Universiteit

4 Leiden
The Netherlands

Parallelizing dynamic sequential programs using polyhedral process

networks
Nadezhkin, D.

Citation
Nadezhkin, D. (2012, December 20). Parallelizing dynamic sequential programs using
polyhedral process networks. Retrieved from https://hdl.handle.net/1887/20357

Version: Corrected Publisher’s Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20357

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20357

Cover Page

The handle http://hdl.handle.net/1887/20357 holds various files of this Leiden University

dissertation.

Author: Nadezhkin, Dmitry

Title: Parallelizing dynamic sequential programs using polyhedral process networks
Issue Date: 2012-12-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20357
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter

Introduction

In the work entitled “Dialectics of Nature” Friedrich Engels (1883) formulated the
law which can describe the universal law of nature, the material world and human
society. According to the law the quantitative changes in a system eventually pass
into qualitative changes. Not surprisingly, this law could also explain the advances
that have been taking places during the last decade in the computer industry.

The quantitative advances in the computer industry were predicted and formalized
by the Moore’s law. The law predicted the doubling of transistor densities every 18
to 24 months. Coupled with the increase of processor frequencies these led man-
ufacturers to produce faster and more powerful processors every year. But these
advances inevitably came to their end at some point in time. Growing disparity of
speed between the CPU and the memory could not further improve the speed of
computation. Additionally, increasing density of transistors leads to prohibitively
high levels of power consumption, heat and power leakage. This is a prove that
quantitative advances in hardware technologies could not be further a driving force
in the computer industry.

To overcome these problems chip manufacturers have moved from single proces-
sor systems to multiprocessor or parallel systems. This allows to run processors on
lower frequencies and combine general purpose processors with dedicated proces-
sors leading to heterogeneous systems with more optimized usage of transistors.
The world of computers moved from sequential computing to parallel computing,
or, in other words, the quantitative advances have been transformed into qualitative
advances.

Although, we are witnessing the emergence of parallel (multi-core and multi-pro-
cessor) systems in all markets: from general-purpose computing to embedded sys-
tems, e.g., multimedia systems, game consoles and all sorts of mobile devices, the
transition from sequential to parallel computing is far from trivial. To satisfy emerg-
ing applications requirements, the multiprocessor embedded systems must be pro-

2 CHAPTER 1. INTRODUCTION

grammed in a way that the available parallelism is revealed and exploited efficiently.
However, the programming of a multiprocessor system is a challenging, error-prone,
and time consuming task as it involves the partitioning of programs, and conse-
quently, synchronization of different program partitions.

In recent years, a lot of attention has been paid to the design of parallel systems.
However, insufficient attention has been paid to the development of concepts, me-
thodologies, and tools for efficient programming of such systems. Therefore, the
programming still remains a major difficulty and challenge [1]. Today, system de-
signers experience significant difficulties in programming parallel systems because
the way an application is specified by an application developer, typically as a sequen-
tial program using a sequential model of computation (MoC), does not match the way
multiprocessor systems operate, i.e., multiple cores run (possibly) in parallel.

If an application is specified using a parallel MoC, then the mapping of this applica-
tion onto a multiprocessor system can be done in a systematic and transparent way
by using a disciplined approach [2]. Using a parallel MoC facilitates the program-
ming of parallel multiprocessor systems because a parallel MoC makes the paral-
lelism available in an application and the communication between the application
tasks explicit. Unfortunately, specifying an application using a parallel MoC is very
difficult as the application developers i) have to be familiar with a particular parallel
MoC; ii) have to study the application in order to identify possible parallelism that
is available and to reveal it by using the parallel model.

To relieve the designer from all these difficulties, the pn compiler [3] was introduced.
It implements techniques for automated parallelization of static affine nested loop
programs (SANLP) written in a subset of C-language equivalent to the program
model presented in [4] into input-output equivalent Polyhedral Process Network
(PPN) descriptions. In the pn partitioning strategy, a process is created for every
statement and function call found in the top-level of the program. In this way, the
designers have control over the granularity of the created partitions.

1 parameter N 10 100;

2 for j =1 to 6*N-3,
3 A[j] = Funcl(Q

4 endfor

5 for j =0 to N,

6 for i = j to 3%j-2,

7 if(i+j < 4*N-6)

8 A[i] = Func2(A[2*i-1], A[2*i+1])
9 endif

10 Func3(A[i])

11 endfor

12 endfor

Figure 1.1: Pseudo code of a SANLP.

