According to Definition 2.3.5, relations between reading/writing of processes in a
P/C pair are expressed by the mapping functions. A mapping function in a P/C

2.6 Communication model identification in PPNs derived from static programs 33

pair gives for each iteration of a statement corresponding to a Consumer process,
the iteration of a statement corresponding to a Producer process. For example, for
the P1/P3 pair shown in Figure 1.2(d) connected via ports p1 and p3, the mapping
function and its domain are:

fp3p1 : Z2 → Z : k = (0 1)

(

i3

j3

)

,

D(fp3p1) = D(IPDp3) = {(i3, j3) ∈ Z |1 ≤ i3 ≤ j3, 2 < j3 ≤ 4},

(2.17)

and for P2/P3 pair connected via ports p2 and p4, the mapping function is:

fp4p2 : Z2 → Z2 :

(

i2

j2

)

=

(

1 0

0 1

)(

i3

j3

)

,

D(fp4p2) = D(IPDp4) = {(i3, j3) ∈ Z|1 ≤ i3 ≤ 2, i3 ≤ j3 ≤ 2}.

(2.18)

The graphical representations of mapping functions (2.17) and (2.18) are illustrated
in Figure 1.3(b). This figure depicts the iteration domains of statements S1, S2 and
S3 which correspond to processes P1, P2 and P3 using the coordinate systems. The
points on the coordinate systems designate the evaluations of statements and the
arrows reflect the data dependency relations. The numbers at the points show the
lexicographical order of statement evaluations. For pair P2/P3, mapping function
fp2p4 shown in Equation (2.18) maps points 1,2 and 5 from iteration domain of port
p4 of statement S3 to points 1,2 and 5 of statement S1.

In Section 1.1.2, we explained that the communication model of a channel depends
on the order of firings of the Producer and Consumer processes. We define the or-
dering in the communication models of a P/C pair as follows:

Definition 2.6.1 (in-order,out-of-order)
A P/C pair is in-order iff the mapping function f preserves the token order, i.e.,

every two Consumer iteration points y1, y2 ∈ LmP(D(f))∧ y1≪y2 are mapped onto
two Producer iteration points x1 = f (y1) and x2 = f (y2) such that x1≦x2. If a P/C
pair is not in order we call it out-of-order.

The LmP(D(f)) set used in Definition 2.6.1 is defined as follows:

Definition 2.6.2 (Lexicographically minimal Preimage,LmP)
Lexicographically minimal Preimage (LmP) is a set of the Consumer iteration points ym
that read the tokens from the Producer for the first time. LmP is found by solving
the following Integer Linear Problem:

objective : subject to :

ym = lexmin{ f−1(x)},

{

y ∈ D(f),

x = f (y).

34 CHAPTER 2. BACKGROUND

For example, in Figure 1.4(b), the LmP is marked by the dashed box and according to
Definition 2.6.1 this P/C pair is in-order. Similarly, for our running example shown
in Figure 1.3(b), the LmP corresponds to the dashed box and the communication
model of a P/C pair formed by statement S2 and S3 is in-order.

The definition of multiplicity in a P/C pair given below we take from [14].

Definition 2.6.3 (multiplicity)
AP/C pair iswithoutmultiplicity iff themapping function f is injective, i.e., ∀ y1, y2 ∈

D(f)) s.t. y1 6= y2 ⇒ f (y1) 6= f (y2). Otherwise we say that the P/C pair is with
multiplicity.

For example, in our running example shown in Figure 1.3(b), we see that there are at
least two different iteration points of S3 which correspond to a single iteration point
of S1. Therefore, the P/C pair formed by statements S1 and S3 has a multiplicity.

To analytically determine the communication type of an arbitrary P/C pairs in Fig-
ure 2.3 the Reordering Problem (RP) and the Multiplicity Problem (MP) are specified
which correspond to Definitions 2.6.1 and 2.6.3, respectively.











y1, y2 ∈ LmP(D(f)),

y1≪y2,

f (y1)≫ f (y2).

(a) Reordering Problem (RP)











y1, y2 ∈ D(f), (c1)

y1 6= y2, (c2)

f (y1) = f (y2). (c3)

(b)Multiplicity Problem (MP)

Figure 2.3: Reordering and Multiplicity Problems in static programs.

The RP and MP problems are integer linear problems (ILP), meaning that if, for ex-
ample, there is an integer solution satisfying RP, then the communication model is
out-of-order. Otherwise, the the communication model is in-order. Similarly, if there is
an integer solution satisfying MP, then the communication model iswith-multiplicity,
and otherwise the communication model is without-multiplicity. For example, ac-
cording to these problems, communication models of P/C pairs P1P3 and P2P3 in
Figure 1.3(b) are IOM and IO, respectively.