An example of a SANLP is given in Figure 1.1. In this and following figures in this
dissertation, the examples will be given in pseudo code which semantics is equiva-
lent to the semantics of the program model presented in [4]. We decided to use the
pseudo code syntax instead of C-language syntax in order to avoid syntax clutter

1.1 Automatic Derivation of Polyhedral Process Networks 3

of C-language and emphasize that input programs considered in this dissertation
are not language specific. A SANLP in Figure 1.1 consists of a set of statements
and function calls, each possibly enclosed in loops and/or guarded by conditions.
The loops do not have to be perfectly nested. All lower and upper bounds of the
loops as well as all expressions in conditions and array accesses have to be affine
functions of enclosing loop iterators and static parameters. The parameters are sym-
bolic constants, i.e., their values can not change during the execution of the program.
Rather, parameter values determine different program instances. In addition, data
communication between function calls must be explicit. For example, see function
Func2() at line 8 which accepts 2 elements of array A as input arguments. Providing
just a pointer to array A in this case is not allowed. The above restrictions allow
a compact mathematical representation of a SANLP using the well-known polyhe-
dral model [5]. The SANLPs can be converted in an automated way into Polyhedral
Process Networks [3].

The target Polyhedral Process Networks (PPNs) [6] is a special case of the Kahn
Process Networks (KPNs) [7] model of computation. A PPN consists of concur-
rent autonomous processes that communicate data in a point-to-point fashion over
bounded FIFO channels using a blocking read /write on an empty /full FIFO as syn-
chronization mechanism. In addition, everything about the execution of a PPN is
known at compile-time. The latter enables techniques for modeling, analysis, and
SW/HW synthesis in a systematic and automated way, and allows the calculation
of buffer sizes that guarantee deadlock-free execution. In comparison, computing
buffer sizes is not possible for the more general KPN model. We are interested in
the process network model because it provides a sound formalism, well suited for
capturing and modeling of data-flow dominated applications in the realm of multi-
media, imaging, and signal processing, that naturally contain tasks communicating
via streams of data. Moreover, it has been already shown that process networks
allow effective and efficient mappings of streaming applications to certain parallel
execution platforms [8-13].

1.1 Automatic Derivation of Polyhedral Process Networks

In this section we briefly recall the systematic parallelization approach [14] used to
derive Polyhedral Process Network from static sequential programs. This overview
will help to understand the contributions of this dissertation.

The approach is illustrated in Figure 1.2(b). It starts with an application written as
a sequential program similar to the one depicted in Figure 1.1. In many cases com-
pletely sequential execution can be relaxed without compromising the correctness
of the execution. That is, the order of the program statements can be rearranged
without changing the program functionality under the ordering constraints. In fact,
the possibility to rearrange statements is actually the possibility to execute them in
parallel. Ordering constraints are dictated by the data dependency relations exist-
ing in the sequential program. Therefore, the first main step of the parallelization

4 CHAPTER 1. INTRODUCTION

Sequential

parameter M 1 10
2 parameter N 1 10 program
3 for k=1 to N, v step1
Si: y[kl = F10 .
5 endfor ‘ Dependence Analysis ‘
6 fori=1+1toN,
7 £ j =1 to M,
s if] 2, (PRDG/SAC)
s2: y[jl = F20
10 endif ¢ step2
$3: [= B3y ‘ A eyt ‘
12 endfor Linearization
13 endfor ‘

(Polyhedral Process Networ@

(a) SANLP Program (b) Parallelization approach (d) PPN

Figure 1.2: An example of a Static Affine Nested Loop Program, approach that trans-
lates SANLPs into PPNs, intermediate representation Polyhedral Reduced Depen-
dence Graph and resulting PPN.

approach depicted in Figure 1.2(b) is to perform data dependence analysis between
evaluations of statements. The analysis helps to extract the dependent memory
accesses and present an initial program in a form where data dependencies are
made explicit. Thus, the initial program is translated into the Single Assignment
Code (SAC) [4] form or its analogous form called Polyhedral Reduced Dependence
Graph (PRDG) [15] which is a compact mathematical representation of the depen-
dency relations in terms of polyhedra. In PRDG the nodes represent statements of
the initial program and the edges represent data dependencies. The PRDG model
still exploits (multi-)dimensional arrays for data communication. However, the tar-
get model, Polyhedral Process Networks, requires FIFO channels as communication
medium. Therefore, another step is needed that converts multi-dimensional mem-
ory accesses into managed dataflow over FIFO queues. This step called Linearization
constitutes the second main step of the approach shown in Figure 1.2(b). In the fol-
lowing, we give more detailed overview of these steps.

1.1.1 Dependence Analysis

The goal of the Dependence Analysis step is to determine if evaluation of a statement
depends on evaluation of other statements and to find these evaluations. For exam-
ple, in the SANLP program depicted in Figure 1.2(a), the purpose of the dependence
analysis is to find whether statement S3 depends on statements S1 or 52 via array y
and at which particular iterations. Or in other words, for every element of array y
read at a given iteration of statement S3, the dependence analysis finds which state-
ment, S1 or S2, and at which iteration it writes data to the given array element. The
most relevant algorithm to perform the analysis is the Exact Array Dataflow Anal-

1.1 PPN derivation 5

ysis (EADA) [4]. This algorithm considers all pairs of statements where one writes
and the other reads from possibly the same memory addresses. For each pair a spe-
cial system of linear (in)equalities is built. This system defines in an affine form the
conditions when two statements are data dependent. The formal definition of this
system of linear (in)equalities will be given in Chapter 2. For example, Table 1.1
depicts two systems of linear inequalities Qg153((i3,j3)) and Qsps3((73, j3)) for pairs
S1S3 and S2S3, respectively. Note that with (i3, j3), iteration vector (i, j) of statement
53 is denoted. Similarly, with (i, j») and k iteration vectors of statements S1 and S3
are denoted, respectively.

The meanings of constraints (c1)-(c3) are the following. The first constraint (c1) states
that the source iteration has to exist, i.e., it has to belong to the iteration domain of a
potential source statement. The constraint (c2) specifies that if there is a dependency
between evaluation of two statements, both have to access the same array element.
The (c3) constraint determines an order of operations, i.e., writing to the array cell
in one statement should be performed before reading from the same array cell in the
other statement. The order of operations is defined by the sequential order of the
initial program.

Qs1s3((i3,3)) Qs2s3((13,73))

1<k<M 1< <NAip<jp <MA (1)
<2

k=73 =13 (c2)

true <52, (i2/j2)> = <S3/ (i3/j3)> (C3)

Table 1.1: Systems used in dependence analysis between statements 5153 and 5253
in the program shown in Figure 1.2(a).

Having these systems formulated, the data dependence algorithm finds the lexico-
graphical maximum between all vectors satisfying the systems. Finding a lexico-
graphical maximum means to solve the Parametric Integer Linear Problems (PILPs),
where objective is the lexmax function subjected to conditions stated by systems
Q(). The solution to find the maximum point for a given convex domain defined
by the systems is based on the dual simplex method [16] that is implemented in
open-source libraries such as is! [17], Parma Polyhedral Library [18], and PIPLib [19].
Finally, the source operation for the data read by statement S3 is:

if]3§2 then <52,(z3,]3)>

else (S1,(j3))- (1)

The solution above shows that the source of the data for statement S3 of the pro-
gram in Figure 1.2(a) can be from two different statements. The source is statement

6 CHAPTER 1. INTRODUCTION

51 when the iterator j of S3 is greater than 2. Otherwise, the source is statement
52. The result of the analysis forms the dependency relations between iterations of
statements writing /reading to/from the array.

1 for k =1 to 4,
S1: y_1[k] = F10
3 end
4 for i =1 to 4,
5 for j =1 to 4,
6 if j <= 2, i
S2: y_2[i,jl = F20 4
8 end
9 if j <= 2, 3
10 in_0 = y_2[i,j]
11 else 2
12 in_ 0 = y_1[j] 1
13 end
S3: [1 = F3(in_®)
15 end
16 end

(a) SAC code (b) Data dependencies

Figure 1.3: Single Assignment Code form and data dependencies relations in the
program depicted in Figure 1.2(a).

For illustrative purposes, the same result can be depicted in a graphical form as
shown in Figure 1.3(b). In the figure the dependencies are found for values of pro-
gram’s parameters M and N equal to 4. The coordinate systems show the iteration
domain of statements S1, S2 and S3. The points on the coordinate systems designate
the evaluations of statements 51, 52 and S3, and the arrows reflect the data depen-
dency relations.

Based on the results of the dependence analysis, the initial sequential program can be
translated into the Single Assignment Code (SAC) form which is introduced in [4].
The SAC program is functionally equivalent to the initial program, with the dif-
ference that every variable is written exactly once. The latter ensures that all data
dependencies are explicitly revealed and respected. The SAC form of the initial pro-
gram shown in Figure 1.2(a) is illustrated in Figure 1.3(a). In this SAC program,
the original array y[] is substituted with multi-dimensional dedicated arrays y_1[]
and y_2[,], and control at lines 6 and 9 is added in order to respect the original
data dependency relations. The SAC form of the initial program is easily convertible
to the Polyhedral Reduced Dependence Graph (PRDG) [15]. The PRDG is a graph
where nodes represent computation and edges represent communication. Nodes
communicate point-to-point via unique dedicated multi-dimensional arrays that re-
spect the original data dependencies. An example of a PRDG derived from the pro-
gram shown in Figure 1.2(a) is illustrated in Figure 1.2(c). It consists of three pro-
cesses that correspond to the statements of the SAC program shown in Figure 1.3(a),
and two arrays that correspond to the arrays y_1[] and y_2[,] of the same pro-
gram. It is important to note that rather than introducing a node for each iteration
of a statement in a SAC, in PRDG, a node specifies a regular set of all iterations of a
statement in a SAC program. This regular set is defined in terms of polyhedra. The
definition of polyhedra and its relation to affine nested loop programs will be given

1.1 PPN derivation 7

Producer Consumer Producer Consumer
k j Kk jd -
T e e s T
1 R VAT IR 1 “\.1‘ ;
i i
(a) In-order (I0) (b) In-order with multiplicity
(10M)
Producer Consumer Producer Consumer
k j k j
4 B SR 4 R T
3 3 *37 %% %8
2 60 i i 2 \it?\-s
-_-a — m -
i i
(c) Out-of-order (OO) (d) Out-of-order with multiplic-
ity (OOM)

Figure 1.4: Types of communication models in a PPN.

in Chapter 2.

To summarize, the Data Dependence step of the parallelization approach shown in
Figure 1.2(b) translates the initial sequential program into its functionally equiva-
lent PRDG which specifies a program in terms of topology, behavior and geometry.
The geometrical polyhedral specification makes this model useful for different trans-
formations [20]. The explicit separation between communication, computation and
geometrical characterization allows for translation from communication via shared
memory to FIFO channels which constitutes the Linearization step of the paralleliza-
tion approach.

1.1.2 Linearization

In a PRDG, the storage structure of the initial program is transformed such that
each Producer/Consumer (P/C) pair of nodes communicates over dedicated multi-
dimensional memory arrays as shown in Figure 1.2(c). However, in the target PPN
model, communication is required to be done via FIFO channels instead of multi-
dimensional arrays because, for example, such communication allows for simple
implementation of data streams in software and hardware. The Linearization step of
the parallelization approach replaces all such multi-dimensional arrays with FIFO
channels.

8 CHAPTER 1. INTRODUCTION

However, due to the particular way the data flows from a Producer node to a Con-
sumer node, mapping array communication onto FIFO channels requires complex
address generators, especially if the arrays have multiple dimensions. Therefore,
the Linearization also solves the Communication Model Identification (CMI) prob-
lem, which investigates communication characteristics of each P/C pair of nodes in
a PRDG. The CMI problem is an optimization problem that allows to identify com-
munication behavior of a FIFO channel that is cheaper for realization. We explain
this in the following example.

Every FIFO channel implemented as a point-to-point communication has one Pro-
ducer and one Consumer node or processes, thereby forming a Producer/Consumer
pair (P/C pair). An example of two P/C pairs P1/P3 and P2/P3 is shown in Fig-
ure 1.2(d).

In any point-to-point communication, the firings of the Producer process generate
data tokens in a certain order. We call it the production order. The tokens are sent to
the Consumer process over the FIFO channel. In order to fire, the Consumer process
needs the data tokens in a certain order. We call it the consumption order. When the
production and consumption orders are the same, we say that the P/C pair commu-
nication is in-order. Otherwise, the P/C pair communication is out-of order. Consider,
for example, Figure 1.4(a). It depicts the Producer and Consumer processes, where
the points on the coordinate systems designate the firings of the processes and the
arrows reflect the data dependencies between firings. The numbers at the points
show the production/consumption orders. Figure 1.4(a) shows that the production
order of the Producer process coincides with the consumption order of the Consumer
process. This is an example of in-order communication in a P/C pair. Similarly, Fig-
ure 1.4(c) illustrates that the consumption order of the Consumer is reversed to the
production order of the Producer process. This is an example of out-of-order commu-
nication.

In a P/C pair, it may occur that the Consumer process may need to reuse in future
firings a token that has just been received from the Producer process. In such case
we say that the P/C pair communication has a multiplicity. For example, consider
the firing of the Producer and Consumer depicted in Figure 1.4(b). The produc-
tion and consumption orders are the same, thus, the P/C pair communication is
in-order. Additionally, we may notice, for example, that the data token needed for
firing 3 of the Consumer process, will be needed on firings 6 and 8. Thus, the P/C
pair communication has a multiplicity. Likewise, a P/C pair communication may be
out-of-order and has a multiplicity. An example of such P/C pair communication is
depicted in Figure 1.4(d). The four different types of P/C pair communication de-
scribed above, determine four communication models between processes. They are:
in-order (10), out-of-order (OO), in-order with multiplicity (IOM) and out-of-order with
multiplicity (OOM). The communication of a P/C pair belongs to one of these four
types only.

According to the explanations given above, the communication models between
nodes formed by statements S1/53 and 52/S3 in Figure 1.3(b) are IOM and IO, re-
spectively.

1.2 Problem statement 9

1 parameter M 1 10; 1 parameter M 1 10; 1 parameter M 1 10;
2 parameter N 1 10 2 parameter N 1 10 2 parameter N 1 10
3 fork=1toM, 3 for k=1 to M, 3 for k=1 to M,
S1: y[k] = F10 S1: y[k] = F10 S1: y[k] = F1Q
5 endfor 5 endfor 5 endfor
6 fori=11toN, 6 for j =1 to N, 6 fori=1toN,
7 for j =i to M, 7 for i =1 to £(...), S1: y[i] = F10
C: if y[j] <= 2, S1: y[i] = F10 8 while (...),
S2: y[jl = F20 9 endfor S2: y[i] = F20
10 endif 10 endfor 10 endwhile
S3: [1=FQ@0D S3: [1 =F3Cyl[il)
12 endfor S2: [...] = F2C y[5]) 12 endfor
13 endfor
(a) Weakly Dynamic Pro- (b) Affine program with dy- (c)Affine program with while-
gram (WDP). namic loop bounds (Dynloop). loop (WLAP)

Figure 1.5: Examples of WDP, Dynloop and WLAP programs. The differences are
that in WDP program, there is a dynamic if-condition at line C; in Dynloop, the
upper bound of for-loop i at line 7 is data-dependent; in WLAP program, the second
loop at line 8 is a while-loop.

In order to implement a PPN, all communication models have to be realized over a
FIFO channel. The in-order models can be implemented with a FIFO in a straight-
forward way, as the order of writing into the FIFO channel and the order of reading
from it are the same. The out-of-order models would require a FIFO channel aug-
mented with a controller implementing the reordering. In a similar manner, the
models with multiplicity would require a FIFO channel with additional memory to
store the tokens which will be reused later.

The difference in realization puts the communication models into a hierarchy. The
realization of the OOM model is the most general, as it is built of all components
present in the realizations of the other models. In other words, all P/C pair com-
munication models can be implemented with the realization of the OOM model.
However, the more general a realization is, the more resources it needs and more
run-time overhead is introduced. More importantly, the 10,00 and IOM communi-
cation models might be implemented with simpler realization.

Thus, we see that in order to parallelize a sequential application two important steps,
Dependence Analysis and Linearization, should be addressed.

1.2 Problem statement

Many scientific, matrix computation, and signal processing applications can be spec-
ified as static affine nested loop programs (SANLPs), and therefore, the pn com-
piler [3], briefly described in Section 1.1, can be used to derive equivalent parallel
PPN specifications. However, many multimedia applications such as MPEG coder-
s/decoders, Smart Cameras, adaptive filters, iterative algorithms, etc. have adaptive

10 CHAPTER 1. INTRODUCTION

and dynamic behavior which can not be expressed as static programs as SANLPs.

In order to handle such dynamic applications, in this dissertation we address an
important question: whether some of the static restrictions of the SANLPs can be
relaxed while keeping the ability to perform compile-time analysis and to derive
PPNs in an automated way. Achieving this will significantly extend the range of
applications that can be parallelized in an automated way.

By studying different dynamic applications we distinguished three relaxations to
SANLP programs that would allow one to specify dynamic applications as sequen-
tial programs.

The first relaxation:

I. dynamic if-conditions are allowed in a program.

An example of an application with this relaxation is depicted in Figure 1.5(a). Note,
that the if-statement at line C has a dynamic condition “y[j] <= 2”. This condition
is dynamic because it depends on the variable y[j] whose value is determined dur-
ing program execution. As a real-life example of an application that contains such
relaxation, the Motion JPEG (M-JPEG) encoder [21-23] can be considered.

The second relaxation:

II. for-loops with dynamic bounds are allowed in a program.

An example of an application with this relaxation is depicted in Figure 1.5(b). Note,
that the upper bound of for-loop i at line 7 is an arbitrary function £(...). As
an example of a real-life application containing for-loops with dynamic bounds an
application from the smart cameras domain called Low Speed Obstacle Detection
(LSOD) [24] can be considered. The detailed analysis of this application will be given
in Chapter 6.

The third relaxation:

III. while-loops are allowed in a program.

An example of an application with this relaxation is depicted in Figure 1.5(c). Note,
that the loop at line 8 is a while-loop. An example of a real-life application containing
while loop is the application from the signal processing domain called Adaptive
Beamforming (AB) [25].

In the rest of this dissertation, a program that contains either of these three relaxation
will be called a dynamic program.

In [21], the first relaxation has been considered, i.e., how to translate affine nested-
loop programs with dynamic if-conditions into input-output equivalent PPNs in

1.3 Motivation and challenges 11

S2 S3

(c) eval(C)=unknown

Figure 1.6: Dependency relations in a dynamic program.

an automated way. In this dissertation, we consider the other two more difficult
relaxations. Finally, we formulate the problem which is solved in this dissertation:

to develop an automated procedure for translation of affine programs with relaxations I and
11 into input-output equivalent Polyhedral Process Networks.

1.3 Motivation and challenges

The overall challenge of deriving a PPN from a dynamic program is how to deal
with uncertainties introduced by the relaxations presented in Section 1.2. Below, we
demonstrate that: 1) an exact data dependence analysis (EADA) and exact commu-
nication model identification (CMI) in PPNs derived from dynamic programs are
not possible at compile-time; 2) the existing approach used for PPN derivation pre-
sented in Section 1.1 cannot be used to identify communication models and translate
dynamic programs into PPNs; 3) nevertheless, at compile-time, for any P/C pair it
is possible to identify the most general communication model which can be used to
realize all possible data dependency patterns that may occur in different instances of
the dynamic program.

12 CHAPTER 1. INTRODUCTION

Consider, for example, the dynamic program shown in Figure 1.5(a) which contains
dynamic relaxation I. The program has a dynamic condition at line C evaluating
some run-time data. Depending on the evaluation of the if-condition, either state-
ment S1 or S2 produces the data for every firing of statement S3.

Figure 1.6 depicts data dependency relations between statements S1, S2 and S3 in
three instances of this program for M = N = 4, where an instance of a dynamic
program is an evaluation of the program with a particular input dataset. Figure 1.6
illustrates iteration domains of statements S1, S2 and S3, where the points on the
coordinate systems designate the evaluations of statements and the arrows reflect
the data dependencies between evaluations. The numbers at the points show the
lexicographical order of statement evaluations.

Assume, first, that the condition at line C always evaluates to true, and, thus, all the
data needed by statement S3 is produced by statement S2 only (see Figure 1.6(a)).
The opposite case is when the condition at line C always evaluates to false. Depicted
in Figure 1.6(b), this time, relations exist between statement S1 and S3 only. In gen-
eral, however, the result of condition evaluation at line C is arbitrary and unknown
at compile-time. An example of this case is shown in Figure 1.6(c). In this case, on
some firings, the data needed by statement S3 is produced by statement S1, on other
firings by statement S2.

The three examples of data dependency relations illustrated in Figure 1.6 show the
difference of dependency patterns between dynamic and static programs. In static
programs, different instances of a program correspond to one and the same single
dependency pattern which is known at compile-time. In dynamic programs, data
dependency patterns correspond to different instances of a dynamic program, and
are unknown at compile time. This also means that data dependency patterns in a
dynamic program cannot be determined at compile-time by the exact array depen-
dence analysis.

We can illustrate the same idea by using the description of the exact dependence
analysis presented in Section 1.1.1. Recall, that this analysis constitutes Step 1 of
the parallelization approach depicted in Figure 1.2(b). In order to determine data
dependency patterns at compile-time the data dependence analysis has to be per-
formed on a initial program. The dependence analysis algorithm builds a system
of linear inequalities similar to one shown in Table 1.1. Consider, for example, the
dynamic program in Figure 1.5(a), and let us build the system for pair S253:

Then, the data dependence algorithm finds the lexicographical maximum between
all vectors satisfying the systems by solving Parametric Integer Linear Problems
problem. However, in the system shown in Table 1.2 constraint (c1) which speci-
fies the domain of the source iteration is not a convex domain as it contains dynamic
if-condition y[j] <= 2. Therefore, the exact data dependence analysis presented in
Section 1.1.1 cannot be applicable to dynamic programs.

The same reasoning applies to the dynamic programs with the other two relaxations
IT and III. Overall, this shows that the approach presented in Section 1.1 cannot han-
dle the dynamic programs shown in Figure 1.5.

1.3 Motivation and challenges 13

Qs2s3((73,j3))
1<ih < NAip <jp <MA (cl)
yl] <2
j2=17s (c2)

(82, (i2,j2)) < (S3,(i3,j3)) (c3)

Table 1.2: The system used to perform exact dependence analysis between state-
ments 5253 in the program shown in Figure 1.5(a).

The inability to determine the exact data dependency relations in a program makes
the exact communication model identification impossible. Nevertheless, still we can
analytically identify at compile-time the communication models of a P/C pair in all
possible instances of a dynamic program. Based on this information, we can real-
ize the communication of a P/C pair with the most general communication model
which implements all possible data dependency relations. For example, we may
observe in Figure 1.6 that the production/consumption orders in 51/53 and 52/53
pairs are the same. Thus, the communication in all P/C pairs is in-order. Moreover, in
some program instances a multiplicity in the communication is possible and, accord-
ing to the realization hierarchy of communication models, the most general model
for 51/53 and S2/S3 pairs is IOM. Therefore, we can implement the communication
in 51/53 and S2/53 pairs as IOM model.

In order to solve the problem addressed in this dissertation and formulated in Sec-
tion 1.2, we split the problem in 2 issues. The first issue is formulated as follows:

¢ IssueI: dynamic programs with the relaxations presented in Section 1.2 require
different parallelization approach in translating them into PPNs compared to
the approach presented in Section 1.1. Loop iteration domains and the overall
dataflow is unknown at compile-time in dynamic programs. [21] considered
relaxation I, i.e., how to translate affine nested-loop programs with dynamic
if-conditions into input-output equivalent PPNs in an automated way. The
main research topic of this dissertation is how to translate dynamic programs
with relaxation II and III into PPNs.

The first issue calls for a novel parallelization approach for dynamic programs. The
second issue below addresses a novel approach for implementing a PPN.

¢ Issue II: we demonstrated that an exact communication model identification in
PPNs derived from dynamic programs is not possible at compile-time. There-
fore, we address the problem of communication model identification in PPNs
derived from dynamic programs. This issue is an important optimization prob-
lem as it allows to identify communication models with simpler realization.

14 CHAPTER 1. INTRODUCTION

1.4 Research Contributions

The work presented in this dissertation focuses on the derivation of Polyhedral Pro-
cess Networks specifications from dynamic programs. Below, we list the contribu-
tions delivered by this dissertation.

¢ Contribution I [26,27]: a first approach for automated translation of affine
nested-loop programs with dynamic loop bounds (Dynloop) into input-output
equivalent Polyhedral Process Networks. In addition, we present a method
for analyzing the execution overhead introduced in the PPNs derived from
programs with dynamic loop bounds.

¢ Contribution II [28]: a first approach for automated translation of affine nested-
loop programs with while-loops (WLAP) into input-output equivalent Polyhe-
dral Process Networks.

¢ Contribution III [29]: we present a formal procedure for communication mod-
els identification in Polyhedral Process Networks derived from the dynamic
programs introduced in Section 1.2.

To address the first issue defined in Section 1.3, Contributions I and II of this disser-
tation devise a compile-time automated procedure that can be used to derive a PPN
from dynamic programs with relaxations II and III presented in Section 1.2. By our
third contribution we address the second issue: we introduce a novel procedure for
Communication Model Identification in PPNs derived from dynamic programs.

1.5 Related Work

The work presented in this dissertation is directly related to previous works on
systematic and automated derivation of process networks from affine nested loops
programs initiated by Rijpkema et al. [15,30]. Further, Turjan et al. [31] proposed
an automated derivation of process networks from static affine nested loop pro-
grams (SANLPs). In SANLPs the memory array subscripts, loop bounds and condi-
tional control structures are affine constructs of surrounding loop iterators, program
parameters and constants. Stefanov [21] further developed a procedure of process
network derivation from more relaxed class of affine nested loop programs called
Weakly Dynamic Programs (WDPs). In this class of affine nested loops programs, the
conditions in control structures might be dependent on some information that is un-
known at compile-time and may change at run-time. In contrast, this dissertation
deals with more general class of applications, i.e., affine nested loop programs with
loop bounds (Dynloop) that unknown at compile-rime and determined at run-time,
and applications containing while-loops (WLAP).

In the context of automatic parallelization of sequential programs research has been
done on approaches to convert a nested loop program to an equivalent program

1.5 Related Work 15

which is in a single-assignment form, i.e., a program in which every memory cell
is written at most once. Such program is easier to be analyzed and parallelized ef-
ficiently. The work of Knobe and Sarkar [32], Feautrier et al. [33] and the work of
Griebl, Lengauer and Collard [34-36] on this topic are directly related to the first
step of our approaches presented in Chapters 3 and 4 of this dissertation. This is
because in this step we propose an approach to convert dynamic programs into a
single-assignment form which we call dynamic Single Assignment Code (dSAC).
The relations are explained below.

Knobe and Sarkar [32] proposed an approach to convert a nested loop program
to a single-assignment form that they call Array Static Single Assignment (ASSA).
Their approach is more general than our approach in the sense that the class of
nested loop programs which they can convert to their ASSA includes classes of dy-
namic programs considered in this dissertation which we can convert to our dSAC.
However, when Dynloop and WLAP programs are considered, our approach is
more efficient compared to their approach in the sense that dSAC is a more efficient
single-assignment form in terms of code lines and memory usage compared to their
ASSA form. This is because in our approach a dependence analysis is performed at
compile-time before the corresponding dSAC is generated. This compile-time de-
pendence analysis, called fuzzy array data-flow analysis (FADA) [37,38], allows an
efficient code generation. The approach of Knobe and Sarkar does not perform any
dependence analysis at compile-time. Instead, the dependence analysis is performed
at run-time by placing a special code called ¢ functions and @ arrays in their ASSA,
thereby making their approach more general. The ¢ functions and @ arrays intro-
duce significant code overhead because in many cases unnecessary ¢ functions and
@ arrays are placed in the ASSA, thereby making the ASSA form very inefficient in
terms of code lines and memory usage compared to our dSAC.

The work of Feautrier et al. in the context of the PAF parallelizer [39] describes an
approach to convert nested loop programs similar to our dynamic programs into a
single-assignment form called SA. Their approach is based on performing a fuzzy
array data-flow analysis (FADA) at compile-time before generating the SA. The re-
sult of this FADA analysis is implemented by ¢ functions placed in their SA during
code generation. The ¢ functions depend on parameters whose values have to be set
dynamically at run-time in order to preserve the original data-flow when the control
flow cannot be predicted at compile-time. The work of Feautrier et al. lacks a general
approach to set the values of the parameters at run-time. The work described above
relates to our approach for converting dynamic programs to a dSAC in the sense that
we also perform a FADA analysis at compile-time and we also place a code with pa-
rameters in our dSAC similar to the ¢ functions but our code is more efficient. Also,
the difference is that we have developed a very simple general approach to set the
values of the parameters at run-time. This approach is presented in Chapter 3.

Griebl, Lengauer and Collard [34-36] addressed the problem of parallelization of
while-loops similar to our work. Similar to our approach, they perform array dataflow
analysis to expose data dependencies in an explicit way. Subsequently, they use
space-time restructuring techniques to generate the code for speculative execution

16 CHAPTER 1. INTRODUCTION

or software pipelining. Generally unscannable execution space that a while-loop
provides, they scan with the help of run-time computable predicates, that are also
used for detection of while-loops’ termination. Besides introducing an overhead at
run-time, these predicates limit the applicability of their approach to shared memory
systems. In contrast, our parallelization approach targets multiprocessor systems
with distributed memory.

Apart from the idea to convert a nested loop program to an equivalent program
in a single-assignment form, in the context of automatic parallelization of dynamic
sequential programs, there are a number of other efforts that were made.

Raman et al. [40] devise the Parallel-Stage Decoupled Software Pipelining (PS-DSWP)
multi-threading technique to extract pipeline parallelism from codes with irregular,
pointer-based memory accesses and arbitrary control flow, which generally include
while-loops. A parallel-stage allows to obtain pipeline parallelism from some stages
executed in a DOALL fashion. In contrast, our approach supports also task- and
data-level parallelism besides the pipeline- and iteration-level parallelism. More-
over, we can generate parallel code for multi-processor systems with distributed
memory.

The LooPo compiler [41] deals with parallelization of more general class of nested
loop program than the class we consider in this dissertation. It includes nested loop
programs with unscannable execution spaces which boundaries are determined at
run-time. The proposed parallelization procedure is based on run-time detection of
executed statements as well as detection of program termination [42]. In contrast
to [41], we use FADA and perform approximated dependence analysis at compile-
time. Moreover, we do as much as possible analysis at compile-time, thereby reduc-
ing the run-time overhead significantly.

A different approach is taken by Benabderrahmane et al. [43] where they embed the
control and exit predicates to the general data-dependent control-flow programs.
This predicates are used instead of data dependent control structures and while-
loops as first-class citizens of the algebraic representation. Subsequently, a polyhe-
dral representation is derived and code generation is performed from static program
analysis. In this approach, hiding all dynamism (dynamic loop bounds, while-loops)
in algebraic representations also diminishes the parallelism available in the initial
program as less information is visible for analysis. By contrast, our technique ex-
poses and utilizes all available parallelism.

Rauchwerger et al. [44] focused on parallelizing while-loops that are defined by one
or more recurrences that can be detected at compile-time; a reminder that can be
either analyzed statically or is unknown at compile-time; and one or more termi-
nation conditions. Although, they were able to parallelize a while-loop involving
linked lists traversal, it is not shown how they would tackle more general while-
loops, which we consider in this dissertation.

Bijlsma [45,46] and Geuns [47] approach the problem of while-loops parallelization
by considering an initial program with while-loops being in the local single assign-
ment (LSA) form where all data dependencies are explicit. They implement the ex-

1.6 Dissertation Outline 17

plicit data dependencies using circular buffers with overlapped read and write win-
dows. Specifying a program in a LSA form can be very time consuming and error
prone process because the system designer has to do the dependence analysis man-
ually. We find this a very a limitation of their work. By contrast, our approach uses
an automatic data-dependence analysis procedure which relieves the designer from
the very difficult task to do the manual dependence analysis.

In the context of communication model identification in Process Networks, to the
best of our knowledge, not much attention has been devoted to the problem of
automatic communication model identification. An automatic procedure exists for
communication model identification while translating static affine nested loop pro-
grams (SANLP) into functionally equivalent PPNs [31]. In this dissertation, we
develop an extension to this procedure which identifies communication models in
Polyhedral Process Networks derived from the dynamic programs introduced in
Section 1.2.

1.6 Dissertation Outline

The remaining part of this dissertation is organized a follows. In Chapter 2, we
first introduce notations and terminology that will be used throughout the disser-
tation. Further, we present theory describing the Polyhedral Model and show how
this model can be extracted from applications considered in this dissertation.

In Chapter 3, we present a first approach for automated translation of affine nested
loop programs with dynamic loop bounds (Dynloop) into input-output equivalent
Polyhedral Process Networks. The chapter describes in great details the models,
methods, and techniques we have developed and used in the approach. First, we
describe the techniques and procedures involved in the conversion of a Dynloop to
our dynamic Single Assignment Code (dSAC). Second, we demonstrate how the free
parameters introduced by FADA analysis are assigned in dSAC using control arrays.
Third, we show how the topology of the corresponding PPN is derived, as well as
the code executed in each process. Moreover, we demonstrate how the buffer sizes
of FIFO channels are computed that guarantee a deadlock-free execution of a PPN.

In Chapter 4, we present a first approach for translation of affine nested loop programs
with while-loops (WLAP) into input-output equivalent PPNs. In this chapter we
describes in great details the models, methods, and techniques we have developed
and used in the approach.

In Chapter 5, we present a formal procedure for identifying communication models
in process networks derived from the dynamic programs introduced in Section 1.2.
We formulate two problems from integer linear problems domain that allow us to
identify the communication models presented in Section 1.1.2.

In Chapter 6, we present a case study that we conducted in order to validate and
evaluate our approach presented in Chapter 3. This case study presents a real-life
industrially relevant application. We will present a comprehensive analysis and re-

18 CHAPTER 1. INTRODUCTION

port the results we obtained in this case study.

Finally, we conclude this dissertation in Chapter 7 with a summary of the presented
research work along with some concluding remarks.

